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Isogeometric Analysis
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aDoctoral Program “Computational Mathematics”, Johannespder University, Linz, Austria
bnstitute of Applied Geometry, Johannes Kepler Universiagulty of Natural Sciences and Engineering, Altenbefeasse 69, 4040 Linz, Austria

Abstract

Isogeometric Analysis is a numerical simulation methodalthises the NURBS based representation of CAD models. NURBS
stands for non-uniform rational B-splines and is a geneatitin of the concept of B-splines. The isogeometric metes the
tensor product structure of 2- or 3-dimensional NURBS fiomst to parameterize domains, which are structurally edent to a
rectangle or a hexahedron. The special case of singulandyterized NURBS surfaces and NURBS volumes is used tesept
non-quadrangular or non-hexahedral domains withoutsyitwhich leads to a very compact and convenient repratient

If the parameterization of the physical domain is availatihe test functions for the Isogeometric Analysis are olgdiby
composing the inverse of the domain parameterization WweNURBS basis functions. In the case of singular paranzettons,
however, some of the resulting test functions are not wdihdd at the singular points and they do not necessarilyfgdtie
required integrability assumptions. Consequently, tifnsiss matrix integrals which occur in the numerical diszegibns may
not exist.

After summarizing the basics of the isogeometric method,diseuss the existence of thefBiess matrix integrals for 1-,
2- and 3-dimensional second order elliptic partigtetiential equations. We consider several types of sindigdarof NURBS
parameterizations and derive conditions which guarahieexistence of the required integrals. In addition, weqaesases with
diverging integrals and show how to modify the test functionthese situations.

Keywords: singular parameterization, existenceffass matrix integral, isogeometric analysis, NURBS, CAD

1. Introduction In Computer Aided Design the considered objects are usu-
ally represented by non-uniform rational B-splines (NURBS
The isogeometric method applies numerical methods dyrectl

modeling an_d the numerigal simulatiop of Processes a.nd phet\(-) this representation of CAD models, since the parameteriz
nomena which are descnbedi by partlaﬁehennal equations inn and the function spaces for the numerical simulatian ar
acting on non-trivial geometric objects. In many cases, th(&

In various engineering applications, two major tasks aee th

; . : ) . uilt up by the same basis functions. Various applicatidrise
shape of a technical object or domain of interest is modele el bb

. _ ) ogeometric method have been studied, including problams
via tools from Computer Aided Design (CAD). On the Other_fluid dynamics [2, 3], in particular concerning the simusatof

hand, a widely used frameyvork o simulate ph_yS|caI or teChmblood flow [4], simulations in computational electromadcet
cal processes, such as fluid flow or deformation of an ObJeCTS], modeling deformation or vibration of solid structuriés-

's the Finite Element Method (.FI.EM)' In the glasglcg! finite-el 8] and the application to shape optimization [9-11]. One may
ment approach a mesh, containing geometric primitives asch especially consider problems where a high degree of smooth-

triangles, tetrahedra or hexahedra, has to be generatedtim ness is required, like [12], where the isogeometric mettasd h

CAD model. If the boundary O.f the physical domain iS_ partly numerous advantages compared to higher order Finite Ekemen
curved, then the mesh generation creates only an appragimat Methods

of the domain. Also, mesh generation for real-world CAD ob-
jects can be computationally expensive and may requirgexte
sive human interaction for model repair. Therefore, a nicaér
simulation framework that can eliminate the need for thikta

is of great interest. Isogeometric Analysis, which wasantr . I L
9 9 y line of research, fundamental contributions concerningso

duced by Hughes et al. 1], has '.[he potentlal to addr_ess the?gncy and stability of the method have been provided [17-20]
problems and has become an active field of research in the areq i work we focus on the applicability of the numerical

of numerical simulation. . . . )
methods in the case of singular parameterizations. In migny s
“Corresponding author, Teld3 7322468-9178 uatlon_s one _ca_nnot avoid singularly parameterized ob}m!cts
Email addressesthomas . takacs@dk-compmath. jku.at (T. Takacs), d_omaln_s. This is due to th_e tensor-_product str_ucture ofdrigh
bert.juettler@jku.at (B. Juttler) dimensional NURBS functions, which cannot implement non-

Recent developments include the introduction of the con-
cept of T-splines for Isogeometric Analysis [13, 14], which
forms the basis for methods extending the classical adaptiv
refinement to the isogeometric method, see [15, 16]. In amoth
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guadrangular or non-hexahedral domains directly. Segard} Similarly to the classical FEM (see [27]), we can derive a
ies on the influence of mesh distortions or on the model qualit variational (weak) formulation from the general PDE. To-con
have been performed (e.g. [19, 21, 22]). The presence afising struct the variational formulation, theftirential equation (1)
larities in the parameterization can be caused by intripgdp-  is multiplied with specific test functions and integrate@othe
erties of the geometry of the object or by distortions of tagu domainQ. The boundary condition (2) is incorporated prop-
parameterizations, possibly due to mesh adaption in shape oerly. LetV (Q) = H!(Q) be the underlying Hilbert space for
timization. In this case, singularities can be avoided wiams  both the space of test functions and the solution space, i.e.
constraints. On the other hand, if a single-patch paraizater
tion is used to represent non-quadrangular or non-hexahedr Vo (©)
domains (e.g., circular domains or spheres), then sinigiekr
are necessaril — Ve (@)
y present [23-25].

In th|s_ quk we studylwhethe.r, in the case of smg.ular Parhe function spacel! (Q) is defined by
rameterizations, the basis functions from Isogeometrialn
sis are suitable for the numerical simulation. We analyZ&-su
cient conditions which guarantee that the basis functias b
!ong_ to the rqulred functlor_l spaces. We start with p_re“m'where the derivatives can be interpreted in a weak sense only
inaries concerning the .conS|dered.probIems and the the_ore\Nith the use of thedX-seminorm
cal background in Section 2. Auxiliary results and notegion
are presented in Section 3. We specify configurations of the
control points that lead tél*-basis functions for special cases
mentioned in Section 4 and in Section 5, for the one- and tWog,e Hilpert space norm iki® is defined via
dimensional case, respectively. In Section 6 we compare dif
ferent approaches to parameterize special geometric tebjec IvI? = ||V||ﬁ2 + V2.
Summing up, we develop a general framework to prove the
existence of the dfiness matrix integrals from the numerical we derive a bilinear forna (., -) : Vg x Vo — R and a linear
simulation. functional(F,-) : Vo — R such that the dierential equation
in Problem 2.1 is equivalent (under suitable assumptioss, s
below) to the following variational problem.

{veV(Q) : Iv|rD =0},
vev@:v - =g|rD}.

HY(Q) = {ve L*(Q): W € L* (@)}

My = [IVV]2

2. Preliminaries
Model Problem 2.2(Variational formulation)Find u € Vq (Q)

We shortly introduce the model problem, which is a secondsuch that

order elliptic partial diferential equation (PDE). We consider

the partial diferential equation on a bounded and open domain. ~ a(u,v) = (F,v) Y veVo(Q).

On this domain we define a function space in which we can

solve the dfferential equation properly. This function space More precisely, a solution of the classical formulatiorvesl

can then be discretized, using the isogeometric methodoh | the weak formulation if certain integrability conditionsedul-

geometric Analysis the same basis functions are used for tHéled. A weak solution solves the classical formulation éfr¢

parameterization of the domain and for the discretized functain differentiability conditions are fulfilled. We refer to [27]

tion space. Concerning the formulation of the method andor a full analysis of the problem.

the considered problems we follow previous papers, esppecia A typical example for a second order elliptic PDE is the fol-

[1, 16, 22]. The structure of this paper and the basic ideas dbwing model problem.

the presented proofs follow and extend [26]. Example 2.3 Find u: Q — R such that:
2.1. Numerical background -Au=f in Q

Ford € Z* let Q ¢ RY be an open and bounded domain u=0p onlp (3)
with Lipschitz boundaryyQ = T' = I'p U T'y. We consider a vu.n = gy only.

second order elliptic partial flerential operatot and a linear

operatoi, describing the boundary conditions. The boundaryin this formulation,n is the outer normal vector ofiy and Au
operator defines Dirichlet boundary conditionsignand Neu- is the Laplacian of u. For this setting we get

mann boundary conditions dry. Furtheronletf : Q - R

andg : I' — R be sufficiently smooth functions. For this setting a(u,v) = f Vu.Vvde

we analyze the following dlierential equation. Q

Model Problem 2.1 Find u: Q — R such that and

Lu (&) fE VveeQ 1)
lu(€) 9@ v ¢el )

<F,v>=ffvdg+ gwvds
Q

I'n



We assume that the bilinear foramand the linear functional precise and detailed theoretical background on B-splimels a
F are bounded. Since the operatoi(as in equation (1)) is NURBS in computer aided geometric design we refer the reader

elliptic, the bilinear forma (-, -) is coercive, i.e. to [28-30].
5 First we consider B-splines, which are determined by some
Fu>0: plul” <a(uu), given degreep € N and a knot vecto® = (6, ...,60m1). The

and therefore the theorem of Lax-Milgram can be applied toknOt vector is a non-decreasing sequence of length IV of

Problem 2.2 to show the existence and uniqueness of the sol{ée—zlpﬂz?; ercs).f gggr;emg dpegnlegrgil t;eor’ééu’r?e;clethel'th
. o

tion.
Now we provide some insight into the theoretical background 1 for 6 < X< 6y
of Isogeometric Analysis. The isogeometric method is aigpec Bio(X) = { o
approach to the discretization of partiaffdrential equations on 0 else
non-trivial geometries. Most numerical methods are based o X— 0 bitpr1 — X
. . . . . Bi,(X) = —Bip-1(X)+ ——————Bji1p-1(X),
Galerkin’s principle, which can be interpreted in the fallng v () Oip— 6 " 1(9 Oips— Oy P 1(9

way. Finite-dimensional function spac¥gn € Vg andVgy, C . . . )
Vo are set up to solve the discretized model problem. where all fractions with a zero denominator are consideyéet

equal to zero. The support of each B-spliig is the interval

M | Probl 2.4 Fi Vgn (© h that: .
odel Problem Ind th € Vi (€2) such that |61, 61.p+1- The parameter space is set to®e= [0, np-1|,

a(Un, Vi) = (F, Vi) Yh € Von (Q) . which covers the support of each B-spline, except for the
’ boundary interval%@o, Gp] and[@wp_l, G,TH].
The choice of the subspac¥g, andVoj (or its basis func- The concept of B-splines can be generalized by introduc-

tions) is called a Galerkin discretization. Solving the-dis ing non-uniform rational B-splines (NURBS) of degrpe If
cretized problem rather than the original problem is called weightsw, € R* are given, thé-th non-uniform rational B-
Galerkin method. In Isogeometric Analysis the basis flumdi  splineR, ; is defined by
spanning/o andVgp are constructed from B-spline or NURBS
functions. From now on we assume tNgh = Von = Vh. Bi.p (X) Wi

For a given basi$¢i}{‘=‘01 of V, € V one can represent any Rip (%) = YR (w;
functionuy, € Vy, as =0 =P .

n-1 In order to extend the concept of B-splines to two dimensions
up = Z i one can introduce bivariate tensor product B-splines. €ons
0 quently, a degree and a knot vector is set for each direcii@n.

consider a degree = (p1, p2), a knot vectoi® = ((9(1),@(2)),
with @@ € R™ and®®@ € R™, and sefn;,np) = n = m—p-1.
Using the notationi = (i, j) andx = (x,y)", thei-th bivariate
B-spline of degre@ and knot vecto® is defined by

Thus uy can uniquely be described by its ¢heient vector
(Qo, ..., 0n-1) = 0 € R". The stitness matribA is defined by

A= (&,)?;:10 with & j = a(y;, vi)
Bi,p . Qo - R

and the load vectdf by Bi.p, (X) Bip, (V)
X = Bip (X)Bjp, ),

F=(Fi)t, with Fi = (F, ). . S _ .
for 0 <i < n- 1 HereB, is thei-th B-spline corresponding

Using this notation, one can easily see that the Model Proble to p; and®®, and Bjp, is the j-th B-spline corresponding to

2.4 is equivalent to the linear system p2 and®@. The parameter spa€ is defined by
Al =F. — g @ (2) ()
N Qo = ]Gm ’ Hmrprl[ X ]Gpl’emzfpzfl['

Any numerical method fitting into the framework of Galerkin \ o i the one-dimensional case. NURBS functions &e de-
methods is defined by the choice of a ba$i${‘=‘01. The method fined by ' b

can be applied if one can ensure the existence of the matrix

A and the vectoF. In the case of coercive operators, as in Bip (X)W
the variational formulation Problem 2.2, this is equivalem Rip(x) = W
yi e HY(Q)foralli=0,...,n— 1. 2o Bip i

. . _ .
2.2. B-splines and NURBS for some positive weights; € R*.

B-spline- or NURBS-functions are polynomial or rational Remark 2.5 If all weights w are equal, then the NURBS func-
functions, respectively, defined over some parameter spgce tion Rip simplifies to the B-splinB; ,. Consequently, B-spline
In Isogeometric Analysis they are used to set up the Galerkiftnctions are special instances of NURBS functions, indepe
discretization. We will adopt the notation from [16]. For a dentof the dimension d.

3



2.3. Isogeometric analysis Problem 2.6 For which configurations of the control points
In this section we recall the definition and the notations of(Pj)jd[ do the test functions fulfilly € H* (Q)?
Isogeometric Analysis. The formal notation is presented in
dependent from the dimensiahof the physical spacg, but
follows the notational standards for the multivariate cabe
the following the dimension is considered tode 1 ord = 2,
where ford = 1 the standards for one-dimensional variables ar
used (e.g. write rather tharx).
We set the index spadeo

Consequently, we have to verify that the test functionare
in H1(Q). More precisely, we will derive conditions on the
control points that guarantee the existence of some or éfleof
estiffness matrix integrals. A related problem has been consid-
ered in [21], where the influence of distortions of the cohtro
point mesh on the regularity of the parameterization has bee
analyzed.
I= {i eN:0<i<n- 1} Clearly, in the case of NURBS the functiopsare inL? (Q),
as their graphs are bounded rational curves or surfaceseHen
and the parameter space®g = ]0, 1[° without loss of gener- e only have to verify ifVy; is an L2-function, Problem 2.6

ality. The parameterizatio® of Q defined by simplifies to the following.
G:Q — R Problem 2.7 (Existence problem}or which configurations of
X B Z Pigi (X), the control point#P,— )]_E]1 do the squares of the seminorfg? =
< IVyill?, exist?

is defined by basis functiong : Qp — R and control points
P, e RYforeach € I. In Isogeometric Analysis the functiops
are usually NURBS of some given degme€erlhe physical space
Q is represented as the imagef underG, i.e. G (Qg) = Q.
In case of a bijective and continuouslyfférentiable parame- |¢i|§ = ||pri||f2 = thpi.Wi d¢ 4)
terizationG (with Cl-inverse) the test functions, i.e. the basis Q
functions of the function spacé, c {v: Q — R}, are defined

It is more convenient to analyze the square of the seminorm
instead of the seminorm itself. Note that

is the stifness matrix integrad;; for the model problem in

by Example 2.3. The existence QV(//inz means that the un-
Yi=dioGl:Q R derlying L?>-norm-integral is bounded. If the parameterization
G : Qp — Qs regular in every point of)y, then all test
Figure 1 gives an overview of the functioBs ¢ andy;. functions are inH (Q). If singularities occur this is not true
G =3P in genergl_. Unfortunately, one _cannot state general and_ sim
g ple conditions to answer the Existence Problem 2.7 for singu

lar parameterizations. We will instead state and validati-s
cient conditions for some classes of configurations, whieh a
specified in the next chapters. Those model cases reprégent t
most commonly used singular parameterizations in Isogeome

\ ric Analysis. The presented proofs can be modified and agplie
b Ui to larger classes of singular parameterizations.

R

Figure 1: Scheme for the two-dimensional parameterizaBonith parameter 3 Assumptions and conditions
spaceQ, physical domair2 and basis functiong; andy;

Eachvi € Vi, possesses a representation in the biasig, In some situations, singular parameterizations cannot be
i.e. avecto(V)ier = V € R" such that avoided, for instance if one wants to parameterize a trimgu
. domain or the interior of a circle. The latter has been done in
v (€) = Z vi ()G [22], in which different ways to parameterize specific geomet-

el ric objects were compared. We will state theoretical rastalt
forall £ € Q. In the one-dimensional case we will get= R,  some of the analyzed problems in [22]. Additional condition
and in the two-dimensional cage= R; p. on the parameters and on the parameterization in general hav
to be satisfied in order to show basic results.

2.4. Existence analysis

This paper provides criteria, which guarantee that the meth
ods from Isogeometric Analysis can be applied for a specifi@.1. General assumptions
set of basis functiong; and control point®;. To guarantee the
applicability of the numerical method it is necessary thneat t We consider open knot vectors only, i.e. the first and last kno
function space/, (Q) is a subspace dfi* (). We will focus s repeateg + 1 times, which leads to the interpolation of the
on the following problem. B-spline on the boundary. Without loss of generality all kno



vectors (forv = 1, 2) fulfill o If Ye>036>0:

6 =...= 6 =0 X <elg(®)l Vx € Us (xo)
9(") — — 9(") =1
m-p~1" "7 “m-1 (5) we say that g dominates f nesy, in symbols fe oy, (9).

o< foro<jsm,-1 _ _ _
o) ) ] In the presence of only one s!ngular p(_)lnt we shall v_vﬁte
;" <O.p, fori<j<m -2 O(g) andf € o(g). Note that “” is an equivalence relation on
the function spac€ (Qo) = {f € C(Qo) : f # O}.

The transformation of the considered integral to the parame
ter space), can always be written as an integral of the form

The parameterizatio® is continuously dferentiable onQg
and its inverse is dierentiable o). The parameterizatio®
but not necessarily its inverse can be extended continyowis!
Qo with Ggﬁo) = Q. We also assume th@ : Qy — Q is f (x)
bijective. If restricted to the interior of the domain, tluen- LO m dx,

dition is always required for the analysis. To fulfill all ge

requirements, the parameterization does not have to béregu which is the integral of a fraction, where the numerator is-no

A parameterizatios : Qo — Q is called singular i<y € Qo, negative and bounded from above and the denominator might

if tend to zero at some points.
detvG (xo) = O. Theorem 3.2(Integrability condition) Let
Note that the values of the parameterizat®and of the gradi- f.g ¢ C (QO)’

entVG at boundary points are defined by their respective limits. ¥ g ¢ ¢ (Qo, piecewis,
We assume thds is singular at the origixg = O and that .
it is regular inQg\xo. Without loss of generalit (xo) = O.  with f,g, f,§ > 0. There exists a point; € Qo, where
The condition “de¥G (x) > 0” is necessary for the bijectivity
of the parameterization. The bijectivity on the closed &etot g(Xo) =g (xo) = 0.
fulfilled for the class of parameterizations given in Chagté, _
but we can still state conditions to solve the existencelprab N all other points we have, §, f,g > 0. Assume that

in that case. o feO,(f)and

3.2. Integrability condition

In order to solve Problem 2.7, some preliminary considera-
tions are needed. In the case of singularly parameterized déor the singular pointxo. Under these assumptions, f and g
mains, the integrant¥Vy; (x)|> of the integral in equation (4) fulffill
may tend to infinity forx — Xo. We need to specify the be- f (%)
havior of the integrand around the singularity in order tovar f —Z2 dx < oo,
the existence of the integral. To characterize the asyrgptot 0, 9()
behavior of a function we will use a slight modification of the

*g~7

classical Landau notation. provided thatf andg fuffil
Definition 3.1 Let f,g € C(Qp), with g+ 01in Qo. Let f T (x)
—_— dx < oo.
Us (x0) = X € Q0 ¢ )X — Xoll < 6} 2 9 ()
be thes-neighborhood ofo. Proof. A sketch of the proof can be found in the AppendixJ
o If Ye>036>0: This theorem states that the existence of an integral of a ra-
tional function depends only on the asymptotic behaviohef t
F) 1 <e VYxe Us(Xo) numerator and denominator around the singularity. Theltresu
g(x) from the theorem can be generalized to cases which contain

we say that the function f is asymptotically equal to g nearfm"[e'y many singular points.

Xo, in symbols f~ g.
° Y J 3.3. Assumptions on the asymptotic behavior

° If 3C>046>0: A description of the asymptotic behavior of the basis func-

If ()] < Clg(X)] Vx € Us (Xo) tions ¢; (x) near the singularityo is necessary for the analy-
sis. To describe the asymptotic behavior we examine the one-
we say that f is of the order of g neas, in symbols fe ~ and the two-dimensional case separately. In the case of-a one
Oy, (9). dimensional domain we need the following definition.



Definition 3.3 (NAM family, 1D) A set of univariate functions
(¢i (X)), is called anormalized asymptotically monomitam-
ily (NAM family) of degree p neamif there exist positive con-
stants afor all 0 < i < p such that

$i (X) ~
and

Da=1

i€l

aj (X = Xo) (6)

()

in a neighborhood of x

If (¢i)icr is @ NAM family of degreep nearxo = 0 it follows
from (6) thatg! ~ iaix~* fori > 1. Using the condition from
equation (7) we get

B0 ==Y #H () ~-> cx~—cr,

k>1 k>1

Hence there exist positive constaats- 0 fori = 1,..
that

Pp(¥) ~
pr () ~
o (¥~ . p.
If the corresponding knot vector fulfills equation (5) it dam
shown that NURBS of degrgeform a NAM family of degree

p nearxg = 0. In this case all functiong, with k > p are equal
to 0 nearxg.

., p, such

_Cl’
¢y, and
axX<t fork=2,..

forl<i < ppand 1< j < pp. This result can be shown sim-
ilarly to the one-dimensional case by analyzing mixed deriv
tives of the double sum.

One can show that NURBS of degrpeare a normalized
asymptotically monomial family of degrgenearxy = O. In
this case all functiong j with i > p1 + 1 or j > p> + 1 fulfill
¢¢.) = 0in a neighborhood ofo.

3.4. Structurally equivalent parameterizations

We introduce a framework to show existence results for gen-
eral parameterizations where th&-seminorm integrals can
not be computed explicitly. Results can be derived if the-gen
eral parameterization is structurally equivalent to anexiee
parameterization where existence results are known.

Definition 3.5 Two para[neterizationé and G are called
structurally equivalent iiG (G‘l) is regular and orientation-

preserving and there exist constaitand satisfying0 < A <
Asuchthat) = V(G (G™1)) fulfills A1 < J™J <2 in Q.

In this definition the inequalities are interpreted as gpéct
inequalities of symmetric matrices ahds the identity matrix
of dimensiond. We say that under these conditions the matrix
JTJ is uniformly positive definite For structurally equivalent
parameterizations we can show the following.

Theorem 3.6 If two parameterizationé (with test functions
Yi onQ) andG (with test functiong; on Q) with common ba-
sis functionsp; on Qg and common index sétare structurally

In the two-dimensional case we require a tensor productquivalent, them; € H* (Q) if and only ify; € Hl(fz).

structure to define a normalized asymptotically monomial-fa
ily near the singularityo.

Definition 3.4 (NAM family, 2D) A set of bivariate functions
(¢ (X)), is called anormalized asymptotically monomitam-
ily of degregp = (p1, p2) nearxo = (Xo, yo)" if there exist a> 0
and by > Oforall 0<i < p; andO < j < p, such that

.y (X Y) ~ aibj (X = Xo)' (¥ - o)’
and

Dty =1

(i.per

in a neighborhood oXg.

Proof. We have

Wilf = fg IVyi (I dé

[ v @ &

fg 19TV | det()

and

il

fQ <(JTJ)‘1V¢,i,wi> det(JTJ)d¢

- ) . SinceJ"J is uniformly positive definite

Similar to the one-dimensional case we can derive resutts fdor J = V(G (G™))

the derivatives of the functiongy.j). If (¢(i,j))(i’j)d is a NAM
family of degreep nearxp = O then
—ayby
Voo (XY) ~ ( Lo ]
-a b
Vo (X Y) ~ ' ,yl
jaobjy’
iajbgxi 1 ®
1
Vo (XY) ~ [ _aibx ] and
iajb;x -1y
V - .
fpbon)~ [ Ja.b xiyi~1 ]

we can bound the seminorms by
— A —d
(A2l < [dnf; < (2 12) ik
Hencey; € HY(Q) if and only if ; € Hl(ﬁ). O

If both parameterizations are in NURBS form, then this con-
dition can be guaranteed by representing the determinai)de
as a NURBS function. If all cd&cients and weights are posi-
tive, then the condition is satisfied.

The framework from this chapter is applied to specific exam-
ples presented in Subsections 4.3 and 5.3.



4. The one-dimensional case Existence results for basic cases can be derived using this

. . ) ) ) L asymptotic representation. We examine those cases wtere th
In this section we consider the one-dimensionékedéential first o control points are equal.

equation (1) and answer the Existence Problem 2.7 for one spe
cific class of singular parameterizations. The core ideasea Theorem 4.1(Existence, 1D case)eta € Z*, with2 < o < p.
generalized to higher dimensions. Assume that the control points satisfy

The given functiong; : Qo — R fori € T form a NAM
family of degreep nearxy = 0 (such as NURBS of degrge
with open knot vectors). Fromy we construct the test function o P, % 0,

Ui (€)= ¢i0oG1(d). then

We assume that the firgtcontrol points are equal, so a part of
the control polygon degenerates to one point. This conddio
the control points causes the parameterization to be singul
the pointxg = 0. In fact, this is the most general case, which
still fulfills all the assumptions from Subsection 3.1. lethne-  Proof. First we analyze the behavior of the denominator. For
dimensional case a singular parameterization does notée®d 0 < i < « — 1 the control points fulfillP; = 0, hence we can
different geometry of the domain as compared to the geometgbnclude from equation (10) that

of the parameter domain, hence it is of little practical use b
still of some theoretical interest.

e Pb=0,forO<i<a-1,and

o Y g HH(Q)for0O<k < L%Jand

o Yy € HY(Q) fork > [%J

p P
D(X) ~CoPo+ » GPX~ > gPX,
i=0

i=a

4.1. Existence results

The existence of the square of the-seminorm ofy; has  and withP, # 0 it follows
to be analyzed for eache 1. Under the assumption thét is
Cl-invertible the integral can be transformed from the phafsic D (X) ~ CuPx*L.
spaceQ = G (Qp) to the parameter spack), hence
Since the previous analysis shows tNaiandN; are asymptot-

2
il = f (%) a¢ ically equal, we do not have to treat the ckse 0 separately,
! o\ 0§ but can assum& > 1 from now on. From the integrability
_ -1)2 condition Theorem 3.2 and from equation (9) it follows the t
f [% (§) ] (ﬁ) dx H1-seminorm ofy exists if and only if the integral
ax \ ox ax ) K
Qg

fl i 2 aG -1 dx ct fl W2k-D~a-1) gy
o \OX oX ’ CPo Jo

Thus, the square of the seminorm is an integral of a fractfon oexists, which is equivalent tok2- @ — 1 > —1. Henceyy is in

two functions H* (Q) if and only ifk > £. O
Wiﬁ — fl N (%) dx In this proof we analyzed the asymptotic behavior of the in-
D(x) tegrand around the singularity. This strategy can be géneda
where to other singular pointg # Xo. In Theorem 4.1 we assume that
the firsta control points degenerate to one point, which results
N (%) = (¢} () in basis functions that are not k! (Q). Therefore numerical
and methods cannot be applied directly.

The following example illustrates these results.

D(x)=G"(x). Example 4.2 Consider a one-dimensional parameterization of

The asymptotic behavior of the integrand can be computed e)gegree p= 3 with knot vector

plicitly, since the functiong; are a NAM family of degree 1
nearxo = 0 (as in Definition 3.3). The asymptotic behavior of 0= (O, 0,0,0, > 1,1,1, 1),
the numeratoN; is

Ni (%) = (¢ (x))2 N cizxma’(z(ifl)’o), ©) and control points as in Table 1.
wherecy = —¢;. From the definition o5 (x) it follows that the i=0 i=1 i=2 i=3 i=4
denominatoD is asymptotically equal to P, 0 0 1 2 3
p
— - Pyl
D (x) = G (x) ~ GoPo + Z GPix (10) Table 1: Control points for Example 4.2

i=1



the sum of the old ones, setting
A
Da() = > i (%),
i=0

with A = %’J\. A similar approach was taken in the examples in

[1]. Using this notation, the parameterization fulfills
n-1
G (X) = Pa(X) Po + Z # ()P, forx e Qo,
i=A+1

since the firstr control points are equal by assumption axel
a. The new basis functions on the physical domain are defined
as

Ya(®) = ®a(G1(®)
¥ = ¢(Gte) forA+i<isn-1

for £ € Q. Itis easy to see tha¥; = y; fori > A+ 1. The
basis of the function spadé, is the sef{¥i}i—a...n-1 CONtaining
the newly defined functions. One can easily see Yhais a

We have)p =10, 1[ andQ = ]0, 3[. We consider B-Splines subspace oY, since
¢; on Qg and test functiong; onQ fori = 0,..., 4, which are A
shown in Figure 2. The graphs of the functiafisand yo are P (&) = Z‘/’i @
dotted lines and the graphs o#f andy; are dashed lines. —

Theorem 4.1 states that in this cagg and y; are not in
H!(Q). The integrands of the gliless matrix integrals cor-
responding to the test functions are shown in Figure 3. Thd
two diverging functions are the integrands correspondmngd
(dotted line) andy, (dashed line), respectively.

and all other basis functions &% are contained i}, by defi-
ition.

To proveV, ¢ H! we need to compute the derivative®df.
For x beeing in a neighborhood & = 0 the condition

p
Z¢i =1

Vi (€)° =
implies
A P
D =1- > 5,
i=0 i=A+1

forO< A< p-1. Hence

A p
Ph) = D HM=- D HK
i=0 i=A+1
p
4.2. Modification of the function space ~ - Z Cix™t ~ —Cas1x?.

i=A+1

In the case of singul_ar parameter_izations it may happen that,om this it follows thaf¥al? exists if and only if
some of the test functions are not kt, as we have already
seen. So, generally, one cannot ensure that the discrétized 1 (—CA+1XA)2
tion spaceVj, is a subspace di'. For special cases, however, a f ST
method to cope with this problem can be developed. One possi- o CaPox
ble way would be to simply omit those basis function¥jirthat  exists. This is equivalent to the existencq\ﬁ;\ﬂﬁ = |¢A+1|§,
are not inH®. In this case Dirichlet boundary conditions might which we already considered in Theorem 4.1. Summing up, it
not be implemented correctly. Hence, the function spadeas  follows thatWa is in H1 (Q). Theorem 4.1 states that all other
to be modified in a dferent way to maintain a full numerical basis function®;, fori > A+ 1, are inH%, henceV, c HZ.
analysis without losing to much information. One can even show thgli1 =Vyin H1, which is in some

Considering the special case of Theorem 4.1, a new finitesense optimal. The functioba has the property that it is non-
dimensional function spaolh, fulfilling Vh C Vi andVj, € HY, negative and tha®, (0) = 1. SoW, is interpolating at the
is set up. Therefore, we construct a new functiontnfrom  boundary.



Example The functionsba and WA corresponding to the set-

ting of Example 4.2 are shown in Figure & and ¥a are
dashed).
1.0~ o 0 ¢ o °
A
0.8 N a0 6il@)
; \ o o L °
0.6-
0.4¢ o o o o
o.2f ©.07 Lo’

Figure 6: Control points for a swept parameterization

if and only if0 <i < | 5],

The proof of this theorem takes advantage of the tensor-
product structure of the bivariate NURBS functions andifiol
: directly from Theorem 4.1. In this situation the functiorasp

05 1.0 15 20 25 3C Vj, can be modified similar to the one-dimensional case. The
o framework follows the method introduced in Subsection 4.2.

With the help of Theorem 3.6 the results of Theorem 4.3 can
be carried over to more general parameterizations. As an-exa
ple we consider the following parameterization.

The integrands of the gliness matrix integrals correspond- Example 4.4 Letp = (2,2) and consider a quarter of a cir-

ing to the test function¥; are shown in Figure 5, where the cyar ring having the parameterizatio constructed via the
graph of the fUnCUOr(V"pA (5))2 is a dashed line. In this case control points given in Figure 7.

all functions are bounded.

Figure 4: Functiongp andg; on Qg fori = 2,..., 4, %¥YionQfori=1,..., 4
and control point®; fori =0, ..., 4

2.0

1.5

1.0

0.5+

0.0 0‘.5 1.0 1‘.5 2.0
4.3. Swept parameterizations of two-dimensional domains

The results of Theorem 4.1 can be carried over to two- Figure 7: Circular ring and control points
dimensional domains described by special parameterizatio
We consider a rectangular domd#drhaving a two-dimensional
parameterizatio® of degreep with control pointyP;);. Fig-
ure 6 shows an example of a rectangular control point grid@nstantst
which is constructed from the control polygon given by Table 4 =1and1 =10.99, A
(see Example 4.2). In this case the degrgeis(3, 3). Figure 9 shows the Jacobian determinant@(G*l). One
can show that the determinant is bounded from above and be-
low by positive constants.

Because of the given structure of the parameterizatioreat! t
functions corresponding to the innéicontrol points are not in

This parameterization of the circular ring is structurally
equivalent to the parameterizatida given in Figure 8. The
tantst and A as defined in Theorem 3.6 can be chosen as

Theorem 4.3 Leta € Z*, with2 < @ < p;. We consider a two-
dimensional parameterizatio@ consisting of basis functions
(¢)ir @and control pointgP;);; and a one-dimensional param-
ing the assumptions of Theorem 4.1. We assume that the bontrﬁl' This follows directly from Theorems 3.6 and 4.3,
points fulfill Py j) = (Qi, pj)T foralli, j, where(P,—)_ is To set up condit!ons_ on the control points vyhich g_uarantee
’ I€(0....no—1} that two parameterizations are structurally equivaleheigond
the scope of this paper.

The basic structure of the previously developed methods for

W) € HY(Q) the one-dimensional case can be generalized to various case

a strictly monotonically increasing sequence.
Under these assumptions



100 T T ‘ T 1 and the control points fulfill

0.8} | e P=0OforieD, and

o6l e Pj = Ofori e I\D,.
b h{ The triangles

0.4

1. A11= A (0, Py0) Par1)
0.2 H 2. M= A (O, P(al,o), P(O,az))
3. A3 = A (O» P(O,(t2)7 P(l,(rz))

0.0lee L1 | ; ; o
00 02 04 06 08 10 do not degenerate.

An example for the rectangle-case can be seen in Figure 10,
wherea; = 3 anda, = 4. The dots represent double indices
(i, j) € I. The dots inside the bold-lined rectangle represent the

Figure 8: Reference rectangle corresponding to Figure 7

setD,.

j A
(0] o (0] (0] (0]
(0] (0] (0] (0] (0]
(0] (o] (o] (o] (o]

@2
(0] (0] (0] (0] (0]
O © © © © >

Figure 9: Jacobian determinant ¢& for the circular ring 0,0) 1 i

Figure 10: Index séb, for case 1 (rectangle)

two-dimensional parameterizations, which we will studytia
next section. Figure 11 shows an example of a control point grid for bi-
variate B-Splines of degrge = (3, 3) along with the triangles
A11, A12 @ndAagsz. The control points that lie on a common thin
continuous or dashed line have a commaar j-index, respec-

In the bivariate case we analyze the existence of tiimetis ~ tively. Points that are close together in the figure are meant
matrix integrals derived from the ffiérential equation (2.1) on € equal. This example is a valid Case-1-situationfpr 2
a two-dimensional domaif?, hence the main task is to answer @ndaz = 3.
the Existence Problem 2.7.

5. The two-dimensional case

5.1. Assumptions

The functions(¢i);; form a NAM family of degreep near
Xo = O, such as NURBS of degrgewith open knot vectors.
The parameterization has to be regular everywhere, exoept f
the singularity ako = O. There exist dierent configurations
of the control point grid, that lead to such a singularly paga
terized domain. In the following we concentrate on two sfieci
cases, which are of practical interest. In the first caseuigs
tion 5.1) the index set of degeneration is a rectangle and all  Figure 11: Triangleg1s, . .., A13 for case 1 (withr; = 2,05 = 3)
control points in that set degenerate to one point. In the sec
ond case (Assumption 5.2) the index set of degeneration is
L-shape, where all points in the set are collinear.

0,07

aﬂssumption 5.2(Case 2: L-shape)leta = (a1,a2) andB =

(B1,B2) withl < @ < pande < B < p+ 1. The two index sets

Assumption 5.1(Case 1: rectangleleta = (a1, a2) with1 < D, andDy are defined by

@ < p. The index séb,, C T fulfills . .
Dy = {(1,0)el:0<i<a1-1)

Dy={iel:0<i<a-1} U {(0,))el:0<j<ar—-1}

10



and 5.2. Results

Similar to the one-dimensional case we have to analyze the
’ _ square of theH!-seminorm of the test functiong. First the
U {(0,j)el:0<j<B-1}. integral is transformed to the parameter domain, then the un
derlying structure of the specific integral is analyzed. Kpmg
the substitution rule to the bivariate integral leads to

Dp = {(.0)el:0<i<p—1)

The control points fulfill

e P, =0OforieD,,

e P, # Ofori e \D, and Wil% B jc;(go) V6 @)IF de
the pointsP; are collinear forj € Dy and the triangles = fg [(vG)T V¢i||2 det(VG) dx
2 oz =40, P, Pu) [ ICove) el .
. 222 = A (0, Py, Peyy) = o, det(vG) X,

3. 223 =2(0,Pu1),Pa2)

4. pzs= 1(0,Poay. Pay) where Cof(VG) is the cofactor matrix of the Jacobian matrix

VG, with
do not degenerate.
3G 9G 3G _ G,
Figure 12 gives an overview of the index sBig (bold con- Cof( x A ] = ( X X ]
. . . 2 2 1 1
tinuous line) and)g (dashed line) for the L-shape-case, where X oy Ty ox

X ay
=3,a2=4,p1=4andB, =5. . .
a @2 P1 ds> Hence theH!-seminorm can be written as

2 _ Ni (X» y)
il = fﬂ o &

with the numeratoN; = ||Cof (VG) V¢ and the denominator
D = det(VG).

The denominatob (x,y) can be represented by the double
sum

D(xy) = D Sk 1)6Y) aw,

k,lel

where

S(k.1) = 670 - 670"

Figure 12: Index set®, andDy for case 2 (L-shape) and

Amza%#—%#y

§-|ereAk,| is the area of the triangle (O, Pk, P;). The numerator
Ni (x, ) fulfills

In Figure 13 we consider B-Splines of degpee (3, 3). The
figure shows an example of a control point grid and triangle
o1, A2, Az @ndayy for a valid Case-2-situationf = ap = 2
andpi = B, = 4). This figure is to be interpreted similar to
Figure 11. N (%) = > S(k,)S (i) (P, Py). (11)
k,lel

Using this representation we can prove existence results fo
the model cases described in Assumptions 5.1 and 5.2.

Theorem 5.3 If Assumption 5.1 (Case 1) or Assumption 5.2
(Case 2) is fulfilled, then all test functiomg, fori € I, are in
HY(Q).

The core idea of the proof is to analyze the asymptotic behav-
ior of the denominator and of the numerator separately. Each
function depends on the control poifsand on the basis func-
tions¢;, therefore the asymptotic behavior of both denominator

The additional assumptions on the triangles (as depicted iand numerator can be computed explicitly under the assump-
Figure 11 and 13) are fiicient but not necessary to prove the tions of Section 3. Finally the integrability condition (&brem
existence of the integrals. It might happen that some ofrihe t 3.2) leads to a rational function that can be integrated thesr
angles degenerate, but nevertheless all integrals mbhggst. parameter domain.

11

Figure 13: Triangleg 1.



Proof of Theorem 5.3We prove that the square of thé!-  for k,I € J. It follows from equation (11) and the triangular
seminorm of the functiog; is well-defined. The denominator inequality that
has a double sum structure, where we sum over the indéx set

' () @ (1) ()
twice. The bivariate functio® [S, T] is defined by INi < Clczi; (|¢k | + |¢k )(|¢| ‘ + |¢| D
e
D[S, T = > > S(K.I) A, (12)  which is equivalent to
keS leT 2
which is a partial sum of the denominator over some smaller N, € O Z o] + Z |¢f(2)] ]
index setsS andT. It is clear, thatD (x,y) = D[LI] (x,y) by kel kel

definition. The asymptotic behavior Bf nearxo depends only  sing this representation, it is easy to show that in Case1 th
on some of the basis functions. Hence we can define a propgymeratom; fulfills

subsefK of I, such thaD [I, 1] ~ D[K, K] and|K| < |I|. The )
setK is of course depending on the degeneration of the control ~ N; € O((x‘”‘l + y"z‘l) )

grid. ) S

It is obvious thatay; = ajx = O for allk € D, and for all and in Case 2 it fulfills
I € T, since all control points correspondingliip are equal to N; e O((x + y)z)
O. HenceD[LI] = D[J, J] for J = I\D,. _

The specific setting dK is if @1 > 1 ande, > 1or

K = {(1,0). (21, 1),(0,a2), (1, a2)} N € O(1)

) if eitheray = 1 oras = 1.
in Case 1 and Since the parameterization is regular in every poiffedent
a from X, it follows from the integrability condition (Theorem
K = {(a1,0),(0,a2),(1,1).(1,2), (2, 1)} 3.2) thatlys|? < o if, in Case 1, the function

in Case 2. Now the asymptotic behavior BfKK, K] can be (x"l‘l +y"2‘1)2
computed explicitly and follows directly from the Assunmypis
5.1 and 5.2, respectively, and from the results derived fDaia Kyxearmd + Koxr-tyeel 4 Kgy2ee-l

inition 3.4. In Case 1 there exist constaKis Kz, K3 > 0 such  is integrable on the unit square. In Case 2 the same is true, if
that

(x+y)*

DK, K] ~ Kyx2u~t 4 Koxartyaz=l 4 kg2t Kixar + Kox2y + Kgxy2 + Kgyez’

and in Case 2 there exist constalis Ky, K3, K4 > 0 such that foras, ez > 1,
1

DK, K] ~ KiX + Kox?y + Kaxy? + Kay?2. Kix + Kayo2’
Note thatk; > 0 if Ay or A does not degenerate, respectively, fOr @1 =1, or
For this representation & [K, K] one can easily show via the 1
equations (8), that in both cases Kixot + Kgy’

for a, = 1, is integrable on the unit square. For the two latter

subcases it is not necessary that the triangkesand A,3 do

not degenerate. All the conditions are fulfilled for arbiyre,

which can be shown easily using elementary calculus, hdhce a
X _ e 1 .

D[J\K,J] = D[J,]\K] € o(D[K,K]), ;[r(:s:'Ilzg;tlonsﬁ. have well-definedH*-seminorms, so theyDare

L o1 1.

fori e Jandj € J\K. From this it follows immediately that

henceD[L, 1] = D[J,J] ~ D[K,K].

Some preliminary considerations are needed to analyze th Similar existence results can be derived for other typesef s
. . . larities (e.g. other sets of degeneration). We restridalves
behavior of the numerat®;. From Assumptions 5.1 and 5.2 it & g 9 )

o to the two model cases, because the two considered caseas cove
follows that(Py,P;) = 0 fork € D, orl € ID,. The derivatives

0) most of the examples which are of practical interest (of seur
ﬁih ?nd ';r;ets;callar pr:OtdL;éBkéPD %an b(:] kt)lz)utnded fromabove. | hger the assumption that only finitely many singularitiethe
ere existreal constari, L, > 9 stich tha vertices of the rational segments of the spline parametiboiz

| ¢gl)| <C, are present). Both cases, the rectangular case as well bs the
' shape case, lead to the existence of dfiretiss matrix integrals
and for the standard test functions. The only condition on th&sa
functions is that they have to form an NAM family of degiee
(P,P)) <Cy such as NURBS.

12



5.3. Swept parameterizations of three-dimensional dosnain 15 shows the quarter of a torus. The parameterization of the

Similar to Theorem 4.3 we can derive existence results foforus is structurally equivalent to the cylindric parannizition
parameterizations of special three-dimensional domaihigh ~ Shown in Figure 14. In this case all test functions on thesoru
are constructed from planar patches. For further inforomatn ~ @re inH®. This follows directly from Theorems 3.6 and 5.4 and
the generation of swept volume parameterizations see3dyy. [ the existence results for Example 6.2.

We consider a parameterizati@¥® of the two-dimensional
domainQ consisting of basis functior(ﬁq (%, y))iej and con-
trol points(Q; )jej. The three-dimensional domai®! has a pa-

rameterizatior®¥! with basis functionégs(i,,-) (X, Y) pk (z))(i et

and control point$P;);.; constructed fronﬁQ,— )J_EJ (asin Theo-
rem 5.4). Here we consider the index sets

I={i=(jkeN:0<ix<(n,nng -1
and

J={i=@.)eN?:0<] < (n.n)-1}.

Figure 14 shows a volumetric parameterization of a cylmdri
domain. In this case the underlying two-dimensional pasch i
the circle from Example 6.2. Figure 15: Quarter of a torus

6. Case studies

There may occur dierent kinds of singularities, not covered
by the model cases, which lead to the non-existence of some of
the stithess matrix integrals. In those cases we can modify the
set of basis functions to be able to guarantee that all neis bas
functions are irH* (Q). In this section we present and compare
different ways to parameterize basic geometric objects. In Sub-
section 6.1 we parameterize a triangle and in Subsectioné.2
parameterize the unit disc.

6.1. Triangular domains

A parameterization of a triangle as a tensor-product patch
can be obtained by collapsing one edge into a single poins. Th
Figure 14: Cylindric parameterization approach is not covered by the previously defined cases (As-
sumptions 5.1 and 5.2). As a model case, we analyze a patch of

Theorem 5.4 Let Q3 be a volume constructed from the two- degreep = (p1, p2) with knot vectors

dimensional domai®!?, i_eT. fori € I the control pointP; ful- 61=(0,...,0,1,...,1) e R?P+2,
fills P(iyj’k)-z (Q(l[,j)’ Q%»j)_’ Pk) , where(Pk)kE‘o ,,,,, na-1) I§ a strictly 0, =(0,...,0,1,....1) € R2p2+2’
monotonically increasing sequence. Each trivariate testcf
tion y i fulfills and control points
-1 [ T
Wik = ¢apdo (GF) e H (Q) Pi.j) = (—, — . l).
Pr P1 P2

if and only if the bivariate test functiog; ;) fulfills The parameterization fulfills

Yiij) = Pq.j) © (G[Z])_l e H* (Q[Z])- G(xy) =(XXxy),

This theorem states existence results for cylindric dosain where de¥G = x and
It can be applied to more general domains using Theorem 3.6.
In combination with the examples from Subsection 6.2 one can Cof (VG) (x,y) = [ X -y )
especially derive results for circular cylinders or toriiglie ’ 0o 1/

13
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Figure 16: Control points for the triangle case (with= pz = 3)

Figure 16 shows the control point grid for= (3,3) and the
three extremal point®, 0)", (1,0)" and(1, 1)".

One can show that for eaghe {0, ..., po} exists ac > 0, an
€ > 0 and an intervalys, yo[ c 10, 1[ such that

2
c<

X —
[ 0 ?Il_]V‘/)(O,j) (x.y)

for all x < € and for ally € ]yi, y2[. Using this we get

hencey o j) is not in H!(Q). Thus, we need to modify these

functions, in order to make them suitable for the Isogeoimetr

Analysis.
Fori > O the gradient oy j is of the form

Vo = (Quixy), X Qo (x, y))T ;

whereQ; (x,y) andQz (X, y) are some polynomials. Therefore

I

whereQ (x, y) is some polynomial. From this it follows directly
that theH!-seminorm ofy j, exists fori > 0, since the denom-
inator of the integrand d&G (x,y) = x cancels out.

2

_)1/ )V¢(i,i) x| =X (Q(xy)?,

Using again the approach taken in the examples in [1], we

modify the set of basis functions such that all consideredfu

For the new test functiog, defined by, = ¢, 0 G* it can be
shown that

32 (ﬁso%(x,y) )2
X

\fg;o X

fQO X(Bé,pl (x))2 dx < oco.

Using ¥, we construct a new function spaWg, as the space

spanned by the basigo} U {u, ,)}:f: Since all test func-

tions are inH! we getV, c H!. One can again show that
Vi = HY N V4. The presented method can be generalized to
other instances of singularly parameterized domains.

However, the L-shape case as described in Assumption 5.2
can also be used to parameterize a triangular domain. Figure
10 shows one example of a control point grid of a triangular
domain with curved boundary. Theorem 5.3 states that in this
case all test functions are ' (Q). So this strategy to param-
eterize a triangle does not require further manipulatiothef
function spacé&/, (Q).

Wolye = dx

6.2. Circular domains

The methods and results from Subsection 5.2 can be applied
when parameterizing the interior of the unit circle. Here we
compare two dterent parameterizations. Both methods have
been presented in [22]. The first example has a polar codelina
structure.

Example 6.1 Consider a NURBS parameterization of degree
p = (1,2 with knot vectors§; = (0,0,1,1) and 6, =

(0, 0,023 113371 1). The control points and weights

are given in Table 2.
Pai.i), Wi, j) i=0 i=1
j=0 0,07, 1 Lo", 1
i = T 1 T 1
j=1 00", (L7,
j=2 0,07, 1 01", 1
i = T 1 T 1
j=3 0O, 5 (LT, 5
j=4 00", 1 (-L0", 1
i = T 1 T 1
j=5 00", 5 (1L-D', 5
j=6 00", 1 (-1, 1
i = T 1 T 1
J_7 (0’0) 17§ (1,—1) ,ﬁ
j=8 0,07, 1 1Lo", 1

tions are inH. We introduce an approach similar to the method

in the one-dimensional case. One can easily see that thefsum o

the first row of basis functions
P2
0o (0Y) = ) o) (% Y)
=0

is equal to the O-th univariate B-spline function of degpze
i.e.

@o(xY) = Bop, (¥) Y (xY) € Qo.

14

Table 2: Control points and weights for Example 6.1

Figure 17 shows the control points and Figure 18 shows the
parameterization for Example 6.1. In Figure 17 the control
points that lie on a common continuous or dashed line have
a commoni- or j-index, respectively. In this situation all con-
trol points withi = 0 degenerate to the origin. This leads to
a singular parameterization withG (0,y) = 0 forO <y < 1.
Basically, this singularity is similar to the triangularpaneter-
ization from Subsection 6.1.



Figure 17: Control points for Example 6.1 Figure 19: Control points for Example 6.2

1.0 100

0.5

-0.5r

-1.0n I . |
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Figure 18: Parameterization for Example 6.1 Figure 20: Parameterization for Example 6.2

Among the 18 test functiong; ) only those with = 1arein  Hence the function spaaé is spanned by 9 basis functions and
H!(Q). The basis o/, has to be modified in order to achieve fulfills Vi (Q) € C= (Q) N H ().

Vh(Q) € CO(Q) N HL(Q). This results in a total number of
9 basis functions foW, after modification, since alyj for
0< j<8aswellagio andy(g have to be summed up. — \yhich corresponds to the origin is interpolating at the iorig
_The_second possibility to parameterize a c_lrculgr domain i§ o W, (0,0) = 1, but has no well-defined gradient in this point.
given in Example 6.2. It has a more Cartesian-like structurg,, Example 6.2 the corresponding test functigny is smooth
than Example 6.1. everywhere but fulfillay11y (0,0) < 1, so it is not interpolat-
Example 6.2 Consider a NURBS parameterization of degreeing. When restricted to the boundary@f the values of the ba-
p = (2,2) with knot vector®; = 6, = (0,0,0,1,1,1). The sis functions corresponding to the 8 outer control poireste
control points and weights are given in Table 3. same for both parameterizations. We highly recommend to use
the parameterization given in Example 6.2 rather than the pa
rameterization from Example 6.1, since it is more concigg an

In Example 6.2 the basis functions do not require a modifi-
cation but are even i@*. In Example 6.1 the test functioHy

I,D(i’j)' Wi TI =0 TI :11 T' =2 does not require further manipulation of the basis funation
j=0 (-1 0)T , 1 (—1,—1)T ' (0,—1)T , 1

i=1 -1)". 5 ©0O', 1 (L-D', 5

. T T 1 T 7. Conclusions

j=2 ©y, 1 @y, F @wo, 1

We considered the isogeometric approach for the numerical
Table 3: Control points and weights for Example 6.2 discretization of a general second order elliptic partifieden-
tial equation in the one- and two-dimensional case. We asdum

The control points and the parameterization correspondinthat the control points degenerate such that the pararnatieri
to Example 6.2 are shown in Figures 19 and 20. Similarly topossesses a singular point in one corner of the parameter do-
Figure 17 the control points in Figure 19 which lie on a commonmain. This situation can occur when some of the control goint
continuous or dashed line have a comnioor j-index. near the boundary are equal or collinear.

Here we have four singularities at the parameter vakyes In the one-dimensional case we showed that if thedikgin-
(0,07, x2 = (0,1)7, x3 = (1,1)" andx4 = (1,0)". From Theo- trol points are equal, then the fiist:/2] + 1 test functions are
rem 5.3 it follows that all test functions are kit, since the pa- not in H*. We showed the existence of allfitiess matrix in-
rameterization is symmetric with respect to the singulaniso  tegrals for two special (but practically interesting) casethe
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two-dimensional case. If some test functions are ndiirbe- and
cause of a singularity, one may show that their sum isian
function and use it as a test function instead. This was demon

strated in the one-dimensional case and for a parameierizat

f & dx<C f & dx.
QoNU;s(Xo) g (X) QoNU;s(Xo) g (X)

of a triangle with a collapsing edge. A more general study wil gjnceq is continuous, it is bounded from below by some con-

be a topic for future research.
Note that the results of our paper can be extended to parame-
terizations with several singular points, provided thatg¢mgu-
larities occur at the vertices of the polynomial or ratiosed)-
ments. Singular points in the interior of edges, howeveire
a separate analysis, which should be analyzed in the future.
Strong distortions of the control point grid may lead to pa-
rameterizations that contain many singular or almost dargu
points. By almost singular points we understand points,reshe

stantc > 0, so

f w dx < M.
Q\Us(x0) 9(X)

From the assumption

6 b
fQOQ(X)dX_D<

the determinant of the parameterization gradient is close tit follows

0. There may occur severe singularities, that lead to the non
existence of all sffness matrix integrals in one specific NURBS
patch. One area of future research will be to characterizerot
singularities and to analyze the asymptotic behavior ofrites
grand functions. The goal will be to prove qualitative exigte
results as well as quantitative results concerning the iiond
number of the sffness matrix or the approximation power of
the discretized space.

One should also consider otheffdrential equations, which
lead to function spaces fiiérent fromH*(Q). An example
would be the spacél (div; Q) which is defined as the sub-
space ol.? (Q), where the divergence of any function is laf
function as well. It may happen, that NURBS test functiores ar
contained irH (div; Q) but not inH! (Q).

Of particular interest is also the extension to higher dimen
sions. Especially for three-dimensional NURBS-basedeaepr [
sentations, which are widely used in technical applicatjex-
istence results are of importance.
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Appendix
Proof of Theorem 3.2Let 0 < € < 1 andC > 0. We know 9
from the asymptotic behavior dfandg that there exists &> 0
such that(1 - €)g(x) < g(x) and f (x) < Cf(x) for all x €  [10]
Qo N Us (Xo). The integral can be split, such that
[11]
f w dX f w dX
Qo g (X) QOQUJ(XO) g (X)
12
f f(x) dx. [12]
20\Us(x0) 9(X)
[13]
where
[14]
f m dx < ! f ﬂ dx
0QoNUs(Xo) g (X) 1 —€ QoNUs(Xg) g (X)
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