
Rational Solutions of a Rational System

of Autonomous ODEs: Generalization

to Trivariate Case and Problems

Yanli Huang and L.X.Chau Ngo

DK-Report No. 2010-11 11 2010

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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Abstract

This paper presents a method for computing the explicitly rational solutions of a trivari-

ate rational system of autonomous ordinary differential equations (ODEs) based on the

proper parametrization of its invariant algebraic space curve. It is the generalization of

the method in [11]. First, an undetermined coefficients method is given for computing the

invariant algebraic space curves of the trivariate polynomial system of autonomous ODEs.

Then we extend some nice properties of the proper parametrization for the plane curves

to the case of space curves. Moreover, an algorithm is provided for computing the ratio-

nal solutions of the trivariate polynomial system of autonomous ODEs based on previous

preparation. Finally, we generalize this algorithm to compute the rational solutions of the

trivariate rational system of autonomous ODEs and give some relations and properties of

the rational solutions.

Keywords: Rational solutions, invariant algebraic space curves, trivariate rational system

of autonomous ODEs, proper parametrization.

1 Introduction

In [9], we have reduced the problem for computing the rational general solutions of n−1 (n >

2) order non-autonomous ODEs to finding the rational general solutions of an associated first
order rational system of autonomous ODEs in n indeterminates based on the proper parametriza-
tion of hypersurface. Based on the previous work, this paper mainly consider the problem for
finding the rational solutions of the first order trivariate rational system of autonomous ODEs





s′1 =
U1(s1, s2, s3)
V1(s1, s2, s3)

s′2 =
U2(s1, s2, s3)
V2(s1, s2, s3)

s′3 =
U3(s1, s2, s3)
V3(s1, s2, s3)

,

(1)

where Ui, Vi ∈ Q̄[s1, s2, s3] for i = 1, 2, 3. A rational solution of the system (1) is a 3-tuple of
rational functions (s1(x), s2(x), s3(x)) that satisfies the given system. Each rational solution of

1Email address: yanlihuang@smss.buaa.edu.cn, ngo.chau@risc.uni-linz.ac.at
∗This work has been supported by the China Scholarship Council and the Austrian Science Foundation (FWF)

via the Doctoral Program “Computational Mathematics” (W1214), project DK11.
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(1) represents a rational algebraic space curve for which the rational solution itself is a rational
parametrization of the space curve. Such a rational algebraic space curve is implicitly defined by
the intersection of two algebraic surfaces. Therefore, it is possible to compute a rational solution
of (1) by finding the implicit rational algebraic space curve (i.e. the implicit defining equations
of two algebraic surfaces such that this space curve is determined by their intersection) of the
possible rational solutions first, and then choosing suitable parametrizations of the space curve
which satisfy the differential system (1).

2 Invariant algebraic space curves of polynomial system of

autonomous ODEs

Consider the trivariate polynomial system of autonomous ODEs




s′1 = P1(s1, s2, s3)

s′2 = P2(s1, s2, s3)

s′3 = P3(s1, s2, s3),

(2)

where P1, P2, P3 ∈ Q̄[s1, s2, s3] with constant coefficients. It is a special case of trivariate ratio-
nal system (1) of autonomous ODEs. In [9, sect. 6], we have introduced some nice properties
of general polynomial system of autonomous ODEs. In particular, if (s1(x), s2(x), s3(x)) is a
rational solution of polynomial system (2) of autonomous ODEs , then this solution defines a
parametric space curve. Let

ID = {K ∈ Q̄[s1, s2, s3] : K(s1(x), s2(x), s3(x)) = 0}

be the implicit ideal determined by this parametric space curve, then the basis H of the implicit
ideal ID under the lexicographical order s1 < s2 < s3 can be computed by the results in [8,
sects. 3 and 4], where H = [H1(s1, s2),H2(s1, s2, s3)] and the leading term of Hi is a power of
si+1 with coefficient 1 for i = 1, 2. Furthermore, according to Proposition 22 in [9], there exists
Wi,j ∈ Q̄[s1, s2, s3] such that

{
H1s1P1 + H1s2P2 = H1W1,1 + H2W1,2

H2s1P1 + H2s2P2 + H2s3P3 = H1W2,1 + H2W2,2.

In this section, we present a method by using the same technique as in [10,11] for computing
the implicit equations of two algebraic surfaces H1(s1, s2) = 0 and H2(s1, s2, s3) = 0 such that
the possible rational solutions of polynomial system (2) of autonomous ODEs can be computed
from the parametrization of the space curve determined by their intersection.

Let K be an algebraically closed field of characteristic 0, s1 < s2 < s3 be 3 ordered variables.
For any polynomial F ∈ K[s1, s2, s3] \ K, the biggest index p such that the degree of F in sp

is greater than 0 is called the class of F , denoted by cls(F ). Define cls(F ) = 0 if F ∈ K. Let
p = cls(F ) > 0, sp is called the leading variable of F , denoted by lv(F ).

Definition 1. Let I = 〈H1,H2〉 be a 1-dimensional ideal, where lv(H1) = s2 and lv(H2) = s3.
An invariant algebraic space curve of trivariate polynomial system (2) of autonomous ODEs is
an algebraic variety Z(I), such that

{
H1s1P1 + H1s2P2 = H1W1,1 + H2W1,2

H2s1P1 + H2s2P2 + H2s3P3 = H1W2,1 + H2W2,2,

for some polynomial Wi,j ∈ Q̄[s1, s2, s3], i, j = 1, 2.
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Note that Z(I) = Z(〈H1,H2〉) = Z(H1,H2). It can be seen from Definition 1 that H1s1P1+
H1s2P2,H2s1P1 + H2s2P2 + H2s3P3 ∈ I. This refers to the ideal membership problem. We can
solve it by the theory of Gröbner bases. Therefore, one way to compute H1 and H2 is by the
undetermined coefficients method which is similar to the methods used for computing the formal
solutions of first order ODEs in [10] and the invariant algebraic curves of planar polynomial
differential system in [11]. In fact, if the degrees of H1 and H2 are given, the system of equations
on the coefficients of H1 and H2 can be obtained by equating the normal form of H1s1P1+H1s2P2

and H2s1P1 + H2s2P2 + H2s3P3 modulo G to zero, where G is the Gröbner basis of the ideal I.
By solving the obtained system, we can get the defining polynomials of two surfaces H1 = 0 and
H2 = 0, their intersection is the invariant algebraic space curve we want to find.

Example 2. Consider the trivariate polynomial system of autonomous ODEs




s′1 = s1s3 − s2

s′2 = 2s2
1 − s1s2

s′3 = s2
1.

(3)

First, we look for an invariant algebraic space curve Z(H1(s1, s2),H2(s1, s2, s3)) satisfying
deg(H1) = deg(H2) = 1. Assume

H1 = s2 + c1s1 + c2, H2 = s3 + c3s2 + c4s1 + c5.

Then the Gröbner basis of 〈H1,H2〉 with respect to the lexicographic order determined by
s1 < s2 < s3 is

G = [s2 + c1s1 + c2, s3 + (c4 − c3c1)s1 + c5 − c3c2]

and

H1s1P1 + H1s2P2 = c1s3s1 − s2s1 − c1s2 + 2s2
1,

H2s1P1 + H2s2P2 + H2s3P3 = c4s3s1 − c3s2s1 − c4s2 + (2c3 + 1)s2
1.

The normal form of H1s1P1 + H1s2P2 and H2s1P1 + H2s2P2 + H2s3P3 modulo G are

(c1 − c1c4 + c2
1c3 + 2)s2

1 + (c2
1 + c2 − c1c5 + c1c2c3)s1 + c1c2

and
(c1c3 − c2

4 + c1c3c4 + 2c3 + 1)s2
1 + (c1c4 + c2c3 − c4c5 + c2c3c4)s1 + c2c4

respectively. Therefore, the algebraic system of equations on the coefficients of H1 and H2 is




c1 − c1c4 + c2
1c3 + 2 = 0

c2
1 + c2 − c1c5 + c1c2c3 = 0

c1c2 = 0

c1c3 − c2
4 + c1c3c4 + 2c3 + 1 = 0

c1c4 + c2c3 − c4c5 + c2c3c4 = 0

c2c4 = 0.

By solving this system, we obtain the following solution

{c1 = −1, c2 = 0, c3 = −1− c4, c4 = c4, c5 = −1},

i.e.
H1 = s2 − s1, H2 = s3 − (1 + c4)s2 + c4s1 − 1. (4)

3



Now we ask for an invariant algebraic space curve Z(H ′
1(s1, s2),H ′

2(s1, s2, s3)) such that deg(H ′
1) =

2, deg(H ′
2) = 1. Let

H ′
1 = s2 + c1s

2
1 + c2s1 + c3, H ′

2 = s3 + c4s2 + c5s1 + c6, (5)

then the following solutions are computed by using the same procedure as above

{c1 = 0, c2 = −1, c3 = 0, c4 = −1− c5, c5 = c5, c6 = −1},
{c1 = 3/2, c2 = −4, c3 = 0, c4 = 0, c5 = 2, c6 = −4}.

The first solution corresponds to the invariant algebraic space curve determined by (4), where
deg(H1) = deg(H2) = 1. For the second solution, it determines another invariant algebraic space
curve Z(H ′

1,H
′
2), where

H ′
1 = s2 +

3
2
s2
1 − 4s1, H ′

2 = s3 + 2s1 − 4.

In Example 2, we computed two invariant algebraic space curves, one of them is a space
line determined by the intersection of surfaces H1 = 0 and H2 = 0, another is a space conic
determined by the intersection of H ′

1 = 0 and H ′
2 = 0.

Remark 3. In fact, we need to consider the following two cases for computing the invariant
algebraic space curve Z(H ′

1,H
′
2) such that deg(H ′

1) = 2 and deg(H ′
2) = 1,

{
H ′

1 = s2s1 + c1s2 + c2s
2
1 + c3s1 + c4

H ′
2 = s3 + c5s2 + c6s1 + c7,

{
H ′

1 = s2
2 + c1s2s1 + c2s2 + c3s

2
1 + c4s1 + c5

H ′
2 = s3 + c6s2 + c7s1 + c8.

But in these two cases, the obtained algebraic systems of equations on the coefficients of H ′
1 and

H ′
2 have no solution. Therefore, the computed Z(H ′

1,H
′
2) in the Example 2 is the only invariant

algebraic space curve satisfying deg(H ′
1) = 2 and deg(H ′

2) = 1.

3 Rational solutions of polynomial system of autonomous

ODEs

Let C be a space curve that is implicitly defined as
{

f(x, y, z) = 0
g(x, y, z) = 0,

(6)

i.e. the intersection of two algebraic surfaces f(x, y, z) = 0 and g(x, y, z) = 0.
It is known that any space curve can be birationally projected onto a plane curve (see [6],

p.155). In addition, the parametrization problem for the algebraic plane curves has been widely
studied (e.g. [1, 15]). Therefore, it is important to compute a projected plane curve such that
the points on it are birational corresponding to the points of the original space curve C for
computing the parametrization of rational space curve. In [2], Abhyankar and Bajaj presented
a method for computing such a projected plane curve. In fact, the problem can be reduced to
find an appropriate axis of projection. For example, if we choose z axis as the project direction,
it is valid when resz(f, g) is not a power of irreducible polynomial. If the z axis is not valid,
we need to make a linear transformation of variables. The following general procedure may be
adopted. First, compute the transformed equations f1(x1, y1, z1) = 0 and g1(x1, y1, z1) = 0 by
substituting 




x = a1x1 + b1y1 + c1z1

y = a2x1 + b2y1 + c2z1

z = a3x1 + b3y1 + c3z1
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into the equations of the two surfaces (6) defining the space curve C, where ai, bi, ci are selected
such that the determinant of them is nonzero. Then the resultant of f1 and g1 with respect
to z1 (denoted by resz1(f1, g1)) is our required projected plane curve when it is not a power of
irreducible polynomial. This condition can be achieved by choosing the different linear transfor-
mations. In fact, a suitable random choice of coefficients ai, bi, ci can ensure that the projected
plane curve resz1(f1, g1) is in birational correspondence with the original space curve C and thus
of the same genus.

Example 4. Consider the space curve defined by the intersection




H ′
1 = s2 +

3
2
s2
1 − 4s1 = 0

H ′
2 = s3 + 2s1 − 4 = 0

in Example 2. Obviously, ress3(H
′
1,H

′
2) = H ′

1 is not a power of irreducible polynomial. It follows
that H ′

1 = 0 is our required projected plane curve without making the linear transformation of
variables. Therefore, it is birational corresponding to the original space curve Z(H ′

1,H
′
2). Since

(x,−3/2x2 +4x) is a proper parametrization of H ′
1 = 0, the proper parametrization of the space

curve Z(H ′
1,H

′
2) is (x,−3/2x2 + 4x,−2x + 4).

Similarly, consider the invariant algebraic space curve Z(H1,H2) in Example 2 determined
by {

H1 = s2 − s1 = 0

H2 = s3 − (1 + c4)s2 + c4s1 − 1 = 0,

we can get (x, x, x + 1) is a proper parametrization of Z(H1,H2) .

The parametrization of rational space curve in Example 4 didn’t involve the linear trans-
formation of variables. But this strategy is useful and feasible for the general cases. Although
Z(

∏
i H1,i,

∏
j H2,j) can be decomposed into

⋃
i,j Z(H1,i,H2,j), not all their irreducible compo-

nents Z(H1,i,H2,j) can keep the property of invariant algebraic space curve. In other words,
there may appear some components in the decomposition which are not the invariant algebraic
space curves. Even if some components in the decomposition are the invariant algebraic space
curves, we can compute them by setting the degree of H1 and H2 lower than before in the unde-
termined coefficients method. Therefore, from now on we only consider the invariant algebraic
space curves determined by the irreducible polynomials.

Based on the above introduction, it is natural to generalize the relevant definitions and
results for rational plane curves to the case of rational space curves. Moreover, the definition for
the proper rational solutions in [11] can be generalized to the trivariate polynomial differential
system as follows.

Definition 5. A rational solution of the trivariate polynomial system (2) of autonomous ODEs
is called a proper rational solution if it is a proper rational parametrization of its corresponding
invariant algebraic space curve. An invariant algebraic space curve of the trivariate polynomial
differential system (2) is called a rational invariant algebraic space curve if it is a rational space
curve, i.e. it has a rational parametrization.

Note that the proper rational solution (s1(x), s2(x), s3(x)) means not all rational functions
in this solution are constant, i.e. at least one of the components is non-constant.

Lemma 6. Let P1(t) be a proper parametrization of an affine rational space curve C, and let
P2(t) be any other rational parametrization of C.
(a) There exists a nonconstant rational function R(t) ∈ K(t) such that P2(t) = P1(R(t)).

(b) P2(t) is proper if and only if there exists a linear rational function L(t) ∈ K(t) such that
P2(t) = P1(L(t)).
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Proof. Assume that ϕ : C → Ĉ is a birational projection between the space curve C and the plane
curve Ĉ. As ϕ is birational, the rationality of C is consistent with that of Ĉ. Let P1(t) be a proper
parametrization of rational space curve C, then P̂1(t) = ϕ(P1(t)) is a proper parametrization of
rational plane curve Ĉ. Similarly, let P2(t) be any other rational parametrization of space curve
C, then P̂2(t) = ϕ(P2(t)) is a parametrization of rational plane curve Ĉ. According to Lemma
4.17 in [15], we have P̂2(t) = P̂1(R(t)), where R(t) ∈ K(t) is a nonconstant rational function. It
follows that

P2(t) = ϕ−1(P̂2(t)) = ϕ−1(P̂1(R(t))) = P1(R(t)).

This proves (a). Since ϕ is birational, P2(t) is proper if and only if P̂2(t) is proper. Therefore,
it is easy to prove (b) by a similar argument.

In this following, we present a method for finding rational solutions of the trivariate poly-
nomial system (2) of autonomous ODEs based on the proper parametrization of the invariant
algebraic space curves.

Theorem 7. Any rational solution of the trivariate polynomial system (2) of autonomous ODEs
is a proper rational solution.

Proof. Let (ŝ1(x), ŝ2(x), ŝ3(x)) be a rational solution of the polynomial system (2) of autonomous
ODEs and {H1(s1, s2),H2(s1, s2, s3)} the basis of the implicit ideal ID under the lexicographical
order s1 < s2 < s3 determined by the parametric space curve (ŝ1(x), ŝ2(x), ŝ3(x)). Then





ŝ′1(x) = P1(ŝ1(x), ŝ2(x), ŝ3(x))

ŝ′2(x) = P2(ŝ1(x), ŝ2(x), ŝ3(x))

ŝ′3(x) = P3(ŝ1(x), ŝ2(x), ŝ3(x)).

(7)

Let (s1(x), s2(x), s3(x)) be a proper parametrization of rational space curve Z(H1,H2). Ac-
cording to Proposition 6(a), there exists a nonconstant rational function T (x), such that the
two rational parametrizations of the same algebraic space curve Z(H1,H2) have the following
relation 




ŝ1(x) = s1(T (x))

ŝ2(x) = s2(T (x))

ŝ3(x) = s3(T (x)).

(8)

By (7) and (8), we have




s′1(T (x)) · T ′(x) = P1(s1(T (x)), s2(T (x)), s3(T (x)))

s′2(T (x)) · T ′(x) = P2(s1(T (x)), s2(T (x)), s3(T (x)))

s′3(T (x)) · T ′(x) = P3(s1(T (x)), s2(T (x)), s3(T (x))).

Note that at least one of rational functions s1(x), s2(x) and s3(x) is non-constant. Therefore,

T ′(x) =





P1(s1(T (x)), s2(T (x)), s3(T (x)))
s′1(T (x))

, if s′1(x) 6= 0

P2(s1(T (x)), s2(T (x)), s3(T (x)))
s′2(T (x))

, if s′2(x) 6= 0

P3(s1(T (x)), s2(T (x)), s3(T (x)))
s′3(T (x))

, if s′3(x) 6= 0.

As T (x) is unknown in above three autonomous differential equations which are of degree 1 with
respect to T ′(x), it follows from Theorem 2.7 and Corollary 3.11 in [7] that the rational solution
T (x) is a linear rational function. Therefore, (ŝ1(x), ŝ2(x), ŝ3(x)) is a proper rational solution of
the system (2) by Proposition 6(b).

6



From the constructive proof for Theorem 7, we get the following theorem immediately.

Theorem 8. Suppose that Z(H1,H2) is a rational invariant algebraic space curve of the trivari-
ate polynomial system (2) of autonomous ODEs. Let (s1(x), s2(x), s3(x)) be an arbitrary proper
rational parametrization of the space curve Z(H1,H2). Then the polynomial system (2) has a
proper rational solution

ŝ1(x) = s1(T (x)), ŝ2(x) = s2(T (x)), ŝ3(x) = s3(T (x))

corresponding to Z(H1,H2) if and only if there exists a linear rational transformation T (x) =
ax+b
cx+d which is a rational solution of the following autonomous differential equation

T ′(x) =





P1(s1(T (x)), s2(T (x)), s3(T (x)))
s′1(T (x))

, if s′1(x) 6= 0

P2(s1(T (x)), s2(T (x)), s3(T (x)))
s′2(T (x))

, if s′2(x) 6= 0

P3(s1(T (x)), s2(T (x)), s3(T (x)))
s′3(T (x))

, if s′3(x) 6= 0.

In the following, an algorithm is given for computing the rational solutions of the polynomial
system (2) of autonomous ODEs corresponding to the computed invariant algebraic space curves.
Algorithm 1 always terminates and its correctness is guaranteed by Theorem 8.

Algorithm 1: Rational solutions of the trivariate polynomial system of autonomous ODEs
Input: Three polynomials P1(s1, s2, s3), P2(s1, s2, s3), P3(s1, s2, s3) ∈ Q̄[s1, s2, s3], and the

invariant algebraic space curve Z(H1(s1, s2), H2(s1, s2, s3)), where H1 and H2 are

irreducible.

Output: A rational solution of the polynomial system (2) corresponding to Z(H1, H2).

if Z(H1, H2) is not a rational space curve then
return No rational solution corresponding to Z(H1, H2);

else
compute a proper parametrization (s1(x), s2(x), s3(x)) of Z(H1, H2);

if s′1(x) 6= 0 then
compute the rational solution T (x) of the autonomous differential equation

T ′(x) =
P1(s1(T (x)), s2(T (x)), s3(T (x)))

s′1(T (x))
;

else if s′2(x) 6= 0 then
compute the rational solution T (x) of the autonomous differential equation

T ′(x) =
P2(s1(T (x)), s2(T (x)), s3(T (x)))

s′2(T (x))
;

else
compute the rational solution T (x) of the autonomous differential equation

T ′(x) =
P3(s1(T (x)), s2(T (x)), s3(T (x)))

s′3(T (x))
;

end

if T (x) is a linear rational function then
return (s1(T (x)), s2(T (x)), s3(T (x)));

else
return No rational solution corresponding to Z(H1, H2);

end

end

7



Example 9. Continue considering the trivariate polynomial system (3) of autonomous ODEs





s′1 = s1s3 − s2

s′2 = 2s2
1 − s1s2

s′3 = s2
1.

From Examples 2 and 4, we have known that Z(H ′
1,H

′
2) is an invariant algebraic space curve,

where 



H ′
1 = s2 +

3
2
s2
1 − 4s1

H ′
2 = s3 + 2s1 − 4,

and
(s1(x), s2(x), s3(x)) = (x,−3

2
x2 + 4x,−2x + 4)

is a proper parametrization of the space curve Z(H ′
1,H

′
2). Since s′1(x) 6= 0, by solving the

differential equation

T ′(x) =
s1(T (x))s3(T (x))− s2(T (x))

s′1(T (x))
= −1

2
T 2(x),

we have
T (x) =

2
x

.

It follows from Algorithm 1 that

s1(T (x)) =
2
x

, s2(T (x)) = − 6
x2

+
8
x

, s3(T (x)) = − 4
x

+ 4

is a rational solution of the system (3) corresponding to Z(H ′
1,H

′
2).

Similarly, according to the results in Example 4,

(s1(x), s2(x), s3(x)) = (x, x, x + 1)

is a proper parametrization of invariant algebraic space curve Z(H1,H2), where
{

H1 = s2 − s1

H ′
2 = s3 − (1 + c4)s2 + c4s1 − 1,

Note that s′1(x) 6= 0, by solving the differential equation

T ′(x) =
s1(T (x))s3(T (x))− s2(T (x))

s′1(T (x))
= T 2(x),

we have
T (x) = − 1

x
.

According to Algorithm 1,

s1(T (x)) = − 1
x

, s2(T (x)) = − 1
x

, s3(T (x)) = − 1
x

+ 1

is a rational solution of the system (3) corresponding to Z(H1,H2).
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4 Rational solutions of rational system of autonomous ODEs

In this section, the previous algorithm for computing the rational solutions of polynomial
system of autonomous ODEs is generalized to the case of rational system of autonomous ODEs
(1) 




s′1 =
U1(s1, s2, s3)
V1(s1, s2, s3)

s′2 =
U2(s1, s2, s3)
V2(s1, s2, s3)

s′3 =
U3(s1, s2, s3)
V3(s1, s2, s3)

,

where Ui, Vi ∈ Q̄[s1, s2, s3] for i = 1, 2, 3.

Lemma 10. Each rational solution of the rational system (1) of autonomous ODEs defines a
rational invariant algebraic space curve of the polynomial system of autonomous ODEs





s′1 = U1(s1, s2, s3)W1(s1, s2, s3)

s′2 = U2(s1, s2, s3)W2(s1, s2, s3)

s′3 = U3(s1, s2, s3)W3(s1, s2, s3),

(9)

where Wi = lcm(V1,V2,V3)
Vi

, i = 1, 2, 3. Conversely, suppose that Z(H1(s1, s2),H2(s1, s2, s3)) is a
rational invariant algebraic space curve of the polynomial system (9) of autonomous ODEs, where
H1 and H2 are irreducible. Let (s1(x), s2(x), s3(x)) be a rational parametrization of Z(H1,H2).
If Vi(s1(x), s2(x), s3(x)) 6= 0 for all i = 1, 2, 3, and H2s3(s1(x), s2(x), s3(x)) 6= 0, then





s′1(x) · U2(s1(x), s2(x), s3(x))
V2(s1(x), s2(x), s3(x))

= s′2(x) · U1(s1(x), s2(x), s3(x))
V1(s1(x), s2(x), s3(x))

s′1(x) · U3(s1(x), s2(x), s3(x))
V3(s1(x), s2(x), s3(x))

= s′3(x) · U1(s1(x), s2(x), s3(x))
V1(s1(x), s2(x), s3(x))

s′2(x) · U3(s1(x), s2(x), s3(x))
V3(s1(x), s2(x), s3(x))

= s′3(x) · U2(s1(x), s2(x), s3(x))
V2(s1(x), s2(x), s3(x))

.

(10)

Proof. Let (s1(x), s2(x), s3(x)) be a rational solution of the rational system (1) of autonomous
ODEs and {H1(s1, s2),H2(s1, s2, s3)} the basis of the implicit ideal ID under the lexicographical
order s1 < s2 < s3 determined by the parametric space curve (s1(x), s2(x), s3(x)). Then





2∑

i=1

H1si
(s1(x), s2(x)) · s′i(x) = 0

3∑

i=1

H2si
(s1(x), s2(x), s3(x)) · s′i(x) = 0.

It follows that 



2∑

i=1

H1si
(s1(x), s2(x)) · Ui(s1(x), s2(x), s3(x))

Vi(s1(x), s2(x), s3(x))
= 0

3∑

i=1

H2si
(s1(x), s2(x), s3(x)) · Ui(s1(x), s2(x), s3(x))

Vi(s1(x), s2(x), s3(x))
= 0.

By clearing the denominators, we have



2∑

i=1

H1si(s1(x), s2(x)) · Ui(s1(x), s2(x), s3(x)) ·Wi(s1(x), s2(x), s3(x)) = 0

3∑

i=1

H2si
(s1(x), s2(x), s3(x)) · Ui(s1(x), s2(x), s3(x)) ·Wi(s1(x), s2(x), s3(x)) = 0,
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where

Wi(s1(x), s2(x), s3(x)) =
lcm(V1(s1(x), s2(x), s3(x)), V2(s1(x), s2(x), s3(x)), V3(s1(x), s2(x), s3(x)))

Vi(s1(x), s2(x), s3(x))
.

Therefore,




2∑

i=1

H1si(s1, s2) · Ui(s1, s2, s3) ·Wi(s1, s2, s3) = H1W1,1 + H2W1,2

3∑

i=1

H2si
(s1, s2, s3) · Ui(s1, s2, s3) ·Wi(s1, s2, s3) = H1W2,1 + H2W2,2,

for some Wi,j ∈ Q̄[s1, s2, s3]. It follows from Definition 1 that Z(H1,H2) is a rational invariant
algebraic space curve of trivariate polynomial system (9) of autonomous ODEs.

Conversely, if Z(H1(s1, s2),H2(s1, s2, s3)) is a rational invariant algebraic space curve of
the polynomial system (9) of autonomous ODEs, then we have





2∑

i=1

H1si
(s1, s2) · Ui(s1, s2, s3) ·Wi(s1, s2, s3) = H1W1,1 + H2W1,2

3∑

i=1

H2si
(s1, s2, s3) · Ui(s1, s2, s3) ·Wi(s1, s2, s3) = H1W2,1 + H2W2,2,

for some Wi,j ∈ Q̄[s1, s2, s3]. Let (s1(x), s2(x), s3(x)) be a parametrization of Z(H1,H2), then




2∑

i=1

H1si
(s1(x), s2(x)) · Ui(s1(x), s2(x), s3(x)) ·Wi(s1(x), s2(x), s3(x)) = 0 (11)

3∑

i=1

H2si(s1(x), s2(x), s3(x)) · Ui(s1(x), s2(x), s3(x)) ·Wi(s1(x), s2(x), s3(x)) = 0. (12)

On the other hand, it follows from H1(s1(x), s2(x)) = 0 and H2(s1(x), s2(x), s3(x)) = 0 that




2∑

i=1

H1si
(s1(x), s2(x)) · s′i(x) = 0 (13)

3∑

i=1

H2si(s1(x), s2(x), s3(x)) · s′i(x) = 0. (14)

Note that (H1s1(s1(x), s2(x)),H1s2(s1(x), s2(x)) 6= (0, 0), i.e. the system determined by (11)
and (13) has the non-zero solution. It follows that the determinant of coefficients matrix is equal
to 0, i.e.
∣∣∣∣

U1(s1(x), s2(x), s3(x))W1(s1(x), s2(x), s3(x)) U2(s1(x), s2(x), s3(x))W2(s1(x), s2(x), s3(x))
s′1(x) s′2(x)

∣∣∣∣ = 0.

(15)
Now, we need to prove
∣∣∣∣

U1(s1(x), s2(x), s3(x))W1(s1(x), s2(x), s3(x)) U3(s1(x), s2(x), s3(x))W3(s1(x), s2(x), s3(x))
s′1(x) s′3(x)

∣∣∣∣ = 0,

and
∣∣∣∣

U2(s1(x), s2(x), s3(x))W2(s1(x), s2(x), s3(x)) U3(s1(x), s2(x), s3(x))W3(s1(x), s2(x), s3(x))
s′2(x) s′3(x)

∣∣∣∣ = 0.

(16)

In fact, for the system determined by (12) and (14), we consider the following two cases.
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1. U3(s1(x), s2(x), s3(x)) = 0 and s′3(x) = 0. The conclusion is obvious.

2. U3(s1(x), s2(x), s3(x)) 6= 0 or s′3(x) 6= 0. In this case, it is equivalent to consider the
following system





2∑

i=1

H2si
(s1(x), s2(x), s3(x))Ui(s1(x), s2(x), s3(x))Wi(s1(x), s2(x), s3(x))

= −H2s3(s1(x), s2(x), s3(x))U3(s1(x), s2(x), s3(x))W3(s1(x), s2(x), s3(x))∑2
i=1 H2si

(s1(x), s2(x), s3(x))s′i(x) = −H2s3(s1(x), s2(x), s3(x))s′3(x).

(17)

According to H2s3(s1(x), s2(x), s3(x)) 6= 0 and the condition (15), we claim that

(H2s1(s1(x), s2(x), s3(x)),H2s2(s1(x), s2(x), s3(x))) 6= (0, 0).

In fact, if H2s1(s1(x), s2(x), s3(x)) = H2s2(s1(x), s2(x), s3(x)) = 0, then
{

H2s3(s1(x), s2(x), s3(x))U3(s1(x), s2(x), s3(x))W3(s1(x), s2(x), s3(x)) = 0

H2s3(s1(x), s2(x), s3(x))s′3(x) = 0.

It follows that H2s3(s1(x), s2(x), s3(x)) = 0. This is a contradiction. Therefore , (s1(x), s2(x), s3(x))
satisfies (16) according to (15).

Note that Vi(s1(x), s2(x), s3(x)) 6= 0 for all i = 1, 2, 3. It follows from (15) and (16) that




s′1(x) · U2(s1(x), s2(x), s3(x))
V2(s1(x), s2(x), s3(x))

= s′2(x) · U1(s1(x), s2(x), s3(x))
V1(s1(x), s2(x), s3(x))

s′1(x) · U3(s1(x), s2(x), s3(x))
V3(s1(x), s2(x), s3(x))

= s′3(x) · U1(s1(x), s2(x), s3(x))
V1(s1(x), s2(x), s3(x))

s′2(x) · U3(s1(x), s2(x), s3(x))
V3(s1(x), s2(x), s3(x))

= s′3(x) · U2(s1(x), s2(x), s3(x))
V2(s1(x), s2(x), s3(x))

.

The Lemma is proved.

Remark 11. The conditions Vi(s1(x), s2(x), s3(x)) 6= 0 and H2s3(s1(x), s2(x), s3(x)) 6= 0 mean
Vi,H2s3 6∈ 〈H1(s1, s2),H2(s1, s2, s3)〉.

It can be seen from Lemma 10 that the differential systems (1) and (9) define the same set of
invariant algebraic space curves under certain conditions. Therefore, the system (9) is called the
associated polynomial differential system of the rational system (1) of autonomous ODEs. Each
invariant algebraic space curve of the associated polynomial differential system is also called an
invariant algebraic space curve of the rational system of autonomous ODEs.

Based on the previous preparation, we have the following theorem for computing the rational
solutions of rational system of autonomous ODEs.

Theorem 12. (a) Any rational solution of rational system (1) of autonomous ODEs is a proper
rational solution.
(b) Let Z(H1(s1, s2),H2(s1, s2, s3)) be a rational invariant algebraic space curve of the ratio-
nal system (1) of autonomous ODEs such that Vi,H2s3 6∈ 〈H1,H2〉 for all i = 1, 2, 3, and
(s1(x), s2(x), s3(x)) be an arbitrary proper rational parametrization of the space curve Z(H1,H2).
Then the system (1) has a proper rational solution

ŝ1(x) = s1(T (x)), ŝ2(x) = s2(T (x)), ŝ3(x) = s3(T (x))
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corresponding to Z(H1,H2) if and only if there exists a linear rational transformation T (x) =
ax+b
cx+d which is a rational solution of the following autonomous differential equation

T ′(x) =





U1(s1(T (x)), s2(T (x)), s3(T (x)))
V1(s1(T (x)), s2(T (x)), s3(T (x))) · s′1(T (x))

, if s′1(x) 6= 0

U2(s1(T (x)), s2(T (x)), s3(T (x)))
V2(s1(T (x)), s2(T (x)), s3(T (x))) · s′2(T (x))

, if s′2(x) 6= 0

U3(s1(T (x)), s2(T (x)), s3(T (x)))
V3(s1(T (x)), s2(T (x)), s3(T (x))) · s′3(T (x))

, if s′3(x) 6= 0.

(18)

Proof. The proof of (a) is similar to that of Theorem 7. (b) is obvious by the constructive proof
of (a).

Now the problem for computing the rational solution of rational system (1) of autonomous
ODEs is reduced to finding a rational solution of the autonomous differential equation (18). In
fact, we have the following theorem about the linear rational solvability of the equation (18).

Theorem 13. Let Z(H1(s1, s2),H2(s1, s2, s3)) be a rational invariant algebraic space curve of
the rational system (1) of autonomous ODEs such that Vi,H2s3 6∈ 〈H1,H2〉 for all i = 1, 2, 3. If
P = (s1(x), s2(x), s3(x)) and P̂ = (ŝ1(x), ŝ2(x), ŝ3(x)) are two different proper parametrizations
of Z(H1(s1, s2),H2(s1, s2, s3)), then

T ′1(x) =
Ui(s1(T1(x)), s2(T1(x)), s3(T1(x)))

Vi(s1(T1(x)), s2(T1(x)), s3(T1(x))) · s′i(T1(x))
(19)

has a linear rational solution T1(x) if and only if

T ′2(x) =
Ui(ŝ1(T2(x)), ŝ2(T2(x)), ŝ3(T2(x)))

Vi(ŝ1(T2(x)), ŝ2(T2(x)), ŝ3(T2(x))) · s′i(T2(x))
(20)

has a linear rational solution T2(x). Moreover, P = P̂ ◦ T2 ◦ T−1
1 .

Proof. Assume that T1(x) is a linear rational solution of (19). Then the rational solution of
the system (1) corresponding to Z(H1(s1, s2),H2(s1, s2, s3)) is (s1(T1(x)), s2(T1(x)), s3(T1(x))).
According to Theorem 12(a), (s1(T1(x)), s2(T1(x)), s3(T1(x))) is a proper rational solution. As
P̂ = (ŝ1(x), ŝ2(x), ŝ3(x)) is a proper parametrization of the same space curve Z(H1,H2), there
exists a linear rational function T2(x), such that





s1(T1(x)) = ŝ1(T2(x))

s2(T1(x)) = ŝ2(T2(x))

s3(T1(x)) = ŝ3(T2(x)).

(21)

It follows that 



s′1(T1(x)) · T ′1(x) = ŝ′1(T2(x)) · T ′2(x)

s′2(T1(x)) · T ′1(x) = ŝ′2(T2(x)) · T ′2(x)

s′3(T1(x)) · T ′1(x) = ŝ′3(T2(x)) · T ′2(x).

Therefore, T2(x) is a linear rational solution of (20), and visa versa. Furthermore, it is obvious
from (21) that P = P̂ ◦ T2 ◦ T−1

1 .

It can be seen from Theorem 13 that the solvability of the linear rational solution of differ-
ential equation (18) does not depend on the choice of the proper parametrization of the invariant
algebraic space curve. According to Theorem 13, we know that it is possible to get two different
rational solutions from two different proper parametrizations of the same invariant algebraic
space curve. In fact, they are related to each other by a shifting of the variable.
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Theorem 14. Let (s1(x), s2(x), s3(x)) and (ŝ1(x), ŝ2(x), ŝ3(x)) be two rational solutions of the
trivariate rational system (1) of autonomous ODEs corresponding to the same invariant algebraic
space curve. Then there exists a constant c such that

(s1(x + c), s2(x + c), s3(x + c)) = (ŝ1(x), ŝ2(x), ŝ3(x)).

Proof. According to Theorem 12(a) and Definition 5, (s1(x), s2(x), s3(x)) and (ŝ1(x), ŝ2(x), ŝ3(x))
are two proper parametrizations of the same invariant algebraic space curve. Therefore, there
exists a linear rational function T (x) such that

(ŝ1(x), ŝ2(x), ŝ3(x)) = (s1(T (x)), s2(T (x)), s3(T (x))).

It follows that

s′i(T (x))T ′(x) = ŝ′i(x) =
Ui(ŝ1(x), ŝ2(x), ŝ3(x))
Vi(ŝ1(x), ŝ2(x), ŝ3(x))

=
Ui(s1(T (x)), s2(T (x)), s3(T (x)))
Vi(s1(T (x)), s2(T (x)), s3(T (x)))

= s′i(T (x)).

Assume that s′1(x) 6= 0 without loss of generality, then T ′(x) = 1. By solving this differential
equation, we have T (x) = x + c for some constant c. The theorem is proved.

Remark 15. In fact, the transformation from one solution into another one in Theorem 14 can
be computed. Let P = (s1(x), s2(x), s3(x)) and P̂ = (ŝ1(x), ŝ2(x), ŝ3(x)). By considering these
two rational solutions as the proper parametrizations, then P̂ ◦ P−1 is the transformation from
P to P̂ and P ◦ P̂−1 is the transformation from P̂ to P, where ∗−1 represents the inverse of the
parametrization.

5 Conclusion and future work

In this paper, we generalize the method in [11] for computing the rational solutions of the
bivariate rational system of autonomous ODEs to the case of the trivariate rational system
of autonomous ODEs. According to the birational correspondence between space curve and
plane curve, we extend the properties of rational parametrization for the plane curve to the
space curve. Our method is mainly based on the proper parametrization of invariant algebraic
space curve and the linear rational transformation between two proper parametrizations of the
same algebraic space curve. It can compute the explicitly rational solutions corresponding to the
invariant algebraic space curves of trivariate rational system of autonomous ODEs. Moreover, the
relationship is studied between different rational solutions corresponding to the same invariant
algebraic space curve.

The following are several problems arising in the process of the generalization for finding
the rational general solution of high order non-autonomous ODEs.

(a) Note that the generalization for reducing the problem in [9] is mainly based on the proper
parametrization of hypersurfaces. Because not every unirational hypersurface can be prop-
erly parametrized [3], we only consider hypersurfaces which have a proper parametrization.
In fact, the theorem of Lüroth is very relevant in the curve case, since it implies that unira-
tionality is equivalent to rationality. This equivalence also holds for surfaces, the relevant
theorem is due to Castelnuovo [4,16]. But this equivalence does not hold for hypersurfaces
in dimension greater than 3. It means even when the base field is the complex number
field C (indeed the algebraically closed field), there exist improper parametric equations
that do not have a proper reparametrization. Therefore, the problem is how to decide
whether a given rational algebraic hypersurface has a proper parametrization? Does there
exist a method for deciding the rationality of some special hypersurfaces? Are there in-
teresting families of rational hypersurfaces? Actually, the method for checking whether a
given parametrization of hypersurfaces is proper has been presented by Gao in [8].
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(b) For the first order non-autonomous ODEs, Ngô and Winkler [14] used the degree bound
of the invariant algebraic curves of the associated system in the non-dicritical case by the
result in [5]. This degree bound ensures the termination of the algorithm in the case of
non-dicritical singularities. In fact, the degree bound of Hi may be derived according to
Proposition 21 in [9] for the linear system of autonomous ODEs. This proposition is a
generalization of Ngô and Winkler’s conclusion in [12,13]. But for the nonlinear system of
autonomous ODEs, it is still an open problem for getting the degree bound of invariant
algebraic space curves.

(c) When we compute the invariant algebraic space curve Z(H1,H2) with the fixed degree
by using the undetermined coefficient method, it is necessary to choose the “good” pairs
of (H1,H2) before our computation. Here, “good” means its corresponding system of
equations has a solution. For example, we only use the H ′

1 and H ′
2 with the form (5)

when the invariant algebraic space curve Z(H ′
1,H

′
2) satisfies deg(H ′

1) = 2 and deg(H ′
2) =

1 in Example 2. In fact, the other pairs of (H1,H2) listed in Remark 3 are not very
useful because their corresponding systems of equations on the coefficients of H ′

i have no
solution. If it is difficult to choose all the “good” pairs of (H1,H2), can we select some
pairs before our computation such that their corresponding systems of equations are likely
to have solutions? How many “usable” pairs exist? Furthermore, if we get some solutions
from these usable pairs of (H1,H2), it is also necessary to choose the solutions such that
Z(H1,H2) is a rational space curve and Hi is irreducible. In fact, it is possible to get
the same invariant algebraic space curve from different solutions. The problem is how to
discard the solutions which don’t satisfy the conditions more efficiently?

(d) In fact, the undetermined coefficient method for computing the invariant algebraic space
curve is not efficient because it needs to solve the system of equations. With the increase
of the degree, it is more difficult to solve the obtained system of equations. Therefore, it
would be better to find other methods for computing the rational invariant algebraic space
curves directly.

These are the problems we encounter in the generalization to the trivariate (and also multivariate)
case. It would be very interesting to develop methods for solving some of the above problems in
the future.
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