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Abstract. We consider the problem of interpolation of bivariate func-
tions on the unit disk by polynomials. The data known for the func-
tion consist of Radon projections along chords in multiple directions and
function values at points lying on the unit circle. We prove a sufficient
condition for a configuration of chords and points to be regular, i.e. the
interpolation problem to be poised. Regularity of a particular scheme of
chords and points is considered. Numerical experiments are presented.

1 Introduction and preliminaries

In medicine, biology, materials science, radiology, geophysics, oceanography, ar-
cheology, astrophysics, and other sciences, the idea of tomography (imaging by
sections or sectioning) is used. Modern methods of tomography involve gath-
ering projection data from multiple directions and applying this data into a
tomographic reconstruction software algorithm processed by a computer. Vari-
ous types of signal acquisition can be used in similar algorithms in order to create
a 3D image. However, in the general case the output from these reconstruction
procedures appears as 2D slice images.

There exist different reconstruction algorithms: filtered back projection, iter-
ative reconstruction, direct methods, etc. These procedures give inexact results:
they represent a compromise between accuracy and computation time required.

Because of the importance of such methods for applications in science and
practice they have been intensively investigated by many mathematicians [2],
[5], [11], [12], [13], [14], and others. Besides the algorithms based on the inverse
Radon transform (see [12], [13] and the bibliography therein), other direct inter-
polation and fitting methods have been recently studied (see [1], [4], [6], [7], [8],
[9], [11]).

? Supported by the Bulgarian Ministry of Education and Science under Grant No. VU-
I-303/07.

?? Supported by the Austrian Science Fund (FWF) under Grant No. DK W1214.
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We denote by Π2
n the set of all algebraic polynomials in two variables of total

degree at most n and real coefficients. Then, Π2
n is a linear space of dimension(

n+2
2

)
, and P ∈ Π2

n if and only if

P (x, y) =
∑
i+j≤n

αijx
iyj , αij ∈ R.

Let B := {x = (x, y) ∈ R2 : ‖x‖ ≤ 1} be the unit disk in the plane,

where ‖x‖ =
√
x2 + y2. Given t ∈ [−1, 1] and an angle of measure θ ∈ [0, π),

the equation x cos θ + y sin θ − t = 0 defines a line ` perpendicular to the vector
〈cos θ, sin θ〉 and passing through the point (t cos θ, t sin θ). The set I(θ, t) := `∩B
is a chord of the unit disk B which can be parameterized in the manner{

x = t cos θ − s sin θ,

y = t sin θ + s cos θ,
s ∈ [−

√
1− t2,

√
1− t2],

where the quantity θ is the direction of I(θ, t) and t is the distance of the chord
from the origin. Suppose that for a given function f : R2 → R the integrals of
f exist along all line segments on the unit disk B. Radon projection (or X-ray)
of the function f over the segment I(θ, t) is defined by

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √1−t2

−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Clearly, Rθ( · ; t) is a linear functional. Since I(θ, t) ≡ I(θ+π,−t) it follows that
Rθ(f ; t) = Rθ+π(f ;−t). Thus, the assumption above for the direction of the
chords 0 ≤ θ < π incurs no loss of generality.

It is well-known that the set of Radon projections{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
determines f uniquely (see [10], [14]). According to a more recent result in [15], an
arbitrary function f ∈ L1(R2) with compact support in B is uniquely determined
by any infinite set of X-rays. Since the function f ≡ 0 has all its projections equal
to zero, it follows that the only function which has the zero Radon transform
is the constant zero function. It was shown by Marr [11] that every polynomial
P ∈ Π2

n can be reconstructed uniquely by its projections only on a finite number
of directions.

Another important property (see [11], [3]) is the following:

Lemma 1. If P ∈ Π2
n then for each fixed θ there exists a univariate polynomial

p of degree n such that

Rθ(P ; t) =
√

1− t2 p(t), −1 ≤ t ≤ 1,

and
p(−1) = 2P (− cos θ,− sin θ) and p(1) = 2P (cos θ, sin θ).
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The space Π2
n has a standard basis of the power functions {xiyj}. Studying

various problems for functions on the unit disk, it is often helpful to use some
orthonormal basis. In [2], the following orthonormal basis of Π2

n was constructed.
Denote the Chebyshev polynomial of second kind of degree m as usual by

Um(t) :=
1√
π

sin(m+ 1)θ

sin θ
, t = cos θ

and the bivariate ridge polynomial in direction θ by

Um(θ;x) := Um(x cos θ + y sin θ).

For θmj := jπ
m+1 , m = 0, . . . , n, j = 0, . . . ,m, the ridge polynomials

Umj(x) := Um(θmj ;x) m = 0, . . . , n, j = 0, . . . ,m, (1)

form an orthonormal basis of Π2
n on the unit disk B.

The following important relation was proved by Marr [11] and we shall call
it Marr’s formula.

Lemma 2. For each t ∈ (−1, 1), θ and ϕ, we have

Rϕ(Um(θ; ·); t) =
2

m+ 1

√
1− t2 Um(t)

sin(m+ 1)(ϕ− θ)
sin(ϕ− θ)

.

2 Interpolation problem for Radon projections type of
data

For a given scheme of chords Ik, k = 1, . . . ,
(
n+2
2

)
, of the unit circle ∂B, find a

polynomial P ∈ Π2
n satisfying the conditions:∫

Ik

P (x) dx = γk, k = 1, . . . ,
(
n+2
2

)
. (2)

If (2) has a unique solution for every given set of values {γk}, the interpolation
problem is called poised and the scheme of chords – regular.

The first known scheme which is regular for every degree n of the interpo-
lating polynomial was found by Hakopian [9]. Hakopian’s scheme consists of all(
n+2
2

)
chords, connecting given n+ 2 points on the unit circle ∂B. Bojanov and

Xu [4] proposed a regular scheme consisting of 2bn+1
2 c+ 1 equally spaced direc-

tions with bn2 c+1 chords, associated with the zeros of the Chebyshev polynomials
of certain degree, in each direction.

Another family of regular schemes was provided by Bojanov and Georgieva [1].
There the Radon projections are taken along n+ 1 directions

Θ := {θ0, θ1, . . . , θn}, 0 ≤ θ0 < · · · < θn < π.
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To every direction θk are associated n− k + 1 chords with the distances

1 > tkk > tk,k+1 > · · · > tkn > −1.

This results in
(
n+2
2

)
chords of the unit circle, {I(θk, tki)}nk=0,

n
i=k. The scheme is

thus fully described by (Θ, T ), where T := {tki} is the upper triangular matrix
of chord distances to the origin.

The following regularity result for schemes of this type was proved by Bojanov
and Georgieva [1].

Theorem 1. For (Θ, T ) as above, the interpolation problem∫
I(θk,tki)

P (x) dx = γki, k = 0, . . . , n, i = k, . . . , n, P ∈ Π2
n, (3)

is poised if
detUk 6= 0 for k = 0, . . . , n,

where

Uk = U
(n)
k :=


Uk(tkk) Uk+1(tkk) · · · Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) · · · Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tkn) Uk+1(tkn) · · · Un(tkn)

 .

Several regular schemes of this type were suggested by Georgieva and Is-
mail [6] and by Georgieva and Uluchev [7]. In particular, we will make use of the
following result from [6].

Theorem 2. Let tki = ηi = cos (i+1)π
n+2 , k = 0, . . . , n, i = k, . . . , n be the zeros

of the Chebyshev polynomial of second kind Un+1. Then detUk 6= 0 for k =
0, . . . , n, and thus the problem (3) is poised.

3 Interpolation problem for mixed type of data

We consider interpolation using mixed type of data – both Radon projections
and function values at points lying on the unit circle. Let

– Θ := {θ0, θ1, . . . , θn}, 0 ≤ θ0 < · · · < θn < π;
– T := {tki} be an upper triangular matrix with 1 > tkk > · · · > tk,n−1 > −1,
k = 0, . . . , n− 1;

– X := {x0, . . . ,xn}, where xk are points on the unit circle.

The problem is to find a polynomial P ∈ Π2
n satisfying the

(
n+2
2

)
interpola-

tion conditions∫
I(θk,tki)

P (x) dx = γki, k = 0, . . . , n− 1, i = k, . . . , n− 1,

P (xk) = fk, k = 0, . . . , n.

(4)
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The difference to problem (3) is that we replace the interpolation condition on
the last chord in each direction θk with a function value interpolation condition
at a point xk. If (4) has a unique solution for every given set of values {γki} and
{fk}, the interpolation problem (4) is called poised and the scheme of chords and
points (Θ, T,X) – regular.

In the following we state and prove a condition for the interpolation problem
(4) to be poised with a particular choice of X.

Theorem 3. For a given set of chords and points (Θ, T,X) with X = {xk =
(− cos θk,− sin θk)}nk=0, the interpolation problem (4) is poised if

detU∗k 6= 0, k = 0, . . . , n,

where

U∗k :=


Uk(tkk) Uk+1(tkk) . . . Un−1(tkk) Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1) Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1) Un(tk,n−1)
Uk(−1) Uk+1(−1) . . . Un−1(−1) Un(−1)

 .

Proof. It if sufficient to show that the only bivariate polynomial P ∈ Π2
n satisfy-

ing zero interpolation conditions is the trivial polynomial, P (x) ≡ 0. For P ∈ Π2
n,

let amj(P ) denote the coefficients of P in the basis of ridge polynomials, see (1),

amj(P ) :=

∫
B

P (x)Umj(x) dx, P (x) =

n∑
m=0

m∑
j=0

amj(P )Umj(x).

By Lemma 1, for each k we can write

Rθk(P ; t) =
√

1− t2 pk(t)

with some univariate polynomial pk(t) of degree at most n. Expanding pk in
Chebyshev-Fourier series, we obtain

Rθk(P ; t) =
√

1− t2
n∑
i=0

bki(P )Ui(t)

where

bki(P ) := 2

∫ 1

−1
Rθk(P ; t)Ui(t) dt = 2

∫
B

P (x)Ui(θk;x) dx. (5)
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On the other hand, using Marr’s formula (Lemma 2), we can expressRθk(P ; t)
in terms of {amj = amj(P )}. Indeed,

Rθk(P ; t) =

n∑
m=0

m∑
j=0

amjRθk(Umj ; t)

=

n∑
m=0

m∑
j=0

amj
2

m+ 1

√
1− t2Um(t)

sin(m+ 1)(θk − θmj)
sin(θk − θmj)

=
√

1− t2
n∑

m=0

 m∑
j=0

smkjamj

Um(t),

where we have used the notation

smkj :=
2

m+ 1

sin(m+ 1)(θk − θmj)
sin(θk − θmj)

.

The last two representations of Rθk(P ; t) lead to the equality

n∑
m=0

 m∑
j=0

smkj amj

Um(t) =

n∑
i=0

bkiUi(t), (6)

where bki = bki(P ). Comparing the coefficients of Um(t) on the both sides of (6)
yields smk0 am0 + · · · + smkm amm = bkm. Since k was arbitrary, we obtain the
system

sm00 am0 + · · ·+ sm0m amm = b0m
...

...
...

...
smm0 am0 + · · ·+ smmm amm = bmm

(7)

Consider the matrix Sm := {smkj} of this system. It is shown in the proof of
Theorem 1 in [1] that detSm 6= 0 for any m = 0, . . . , n. Consequently, given
b0m, . . . , bmm, the coefficients am0, . . . , amm are uniquely determined by the lin-
ear system (7).

We have just proved the following auxiliary proposition:

Given any numbers {βmj}nm=0,
n
j=m, there exists a unique polynomial P ∈ Π2

n

such that

bmj(P ) = βmj , m = 0, . . . , n, j = m, . . . , n.

Note in particular that only the functionals bmj(P ) with j ≥ m are needed to
determine P uniquely, while those with j < m are redundant.

The next task is to show that any of the functionals bmj(P ) can be determined
uniquely from the functionals in the set

M :=
{
Rθk(P ; tki)

}n−1 n−1
k=0, i=k

∪
{
P (xk)

}n
k=0

.
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Note that the set M consists of
(
n+2
2

)
linear functionals on Π2

n. Then, for a
fixed pair of indices (m, j), there exists a representation of the form

bmj(P ) =

n−1∑
k=0

n−1∑
i=k

ckiRθk(P ; tki) +

n∑
k=0

dkP (xk) for all P ∈ Π2
n

if and only if{
Rθk(P ; tki) = 0, k = 0, . . . , n− 1, i = k, . . . , n− 1,

P (xk) = 0, k = 0, . . . , n
=⇒ bmj(P ) = 0. (8)

This follows from simple linear algebra arguments.
Assume that the left hand side of (8) holds. We shall prove by induction on

k that bmj(P ) = 0, m = 0, . . . , n, for all j = 0, . . . , n.
First consider the case k = 0. The assumption

Rθ0(P ; t00) = · · · = Rθ0(P ; t0,n−1) = 0 with − 1 < t0,n−1 < · · · < t00 < 1

gives n zeros of the polynomial p0(t) in (−1, 1). Moreover, by Lemma 1, we
have the equality p0(−1) = 2P (x0) = 2P (− cos θ0,− sin θ0). From P (x0) = 0 it
follows that p0(t) has another zero at t = −1. Therefore

0 ≡ p0(t) =

n∑
i=0

b0i(P )Ui(t)

and hence b0i(P ) = 0, i = 0, . . . , n, because of the linear independence of the
Chebyshev polynomials {Ui(t)}.

From the definition of a00, from (5) and since U0(t) is a constant, we get
a00 = 1

2 b00(P ). Therefore, in the first induction step we have shown that

P (x) = a10U10(x) + a11U11(x) + · · ·+ annUnn(x).

Assume that after k induction steps, we have proved that bij(P ) = 0 for
i < k and that P reduces to

P (x) =

n∑
i=k

i∑
j=0

aijUij(x).

In other words, P (x) is a linear combination of Uij with i ≥ k. Applying
Marr’s formula (Lemma 2), we see that its Radon projection Rθk(P ; t) must
therefore be a linear combination of Ui with i ≥ k as well. Thus,

Rθk(P ; t) =
√

1− t2 (bkk(P )Uk(t) + · · ·+ bkn(P )Un(t)),

and it follows that bki(P ) = 0, i = 0, . . . , k − 1. In order to prove that the
remaining coefficients are equal to zero we use the assumptions

Rθk(P ; tkk) = · · · = Rθk(P ; tk,n−1) = 0 and P (xk) = 0.
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They produce a homogeneous linear system with respect to the coefficients
bki(P ):

bkk(P )Uk(tkk) + · · ·+ bkn(P )Un(tkk) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bkk(P )Uk(tk,n−1) + · · ·+ bkn(P )Un(tk,n−1) = 0,
bkk(P )Uk(−1) + · · ·+ bkn(P )Un(−1) = 0.

Using Lemma 1, the last equation follows from

0 = 2P (xk) = pk(−1) =

n∑
i=k

bki(P )Ui(−1),

since bk0(P ) = · · · = bk,k−1(P ) = 0 was already shown above.
By the assumption detU∗k 6= 0, the only solution to the system is the trivial

solution, i.e.
bki(P ) = 0, i = k, . . . , n.

All in all, we have shown bki(P ) = 0 for all i = 0, . . . , n. It follows then from (7)
that ak0 = · · · = akk = 0, and therefore

P (x) =

n∑
i=k+1

i∑
j=0

aijUij(x).

By the induction hypothesis we get P (x) ≡ 0. The proof is complete.

4 Regular schemes for mixed type of data

Here we give a regular interpolatory scheme based on mixed type of data.

Theorem 4. Let n be a positive integer, and

(i) Θ = {θ0, . . . , θn}, 0 ≤ θ0 < · · · < θn < π;

(ii) tki = ηi = cos (i+1)π
n+1 , i = k, . . . , n− 1 be the zeros of Chebyshev polynomials

of second kind Un(x);
(iii) X = {xk = (− cos θk,− sin θk)}nk=0.

Then the interpolation problem (4) is poised, i.e., the scheme (Θ, T,X) is regular.

Proof. According to Theorem 3, it is sufficient to prove that detU∗k 6= 0 for all
k = 0, . . . , n. Recall that

U∗k :=


Uk(tkk) Uk+1(tkk) . . . Un−1(tkk) Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1) Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1) Un(tk,n−1)
Uk(−1) Uk+1(−1) . . . Un−1(−1) Un(−1)

 .
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We now fix some k ∈ {0, . . . , n}. By definition, (tki)i are the zeroes of Un. Thus,
the last column has exactly one nonzero entry, Un(−1) = (n+ 1)(−1)n, and the
determinant of U∗k can be expanded as

detU∗k = (n+ 1)(−1)n detU
(n−1)
k

with

U
(n−1)
k =


Uk(tkk) Uk+1(tkk) . . . Un−1(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1)


as in Theorem 1. By Theorem 2, the determinants of all U

(n−1)
k are nonzero,

which finishes the proof.

5 Numerical experiments

For simplicity, we have implemented our interpolation scheme using the mono-
mial basis {xiyj}. For integrating a basis function along the chord I(θ, t), we
use the binomial theorem to obtain the formula∫

I(θ,t)

xiyj dx =

∫ √1−t2

−
√
1−t2

(t cos θ − s sin θ)i(t sin θ + s cos θ)j ds

=

i∑
p=0

j∑
q=0

(
i

p

)(
j

q

)
tp+q(cos θ)j+p−q(sin θ)i−(p−q) ×

× (−1)i−p

i+ j − p− q + 1
(1− t2)

1
2 (i+j−p−q+1)

(
1− (−1)i+j−p−q+1

)
.

In the following, we present interpolation results for two different functions
on the unit disk.

Example 1. We approximate the mexican hat function

f(x, y) =
sin(2π((x− 0.2)2 + y2 + 10−18))

2π((x− 0.2)2 + y2 + 10−18)

using the mixed interpolatory scheme (Θ, T,X) from Theorem 4 with the choice
of angles

Θ =

{
θk =

kπ

n+ 1

}n
k=0

.

In Figure 1, we show the original function f(x, y) as well as the errors obtained
from this scheme with n = 10 and n = 15.
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The relative L2-errors on the unit disk are ‖f − P10‖2/‖f‖2 = 0.00217349
and ‖f − P15‖2/‖f‖2 = 1.08932× 10−6.

Original surface z = f(x, y)

z = f(x, y)− P10(x, y) z = f(x, y)− P15(x, y)

Fig. 1. The mexican hat function and errors resulting from the mixed scheme with
n = 10 and n = 15.

For comparison, we perform interpolation using the scheme (Θ, T ) from The-
orem 2 using only Radon projections. The angles Θ are as above. Figure 2 dis-
plays the function and the errors for n = 10 and n = 15 using this scheme.
The relative L2-errors in this case are ‖f − P10‖2/‖f‖2 = 0.000980462 and
‖f − P15‖2/‖f‖2 = 5.14322× 10−7.

Original surface z = f(x, y)
z = f(x, y)− P10(x, y) z = f(x, y)− P15(x, y)

Fig. 2. The mexican hat function and errors resulting from the scheme using only
Radon projections with n = 10 and n = 15.

Example 2. We interpolate the function f(x, y) = sin(2x) cos(5y) using the
mixed scheme as in Example 1. The surface z = f(x, y) and the error functions
for n = 10 and n = 15 are presented in Figure 3. Here, the relative L2-errors
on the unit disk are ‖f − P10‖2/‖f‖2 = 0.00482072 and ‖f − P15‖2/‖f‖2 =
6.01142× 10−7.
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Original surface z = f(x, y) z = f(x, y)− P10(x, y) z = f(x, y)− P15(x, y)

Fig. 3. The function f(x, y) = sin(2x) cos(5y) and errors resulting from the mixed
scheme with n = 10 and n = 15.

Condition numbers. Finally, in Figure 4, we show the condition numbers
of the matrices obtained from the mixed scheme and the scheme using only
Radon projections. The x-axis corresponds to the degree n of the interpolation
polynomial. Note that, while the errors obtained from our new scheme were
slightly worse, it enjoys the advantage of a slightly lower condition number.

2 4 6 8 10 12

100

104

106

108

1010

1012

Chords

Chords & points

Fig. 4. Comparison of condition numbers. x: polynomial degree n, y: condition number

Concluding remarks. We have presented a regular interpolation scheme
based on mixed input data, namely, Radon projections and pointwise function
values on the boundary of the unit disk. The scheme’s property of reproducing
certain function values on the boundary of the computational domain exactly
may be advantageous in applications. Our numerical experiments indicate that,
for a given polynomial degree, the new scheme from Theorem 4 results in roughly
twice the interpolation error of the scheme from Theorem 2, while the condition
number is slightly lower.
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2010. Eds.: B. Jüttler, R. Ramlau

2010-07 M. Hodorog, J. Schicho: Computational geometry and combinatorial algorithms for the genus
computation problem September 2010. Eds.: B. Jüttler, R. Ramlau
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