
Convergence Analysis of Multigrid

Methods with Collective Point

Smoothers for Optimal Control

Problems

Stefan Takacs and Walter Zulehner

DK-Report No. 2011-01 02 2011

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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Convergence Analysis of Multigrid Methods with Collective Point
Smoothers for Optimal Control Problems

Stefan Takacs · Walter Zulehner

Abstract In this paper we consider multigrid methods for
solving saddle point problems. The choice of an appropriate
smoothing strategy is a key issue in this case. Here we fo-
cus on the widely used class of collective point smoothers.
These methods are constructed by a point-wise grouping of
the unknowns leading to, e.g., collective Richardson, Jacobi
or Gauss-Seidel relaxation methods. Their smoothing prop-
erties are well-understood for scalar problems in the sym-
metric and positive definite case. In this work the analysis of
these methods is extended to a special class of saddle point
problems, namely to the optimality system of optimal con-
trol problems. For elliptic distributed control problems we
show that the convergence rates of multigrid methods with
collective point smoothers are bounded independent of the
grid size and the regularization (or cost) parameter.

Keywords Multigrid methods ·Collective point smoothers ·
Optimal control

1 Introduction

The analysis presented in this work is discussed for the fol-
lowing elliptic distributed control model problem of tracking
type: Minimize the cost functional J, given by

J(y,u) =
1
2
‖y− yD‖2

L2(Ω)+
α

2
‖u‖2

L2(Ω),
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subject to the elliptic boundary value problem (BVP)

−∆y+ y = u in Ω and
∂y
∂n

= 0 on ∂Ω , (1)

where y ∈ H1(Ω) is the state variable and u ∈ L2(Ω) is
the control variable. The function yD ∈ L2(Ω) is given and
α > 0 is some regularization or cost parameter. Here Ω is
a bounded domain in Rd for d ∈ {1,2,3} with Lipschitz
boundary ∂Ω , the sets L2(Ω) and H1(Ω) denote the stan-
dard Lebesgue and Sobolev spaces with associated standard
norms ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω), respectively.

The main goal of this work is to construct and analyze
numerical methods that produce an approximate solution to
the optimization problem, where the computational time can
be bounded by the number of unknowns times a constant
which is independent of the parameter α , in particular for
small values of α .

The solution of the optimization problem is character-
ized by the Karush-Kuhn-Tucker system (KKT system). As
we are interested in good approximations of the solution, the
discretization of the KKT system leads to a large scale lin-
ear system. This linear system will be solved with multigrid
methods because they are one of the fastest known meth-
ods for such problems. Originally, multigrid methods have
been designed and analyzed for elliptic problems. They also
work well for saddle point problems (like the KKT systems
for PDE-constrained optimization and particularly optimal
control problems) and have gained growing interest in this
area, see, e.g., [6] and the references cited there.

The unknowns of the discretized KKT system of a PDE-
constrained optimization problem can be partitioned into pri-
mal and dual variables. In optimal control problems the pri-
mal unknowns consist of state and control variables. One ap-
proach to solve such problems is to apply multigrid methods
in every step of an overall block-structured iterative method
to equations in just one of these blocks of variables. Such



2 Stefan Takacs, Walter Zulehner

methods have been proposed, e.g., in [11], [2], [3], [5], [4],
[13], [19] and [17].

Another approach, which we will follow here, is to apply
the multigrid idea directly to the (reduced or not reduced)
KKT system, which is called an all-at-once approach. Such
methods have been proposed, e.g., in [23], [1], [24], [7],
[21], [6], [14], [22] and [20].

The choice of an appropriate smoother is a key issue in
constructing such a multigrid method. For elliptic problems
smoothers have been constructed by solving (small) local
problems in an additive or multiplicative Schwarz-type man-
ner. If each of the local problems contains just one unknown
(typically associated to a point of an underlying grid), this
leads to Richardson, Jacobi and Gauss-Seidel relaxation. The
extension of such ideas to the case of linear saddle point
systems, which result from systems of BVPs, like the KKT
systems, can be done in various ways.

One idea is based on splitting the problem into subprob-
lems connected to scalar BVPs, where well known smooth-
ing strategies for positive definite matrices can be applied.
Uzawa-type smoothers, which for example have been ana-
lyzed in [22] and [20], can be understood in this way. An-
other approach is based on transforming smoothers, origi-
nally introduced in [25], [26] and discussed for optimization
problems in [21].

In this paper we focus on collective iteration schemes
which are constructed by solving local problems, involving
the complete system of BVPs, in an additive or multiplica-
tive Schwarz-type manner. As in the case of elliptic prob-
lems the local problems may live on patches or, as in our
case, just on single points. Such methods have been pro-
posed, e.g., in [24], [7], [6], [14].

So far, collective point iteration schemes have been an-
alyzed mainly by using Fourier analysis on uniform grids,
see, e.g., [24], [7], [6], [14]. In [7] such methods have also
been analyzed for general grids based on compactness ar-
guments under the assumption that the coarsest grid is fine
enough.

In this paper we present a convergence proof for multi-
grid methods with special collective point smoothers for gen-
eral grids, based on the classical splitting of the analysis into
smoothing and approximation property, see [12].

This paper is organized as follows. The framework, ba-
sic estimates and the proposed multigrid method will be dis-
cussed in section 2. The analysis of the smoother and a con-
vergence result are given in section 3. In section 4 we present
numerical results which confirm the theoretical results and
illustrate the efficiency of the method even in cases which
are not covered by the convergence theory.

2 Framework and basic estimates

2.1 The Karush-Kuhn-Tucker system

In this subsection, we will derive the KKT system for the
model problem. At first the BVP (1) is written in variational
form: Find y ∈ H1(Ω) such that

(y, p)H1(Ω) = (u, p)L2(Ω)

holds for all p ∈ H1(Ω). Here (·, ·)L2(Ω) and (·, ·)H1(Ω) de-
note the standard inner products in L2(Ω) and H1(Ω), re-
spectively. Next the Lagrange functional is introduced by

L (y,u, p) =
1
2
‖y− yD‖2

L2(Ω)+
α

2
‖u‖2

L2(Ω)

+(y, p)H1(Ω)− (u, p)L2(Ω).

Solving the model problem is equivalent to finding a
saddle point of the Lagrange functional, which leads to the
first order optimality conditions (the KKT system), given by:
Find (y,u, p) ∈ X̂ = H1(Ω)×L2(Ω)×H1(Ω) such that

(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

α (u, ũ)L2(Ω) − (p, ũ)L2(Ω) = 0
(y, p̃)H1(Ω) − (u, p̃)L2(Ω) = 0

hold for all (ỹ, ũ, p̃) ∈ X̂ .
Because α (u, ũ)L2(Ω) = (p, ũ)L2(Ω) for all ũ ∈ L2(Ω),

we obtain u = α−1 p, which allows us to reduce the KKT
system: Find (y, p) ∈ X = Y ×P = H1(Ω)×H1(Ω) such
that

(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

(y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω) = 0
(2)

hold for all (ỹ, p̃) ∈ X . The function spaces for the state y
and the adjoint state p are both H1(Ω). Nevertheless, we
use different symbols Y and P for theses spaces since they
will be equipped with different norms, see below.

Obviously, this problem can also be interpreted as one
single variational equation: Find x ∈ X such that

B(x, x̃) = F (x̃) (3)

holds for all x̃ ∈ X with

B(x, x̃) = (y, ỹ)L2(Ω)+(p, ỹ)H1(Ω)+(y, p̃)H1(Ω)

−α
−1(p, p̃)L2(Ω),

F (x̃) = (yD, ỹ)L2(Ω)

for x = (y, p) and x̃ = (ỹ, p̃).
In [20] it was shown that the problem is well-posed in

the norm given by

‖x‖X = ‖(y, p)‖X =
(
‖y‖2

Y +‖p‖2
P
)1/2

, (4)
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where

‖y‖Y =
(
‖y‖2

L2(Ω)+α
1/2‖y‖2

H1(Ω)

)1/2
(5)

and

‖p‖P =
(

α
−1‖p‖2

L2(Ω)+α
−1/2‖p‖2

H1(Ω)

)1/2
, (6)

more precisely, there are constants C > 0 and C (independent
of α) such that

C‖x‖X ≤ sup
06=x̃∈X

B(x, x̃)
‖x̃‖X

≤C‖x‖X (7)

holds for all x ∈ X . This implies that for every right-hand-
side F ∈ X∗ the problem (3) has a unique solution, which
depends continuously on the data F ∈ X∗. Here, X∗ is the
dual space of X .

The discretization is done by standard techniques. For
the model problem we use a family of meshes which is ob-
tained based on some coarsest triangular mesh (grid level
k = 0) and uniform refinement. For k ∈ {0, . . . ,K} we de-
note the size of the largest edge of the triangulation by hk.
Due to the fact that we have uniform refinement hk = 2−kh0
holds.

The space of discretized functions Xk = Yk×Pk is con-
structed by the Courant element: Yk = Pk is the set of contin-
uous and piecewise linear functions.

The discretized problem is also well posed in the norm
given by (4) – (6), see [20].

Using the standard nodal basis, we can rewrite the opti-
mality system (2) in matrix-vector notation as follows:(

Mk Kk
Kk −α−1Mk

)(
yk
pk

)
=

(
gk
0

)
(8)

with mass matrix Mk and stiffness matrix Kk. The symbols
yk and pk denote the coefficient vectors of the corresponding
functions yk and pk with respect to the nodal basis.

2.2 Multigrid solvers for saddle point problems

The main focus of this subsection is the construction of a
multigrid method for solving saddle point problems of the
following form. Find x ∈ X = Y ×P such that

B(x, x̃) = F (x̃) holds for all x̃ ∈ X ,

where

B(x, x̃) = a(y, ỹ)+b(p, ỹ)+b(y, p̃)−α
−1c(p, p̃)

with x = (y, p) and x̃ = (ỹ, p̃). Here, Y and P are Hilbert
spaces with the same set of members, a, b and c are symmet-
ric and non-negative bilinear forms and F ∈ X∗. We assume

that there is a sequence of grids for k ∈ {0, . . . ,K} which in-
duces a sequence of nested subspaces Yk = Pk of Y = P.

Using a basis, we can rewrite the discretized problem:
Find xk ∈ Xk = Yk×Pk such that

B(xk, x̃k) = F (x̃k) holds for all x̃k ∈ Xk, (9)

in matrix-vector notation as follows:(
Ak Bk
Bk −α−1Ck

)
︸ ︷︷ ︸

Ak =

(
yk
pk

)
︸ ︷︷ ︸
xk =

=

(
gk
q

k

)
︸ ︷︷ ︸
f

k
=

, (10)

where the symmetric and positive semidefinite matrices Ak,
Bk and Ck ∈ RNk×Nk represent the bilinear forms a, b and c,
respectively.

Between two consecutive grid levels k−1 and k we need
intergrid-transfer operators Ik

k−1 and Ik−1
k . For the prolonga-

tion operator Ik
k−1 we choose the matrix representation of the

canonical embedding of the associated finite element sub-
spaces, and its adjoint for the restriction operator Ik−1

k .
Now we can introduce the multigrid iteration for solving

the discretized equation (10) on grid level k. Starting from an
initial approximation x(0)k , one step of the iteration is given
in the following way:

– Apply ν smoothing steps:

x(0,m)
k = x(0,m−1)

k + τ ˆA −1
k ( f

k
−Ak x(0,m−1)

k ) (11)

for m∈ {1, . . . ,ν} with x(0,0)k = x(0)k . The choice of τ and
ˆAk will be discussed below.

– Apply the coarse-grid correction, i.e.:
– Compute the defect and restrict it to the coarser grid:

r(1)k−1 = Ik−1
k ( f

k
−Ak x(0,ν)k ).

– Solve (approximatively) the linear system

Ak−1w(1)
k−1 = r(1)k−1, (12)

living on the coarser grid.
– Prolongate the result and add it to the last iterate:

x(1)k = x(0,ν)k + Ik
k−1w(1)

k−1.

If the problem (12) is solved exactly, we obtain

x(1)k = x(0,ν)k + Ik
k−1A

−1
k−1Ik−1

k ( f
k
−Ak x(0,ν)k )

for the next iterate (two-grid method). In practice the solu-
tion of (12) is approximated by applying one step (V-cycle)
or two steps (W-cycle) of the multigrid method, recursively.
Just on grid level k = 0 the problem is solved exactly.

Next we construct the smoother (11) based on the idea of
collective iteration schemes. For simplicity we concentrate
on collective Jacobi relaxation. Standard Jacobi relaxation,
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which can be used as a smoother for a linear system Ak xk =

f
k
, where Ak ∈ RNk×Nk is symmetric and positive definite,

reads as

x(0,m+1)
i = x(0,m)

i + τ a−1
ii

(
fi−

Nk

∑
j=1

ai j x(0,m)
j

)
,

where x(0,m)
i , fi and ai j are the components of the vectors

x(0,m)
k and f

k
and the matrix Ak, respectively. This iteration

scheme can be carried over to saddle point problems of the
form (10), which leads to collective Jacobi relaxation, which
reads as

x(0,m+1)
i = x(0,m)

i + τ A −1
ii

(
fi−

Nk

∑
j=1

Ai j x(0,m)
j

)
,

where x(0,m)
i = (y(0,m)

i , p(0,m)
i )T , fi = (gi,0)T and

Ai j =

(
ai j bi j
bi j −α−1ci j

)
.

Here y(0,m)
i , p(0,m)

i , gi, ai j, bi j and ci j are the components of
y(0,m)

k , p(0,m)
k , gk, Ak, Bk and Ck, respectively.

Collective Richardson and Gauss-Seidel relaxation are
constructed analogously. Of course, such iteration schemes
can be represented in the compact notation (11) using the
preconditioning matrix

ˆAk =

(
Âk B̂k
B̂k −α−1Ĉk

)
,

where Âk, B̂k and Ĉk are preconditioning matrices for Ak, Bk
and Ck, respectively. In particular:

– In the case of collective Jacobi relaxation Âk, B̂k and Ĉk
are the diagonals of Ak, Bk and Ck, respectively, and the
damping parameter τ is chosen to be in (0,1).

– In the case of collective Richardson relaxation we have
Âk = ak I, B̂k = bk I and Ĉk = ck I, where for some C > 0

1
2 λmax(Ak)≤ ak ≤ C

2 λmax(Ak),

1
2 λmax(Bk)≤ bk ≤ C

2 λmax(Bk) and
1
2 λmax(Ck)≤ ck ≤ C

2 λmax(Ck)

holds. The damping parameter τ is chosen to be in (0,1).
– In the case of collective Gauss-Seidel iteration Âk, B̂k

and Ĉk are the left-lower trigonal part (including the di-
agonal) of Ak, Bk and Ck, respectively, and the damping
parameter τ is chosen to be 1.

Each of these three iteration schemes can be realized ef-
ficiently if it is implemented analogously to standard Rich-
ardson, Jacobi or Gauss-Seidel relaxation, see e.g. [14].

2.3 Elliptic boundary control model problem

The multigrid method proposed in subsection 2.2 is not just
applicable to the distributed control model problem but also
to several other control problems. One particular example is
the elliptic boundary control model problem which reads as
follows. Minimize the functional J, given by

J(y,u) =
1
2
‖y− yD‖2

L2(Ω)+
α

2
‖u‖2

L2(∂Ω),

subject to the elliptic boundary value problem

−∆y+ y = 0 in Ω and
∂y
∂n

= u on ∂Ω ,

where y ∈ H1(Ω) is the state variable and u ∈ L2(∂Ω) is
the control variable. The function yD ∈ L2(Ω) is given and
α > 0 is some regularization or cost parameter.

As it was done in subsection 2.1, we can set up the KKT
system, reduce it to a 2-by-2-formulation and discretize it by
standard techniques, which leads to(

Mk Kk
Kk −α−1MΓ Γ ,k

)(
yk
pk

)
=

(
gk
0

)
,

with MΓ Γ ,k = ((ϕk,i,ϕk, j)L2(∂Ω))i, j=1,...,Nk (boundary mass
matrix). Here, (ϕk,i)i=1,...,Nk denotes the nodal basis. Mk and
Kk are the standard mass and stiffness matrix, respectively.

This system fits into the general framework of subsec-
tion 2.2 with Ak =Mk, Bk =Kk and Ck =MΓ Γ ,k. So, the same
classes of collective point smoother are available for this
saddle point problem. The construction of other smoothers
is typically more involved. For example in [20] for the con-
struction of an Uzawa type smoother the norm ‖ · ‖X , which
we have introduced in (4), was used. Unfortunately such a
norm is not available for the boundary control model prob-
lem. Such insight is not necessary for constructing collective
point smoothers.

3 Convergence theory

In this section we give a convergence proof for the proposed
multigrid method that is based on the classical splitting of
the analysis into smoothing and approximation property, in-
troduced in [12]. Such an approach is applicable to general
grids.

To achieve a robust convergence result for the problems
of our interest, we have to choose an appropriately scaled
L2-like norm, say ‖ · ‖0,k, and an associated residual norm

‖xk‖2,k = sup
0 6=x̃k∈Xk

B(xk, x̃k)

‖x̃k‖0,k
. (13)

For convergence it is sufficient to show the following
two conditions:
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– Smoothing property:
There is some function η with limν→∞ η(ν) = 0 such
that

‖x(0,ν)k − x∗k‖2,k ≤ η(ν)‖x(0)k − x∗k‖0,k (14)

holds for all ν ∈ N.
– Approximation property:

‖x(1)k − x∗k‖0,k ≤CA‖x(0,ν)k − x∗k‖2,k (15)

holds for some constant CA > 0.

Here, x∗k is the exact solution of (9). x(n,m)
k and x(n)k are those

functions in Xk which correspond to the iterates of the two-
grid method.

The combination of both estimates, (14) and (15), im-
plies that the two-grid method converges for ν large enough.
Due to standard arguments the convergence of the two-grid
method implies the convergence of the W-cycle multigrid
method under weak assumptions. Hence analyzing smooth-
ing and approximation property stated above, is of our par-
ticular interest.

3.1 An algebraic smoothing theorem

In theorem 1 we give an estimate that just relies on alge-
braic relations between the involved matrices which allows
us to show the smoothing property for the elliptic distributed
control model problem in the next subsection.

Theorem 1 Consider the block-matrix Ak, which is given
by

Ak =

(
Ak Bk
Bk −α−1Ak

)
,

where Ak,Bk ∈ RNk×Nk are symmetric matrices. Let the pre-
conditioning matrix ˆAk be given by

ˆAk =

(
Âk B̂k
B̂k −α−1Âk

)
.

Here, Âk, B̂k ∈ RNk×Nk are preconditioning matrices such
that

ρ(I− Â−1
k Ak)≤ 1 and ρ(I− B̂−1

k Bk)≤ 1 (16)

holds, where ρ denotes the spectral radius. Moreover we
assume that there is a symmetric positive definite matrix D̂k
such that Âk = ak D̂k and B̂k = bk D̂k, where ak > 0 and bk >

0 are scalars.
Then, for all τ ∈ (0,1), there is a constant CS > 0 such

that

‖L −1/2
k Ak(I− τ ˆA −1

k Ak)
νL

−1/2
k ‖`2 ≤

CS√
ν

(17)

holds for all grid levels k ∈ {0, . . . ,K}, for all choices of
α > 0 and for all ν ∈ N. Here, the matrix Lk is given by

Lk =

(
(Â2

k +αB̂2
k)

1/2

α−1(Â2
k +αB̂2

k)
1/2

)
. (18)

The matrix Lk, given in (18), is symmetric and positive
definite and induces therefore a vector norm

‖xk‖Lk = ‖L
1/2

k xk‖`2

and a matrix norm

‖M‖Lk = ‖L
1/2

k ML
−1/2

k ‖`2 .

The property of power boundedness is of our particular in-
terest. We say that a matrix M is power bounded (with re-
spect to a certain norm ‖ · ‖) if there is a constant C (inde-
pendent of hk and α) such that for all ν ∈ N

‖Mν‖ ≤C

holds.
To prove theorem 1, we use a variant of Reusken’s lemma,

see [18] for the original work.

Lemma 1 Let Lk be a symmetric positive definite matrix
and let Mk be a matrix that is power bounded with respect
to ‖ · ‖Lk . Then for every choice of the damping parameter
τ ∈ (0,1) there is a constant C (independent of hk and α)
such that

‖(I−Mk)((1− τ)I + τMk)
ν‖Lk ≤

C√
ν

holds for all ν ∈ N.

Proof The proof was given in [10] for the case ‖Mk‖Lk ≤ 1
and can easily be extended to the case that Mk is power
bounded. ut

Due to Reusken’s lemma, we have to show that the iter-
ation matrix of the (non-damped) iteration scheme is power
bounded. This will be done in the next two lemmas.

Lemma 2 Using the notations of theorem 1, the identity

‖(I− ˆA −1
k Ak)

ν‖Lk = ‖Z̃
ν
k ‖`2

holds for all ν ∈ N, where Z̃k is given by

Z̃k = (Â2
k +αB̂2

k)
1/4 Zk (Â2

k +αB̂2
k)
−1/4

with

Zk = (Âk +
√

αB̂ki)−1(∆Ak +
√

α∆Bki).
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Proof One easily verifies that

I− ˆA −1
k Ak = ˆA −1

k ( ˆAk−Ak) =

(
Xk Yk
−α Yk Xk

)
with

Xk = (αÂ−1
k B̂k + B̂−1

k Âk)
−1(αÂ−1

k ∆Bk + B̂−1
k ∆Ak)

Yk = (αÂ−1
k B̂k + B̂−1

k Âk)
−1(B̂−1

k ∆Bk− Â−1
k ∆Ak),

where ∆Ak = Âk−Ak and ∆Bk = B̂k−Bk.
A similarity transformation with the matrix

Nk =

(
iI −iI√
αI
√

αI

)
,

leads to a block-diagonal matrix Mk:

Mk = N −1
k (I− ˆA −1

k Ak)Nk

=

(
Xk− i

√
α Yk

Xk + i
√

α Yk

)
with

Xk− i
√

α Yk = (Âk +
√

αB̂ki)−1(∆Ak +
√

α∆Bki)

Xk + i
√

α Yk = (Âk−
√

αB̂ki)−1(∆Ak−
√

α∆Bki).

It is easy to see that

NkN
H

k = 2
(

I
α I

)
,

where N H
k denotes the Hermitian transpose of Nk. We in-

troduce

Ñk =
1
2

(
(Â2

k +αB̂2
k)
−1/4

(Â2
k +αB̂2

k)
−1/4

)
Nk

and obtain (ÑkÑ
H

k )−1 = Lk. The matrix

M̃k = Ñ −1
k (I− ˆA −1

k Ak)Ñk

is block diagonal with (1,1)-block Z̃k. The (2,2)-block is the
conjugate complex of the (1,1)-block. Therefore obviously

‖M̃ ν
k ‖`2 = ‖Z̃ν

k ‖`2

holds. Since

‖M̃ ν
k ‖2

`2 = ‖(Ñ −1
k (I− ˆA −1

k Ak)Ñk)
ν‖2

`2

= ‖Ñ −1
k (I− ˆA −1

k Ak)
νÑk‖2

`2

= ρ(Ñ H
k (I− ˆA −1

k Ak)
νT Ñ −H

k Ñ −1
k (I− ˆA −1

k Ak)
νÑk)

= ρ(L −1
k (I− ˆA −1

k Ak)
νT Lk(I− ˆA −1

k Ak)
ν)

= ‖L 1/2
k (I− ˆA −1

k Ak)
νL

−1/2
k ‖2

`2

= ‖(I− ˆA −1
k Ak)

ν‖2
Lk

,

the proof is completed. ut

Lemma 3 Under the assumptions and notations of theo-
rem 1 the matrix I− ˆA −1

k Ak is power bounded with con-
stant 2, i.e.,

‖(I− ˆA −1
k Ak)

ν‖Lk ≤ 2

holds for all ν ∈ N.

Proof It is sufficient to show that Z̃k, given in lemma 2, is
power bounded (with constant 2). We will show that

r(Z̃k)≤ 1 (19)

holds, where

r(Z̃k) = sup
06=xk∈CNk

∣∣∣∣∣ (Z̃kxk,xk)`2

(xk,xk)`2

∣∣∣∣∣
is the numerical radius of the matrix Z̃k.

Observe that

Zk = (ak +
√

αbki)−1D̂−1
k (∆Ak +

√
α∆Bki)

and, therefore,

Z̃k = (Â2
k +αB̂2

k)
1/4 Zk (Â2

k +αB̂2
k)
−1/4 = D̂1/2

k Zk D̂−1/2
k

= (ak +
√

αbki)−1D̂−1/2
k (∆Ak +

√
α∆Bki)D̂−1/2

k .

Hence we obtain

r(Z̃k) = sup
06=xk∈CNk

∣∣∣∣∣ (Z̃kxk,xk)`2

(xk,xk)`2

∣∣∣∣∣
= sup

06=xk∈CNk

∣∣∣∣∣ ((∆Ak +
√

α∆Bki)xk,xk)`2

(ak +
√

αbki)(D̂1/2
k xk, D̂

1/2
k xk)`2

∣∣∣∣∣
= sup

06=xk∈CNk

∣∣∣∣ (∆Akxk,xk)`2 +
√

α(∆Bkxk,xk)`2 i
(Âkxk,xk)`2 +

√
α(B̂kxk,xk)`2 i

∣∣∣∣
= sup

06=xk∈CNk

√√√√ (∆Akxk,xk)
2
`2 +α(∆Bkxk,xk)

2
`2

(Âkxk,xk)
2
`2 +α(B̂kxk,xk)

2
`2

.

The last equation holds because all involved scalar products
have real values. We know that numerical radius is bounded
by 1, if we can show that (∆Akxk,xk)

2
`2 ≤ (Âkxk,xk)

2
`2 and

(∆Bkxk,xk)
2
`2 ≤ (B̂kxk,xk)

2
`2 holds for all xk ∈ CNk .

This property can be shown: The estimate (16) implies
that

((Â−1/2
k AkÂ−1/2

k − I)xk,xk)`2 ≤ (xk,xk)`2

holds for all vectors xk ∈ CNk , since Âk is symmetric and
positive definite. Using ∆Ak = Ak− Âk, this implies

(∆Akxk,xk)`2 ≤ (Âkxk,xk)`2 . (20)

Since Ak is symmetric and positive definite, we have more-
over

−(Âkxk,xk)`2 ≤ (∆Akxk,xk)`2 . (21)



A Multigrid Method based on Collective Point Smoothers 7

Combining (20) and (21) shows that

(∆Akxk,xk)
2
`2 ≤ (Âkxk,xk)

2
`2

holds for all xk ∈ CNk . The argument for Bk is completely
analogous.

Hence we have shown (19). Using the power inequality
for the numerical radius, see e.g. in [16], we obtain that

r(Z̃ν
k )≤ 1

holds for all ν ∈ N. Using the fact, that ‖M‖`2 ≤ 2r(M)

holds for all matrices, we know that

‖Z̃ν
k ‖`2 ≤ 2

holds for all ν ∈ N, which finishes the proof. ut

Additionally, we need that the preconditioning matrix
ˆAk can be bounded from above using the matrix Lk:

Lemma 4 Under the assumptions and notations of theo-
rem 1 we have

‖L −1/2
k

ˆAkL
−1/2

k ‖`2 = 1.

Proof Using the definition Ẑk = (Â2
k +αB̂2

k)
1/4, we observe

that Ẑk = (a2
k + αb2

k)
1/4D̂1/4

k . Therefore the desired result
immediately follows:

‖L −1/2
k

ˆAkL
−1/2

k ‖`2

=

∥∥∥∥( Ẑ−1
k ÂkẐ−1

k Ẑ−1
k α1/2B̂kẐ−1

k
Ẑ−1

k α1/2B̂kẐ−1
k −Ẑ−1

k ÂkẐ−1
k

)∥∥∥∥
`2

= (a2
k +αb2

k)
−1/2

∥∥∥∥( akI α1/2bkI
α1/2bkI −akI

)∥∥∥∥
`2
= 1.

ut

We combine lemmas 1 – 4 to prove theorem 1 as follows:

Proof of theorem 1 Let Mk = I− ˆA −1
k Ak. Lemma 3 states

that

‖M ν
k ‖Lk ≤ 2

holds. Using lemma 1 we conclude

‖(I−Mk)((1− τ)I + τMk)
ν‖Lk ≤

C√
ν
.

By plugging in for Mk, we obtain

‖L 1/2
k

ˆA −1
k Ak(I− τ ˆA −1

k Ak)
νL

−1/2
k ‖`2 ≤

C√
ν
.

Using the sub-multiplicativity of norms, we obtain

‖L −1/2
k Ak(I− τ ˆA −1

k Ak)
νL

−1/2
k ‖`2

≤ C√
ν
‖L −1/2

k
ˆAkL

−1/2
k ‖`2 ,

which finishes the proof, as we know from lemma 4 that
‖L −1/2

k
ˆAkL

−1/2
k ‖`2 = 1. ut

3.2 Convergence analysis for distributed control model
problem

In this subsection we give an overall convergence result for
the multigrid method using the collective Richardson relax-
ation to approximate the solution of the elliptic distributed
control model problem. In this case we can apply theorem 1
and obtain a result with respect to the norm ‖ · ‖Lk , which
reads for the collective Richardson relaxation as follows:

‖(yk, pk)‖
2
Lk

= (a2
k +α b2

k)
1/2
(
‖yk‖

2
`2 +α

−1‖pk‖
2
`2

)
,

where 1
2 λmax(Ak)≤ ak ≤ C

2 λmax(Ak) and 1
2 λmax(Bk)≤ bk ≤

C
2 λmax(Bk)) holds for some constant C > 0. For the model
problem Ak is the mass matrix and Bk is the stiffness ma-
trix, therefore standard scaling arguments (for quasi uniform
grids) imply that the norm ‖ · ‖Lk is equivalent to the norm
‖ · ‖0,k, given by

‖(yk, pk)‖2
0,k =(1+α

1/2h−2
k )
(
‖yk‖2

L2(Ω)+α
−1‖pk‖2

L2(Ω)

)
,

in the sense that there are constants C and C (independent of
hk and α) such that

C‖xk‖Lk ≤ ‖xk‖0,k ≤C‖xk‖Lk (22)

holds, where again xk is the coefficient vector representing
some function xk ∈ Xk. Observe that the norm ‖ · ‖0,k is ob-
tained by replacing ‖ · ‖H1(Ω) by h−1

k ‖ · ‖L2(Ω) in the defini-
tion of the norm ‖ · ‖X .

Using the equivalence relation (22), the smoothing prop-
erty can be shown for the model problem:

Theorem 2 (Smoothing property) For the elliptic distri-
buted control model problem (8) the collective Richardson
relaxation satisfies for all choices of the damping parameter
τ ∈ (0,1) the smoothing property (14) with rate η(ν) = CS√

ν

and a constant CS > 0 independent of hk and α , i.e.,

‖x(0,ν)k − x∗k‖2,k ≤
CS√

ν
‖x(0)k − x∗k‖0,k

holds for all ν ∈ N.

Proof Using the error-propagation operator of the smooth-
ing iteration Mk = I− τ ˆA −1

k Ak and the initial error w(0)
k =

x(0)k − x∗k , we can express the error after ν smoothing steps:

w(0,ν)
k = x(0,ν)k − x∗k = M ν

k w(0)
k .

The norm of M ν
k w(0)

k can be bounded using theorem 1, as
the collective Richardson relaxation is covered by the theo-
rem: There is a constant C̃S > 0 such that

‖L −1/2
k AkM

ν
k L

−1/2
k ‖`2 ≤

C̃S√
ν
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holds, which implies

‖L −1/2
k AkM

ν
k w(0)

k ‖`2 ≤
C̃S√

ν
‖L 1/2

k w(0)
k ‖`2 ,

‖L −1/2
k Akw(0,ν)

k ‖`2 ≤
C̃S√

ν
‖w(0)

k ‖Lk

and

sup
w̃k∈R2Nk

(Akw(0,ν)
k , w̃k)`2

‖w̃k‖Lk

≤ C̃S√
ν
‖w(0)

k ‖Lk .

Using the equivalence relation (22), we obtain the desired
result. ut

Theorem 3.1 in [20] shows that for this model problem
also the approximation property (15) holds, if the following
regularity result holds:

Assumption 1 There is a constant c > 0 such that for all
f ∈ L2(Ω) the solution v f ∈H1(Ω) of the variational equa-
tion

(v f ,w)H1(Ω) = ( f ,w)L2(Ω) for all w ∈ H1(Ω)

satisfies: v f ∈ H2(Ω) and ‖v f ‖H2(Ω) ≤ c‖ f‖L2(Ω).

By combining theorem 2 (smoothing property) and the-
orem 3.1 in [20] (approximation property) we obtain:

Theorem 3 (Two-grid-convergence) Assume that assump-
tion 1 is satisfied. For the elliptic distributed control model
problem (8) the two-grid method proposed in subsection 2.2
with the collective Richardson relaxation converges for all
choices of the damping parameter τ ∈ (0,1) if sufficiently
many smoothing steps ν are applied, i.e., the estimate

‖x(1)k − x∗k‖0,k ≤ q‖x(0)k − x∗k‖0,k

holds, where the convergence rate q = CACS√
ν

is independent
of hk and α .

Remark 1 Assumption 1 holds for domains which have a
sufficiently smooth boundary (see, e.g., [15]) or which are
polygonal or polyhedral (see, e.g., [8] or [9]).

Remark 2 One can extend the convergence result stated in
theorem 3 to the W-cycle multigrid method, see e.g. [12].

Theorem 3 is a convergence result in the non-standard
mesh-dependent norm ‖·‖0,k but this result implies also con-
vergence (with the same rate) in the standard norm ‖ · ‖L2(Ω).

Corollary 1 Under the notations and assumptions of theo-
rem 3 there is a constant C > 0 and a convergence rate q< 1,
both independent of hk and α , such that the L2-convergence
result

‖x(n)k − x∗k‖L2(Ω) ≤Cqn‖yD‖L2(Ω)

holds for all n ∈ N, all k ∈ {0, . . . ,K} and all α ∈ (0,1],
provided y(0)k = p(0)k = 0.

Proof Theorem 3 implies

‖x(n)k − x∗k‖0,k ≤ qn‖x(0)k − x∗k‖0,k,

which is equivalent to

(‖y(n)k − y∗k‖2
L2(Ω)+α

−1‖p(n)k − p∗k‖2
L2(Ω))

1/2

≤ qn(‖y(0)k − y∗k‖2
L2(Ω)+α

−1‖p(0)k − p∗k‖2
L2(Ω))

1/2.

Assuming y(0)k = p(0)k = 0 implies

(‖y(n)k − y∗k‖2
L2(Ω)+α

−1‖p(n)k − p∗k‖2
L2(Ω))

1/2

≤ qn(‖y∗k‖2
L2(Ω)+α

−1‖p∗k‖2
L2(Ω))

1/2,

The right-hand-side is bounded from above by qn‖x∗k‖X . Us-
ing the inf-sup condition (7), we obtain

‖x∗k‖X ≤C−1 sup
06=x̃k∈Xk

B(x∗k , x̃k)

‖x̃k‖X
=C−1 sup

0 6=x̃k∈Xk

F (x̃k)

‖x̃k‖X
.

Using

F (ỹk, p̃k) = (yD, ỹk)L2(Ω) ≤ ‖yD‖L2(Ω)‖ỹk‖L2(Ω)

≤ ‖yD‖L2(Ω)‖(ỹk, p̃k)‖X ,

we obtain ‖x∗k‖X ≤C−1‖yD‖L2(Ω) and further

(‖y(n)k − y∗k‖2
L2(Ω)+α

−1‖p(n)k − p∗k‖2
L2(Ω))

1/2

≤C−1qn‖yD‖L2(Ω).

For α ≤ 1, we have

(‖y(n)k − y∗k‖2
L2(Ω)+‖p(n)k − p∗k‖2

L2(Ω))
1/2

≤ (‖y(n)k − y∗k‖2
L2(Ω)+α

−1‖p(n)k − p∗k‖2
L2(Ω))

1/2,

which completes the proof. ut

4 Numerical results

In this section we present some numerical experiments for
the proposed model problems on the domain Ω = (0,1)2.
The mesh at the coarsest grid level (k = 0) consists of 2 tri-
angles which are constructed by connecting the points (0,0)
and (1,1). Without loss of generality, we choose homoge-
neous data yD = 0, where the exact solution is of course
given by x∗k = 0. We did numerical experiments for the dis-
tributed control model problem and the boundary control
model problem. The tests have been done for collective Ja-
cobi relaxation with damping parameter τ = 1/2, while the
collective Gauss-Seidel iteration was not relaxed. The num-
ber of smoothing steps ν is written as ν = νpre + νpost for
νpre and νpost pre- and post- smoothing steps, respectively.
In all cases a W-cycle multigrid method was applied.
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Tables 1 and 2 show the convergence rates q and the
number of iterations n needed to reduce the initial error ‖x(0)k −
x∗k‖0,k by a factor of ε = 10−8 for the distributed control
model problem. The starting values x(0)k were chosen ran-
domly. We can see that the number of iterations does not
depend on the grid size which confirms optimal complexity.
If we compare table 1 with table 2, we see that the number
of iterations decays if the number of smoothing steps ν is
increased. Moreover we see that the number of iterations is
robust in the cost or regularization parameter α .

In table 3, we give the convergence results for the collec-
tive Gauss-Seidel smoother for the distributed control model
problem, which is not covered by the theory. The numerical
experiment shows very fast convergence (again optimal and
robust in the parameter α).

Table 4 shows that the good behavior which we have
seen for the distributed control model problem carries also
over to the boundary control model problem, which is not
covered by our theory. We have also in that case optimal
convergence results that are again robust in the parameter α .

5 Conclusions and outlook

We have seen that collective point smoothers, especially col-
lective Gauss-Seidel iteration, allow to construct all-at-once
multigrid methods for some classes of optimal control prob-
lems (and of course other saddle point problems which allow
the construction of collective point smoothers as done in this
work). The construction of these methods is easy and also
possible without knowing stability results for the solution.

We could prove that the smoothing property of these
smoothers holds just using algebraic relations between the
involved matrices. So the convergence theory can be ap-
plied to all kinds of saddle point problems which fit into
our framework.

The limitations on the construction of the smoothing pro-
cedure which we have seen in our paper are just due to the
convergence proof and they cannot be seen in the numerical
results. The extension of the convergence analysis to more
general smoothers or to a more general class of problems is
a challenging task for further work.
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Table 1 Distributed control model problem ν = 1+1, Collective Jacobi relaxation, τ = 1/2

grid α = 1 α = 10−2 α = 10−4 α = 10−6 α = 10−8 α = 10−10

level n q n q n q n q n q n q

k = 4 28 0.5133 28 0.5154 28 0.5135 21 0.4124 27 0.5014 29 0.5234
k = 5 28 0.5149 28 0.5166 28 0.5152 28 0.5075 18 0.3477 28 0.5149
k = 6 29 0.5197 29 0.5195 28 0.5158 29 0.5200 25 0.4736 25 0.4719
k = 7 29 0.5197 29 0.5205 29 0.5199 29 0.5201 28 0.5163 18 0.3501
k = 8 29 0.5206 29 0.5209 29 0.5210 29 0.5208 29 0.5202 27 0.4996
k = 9 29 0.5209 29 0.5209 29 0.5210 29 0.5212 29 0.5206 29 0.5198

Table 2 Distributed control model problem, ν = 2+2, collective Jacobi relaxation, τ = 1/2

grid α = 1 α = 10−2 α = 10−4 α = 10−6 α = 10−8 α = 10−10

level n q n q n q n q n q n q

k = 4 15 0.2807 15 0.2799 15 0.2761 11 0.1633 14 0.2529 15 0.2749
k = 5 15 0.2821 15 0.2826 15 0.2812 14 0.2616 9 0.1205 15 0.2709
k = 6 15 0.2841 15 0.2866 15 0.2853 15 0.2832 13 0.2293 13 0.2245
k = 7 15 0.2867 15 0.2869 15 0.2868 15 0.2865 15 0.2794 9 0.1240
k = 8 15 0.2880 15 0.2879 15 0.2878 15 0.2880 15 0.2868 14 0.2549
k = 9 15 0.2880 15 0.2883 15 0.2882 15 0.2879 15 0.2878 15 0.2841

Table 3 Distributed control model problem, ν = 1+1, collective Gauss-Seidel iteration

grid α = 1 α = 10−2 α = 10−4 α = 10−6 α = 10−8 α = 10−10

level n q n q n q n q n q n q

k = 4 8 0.0907 8 0.0863 9 0.1082 12 0.1940 8 0.0872 8 0.0756
k = 5 9 0.1017 9 0.1045 9 0.1018 10 0.1373 11 0.1818 8 0.0740
k = 6 9 0.1055 9 0.1067 9 0.1039 9 0.1117 11 0.1691 9 0.1068
k = 7 9 0.1063 9 0.1066 9 0.1052 9 0.1067 9 0.1265 12 0.1963
k = 8 9 0.1067 9 0.1072 9 0.1069 9 0.1069 9 0.1102 10 0.1512
k = 9 9 0.1072 9 0.1076 9 0.1073 9 0.1071 9 0.1075 9 0.1207

Table 4 Boundary control model problem, ν = 2+2, collective Jacobi relaxation, τ = 1/2

grid α = 1 α = 10−2 α = 10−4 α = 10−6 α = 10−8 α = 10−10

level n q n q n q n q n q n q

k = 4 15 0.2806 15 0.2810 16 0.2958 16 0.3028 16 0.3141 16 0.3152
k = 5 15 0.2821 15 0.2828 15 0.2865 17 0.3299 16 0.3157 17 0.3180
k = 6 15 0.2866 15 0.2866 15 0.2878 17 0.3200 16 0.3000 17 0.3174
k = 7 15 0.2881 15 0.2880 15 0.2877 15 0.2918 17 0.3174 16 0.3074
k = 8 15 0.2876 15 0.2875 15 0.2876 15 0.2900 19 0.3757 16 0.2950
k = 9 15 0.2879 15 0.2878 15 0.2879 15 0.2884 16 0.2975 16 0.3153
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