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A ROBUST PRECONDITIONED-MINRES-SOLVER
FOR DISTRIBUTED TIME-PERIODIC EDDY CURRENT

OPTIMAL CONTROL PROBLEMS

MICHAEL KOLMBAUER AND ULRICH LANGER

Abstract. This work is devoted to distributed optimal control problems for
time-periodic eddy current problems. We apply the multiharmonic approach

to the optimality system and construct a new preconditioned MinRes solver for
the system of frequency domain equations. We show that this solver is robust

with respect to the space discretization and time discretization parameters as

well as all involved “bad” parameters like the conductivity, the reluctivity, and
the regularization parameters.

1. Introduction

The multiharmonic finite element method or harmonic-balanced finite element
method has been used by many authors in different applications (e.g. [3, 9, 12,
26, 37]). Switching from the time domain to the frequency domain allows us to
replace expensive time-integration procedures by the solution of a system of partial
differential equations for the amplitudes belonging to the sine- and to the cosine-
excitation.

Following this strategy, Copeland et al. [6, 7], Bachinger et al. [4, 5], and
Kolmbauer and Langer [18, 19] applied harmonic and multiharmonic approaches to
parabolic initial-boundary value problems and the eddy current problem. Indeed,
in [19] a MinRes solver for the solution of time-harmonic eddy current problems
was constructed, that is robust with respect to both the discretization parameter
h and all involved parameters like frequency, conductivity and reluctivity.

The aim of this work is to generalize these ideas of combining the multihar-
monic approach and the finite element method to optimal control problems. To
the authors best knowledge this is the first approach of using the multiharmonic
FEM for optimal control problems with PDE constraints. We mention that there
exist Fourier series approaches for optimal control problems, controlled by a sim-
ple time-dependent ordinary differential equation (e.g. [8, 22] and the references
therein).

The fast solution of the corresponding large linear system of finite element
equations is crucial for the competitiveness of this method. Hence appropriate
(parameter-robust) preconditioning is an important issue. Deriving the optimality
system of the optimal control problem naturally results in a saddle point system.
A new technique of parameter robust preconditioning of saddle point problems was
introduced by Schöberl and Zulehner in [32] and generalized by Zulehner in [38]. We
use this technique to construct a parameter-robust preconditioned MinRes solver
for our huge system of algebraic equations resulting from the multiharmonic finite
element discretization.

The outline of this work is the following. We start by stating our model problem.
In order to ensure unique solvability of the state equation, namely the eddy current

The authors gratefully acknowledge the financial support by the Austrian Science Fund (FWF)
under the grant P19255 and DK W1214.
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problem, we have to perform a regularization. Before considering the general mul-
tiharmonic approach, we have a look at the time-harmonic problem. Here we are
able to construct a parameter-robust preconditioner for the special case of constant
conductivity by an interpolation technique. For the case of piecewise constant con-
ductivity including also non-conductive regions, we also propose a parameter robust
preconditioner. This preconditioner is inspired by the preconditioner derived for the
case of constant conductivity, but the analysis is based on other tools. Finally, we
apply our new preconditioner to the general time-periodic optimal control problem.
The paper concludes with the presentation of our first numerical results and with
a conclusion in which we also discuss the possible generalization of these results to
non-linear eddy current problems and to additional constraints imposed onto the
state and the control.

2. An Optimal Control Problem with Distributed Control

In this work we consider distributed optimal control problems of the form: Find
the state y and the control u that minimizes the cost functional

(1) J(y,u) =
1
2

∫
Ω×(0,T )

|y − yd|2dxdt+
λ

2

∫
Ω×(0,T )

|u|2dxdt

subject to the state equation

(2)


σ
∂

∂t
y + curl(ν curl y) = u, in Ω× (0, T ),

y × n = 0, on ∂Ω× (0, T ),

y = y0, on Ω× {0}.
Here yd is the desired state and λ > 0 is a regularization parameter. We assume,
that Ω ⊂ R3 is a bounded Lipschitz domain. The reluctivity ν = ν(x) is supposed
to be independent of |curl u|, i.e. we assume that the eddy current problem (2)
is linear. The conductivity σ is piecewise constant and zero in non-conducting
regions. We assume that the control u is weakly divergence free. Bachinger et
al. [4] provide existence and uniqueness results for linear and non-linear eddy
current problems in appropriate gauged spaces. Then the optimal control problem
is also uniquely solvable [35]. Later we will consider the time-harmonic and the
time-periodic cases where we look for the steady-state solution of the eddy-current
problem (2). These cases of state equation were also considered in [4] where even
non-linear eddy current problems were analyzed.

2.1. Regularization. Eddy current problems are essentially different for conduct-
ing (σ > 0) and non-conducting regions (σ = 0). In order to gain uniqueness in the
non-conducting regions, the state equation (2) has to be regularized. Candidates
are elliptic, conductivity and exact regularizations. Since, for the preconditioning
purpose, all of them can be handled in the same framework, we start with introduc-
ing formal regularization operators (i = 1, 2, 3). For completeness, we also include
the case without any regularization (i = 0).

Ri(σ) :=


σ, i = 0
σ, i = 1
max(σ, ε), i = 2
σ, i = 3

, Qi(y) :=


0, i = 0 (no regularization)
Q(y), i = 1 (exact)
0, i = 2 (parabolic)
εy, i = 3 (elliptic)

Here ε > 0 is a small regularization parameter. The operator Q is chosen in such
a way that it ensures the coercivity of the resulting bilinear form and on the other
hand Q(y) vanishes at the solution. The exact regularization technique is based
on a Helmholtz-projection (for details see [19]). We mention, that for the exact
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regularization technique, no additional error is introduced (see [20]), while for the
parabolic and elliptic regularization technique, we have to deal with an additional
error of order O(ε) (see [4] and [28]).

Remark 1. The exact regularization operator (i = 1) is defined by the regulariza-
tion term ∫

Ω

∇Pu · ∇Pv dx

added to the variational formulation of (2), where P denotes the Helmholtz projec-
tion.

Hence the regularized problem can be stated as follows:

(3) min
1
2

∫
Ω×(0,T )

|y − yd|2dxdt+
λ

2

∫
Ω×(0,T )

|u|2dxdt

subject to the state equation

(4)


Ri(σ)

∂y
∂t

+ curl(ν curl y) +Qi(y) = u, in Ω× (0, T ),

y × n = 0, on ∂Ω× (0, T ),

y = y0, on Ω× {0}.

Applying any regularization technique i = 1, 2, 3, we have unique solvability of (4)
in the full space.

2.2. Optimality System. In order to solve our minimization problem, we formu-
late the optimality system called also Karush-Kuhn-Tucker system (see e.g. [35]).
Therefore, we formally consider the Lagrangian functional

L(y,u,p) := J (y,u) +
∫

Ω×(0,T )

(
Ri(σ)

∂y
∂t

+ curl(ν curl y) +Qi(y)− u
)
· p dxdt.

Deriving the necessary optimality conditions

Find y,u,p :


∇pL(y,u,p) = 0

∇yL(y,u,p) = 0

∇uL(y,u,p) = 0

yields the following system of partial differential equations: Find the state y, the
co-state p and the control u, such that

Ri(σ)
∂

∂t
y + curl(ν curl y) +Qi(y)− u = 0, in Ω× (0, T )

−Ri(σ)
∂

∂t
p + curl(ν curl p) +Qi(p) + y − yd = 0, in Ω× (0, T )

λu− p = 0, in Ω× (0, T )

y × n = 0, on ∂Ω× (0, T )

p× n = 0, on ∂Ω× (0, T )

y = y0, on Ω× {0}
p = 0, on Ω× {T}
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From the third equation we observe that u = λ−1p, and hence we can eliminate
the control. Therefore we end up with the following reduced optimality system

(5)



Ri(σ)
∂

∂t
y + curl(ν curl y) +Qi(y)− λ−1p = 0, in Ω× (0, T )

−Ri(σ)
∂

∂t
p + curl(ν curl p) +Qi(p) + y = yd, in Ω× (0, T )

y × n = 0, on ∂Ω× (0, T )

p× n = 0, on ∂Ω× (0, T )

y = y0, on Ω× {0}
p = 0, on Ω× {T}.

In the usual manner we derive a space-time variational formulation, and this is the
starting point of our discretization in time and space.

3. Time-harmonic FEM and preconditioning

For the time being, we assume that our desired state yd is given by a time-
harmonic excitation with the frequency ω = 2π/T and the amplitudes yc

d and ys
d,

i.e.

yd(x, t) = yc
d(x) cos(ωt) + ys

d(x) sin(ωt).

Therefore, we can assume that the state y, the co-state p and the control u are
time-harmonic as well, with the same base frequency ω:

(6)

u(x, t) = uc(x) cos(ωt) + us(x) sin(ωt),

p(x, t) = pc(x) cos(ωt) + ps(x) sin(ωt),

y(x, t) = yc(x) cos(ωt) + ys(x) sin(ωt).

The Fourier coefficients of the control u and the co-state p are obviously aligned
by the relation uc(x) = λ−1pc(x) and us(x) = λ−1ps(x).

Remark 2. In fact, the time-harmonic case may be not so relevant for practi-
cal applications. Nevertheless, it allows us to demonstrate the construction of a
parameter-robust preconditioner for the resulting system matrix, that can later be
applied to the more interesting multiharmonic or time-periodic case in a straight
forward manner. Since the initial condition are not relevant in this time-harmonic
setting, where we look for the steady-state solution, they will be neglected. We men-
tion that the homogeneous boundary conditions for the state and the co-state can be
replaced by non-homogeneous but harmonic boundary conditions.

Using the time-harmonic representations (6), we can state our optimality system
(5) in the frequency domain as follows: Find the states ys and yc and the co-states
ps and pc, such that

(7)



−ωRi(σ)ys + curl(ν curl yc) +Qi(yc)− λ−1pc = 0, in Ω

ωRi(σ)yc + curl(ν curl ys) +Qi(ys)− λ−1ps = 0, in Ω

ωRi(σ)ps + curl(ν curl pc) +Qi(pc) + yc = yc
d, in Ω

−ωRi(σ)pc + curl(ν curl ps) +Qi(ps) + ys = ys
d, in Ω

yc × n = 0, on ∂Ω

ys × n = 0, on ∂Ω

pc × n = 0, on ∂Ω

ps × n = 0, on ∂Ω.
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The finite element discretization of the variational formulation of (7) with edge
elements, introduced by Nédélec in [23, 24], yields the following system of linear
algebraic equations for defining the finite element coefficient vectors approximating
the Fourier coefficients of the state yc and ys and the co-state pc and ps:

(8)


M K Mσ,ω

M −Mσ,ω K
K −Mσ,ω −λ−1M

Mσ,ω K −λ−1M


︸ ︷︷ ︸

=:A


yc

ys

pc

ps

 =


yc

d
ys

d
0
0

 ,

where the mass matrix M, the conductivity matrix Mσ,ω and the stiffness matrix
K arise from the edge finite element discretization of the following bilinear forms:

M :
∫

Ω

u · v dx, Mσ,ω : ω

∫
Ω

Ri(σ)u · v dx,

K :
∫

Ω

ν curl u · curl v dx +
∫

Ω

Qi(u) · v dx.

The right-hand side vectors yc
d

and ys
d

are defined by the linear forms∫
Ω

yc
d · v dx and

∫
Ω

ys
d · v dx,

respectively, where u and v are vector functions from H0(curl). In our numerical
experiments presented in Section 5, we use lowest-order tetrahedral edge elements
for the finite element discretization.

Hence, we have to solve a linear system of finite element equations of the form

(9) Aw = f ,

where the system matrix A and the right-hand-side f are given by (8). Typically
the condition number of the system matrix A behaves like

O
(
ω

h2

max(σ)
max(ε,min(σ)))

max(ν)
min(ν)

1
λ

)
,

and therefore, we expect a very bad convergence rate if any iterative method without
preconditioner is applied to (9). Hence appropriate preconditioning is an important
issue .

3.1. MinRes Preconditioning. Since the resulting system matrix A is symmet-
ric and indefinite, the corresponding system (9) of finite element equations can
be solved by a preconditioned MinRes method [25]. Our ingredients for the con-
struction of a parameter-robust preconditioner are, on the one hand, a constructive
preconditioning strategy based on space interpolation proposed by Zulehner [38],
and, on the other hand, the introduction of a non-standard norm in H(curl) and the
theorem of Babuška-Aziz [2]. The former technique works in the case of constant
conductivity, whereas the latter one also works for piecewise constant conductivity.

Choosing any regularization technique of the previous section, we end up with
a structured system matrix, where the particular form of Mσ,ω and K depends on
the choice of the regularization technique. Anyhow, in all three cases the matrices
Mσ,ω and K are at least positive semi-definite and this is enough for our analysis.
Hence we deal with all of them (i = 1, 2, 3) in the same framework.
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We explore the block-saddle point structure of our system matrix A that can be
rewritten in the form

A =


M K Mσ,ω

M −Mσ,ω K
K −Mσ,ω −λ−1M

Mσ,ω K −λ−1M

 =:
(
A BT

B −C

)
,

where the blocks A, B, and C are defined by the relations

A =
(
M

M

)
B =

(
K −Mσ,ω

Mσ,ω K

)
C =

1
λ
A.

Here, A and C are positive definite, and B is at least positive semi-definite. We
mention that, for the exact and elliptic regularized problems, B is even positive
definite. With this setting, our problem fits into the general framework proposed
by Zulehner [38]. In the next subsection, we recall this approach that is based on
space interpolation.

3.1.1. Abstract Preconditioning Strategy. For constructing a block-diagonal precon-
ditioner, we want to use the general interpolation framework proposed by Zulehner
for saddle point problems [38]. Hence, for the time being, let our system matrix A
be given by the 2× 2 symmetric and indefinite block matrix of the form

A =
(
A BT

B −C

)
.

We quote the following theorem that can be found in [38, Section 3].

Theorem 1 ([38]). Let A, C, S and R be symmetric and positive definite matrices
in Rn×n, where

S = C + BA−1BT and R = A + BTC−1B.

denote the negative Schur complements of A. Then, for the matrix

C =
(

[A,R] 1
2

[S,C] 1
2

)
,

the norm equivalence inequalities

c1‖x‖C ≤ ‖Ax‖C−1 ≤ c2‖x‖C ∀x ∈ Rn

are satisfied with positive constants c1 and c2 which are independent of any involved
parameters.

In the previous theorem the interpolation of matrices [·, ·] 1
2

is defined by the
relation

[M,N] 1
2

:= M
1
2

(
M−

1
2 NM−

1
2

) 1
2
M

1
2 .

In the following computations, we take advantage of the spectral equivalence in-
equalities

1√
2

(C + [C,R] 1
2
) ≤ [C,C + R] 1

2
≤ C + [C,R] 1

2

and the identities
[A, λR] 1

2
= [λR,A] 1

2
=
√
λ[R,A] 1

2

which are obviously valid for all λ ∈ R+ and for any positive definite matrices C,R
and A.
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3.1.2. The Case of Constant Conductivity σ. Before we turn to our general model
problem, we start with analyzing the special case of constant conductivity, i.e.

σ(x) = σ ∈ R+ ∀x ∈ Ω.

In this special setting, we have Mσ,ω = ωσM with the constant positive conductiv-
ity σ. Due to this special structure, this case is much easier to handle. We mention
that in this special case no regularization has to be applied (i.e. i = 0), since the
state equation is well-posed anyway. Nevertheless, we stay with our notation in
order to be consistent throughout this paper.

Our system (8) fulfills the requirements of Theorem 1. Following the strategy of
the previous section, we have to compute the negative Schur complements S and
R of our system matrix A:

S =
(

(λ−1 + ω2σ2)M + KM−1K
(λ−1 + ω2σ2)M + KM−1K

)
R = λS.

Introducing the notation D := (λ−1 +ω2σ2)M+KM−1K, we have to evaluate the
following interpolation in order to construct a parameter-robust preconditioner:

C =
(

[A,R] 1
2

[S,C] 1
2

)
=


[M, λD] 1

2

[M, λD] 1
2

[D, λ−1M] 1
2

[D, λ−1M] 1
2



=


√
λ[M,D] 1

2 √
λ[M,D] 1

2
1√
λ

[M,D] 1
2

1√
λ

[M,D] 1
2

 .

In the following calculation, we use the notation L ∼ N for the spectral equiva-
lence which means that there exist constants c1 and c2 independent of all involved
parameters such that

c1xTLx ≤ xTNx ≤ c2xTLx ∀x ∈ Rn.

Fortunately, the original interpolation of 2× 2 block matrices reduces to a simpler
one, namely

[M,D] 1
2

= [M, (λ−1 + ω2σ2)M + KM−1K] 1
2

∼
√
λ−1 + ω2σ2M + [M,KM−1K] 1

2

=
√
λ−1 + ω2σ2M + M

1
2

(
M−

1
2 KM−1KM−

1
2

) 1
2
M

1
2

=
√
λ−1 + ω2σ2M + M

1
2

((
M−

1
2 KM−

1
2

)2
) 1

2

M
1
2

=
√
λ−1 + ω2σ2M + K

∼ (
√
λ
−1

+ ωσ)M + K.

The last spectral equivalences are due to the simple inequalities

x2 + y2 ≤ (x+ y)2 ≤ 2(x2 + y2)

which are true for all x, y ≥ 0 in the sense of matrix functions of symmetric positive
definite matrices. In this special case we are lucky, because we can really calculate
the square root and write it in a close and nice form. This finishes the construction



8 MICHAEL KOLMBAUER AND ULRICH LANGER

of the block-diagonal preconditioner for the time-harmonic case with constant con-
ductivity σ. Now, from Theorem 1, we obtain, that the condition number of the
preconditioned system can be estimated by a constant c that is independent of the
meshsize h and all involved parameters λ, ω, ν and σ, i.e.

(10) κ(C−1A) := ‖C−1A‖C‖A−1C‖C ≤ c.

The case of constant conductivity is not really interesting in practical applications.
Nevertheless, this special case give us the decisive hint how to choose the precon-
ditioner even in the practically more relevant non-constant case.

3.1.3. The Case of Piecewise Constant Conductivity σ. For piecewise constant con-
ductivity, we can also apply Theorem 1 for constructing a parameter-robust precon-
ditioner, at least, theoretically. From the practical point of view, we fail, because
we cannot derive a closed and nice expression for the interpolation. Neverthe-
less, as mentioned before, from the constant case we can make a good guess for
a parameter-robust block-diagonal preconditioner even for the piecewise constant
case. Consequently, following the approach in [19], we can give a proof that shows
the robustness of our guessed preconditioner in a non-constructive way.

Exploring the structural similarities to the previous section, our guess for the
block-diagonal preconditioner is

(11) C :=


√
λD √

λD
1√
λ
D

1√
λ
D

 ,

where the block D is given by

D := K + Mσ,ω +
1√
λ
M.

For proving robustness of the proposed block-diagonal preconditioner, we follow the
approach in [19]. We switch back to the variational level. Based on our guess (11),
we introduce a non-standard norm in H0(curl). This non-standard norm gives rise
to a non-standard norm in H0(curl)4. Using this special norm, we can verify the
so-called inf-sup condition, and, finally, we can apply the Theorem of Babuška-Aziz
to our indefinite variational problem.

The variational problem reads as follows: Find (ys,yc,ps,pc) ∈ H0(curl)4 such
that

(12) A ((ys,yc,ps,pc), (vs,vc,qs,qc)) =
∫

Ω

ys
d · vsdx +

∫
Ω

yc
d · vcdx

for all testfunctions (vs,vc,qs,qc) ∈ H0(curl)4. Here, the symmetric but indefinite
bilinear form A(·, ·), belonging to our reduced optimality system (7), is given by

A ((yc,ys,pc,ps), (vc,vs,qc,qs))

: = (yc,vc)0 + ((ν curl pc, curl vc)0 + (Qi(pc),vc)0) + ω(Ri(σ)ps,vc)0

+ (ys,vs)0 − ω(Ri(σ)pc,vs)0 + ((ν curl ps, curl vs)0 + (Qi(ps),vs)0)

((ν curl yc, curl qc)0 + (Qi(yc),qc)0)− ω(Ri(σ)ys,qc)0 − λ−1(pc,qc)0

ω(Ri(σ)yc,qs)0 + ((ν curl ys, curl qs)0 + (Qi(ys),qs)0)− λ−1(ps,qs)0.

Due to our guess for the preconditioner (11), we introduce the non-standard norm
‖ · ‖C1 in H0(curl) as follows:

‖y‖2C1 = (ν curl y, curl y)0 + (Qi(y),y)0 + ω(Ri(σ)y,y)0 +
1√
λ

(y,y)0.
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Note that the regularization terms Qi and Ri for i = 1, 2, 3 ensure that this norm
is well defined even in non-conducting regions. This definition gives rise to a non-
standard norm ‖ · ‖C in the product space H0(curl)4:

‖(ys,yc,ps,pc)‖2C =
√
λ‖ys‖2C1 +

√
λ‖yc‖2C1 +

1√
λ
‖ps‖2C1 +

1√
λ
‖pc‖2C1 .

The main result is summarized in the following theorem that claims that the inf-sup
condition in the Theorem of Babuška-Aziz is fulfilled with parameter-independent
constants 1/

√
3 and 1.

Theorem 2. The bilinear form A(·, ·) fulfills the inequalities

(13)

1√
3
‖(ys,yc,ps,pc)‖C ≤ sup

06=(vs,vc,qs,qc)

A((ys,yc,ps,pc), (vs,vc,qs,qc))
‖(vs,vc,qs,qc)‖C

‖(ys,yc,ps,pc)‖C ≥ sup
06=(vs,vc,qs,qc)

A((ys,yc,ps,pc), (vs,vc,qs,qc))
‖(vs,vc,qs,qc)‖C

.

for all (ys,yc,ps,pc) ∈ H0(curl)4.

Proof. Boundedness follows from reapplication of Cauchy’s inequality with appro-
priate scaling of the parameter λ. Indeed, we get the estimates∣∣(yc,vc)0 + (ys,vs)0 − λ−1(pc,qc)0 − λ−1(ps,qs)0

∣∣ ≤
≤ ‖yc‖0‖vc‖0 + ‖ys‖0‖vs‖0 + λ−1‖pc‖0‖qc‖0 + λ−1‖ps‖0‖qs‖0

≤
(
‖yc‖20 + ‖ys‖20 + λ−1‖pc‖20 + λ−1‖ps‖20

) 1
2
(
‖vc‖20 + ‖vs‖20 + λ−1‖qc‖20 + λ−1‖qs‖20

) 1
2 .

Furthermore, we have

|−ω(Ri(σ)pc,vs)0 + ω(Ri(σ)ps,vc)0 + ω(Ri(σ)yc,qs)0 − ω(Ri(σ)ys,qc)0| ≤

≤ ω 1
4
√
λ
‖
√
Ri(σ)pc‖0

4
√
λ‖
√
Ri(σ)vs‖0 + ω

1
4
√
λ
‖
√
Ri(σ)ps‖0

4
√
λ‖
√
Ri(σ)vc‖0

+ ω
4
√
λ‖
√
Ri(σ)yc‖0

1
4
√
λ
‖
√
Ri(σ)qs‖0 + ω

4
√
λ‖
√
Ri(σ)ys‖0

1
4
√
λ
‖
√
Ri(σ)qc‖0

≤
(
ω

1√
λ
‖
√
Ri(σ)pc‖20 + ω

1√
λ
‖
√
Ri(σ)ps‖20 + ω

√
λ‖
√
Ri(σ)yc‖20 + ω

√
λ‖
√
Ri(σ)ys‖20

) 1
2

(
ω
√
λ‖
√
Ri(σ)vs‖20 + ω

√
λ‖
√
Ri(σ)vc‖20 + ω

1√
λ
‖
√
Ri(σ)qs‖20 + ω

1√
λ
‖
√
Ri(σ)qc‖20

) 1
2

.

The remaining eight terms can be estimated in the same fashion as the last one.
Adding up all expressions and using Cauchy once more, we arrive at the bounded-
ness of the bilinear form A(·, ·) in the C-norm with the constant 1.
The lower estimate can be attained by choosing

vc = yc +
1√
λ
pc +

1√
λ
ps, vs = ys +

1√
λ
ps − 1√

λ
pc,

qc = −pc +
√
λyc −

√
λys, and qs = −ps +

√
λys −

√
λyc.

Note that, for this special choice, we have

‖(vs,vc,qs,qc)‖2C = 3‖(ys,yc,ps,pc)‖2C .
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Table 1. Theoretical bounds for reducing the initial residual by 10−k.

k 4 6 8 10 12
max iteration 16 24 30 38 44

Indeed, inserting this special choice into our bilinear form A, we obtain

A((yc,ys,pc,ps), (yc,ys,−pc,−ps)) = ‖ys‖20 + ‖yc‖20 + λ−1‖ps‖20 + λ−1‖pc‖20

A((yc,ys,pc,ps), (
1√
λ
pc,

1√
λ
ps,
√
λyc,

√
λys)) =

∑
j∈{s,c}[√

λ
(
(ν curl yj, curl yj)0 + (Qi(yj),yj)0

)
+

1√
λ

(
(ν curl pj, curl pj)0 + (Qi(pj),pj)0

)]
A((yc,ys,pc,ps), (

1√
λ
pc,− 1√

λ
pc,−

√
λys,

√
λyc))

= ω
∑

j∈{s,c}

[
1√
λ

(Ri(σ)pj,pj)0 +
√
λ(Ri(σ)yj,yj)0

]
,

and, consequently,
A((ys,yc,ps,pc), (vs,vc,qs,qc))

‖(vs,vc,qs,qc)‖C
=

1√
3
‖(ys,yc,ps,pc‖C .

This concludes our proof. �

From the inequalities (13) and the theorem of Babuška-Aziz, we immediately
conclude that there exists a unique solution of the corresponding variational prob-
lem (12), and that the solution continuously depends on the data, uniformly on all
involved parameters.
Furthermore, the inequalities (13) remain valid for the Nédélec finite element sub-
spaces of H0(curl)4 since the proof can be repeated for the finite element functions
step by step !

3.1.4. MinRes Convergence. From Theorem 2 we immediately obtain that the spec-
tral condition number of the preconditioned system can be estimated by the con-
stant

√
3 that is obviously independent of the meshsize h and all involved parame-

ters λ, ω, ν, σ and ε, i.e. we have

(14) κC(C−1A) := ‖C−1A‖C‖A−1C‖C ≤
√

3.

Using the convergence rate estimate of the MinRes method (e.g. [11]), we finally
arrive at the following theorem.

Theorem 3 (Robust and optimal solver). The MinRes method applied to the pre-
conditioned system converges. At the m-th iteration, the preconditioned residual
rm = C−1f − C−1Awm is bounded as

(15)
∥∥r2m∥∥C ≤ 2qm

1 + q2m

∥∥r0∥∥C where q =
κC(C−1A)− 1
κC(C−1A) + 1

≤
√

3− 1√
3 + 1

.

Proof. This result directly follows from [11] and Theorem 2. �

Therefore the number of MinRes iterations required for reducing the initial error
by some fixed factor δ ∈ (0, 1) is independent of the discretization parameter h and
all the involved parameters λ, ω, ν, σ and ε. The predicted theoretical bounds
for the number of MinRes iterations needed for reducing the norm of the initial
residual by a given tolerance δ = 10−k are listed in Table 1, cf. also the numerical
results presented in Section 5.
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In our numerical experiments of Section 5, we use the sparse direct solver PAR-
DISO for solving the preconditioning equations with the system matrix D :=
K + Mσ,ω + λ−1/2M. However, in large-scale computations, the diagonal blocks
D of the preconditioner C have to be replaced by an easy “invertible” and robust
SPD preconditioner D̃ such that the spectral equivalence inequalities

(16) c̃1 xT D̃x ≤ xTDx ≤ c̃2 xT D̃x, ∀x ∈ Rn

are valid with positive spectral equivalence constants c̃1 and c̃2 which should be
independent of the space discretization and all other “bad” parameters including
the jumps in the reluctivity and conductivity. Now, the real preconditioner

(17) C̃ :=


√
λD̃ √

λD̃
1√
λ
D̃

1√
λ
D̃

 ,

obviously fulfills the spectral equivalence inequalities

(18) c̃1 xT C̃x ≤ xTCx ≤ c̃2 xT C̃x, ∀x ∈ R4n

with the same spectral equivalence constants c̃1 and c̃2 as in (16). The spectral
equivalence inequalities (18) together with the condition number estimate (14) yield
the estimate

(19) κC̃(C̃
−1A) := ‖C̃−1A‖C̃‖A

−1C̃‖C̃ ≤ c̃ =
√

3 (c̃2/c̃1)

for the condition number of C̃−1A with respect to the C̃ energy norm.
Indeed, on the one hand, we have

‖C̃−1A‖2C̃ = sup
x

(C̃−1Ax,Ax)
(C̃x,x)

≤ c̃22 sup
x

(C−1Ax,Ax)
(Cx,x)

= c̃22‖C−1A‖2C .

On the other hand, using the substitution x = C−1y, we get the estimate

‖A−1C̃‖2C̃ = sup
x

(C̃A−1C̃x,A−1C̃x)
(C̃x,x)

= sup
y

(C̃A−1y,A−1y)
(C̃−1y,y)

≤ c̃−2
1 ‖A−1C‖2C .

which proves our condition number estimate (19).
Now it is clear that the results of Theorem 3 remain valid with C replaced by C̃

and
√

3 replaced by c̃. In Remark 4, we discuss some candidates for D̃.

4. Multiharmonic FEM and Preconditioning

In general application we are dealing with a non-harmonic desired state yd. By
approximating any non-harmonic desired state by a multiharmonic excitation in
terms of a truncated Fourier series

yd =
N∑
k=0

yc
d,k cos(kωt) + ys

d,k sin(kωt)
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it follows, that due to the linearity of the state equation, the state y, the co-state
p and the control u have the same structure:

y =
N∑
k=0

yc cos(kωt) + ys sin(kωt)

p =
N∑
k=0

pc cos(kωt) + ps sin(kωt)

u =
N∑
k=0

uc cos(kωt) + us sin(kωt)

Due to the linearity of the reduced optimality problem, the huge (4N+2)×(4N+2)
system decouples into N 4× 4 systems of partial differential equations for the two
Fourier coefficients of each, the state y and the co-state p belonging to the mode k,
and an 2 × 2 system of partial differential equations for the mode k = 0. (Clearly
we don’t have to solve for the ps

0 and us
0, since sin(0ωt) = 0.) Hence we have to

solve the following decoupled reduced optimality system in the frequency domain:
Find the state y ∈ H(curl)2N+1 and the co-state p ∈ H(curl)2N+1, given by

y = (yc
0,y

c
1,y

s
1, . . . ,y

c
N,y

s
N)

p = (pc
0,p

c
1,p

s
1, . . . ,p

c
N,p

s
N),

such that

(20)



−ωkRi(σ)ys + curl(ν curl yc
k) +Qi(yc

k)− λ−1pc
k = 0, in Ω

ωkRi(σ)yc
k + curl(ν curl ys

k) +Qi(ys
k)− λ−1ps

k = 0, in Ω

ωkRi(σ)ps
k + curl(ν curl pc

k) +Qi(pc
k) + yc

k = yc
d,k, in Ω

−ωkRi(σ)pc
k + curl(ν curl ps

k) +Qi(ps
k) + ys

k = ys
d,k, in Ω

yc
k × n = 0, on ∂Ω

ys
k × n = 0, on ∂Ω

pc
k × n = 0, on ∂Ω

ps
k × n = 0, on ∂Ω.

Remark 3 (Initial conditions). Since we solve for all modes k = 0, . . . , N , there
is no degree of freedom left for fulfilling the initial and end conditions y(·, 0) = y0

and p(·, T ) = 0. Hence we are only allowed to claim periodic initial conditions
y(·, 0) = y(·, T ) and p(·, 0) = p(·, T ) that are automatically fulfilled by our periodic
time discretization in terms of a multiharmonic approach.

The finite element discretization of each 4 × 4 block (k = 1, . . . , N) leads to a
4 × 4 block-matrix Ak that formally has the same structure as A in (8) with ω
replaced by kω.

Ak =


M K Mσ,kω

M −Mσ,kω K
K −Mσ,kω −λ−1M

Mσ,kω K −λ−1M


So our (4N + 2) × (4N + 2) decoupled block-diagonal system matrix B has the
following from

B = diag(Ak)k=0,...,N

where the block corresponding to the mode k = 0 is given by

A0 =
(
M K
K −λ−1M

)
.
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4.1. Preconditioning. The preconditioning of the 4 × 4 blocks for the modes
k = 1, . . . , N can be done analogous to the time-harmonic case in Section 3.1.
Defining the expression

Dk := K + Mσ,kω +
1√
λ
M

our block-diagonal preconditioner for each block corresponding to the Fourier mode
k = 1, . . . , N reads as

(21) Ck :=


√
λDk √

λDk
1√
λ
Dk

1√
λ
Dk

 .

Analogous to the time-harmonic case, we obtain the mesh and parameter indepen-
dent condition number estimate

κ(C−1
k Ak) ≤

√
3.

For the block A0 we can construct a preconditioner in the same manner. Follow-
ing the strategy of the previous section, we have to compute the negative Schur
complements S and R of our system matrix A0.

S = λ−1M + KM−1K

R = λS

We have to evaluate the following interpolation in order to construct a parameter-
robust preconditioner.

C0 =
(

[A,R] 1
2

[S,C] 1
2

)
=

(√
λ[M,S] 1

2
1√
λ

[S,M] 1
2

)
Hence we have to compute the interpolation

[M,S] 1
2

= [S,M] 1
2

= M
1
2

(
M−

1
2 (λ−1M + KM−1K)M−

1
2

) 1
2
M

1
2

∼ 1√
λ
M + M

1
2

(
M−

1
2 KM−1KM−

1
2

) 1
2
M

1
2 =

1√
λ
M + K.

Consequently we obtain the block-diagonal preconditioner

C0 =

(
M +

√
λK

1
λM + 1√

λ
K

)
.

Hence using the Theorem of Babuška-Aziz for the block-diagonal preconditioner C0
we obtain a condition number estimate (see also [19])

κ(C−1
0 A0) ≤

√
2.

Remark 4. As was already discussed in Subsection 3.1.4, in large-scale computa-
tions the diagonal blocks Dk have to be replaced by easy “invertible” SPD precondi-
tioner D̃k which are spectrally equivalent to Dk in a robust and optimal sense. We
mention that the diagonal blocks Dk = K+Mσ,kω + 1√

λ
M obviously arise from the

finite element discretization of the boundary value problem

curl (ν curl y) +Qi(y) +
(
kωRi(σ) +

1√
λ

)
y = f in Ω,

y × n = 0 on ∂Ω.

Candidates for robust and (almost) optimal (with respect to the complexity) precon-
ditioners are multigrid preconditioners [1], auxiliary space preconditioners [14, 36],
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Table 2. Number of MinRes iterations for reducing the initial
residual by δ = 10−6 (ω = 1).

DOF log10 λ -10 -8 -6 -4 -2 0 2 4 6 8 10
16736 h = 0.125 7 13 15 16 14 9 8 6 6 6 6
124096 h = 0.0625 9 15 16 16 12 7 6 6 6 6 6

Table 3. Number of MinRes iterations for reducing the initial
residual by δ = 10−6 (λ = 1).

DOF log10 ω -10 -8 -6 -4 -2 0 2 4 6 8 10
16736 h = 0.125 5 5 5 5 5 9 15 14 6 4 2
124096 h = 0.0625 5 5 5 5 5 7 13 16 6 4 2

Table 4. Number of MinRes iterations for reducing the initial
residual by δ = 10−6 (DOF = 16736).

log10 ω
-2 0 2 4 6

log10 λ

-10 7 7 7 7 3
-8 13 13 13 9 5
-6 15 15 14 11 6
-4 16 16 20 14 6
-2 12 14 16 14 6
0 5 9 15 14 6
2 6 8 16 14 6

and domain decomposition (DD) preconditioners [33, 15, 34]. Indeed, the DD pre-
conditioner proposed by Hu and Zou [15] together with the results of the same au-
thors on weighted Helmholtz decompositions [16] allow us to construct a robust and
almost optimal DD preconditioners D̃k for Dk.

5. First Numerical Results

In order to confirm our theoretical results numerically, we report on our first
numerical tests for an academic example, namely for the simple time-harmonic
case discussed in Section 3. The numerical results presented in this section were
attained using ParMax [27]. First, we demonstrate the robustness of the block-
diagonal preconditioner with respect to the regularization parameter λ and the
frequency ω. Therefore, for the solution of the preconditioning equations arising
from the diagonal blocks, we use the sparse direct solver PARDISO that is very
efficient for several hundred thousand unknowns in the case of three-dimensional
problems [29, 30].

5.1. Constant Conductivity. Table 2, Table 3 and Table 4 provide the number
of MinRes iterations needed for reducing the initial residual by a factor of 10−6

for different λ, ω and h. These numerical experiments were performed for a three-
dimensional linear problem on the unit-cube, discretized by tetrahedra for the case
ν = σ. These experiments demonstrate the independence of the MinRes conver-
gence rate on the regularization parameter and the meshsize since the number of
iterations is bounded by 20 for all computed constellations that is less than the
theoretical bound 24 given ind Table 1.
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Table 5. Number of MinRes iterations for reducing the initial
residual by δ = 10−6 (C-norm) in the case of different meshes and
cost parameters λ.

DOF hmin hmax -8 -6 -4 -2 0 2 4 6 8
183724 0.00992389 0.385854 15 15 13 12 8 10 6 6 6
272220 0.00933755 0.49344 15 15 15 12 10 10 8 8 8

5.2. Piecewise Constant Conductivity. In Table 5, we report the results for the
case of piecewise constant conductivity on three different meshes with varying cost
parameter λ running from 10−8 to 108 (log10 λ scale in Table 5). Our computational
domain consist of air (blue), an iron shield (green) and a coil (red). We apply the
conductivity regularization, hence the conductivity σ is given by (22).

(22) σ =

{
106 in iron and the coil
10−3 in air

.

The results are obtained for the setting ν = ω = 1. We mention that the mesh
is highly adapted to the geometry and to the eddy current boundary layers as is
indicated by the minimal mesh size hmin and the maximal mesh size hmax. Again,
the numerical results show the robustness of our preconditioner.

6. Generalization

In practical applications the source or control u is prescribed by some electric
current in a coil and not in the whole domain Ω as used in the model problem (1)-
(2). Consequently the control u vanishes outside of the latter mentioned region.
The previous analysis can easily be generalized to this case as well, where the
control u is prescribed only in a subset Ωd of the computational domain Ω. For
mathematical treatment, the domain Ωd can be characterized by a non-negative
indicator function τ , i.e.

τ(x) =

{
1, x ∈ Ωd
0, x ∈ Ω\Ωd

.

Due to technical reasons concerning the construction of the parameter-robust pre-
conditioner, the observation y−yd has also be restricted to Ωd. Therefore we deal
with the generalized optimal control problem: Find the state y and the control u
that minimizes the generalized cost functional

Jτ (y,u) =
1
2

∫
Ω×(0,T )

τ(x)|y − yd|2dxdt+
λ

2

∫
Ω×(0,T )

τ(x)|u|2dxdt,

subject to the state equation
σ
∂

∂t
y + curl(ν curl y) = τ(x)u, in Ω× (0, T ),

y × n = 0, on ∂Ω× (0, T ),

y(0) = y(T ), in Ω.
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The analysis of the parameter-robust preconditioner is also valid for this more
general cost functional leading to a block-diagonal preconditioner (11), with the
scaled (symmetric and positive definite) blocks

Dk := K + Mσ,kω +
1√
λ
Mτ

for k = 0, . . . , N at the diagonal. Here Mτ corresponds to the finite element
discretization of

Mτ :
∫

Ω

τ(x)u · v dx.

Again we obtain the condition number estimate
√

3.

Remark 5. We mention that for the mode corresponding to k = 0, the diagonal
block D0 is not positive definite in the case of parabolic regularization (i = 2).
Therefore, in this special regime, we have to add a regularization operator for the
zero mode, i.e. replacing τ(x) by R2(τ(x)) in A0 and D0.

7. Conclusion and Outlook

The method developed in this work shows great potential for solving distributed
optimal control problems for time-harmonic and time-periodic eddy current prob-
lems in an efficient and optimal way. The key points of our method are the usage of
a non-standard time discretization technique in terms of a truncated Fourier series,
and the construction of parameter-independent solvers for the resulting system of
equations in the frequency domain. The theory developed in this paper establishes
a theoretical estimate of the convergence rate of MinRes as a solver when our pro-
posed preconditioner is applied. Numerical experiments confirm this convergence
rate estimate. Due to the natural decoupling of the frequency domain equations an
efficient parallel implementation of the solution procedure is straight-forward.

In some applications, it is reasonable to add so-called box constraints for the
control u or / and the state y to an optimal control problem like (1) – (2) or (3) – (4).
In the standard approach these constraints can be handled by a simple projection
to the box [21] leading to a non-linear optimality system that can be solved by
superlinearly convergent, semi-smooth Newton methods [13, 17]. Unfortunately, in
the multiharmonic approach, box constraints for u or / and y cannot be handled
in such an easy way. However, box constraints for their Fourier coefficients can be
treated by such a projection ! Methods for treating box constraints for the control
u or / and the state y in the multiharmonic setting are certainly the penalty or
barrier methods [31, 10]. The same holds for treating initial conditions. In both
cases, the equations for different modes are coupled via these penalty or barrier
terms added to the cost functional. In non-linear eddy current problems we have
a similar coupling of the Fourier coefficients belonging to different modes [4, 5].
Anyway, the preconditoners proposed and analyzed in this paper can be useful for
all these cases too.
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