Doctoral Program Computational Mathematics

Sylvester Matrix and GCD for Several Univariate Polynomials

Manuela Wiesinger-Widi

Supported by
Austrian Science Fund (FWF)

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner
Managing Editor: Veronika Pillwein
Communicated by: Bruno Buchberger
Veronika Pillwein

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

Sylvester Matrix and GCD for Several Univariate Polynomials

Manuela Wiesinger-Widi*
Doctoral Program Computational Mathematics
Johannes Kepler University Linz
4040 Linz, Austria
manuela.wiesinger@dk-compmath.jku.at

Abstract

We extend Habicht's result on computing a gcd of two univariate polynomials by triangularization of the Sylvester matrix to the case of several univariate polynomials. Similar extensions have been done in the past, but the size of our matrix is smaller.

1 Introduction and Notation

In his PhD thesis [1], Buchberger introduced the notion of Gröbner bases and gave the first algorithm for computing them. Since then, extensive research has been done in order to reduce the complexity of the computation. But nevertheless, even for small examples the computation sometimes does not terminate in reasonable time.

There are basically two approaches for computing a Gröbner basis. The first is the one pursued by the Buchberger algorithm: We start from the initial set F, execute certain reduction steps (consisting of multiplication of polynomials by terms - called shifts - and subtraction of polynomials) and due to Buchberger's theorem, which says that the computation is finished if all the s-polynomials reduce to zero, we know that after finitely many iterations of this procedure we obtain a Gröbner basis of the ideal generated by F. The second approach is to start from F, execute certain shifts of the initial polynomials in F, arrange them as rows in a matrix, triangularize this matrix and from the resulting matrix extract a Gröbner basis.

In project DK1 of the Doctoral Program, which was proposed by Buchberger, we pursue the second approach and seek to improve the theory in order to speed up the Gröbner bases computation. This approach has been studied a couple of times in the past, but never thoroughly. The immediate question is: Does there exist a finite set of shifts such that a triangularization of the matrix built by these shifts yields a Gröbner basis and, if so, how can we construct these shifts? We give results for the univariate case.

Let \mathbb{K} be a field. In the following, when we talk about a shift of a polynomial $f \in \mathbb{K}[x]$, what we mean is f multiplied by a power product x^{i} for some $i \in \mathbb{N}$.

[^0]Let $f=\sum_{i=0}^{d} c_{i} x^{i} \in \mathbb{K}[x]$ with $c_{d} \neq 0$. For any natural number $m \geq d$ we associate to f the vector $v_{m}(f)=\left(0, \ldots, 0, c_{d}, c_{d-1}, \ldots, c_{0}\right) \in \mathbb{K}^{m+1}$. Conversely to any vector $v=\left(c_{m}, c_{m-1}, \ldots, c_{0}\right) \in$ \mathbb{K}^{m+1} we associate the polynomial $\operatorname{pol}(v)=\sum_{i=0}^{m} c_{i} x^{i}$ and we define $\operatorname{deg}(v):=\operatorname{deg}(\operatorname{pol}(v))$. For any sequence of polynomials $f_{1}, \ldots, f_{r} \in \mathbb{K}[x]$ we define the matrix

$$
\operatorname{mat}\left(f_{1}, \ldots, f_{r}\right):=\left(\begin{array}{c}
v_{m}\left(f_{1}\right) \\
\vdots \\
v_{m}\left(f_{r}\right)
\end{array}\right)
$$

where $m=\max _{i \in\{1, \ldots, r\}}\left(\operatorname{deg}\left(f_{i}\right)\right)$.
For any set of polynomials $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[x]$ we define

$$
\left\langle f_{1}, \ldots, f_{r}\right\rangle_{\mathbb{K}}:=\left\{\sum_{i=1}^{r} c_{i} f_{i}: c_{1}, \ldots, c_{r} \in \mathbb{K}\right\} .
$$

2 GCD Computation of Two Univariate Polynomials

We consider the following problem.
Problem 1 (Gcd computation of two univariate polynomials).
Given Two polynomials $f_{1}, f_{2} \in \mathbb{K}[x]$ of degrees $d_{1}, d_{2} \geq 1$, respectively.
Find A gcd of f_{1} and f_{2}.
In [3] (see also [4] for a good overview on this topic), Habicht establishes a connection between the computation of polynomial remainder sequences and linear algebra. In particular, Problem 1 can be solved by triangularizing the Sylvester matrix of f_{1} and f_{2}.

Theorem 2. Let $M:=\operatorname{mat}\left(x^{d_{2}-1} f_{1}, x^{d_{2}-2} f_{1}, \ldots, f_{1}, x^{d_{1}-1} f_{2}, x^{d_{1}-2} f_{2}, \ldots, f_{2}\right)$ and let M^{\prime} be a matrix obtained by triangularizing M.
Then the polynomial corresponding to the non-zero row of lowest degree in M^{\prime} is a gcd of the polynomials f_{1} and f_{2}.

We give our own proof for this.
Proof. Assume without loss of generality $d_{1} \geq d_{2}$ and let $f_{3}, \ldots, f_{s}, f_{s+1}(s \geq 2)$ be the intermediate polynomials generated by the Euclidean algorithm applied to f_{1} and f_{2}, where $f_{s+1}=0$. Hence, f_{s} is the gcd of f_{1} and f_{2} computed by the algorithm. Let $d_{i}:=\operatorname{deg}\left(f_{i}\right)$ for $i \in\{3, \ldots, s\}$. From d_{2} on, the d_{i} are strictly decreasing.

In the first part of the proof we show:

1. $f_{s} \in\left\langle x^{d_{2}-1} f_{1}, x^{d_{2}-2} f_{1}, \ldots, f_{1}, x^{d_{1}-1} f_{2}, x^{d_{1}-2} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}}=: A$
2. $\forall f \in A \backslash\{0\}:\left(\exists c \in \mathbb{K} \backslash\{0\}: f=c f_{s} \vee \operatorname{deg}(f)>d_{s}\right)$.

For the case $s=2$ the statement in 1 . trivially holds. In order to show 1 . for the case $s \geq 3$, we prove

$$
\forall n \in\{3, \ldots, s\}: f_{n} \in\left\langle x^{d_{2}-d_{n-1}} f_{1}, x^{d_{2}-d_{n-1}-1} f_{1}, \ldots, f_{1}, x^{d_{1}-d_{n-1}} f_{2}, x^{d_{1}-d_{n-1}-1} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}}
$$

by induction on n.
In the Euclidean algorithm a multiple of f_{1} of degree d_{1} and multiples of f_{2} of degrees up to d_{1} are used to compute f_{3}, so

$$
f_{3} \in\left\langle f_{1}, x^{d_{1}-d_{2}} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}} .
$$

We assume that $n \in\{3, \ldots, s-1\}$ and that the statement holds for all $n^{\prime} \in\{3, \ldots, n\}$. We show that it holds for $n+1$. In the Euclidean algorithm a multiple of f_{n-1} of degree d_{n-1} and multiples of f_{n} of degrees up to d_{n-1} are used to compute f_{n+1}, so

$$
f_{n+1} \in\left\langle f_{n-1}, x^{d_{n-1}-d_{n}} f_{n}, \ldots, f_{n}\right\rangle_{\mathbb{K}} .
$$

But since

$$
f_{n-1} \in\left\langle f_{2}\right\rangle_{\mathbb{K}}
$$

in the case that $n=3$, and

$$
f_{n-1} \in\left\langle x^{d_{2}-d_{n-2}} f_{1}, \ldots, f_{1}, x^{d_{1}-d_{n-2}} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}},
$$

otherwise by the induction hypothesis, and

$$
f_{n} \in\left\langle x^{d_{2}-d_{n-1}} f_{1}, \ldots, f_{1}, x^{d_{1}-d_{n-1}} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}}
$$

also by the induction hypothesis, this means that

$$
f_{n+1} \in\left\langle x^{d_{2}-d_{n}} f_{1}, \ldots, f_{1}, x^{d_{1}-d_{n}} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}} .
$$

This completes the induction step.
It follows that

$$
f_{s} \in\left\langle x^{d_{2}-d_{s-1}} f_{1}, \ldots, f_{1}, x^{d_{1}-d_{s-1}} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}},
$$

and since $d_{s-1} \geq 1$,

$$
f_{s} \in\left\langle x^{d_{2}-1} f_{1}, \ldots, f_{1}, x^{d_{1}-1} f_{2}, \ldots, f_{2}\right\rangle_{\mathbb{K}}=A .
$$

We now prove the statement in 2. Let $f \in A \backslash\{0\}$. Since $f_{s} \mid f_{1}$ and $f_{s} \mid f_{2}$, we obtain that f_{s} divides every multiple of f_{1} and f_{2}, respectively. From $f \in A \backslash\{0\}$ it follows now that $f_{s} \mid f$. Hence, $\operatorname{deg}(f) \geq d_{s}$. Now assume that $\operatorname{deg}(f)=d_{s}$. Since f is a multiple of f_{s}, it follows that there exists a $c \in \mathbb{K} \backslash\{0\}$ such that $f=c f_{s}$, which conludes this part of the proof.

So f_{s} has lowest degree among all the non-zero elements in A. Since f_{s} is an element in A we can triangularize the matrix M in such a way that f_{s} occurs in the resulting matrix M^{*}. So the statement in the theorem holds for M^{*}. Note that the following holds: Let $B \neq 0$ be a matrix over \mathbb{K} and let B_{1} and B_{2} be matrices obtained from B by triangularization. Let b_{1} and b_{2} be the non-zero rows of lowest degree of B_{1} and B_{2}, respectively. Then there exists a $c \in \mathbb{K} \backslash\{0\}$ such that $b_{1}=c b_{2}$. Since the gcd is unique up to multiplication by a non-zero element in \mathbb{K}, it follows that the statement in the theorem holds for all M^{\prime} that can be obtained via triangularization of M.

3 GCD Computation of Several Univariate Polynomials

We consider the following problem.
Problem 3 (Gcd computation of several univariate polynomials).
Given r polynomials $f_{1}, \ldots, f_{r} \in \mathbb{K}[x], r \geq 2$, with minimum degree 1 .
Find A gcd of f_{1}, \ldots, f_{r}.
Let d and p be the highest and second highest degrees among the polynomials f_{1}, \ldots, f_{r} and let m be the smallest degree.

In [5] and [2] we found direct generalizations of the Sylvester matrix to the case of r univariate polynomials with $r \geq 2$. In [5] the block size for every polynomial is d, resulting in a $d r \times 2 d$ matrix. In [2] the block size of one of the polynomials with degree d is p and the block sizes of all of the other polynomials are d, resulting in a $(p+(r-1) d) \times(d+p)$ matrix. As can been seen in the next theorem, our block sizes are d for a polynomial with smallest degree m and m for the other polynomials, resulting in a $(d+(r-1) m) \times(d+m)$ matrix. This matrix is much smaller in general and it is equal to the other two only if all of the polynomials have the same degree.

Theorem 4. Assume f_{r} has minimal degree m.
Let $M:=\operatorname{mat}\left(x^{m-1} f_{1}, x^{m-2} f_{1}, \ldots, f_{1}, \ldots, x^{m-1} f_{r-1}, x^{m-2} f_{r-1}, \ldots, f_{r-1}, x^{d-1} f_{r}, x^{d-2} f_{r}, \ldots, f_{r}\right)$ and let M^{\prime} be a matrix obtained by triangularizing M.
Then the polynomial corresponding to the non-zero row of lowest degree in M^{\prime} is a gcd of the polynomials in F.

Proof. Let $d_{i}:=\operatorname{deg}\left(f_{i}\right)$ for $i=1, \ldots, r$. Assume w.l.o.g. that $d_{1} \geq \cdots \geq d_{r}$, i.e. $d_{1}=d$ and $d_{r}=m$. We prove the theorem by induction on r.

We have proved case $r=2$ in Theorem 2 .
Now assume that the claim holds for a fixed number r of polynomials, $r \geq 2$. We show, that it also holds for $r+1$. We want to compute a gcd of f_{1}, \ldots, f_{r+1}. First we compute a gcd g of $f_{1}, \ldots, f_{r-1}, f_{r+1}$ and then a gcd of g and f_{r}.

By the induction hypothesis we can obtain a gcd g by triangularizing the matrix

$$
A:=\operatorname{mat}\left(x^{d_{r+1}-1} f_{1}, \ldots, f_{1}, \ldots, x^{d_{r+1}-1} f_{r-1}, \ldots, f_{r-1}, x^{d_{1}-1} f_{r+1}, \ldots, f_{r+1}\right)
$$

Let A^{\prime} be the resulting matrix of this triangularization process. The non-zero rows of A^{\prime} correspond to polynomials with degrees $k:=\operatorname{deg}(g)$ up to $d_{1}+d_{r+1}-1$, each being a multiple of g and hence being a polynomial that can be used for reducing f_{r} and its multiples during the gcd computation of f_{r} and g.

Let us now have a look at the problem of adding rows to matrix A^{\prime} such that we can compute a gcd of g and f_{r} by triangularizing the then obtained matrix. For this we use the arguments from case $r=2$.

In order to compute a gcd of f_{r} and g, multiples of f_{r} and g up to degree $d_{r}+d_{r+1}-1$ suffice since $k \leq d_{r+1}$. Since we have multiples of g up to degree $d_{1}+d_{r+1}-1$ in A^{\prime} and since $d_{1} \geq d_{r}$, we also have multiples up to degree $d_{r}+d_{r+1}-1$ of g, so no additional shifts of g are necessary. But we can already add the shifts of f_{r} up to $x^{d_{r+1}-1} f_{r}$ to the matrix A itself instead of first triangularizing to A^{\prime} and then adding them to A^{\prime}.

So by triangularizing the matrix

$$
M:=\operatorname{mat}\left(x^{d_{r+1}-1} f_{1}, \ldots, f_{1}, \ldots, x^{d_{r+1}-1} f_{r}, \ldots, f_{r}, x^{d_{1}-1} f_{r+1}, \ldots, f_{r+1}\right)
$$

to M^{\prime} we get a gcd of f_{1}, \ldots, f_{r} and f_{r+1} as the polynomial corresponding to the non-zero row of M^{\prime} with smallest degree by the same arguments as in the case for $r=2$. This concludes the induction step.

From this result we can infer the following two corollaries. Let M be as in Theorem 4.
Corollary 1. f_{1}, \ldots, f_{r} are co-prime if and only if M has rank $d+m$.
Corollary 2. Let g be a gcd of f_{1}, \ldots, f_{r}. Then $\operatorname{deg}(g)=d+m-\operatorname{rank}(M)$.

4 Conclusion

We gave a proof for the correctness of Habichts method for computing a gcd of two univariate polynomials by triangularization of the Sylvester matrix. We then directly extended the Sylvester matrix in such a way that a gcd of several univariate polynomials can be computed by triangularization. Other generalizations in this style have been done before, however those resulted in a bigger matrix.

References

[1] Bruno Buchberger. An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (german). Mathematical Institute, University of Innsbruck, Austria. PhD Thesis. 1965. English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4, pages 475-511, 2006.
[2] S. Fatouros and N. Karcanias. Resultant properties of gcd of many polynomials and a factorization representation of gcd. International Journal of Control, Vol. 76, Issue 16, pp. 1666-1683, 2003.
[3] Walter Habicht. Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Comm. Math. Helvetici 21, pp. 99-116, 1948.
[4] Rüdiger Loos. Generalized Polynomial Remainder Sequences. In Computer Algebra: Symbolic and Algebraic Computation, pp. 115-137, Springer-Verlag, 1982.
[5] A.I.G. Vardulakis and P.N.R. Stoyle. Generalized Resultant Theorem. IMA Journal of Applied Mathematics, Vol. 22, Issue 3, pp. 331-335, 1978.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2011
2011-01 S. Takacs, W. Zulehner: Convergence Analysis of Multigrid Methods with Collective Point Smoothers for Optimal Control Problems February 2011. Eds.: U. Langer, J. Schicho
2011-02 L.X.Châu Ngô: Finding rational solutions of rational systems of autonomous ODEs February 2011. Eds.: F. Winkler, P. Paule
2011-03 C.G. Raab: Using Gröbner Bases for Finding the Logarithmic Part of the Integral of Transcendental Functions February 2011. Eds.: P. Paule, V. Pillwein
2011-04 S.K. Kleiss, B. Jüttler, W. Zulehner: Enhancing Isogeometric Analysis by a Finite ElementBased Local Refinement Strategy April 2011. Eds.: U. Langer, J. Schicho
2011-05 M.T. Khan: A Type Checker for MiniMaple April 2011. Eds.: W. Schreiner, F. Winkler
2011-06 M. Kolmbauer: Existence and Uniqueness of Eddy current problems in bounded and unbounded domains May 2011. Eds.: U. Langer, V. Pillwein
2011-07 M. Kolmbauer, U. Langer: A Robust Preconditioned-MinRes-Solver for Distributed TimePeriodic Eddy Current Optimal Control Problems May 2011. Eds.: R. Ramlau, W. Zulehner
2011-08 M. Wiesinger-Widi: Sylvester Matrix and GCD for Several Univariate Polynomials May 2011. Eds.: B. Buchberger, V. Pillwein

Doctoral Program
 "Computational Mathematics"

Director:

Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-7174

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *This project is funded by the Austrian Science Fund (FWF) under grant W1214/DK1.

