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Bases and dimensions of bivariate hierarchical

tensor–product splines

Carlotta Giannelli∗, Bert Jüttler†

Institute of Applied Geometry, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria

Abstract

We prove that the dimension of bivariate spline spaces of degree (d, d) with max-
imum order of smoothness on a general domain is equal to the number of tensor–
product B–spline basis functions, defined by only single knots in both directions,
acting on the considered domain. A certain reasonable assumption on the configura-
tion of the domain is required. This result is then generalized to the case of piecewise
polynomial spaces, with the same smoothness properties mentioned above, defined
on a nested sequence of domains, by providing a simple iterative procedure to define
a basis for the bivariate hierarchical tensor–product spline space. Finally, it is ob-
served that this construction corresponds to the classical definition of hierarchical
B–spline bases.

Keywords: hierarchical B–splines, tensor–product basis, dimension, local refinement.

1 Introduction

Adaptive refinement of spline basis functions allows to localize changes in the control
net so that the modification of a single control point will affect a limited region of the
underlying geometric representation. Mesh refinement strategies constitute a fundamen-
tal component for the development of an effective approximation algorithm commonly
used by standard surface reconstruction techniques. In the context of the numerical so-
lution of partial differential equations, particular attention is currently devoted to this
issue in connection with the emerging field of isogeometric analysis [3]. For this reason,
refinement techniques which were originally introduced for standard geometric design
applications, became the topic of recent studies, taking into account the dual require-
ments of geometry and analysis. The resulting novel perspective opened new path of
research for the identification of geometric representations suitable for analysis which
simultaneously satisfy the demand imposed by their use in the simulation framework
and the accuracy of the geometrical model.

The extension of the isogeometric paradigm, originally introduced considering the
NURBS model [11], with spline representations which allow local control of the refine-
ment procedure has mainly focused on suitable applications [1, 6, 20] of the T–splines
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construction [22, 23]. Subsequently, alternative solutions based on the so–called poly-
nomial splines over hierarchical T–meshes (PHT–splines) [4, 5, 14] and on hierarchical
B–splines [7, 12] have also been considered [18, 24]. In this setting, the analytical point
of view, which joins the geometric perspective, outlined the desire of characterizing the
space spanned by the set of basis functions used to approximate the solution. This mo-
tivated investigations on the linear independence of T–splines blending functions [2, 16],
discussion about the dimension of related spline spaces [17] and the corresponding nested
nature of these T–spline spaces [15]. The hierarchical approach seems to be a valid so-
lution to circumvent the weak points of T–splines identified by these studies (locality of
the refinement [6], linear dependence associated with particular T–meshes [2], complex-
ity of the enhanced refinement algorithm needed to ensure the linear independence of
the blending functions [21]), and also the reduced regularity which characterizes PHT–
splines (dimensions of spline spaces over T–meshes in the case that the degree is at least
2s + 1 for splines with order of smoothness given by s were investigated in [4]).

The selection mechanism for the definition of a hierarchical B–splines basis intro-
duced by Kraft in [12] by means of subsequent dyadic refinements ensures that

• hierarchical basis functions allows proper local refinement and are linearly inde-
pendent (see Theorem 1 in [12]),

• the hierarchical B–spline basis is weakly stable, i.e. the stability constants depend
on the number of hierarchical levels (see Theorem 3 in [12]).

Hierarchical B–splines have already been applied in several applications related to ge-
ometric modeling — see for example [8, 9, 10]. In addition, a hierarchical quasi–
interpolant together with approximation algorithms and scattered data approximation
and interpolation problems were also discussed in [12]. A more detailed analysis of the
above mentioned topics can be found in [13]. The case of partly overlapping boundaries
of the sub–domains which require further refinement and the nested nature of the hier-
archical spline space, originally not properly discussed or outlined, have been considered
in [24]. Even if Kraft also noted that spline surfaces defined by hierarchical B–splines of
bi–degree d are Cd−1 smooth (see Theorem 2 in [12] and item (b) of Theorem 2.2.1 in
[13]), a general configuration of the hierarchical domains was not covered by the author.
Only sub–domains with disjoint boundaries and defined as union of B–splines supports
of the previous hierarchical level were considered.

The goal of the present paper is to make up this shortcoming by investigating dimen-
sions and bases of hierarchical tensor–product B–spline spaces. The starting point of our
study is a generalization of the dimension of bivariate tensor product polynomial spline
spaces over more general domains than rectangular grids. By considering tensor–product
spline functions with maximum order of smoothness, it turns out that the dimension
formula on domains whose boundaries are piecewise linear closed curves (which satisfy a
specific reasonable assumption) can be derived from the standard one related to rectan-
gular grids (see, e.g., [19]) by including certain correction factors. This computation is
then used to construct a basis for the bivariate hierarchical tensor–product spline space
defined on a nested sequences of these domains. The hierarchical model allows complete
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control of the refinement by using a spline hierarchy whose levels identifies subsequent
levels of refinement. We consider an increasingly nested sequence of B–spline spaces
V 0 ⊂ V 1 ⊂ . . . ⊂ V N−1, together with a decreasingly nested sequence of parametric
domains Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1. The simple idea of the hierarchical spline model is
based on a suitable correlation between these two nested structures: at each level ℓ, for
ℓ = 0, 1, . . . , N − 1, we iteratively select the basis functions from the underlying spline
spaces V ℓ, enlarged with respect to the one of the previous level, which only act on the
current domain Ωℓ, selected to be refined. The local action of the refinement procedure
is then immediately guaranteed by construction. Moreover, the local linear indepen-
dence is inherited from the underlying B–spline bases, by subsequently discarding from
the hierarchical basis the set of basis functions selected in the previous steps which also
act only on the considered refined domain. By revisiting the classical construction of
hierarchical tensor-product splines, we discuss dimensions and bases of hierarchically
refined tensor-product B–spline spaces, showing how to construct bases which are non-
negative and locally supported. In [24] the possibility of modifying these bases to form
a partition of unity as well as their application for numerical simulation in isogeometric
analysis are investigated.

The structure of the paper is as follows. After briefly introducing some preliminary
notions in Section 2, we begin Section 3 by computing the dimension of the space of
piecewise polynomials of degree (d, d) with maximum order of smoothness defined on a
certain parametric domain, for then identifying a basis for this space in Section 4. This
result is generalized to the case of spline spaces, with the same smoothness properties as
before, defined on a nested sequence of these domains in Section 5. It is also shown that
the classical hierarchical B–spline basis is a basis for this hierarchy of spaces. A simple
refinement algorithm, based on the assumptions concerning the domain configuration
needed to obtain the dimension formula mentioned above, is presented in Section 6.
Finally, Section 7 concludes the paper.

2 Preliminaries

Let {V ℓ}ℓ=0,...,N−1 be a sequence of N nested tensor–product spline spaces so that

V ℓ ⊂ V ℓ+1,

for ℓ = 0, . . . , N − 2. We assume the degree and smoothness at each level ℓ equal to
(d, d) and (d − 1, d − 1), respectively. Each spline space V ℓ is spanned by a tensor–
product B–spline basis T ℓ defined on the two knot sequences Xℓ = {xℓ

i}i=0,...,p and
Y ℓ = {yℓ

j}j=0,...,q containing the horizontal and vertical knots, respectively. These knot
sequences, defined by only single knots at all levels, are also nested. In addition, we
consider a finite sequence of N nested bounded open sets {Ωℓ}ℓ=0,...,N−1 so that

Ωℓ ⊇ Ωℓ+1, (1)

for ℓ = 0, . . . , N − 1, with ΩN = ∅. At each level the boundary ∂Ωℓ is aligned with the
knot lines of V ℓ−1, ℓ = 1, . . . , N − 1, while ∂Ω0 is aligned with the knot lines of V 0.
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Moreover, we assume that

Ω0 ⊆ [x0
d, x

0
p−d]× [y0

d, x
0
q−d].

and we consider the support of any function f when restricted to the domain Ω0 by
defining

supp f = {(x, y) : f(x, y) 6= 0 ∧ (x, y) ∈ Ω0}.

The domain Rℓ = Ω0 \ Ωℓ+1 will be called a ring — even if it may not be ring–shaped
— because, conceptually, it represents Ω0 with an hole given by Ωℓ+1.

3 Dimension of bivariate tensor–product splines

In this section we derive the dimension formula of bivariate tensor–product splines on
the ring Rℓ for a fixed value of ℓ. The generalization of this result considering all the N
levels of the hierarchy is then presented in Section 5.

3.1 Residual and boundary data

Given a fixed level ℓ, we consider the space Sℓ of piecewise polynomials of degree (d, d)
which are Cd−1 smooth on the grid obtained by restricting the grid of the background
space V ℓ = span T ℓ to Ω0 \ Ωℓ+1 for ℓ = 0, . . . , N − 1, i.e.,

Sℓ =
{

f ∈ Cd−1(Rℓ) ∧ f ∈ V ℓ
}

.

We denote with B and L the point sets composed by all the bottom and left edges
which belong to Rℓ. Let B1, . . . , Bh and L1, . . . , Lv be the horizontal and vertical elemen-
tary segments in which the bottom and left boundaries of the domain are subdivided.
The bottom and left edges B and L can then be expressed as

B =

h
⋃

i=1

Bi, L =

v
⋃

j=1

Lj.

Definition 1. By denoting with Πd(P ) the space of polynomial functions of degree d
over P ⊂ R

2, we say that

F = (b1, . . . , bd, l1, . . . , ld, r)

where
bk : B → R, lk : L→ R, r : Rℓ → R,

with k = 1, . . . , d, so that, for all i = 1, . . . , h, j = 1, . . . , v and for each cell c of the grid
of Rℓ,

bk

∣

∣

Bi
∈ Πd(Bi), lk

∣

∣

Lj
∈ Π0(Lj), and r

∣

∣

c
∈ Π0(c),

is a vector of characteristic data.
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A vector F of characteristic data is obtained from a function f ∈ Sℓ by means of
the characteristic operator M as

F = M(f) = (b1, . . . , bd, l1, . . . , ld, r)

where

b1(x, y) = f(x, y)
∣

∣

B
, l1(x, y) =

∂d

∂yd
f

∣

∣

L

b2(x, y) =
∂

∂y
f(x, y)

∣

∣

B
, l2(x, y) =

∂

∂x

∂d

∂yd
f

∣

∣

L
,

...
...

bd(x, y) =
∂d−1

∂yd−1
f(x, y)

∣

∣

B
, ld(x, y) =

∂d−1

∂xd−1

∂d

∂yd
f

∣

∣

L
,

and

r(x, y) =
∂d

∂xd

∂d

∂yd
f(x, y)

∣

∣

c
for each cell c of the grid of Rℓ.

Definition 2. A vector F of characteristic data is said to be feasible if there exists
f ∈ Sℓ such that F = M(f).

Clearly, the set of feasible characteristic data forms a linear space. We can then
relate this space to the spline space Sℓ by means of the following proposition.

Proposition 3. The mapping M : Sℓ → F between the spline space and the space of
feasible characteristic data is an isomorphism of linear spaces.

Proof. For any point (x, y) ∈ Rℓ, consider the rays with directions (−1, 0) and (0,−1)
and let x̂ = x̂(x, y), ŷ = ŷ(x, y) be the horizontal and vertical coordinate of the inter-
section of these rays with the first vertical/horizontal boundary edge reached by them
(see Figure 1). We can relate a function f in Sℓ and a vector F of characteristic data
in terms of the following differentiation/integration process. First, we execute d vertical
differentiations

f(x, y) = b1(x, ŷ) +

∫ y

ŷ

∂

∂y
f(x, η)dη,

∂

∂y
f(x, y) = b2(x, ŷ) +

∫ y

ŷ

∂2

∂y2
f(x, η)dη,

...

∂d−1

∂yd−1
f(x, y) = bd(x, ŷ) +

∫ y

ŷ

∂d

∂yd
f(x, η)dη, (2)
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(x, y)

(x, ŷ)

(x̂, y)

Figure 1: The ring Rℓ = Ω0\Ωℓ+1 and its grid (left) and the identification of x̂ = x̂(x, y)
and ŷ = ŷ(x, y) introduced in the proof of Proposition 3.

where ŷ depends on (x, y), i.e., ŷ = ŷ(x, y). Then, we continue with d horizontal
differentiations

∂d

∂yd
f(x, y) = l1(x̂, y) +

∫ x

x̂

∂

∂x

∂d

∂yd
f(ξ, y)dξ,

∂

∂x

∂d

∂yd
f(x, y) = l2(x̂, y) +

∫ x

x̂

∂2

∂x2

∂d

∂yd
f(ξ, y)dξ,

...

∂d−1

∂xd−1

∂d

∂yd
f(x, y) = ld(x̂, y) +

∫ x

x̂

r(ξ, y)dξ, (3)

where x̂ depends on (x, y), i.e., x̂ = x̂(x, y). Hence, starting from a function f ∈
Sℓ, we may identify the associated feasible characteristic data F simply by means of
Definition 2. On the other hand, starting with the set of constant values r(x, y), which
represent the derivative of order d in both directions, and with the following partial
derivatives defined by the functions b1, . . . , bd and l1, . . . , ld, we can reconstruct f by
executing the above mentioned sequence of integrations in reverse order.

3.2 Maximum horizontal components

We now need to specify the continuity conditions that a subset of characteristic data
have to satisfy in order to be properly associated with a function f in Sℓ by the mapping
M as described in the previous Lemma. We may observe that the functions b1, . . . , bd

are inter–dependent connected to each other (a Cd−1 connection is required in anyone
of the h−1 joint points along the horizontal direction), while the constants l1, . . . , ld are
not (the C−1 connection is automatically achieved in anyone of the v − 1 joint points
along the vertical direction). In order to count the required conditions to impose we
need the following definition.
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Definition 4. A connected horizontal component (HC) is a component of the bottom
boundary composed of adjacent horizontal segments connected by only vertical edges. It
is said to be a maximum HC (MHC) if it is not contained in any other HC.

Each horizontal pair of adjacent elementary segments which belong to any MHC of
the considered domain can be joined together according to one of the three cases shown
in Figure 2 and indicated as flat join, step up join, and step down join.

y0 ≡ y1

Bi

Bi

Bi Bi+1

Bi+1

Bi+1
y0

y0

y1 y1

Figure 2: Joins between adjacent elementary segments: flat join (left), step up join
(center), and step down join (right).

For any function b1, . . . , bd, we may require the needed continuity in all the inner
connection points of each MHC as a Cd−1 join between

bk

∣

∣

Bi
+ vi

k and bk

∣

∣

Bi+1
+ ui+1

k at π(Bi) ∩ π(Bi+1),

for i = 1, . . . , h− 1, where

vi
k = 0, ui

k = 0, in case of a flat join, (4)

vi
k =

∫ y1

y0

∂k−1

∂yk−1
f(x, η)dη, ui

k = 0, in case of a step up join, (5)

vi
k = 0, ui

k =

∫ y1

y0

∂k−1

∂yk−1
f(x, η)dη, in case of a step down join. (6)

The contribution – in terms of degrees of freedom – of all the MHCs which composed
the bottom boundary of the given domain is then specified in the following Lemma.

Lemma 5. The number of degrees of freedom associated with an MHC composed of e
elementary horizontal segments is d(e + d).

Proof. For any function bk, k = 1, . . . , d,

bk

∣

∣

B1
+ v1

k has to have a Cd−1 joint with bk

∣

∣

B2
+ u2

k at π(B1) ∩ π(B2),

bk

∣

∣

B2
+ v2

k has to have a Cd−1 joint with bk

∣

∣

B3
+ u3

k at π(B2) ∩ π(B3),

and so on until

bk

∣

∣

Be−1
+ ve−1

k and bk

∣

∣

Be
+ ue

k at π(Be−1) ∩ π(Be),

where ui
k, v

i
k are defined by (4)–(6) for i = 1, . . . , e. Since these relations only involve

polynomial functions over the elementary segments B1, . . . , Be, by using polynomial
extrapolations we can equivalently expressed the above smoothness conditions as

ci−1
k has to have a Cd−1 joint to ci

k at π(Bi−1) ∩ π(Bi)
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for i = 1, . . . , e, where

ci
k = bk

∣

∣

Bi
+

i−1
∑

s=1

(us+1
k − vs

k).

Hence,
(

ci
k

)

i=1,...,e
form a Cd−1 polynomial spline with e + d degrees of freedom.

3.3 Construction of feasible characteristic data

In order to extend this result to more than one MHC we have to consider the following
three types of MHCs (see also Figure 3).

(a) MHC not subject to boundary conditions;

(b) MHC with one boundary condition (on its left–hand or right–hand side);

(c) MHC with two boundary conditions.

Figure 3: Classification of horizontal components: MHC not subject to boundary con-
ditions (blue lines on the left), MHC with one boundary condition (cyan lines on the
left), MHC with two boundary conditions (pink lines on the left). Also shown is the
distinction between upper and lower MHCs (in magenta and green, respectively, on the
right) introduced in Lemma 9.

We may observe that we can always split the bottom boundary of the domain in a
unique sequence of MHCs. Moreover, as outlined by the following Lemma, at least one
of the MHCs in this sequence is not subject to boundary conditions when considered
in the vertical integration process described in the proof of Lemma 3. We will indicate
an MHC of this type as independent. An independent MHC is obviously left free (no
boundary conditions on left side) and right free (no boundary conditions on right side).

Lemma 6. There always exists at least one independent MHC in the bottom boundary
of the domain.
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Proof. Assume that no MHC is both left and right free. The leftmost corner of the
bottom boundary of the domain is necessarily left free. Since the corresponding leftmost
MHC cannot be also right free, the second leftmost MHC along the bottom boundary
of the domain is also left free. Again, this second MHC cannot be also right free. We
may then continue until we arrive at the rightmost MHC along the bottom boundary.
However, this last MHC is necessarily also right free. This contradicts our assumption.

An independent MHC imposes boundary conditions on other MHCs and its shadow
(see Figure 4) decreases the domain. We are then able to describe a recursive algorithm
to define feasible characteristic data for the integration process described in the proof
of Lemma 3. We start from any of the independent MHCs which are present in the the
considered domain. In view of the previous Lemma, at least one of them always exists.

Algorithm 7.

Input: a domain Ω, a constant value r for each cell of Ω, the functions lk, k = 1, . . . , d,
on the vertical edges of the left boundary of Ω.

1. Evaluate, via equations (3),

∂d−1

∂xd−1

∂d

∂yd
f(x, y), . . . ,

∂

∂x

∂d

∂yd
f(x, y),

∂d

∂yd
f(x, y),

2. let Ω be the initial sub–domain not subject to boundary conditions;

3. select an independent MHC with respect to the current sub–domain;

4. for k = d, . . . , 1

(a) choose bk on the selected MHC by taking into account possible boundary
conditions of adjacent sub–domains (see below),

(b) evaluate, via equations (2),

∂k−1

∂yk−1
f(x, y),

in its shadow and determine boundary conditions on adjacent MHCs which
will be considered by neighboring sub–domains – see Figure 4;

5. reduce/split the current sub–domain by deleting the shadow of the selected MHC.
This gives a set of sub-domains;

6. if the set of sub-domains is not empty then apply recursively step 3–5 to each
sub-domain identified in step 51.
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Figure 4: Boundary conditions computation with Algorithm 7. At each step the shadow
of the selected independent MHC decreases, and eventually also splits, the domain.

Output: a set of feasible characteristic data and a corresponding spline function f on Ω.

We may observe that, for any MHC composed by e horizontal elementary segments,
we have e + d degrees of freedom (see the proof of Lemma 9 for the details). To impose
the smoothness conditions as required by the integration process described above, when
we consider a MHC with 2 boundary conditions, we have e+d degrees of freedom minus
a term of 2d given by the left and right boundary conditions. This leads to e−d degrees
of freedom, and then the length e of the MHC has to be greater or equal to d. We are
then led to formulate the following assumption.

A0 The length (number of elementary horizontal segments) of any (lower) maximum
horizontal component with two boundary conditions is at least d.

Lemma 8. If assumption A0 is satisfied, algorithm 7 gives feasible characteristic data
(boundary conditions) for the integration process described in the proof of Lemma 3.

This can be proved easily by analyzing Algorithm 7.

3.4 Dimension formula

By firstly assuming the absence of holes, in view of the previous analysis, the bottom
boundary is composed of:

1The values obtained in step 4 are used as boundary conditions on the remaining sub–domains.
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1. one MHC of type (a), i.e., no boundary conditions – this is the one that, according
to Lemma 6, always exists,

2. an arbitrary number of type (b) MHCs, i.e., one boundary condition,

3. a remaining arbitrary equal number of type (a) and (c) MHCs, i.e., zero and two
boundary conditions, respectively.

Hence, the invariant property of the bottom boundary is that for each (c) there is always
an (a). Let hi be the number of elementary horizontal segments that compose one MHC.
In the case of an MHC of type (a), the considered horizontal component contributes hi+d
degrees of freedom, while in case (b) we have to consider the d conditions to obtain a
Cd−1 join on its left or right boundary, leading to hi + d− d = hi. In case (c), instead,
we have to take into account the d conditions to obtain a Cd−1 join both on the left
and right boundary of the MHC, leading to hi + d− 2d = hi − d. The total number of
degrees of freedom associated with the bottom boundary of the domain is then always
∑

hi + d, as confirmed by the following Lemma.

Lemma 9. Let C be the number of connected components of Rℓ. If the considered
domain does not exhibit holes, each one of the the d vertical integrations contributes

# of horizontal segments + Cd

degrees of freedom.

Proof. We consider upper MHC and lower MHC (UMHC and LMHC) as shown on the
right of Figure 3, and assume that the boundary is oriented counterclockwise. UMHC
and LMHC alternate along the boundary. Between neighboring MHC, the boundary
makes either a left turn or a right turn, both by 180 degrees. The total number of left
turns is equal to the total number of right turns plus 2C, because the boundary of any
connected components of Rℓ is a simple closed curve and the rotation index is therefore
1. We may observe that, if a LMHC follows

• a left turn, then there is no boundary condition on the left-hand side;

• a right turn, then there is one.

On the other hand, if a LMHC is followed by

• a left turn, then there is no boundary condition on its right-hand side;

• a right turn, then there is one.

For a LMHC with hi edges, we have (d + 1)hi − d(hi − 1) = hi + d degrees of freedom.
If we have t LMHC, then will have 2t left turns or right turns, hence we have t + C left
turns and t− C right turns. Each right turn imposes one boundary condition, hence it
reduces the number of degrees of freedom by d. Summing up, we get

t
∑

i=1

(hi + d)− (t− C)d =
t

∑

i=1

hi + td− td + Cd =
t

∑

i=1

hi + Cd

degrees of freedom.
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To relax the restriction related to the absence of holes and analyze how this influences
the number of available degrees of freedom, we assume the boundaries of the holes are
oriented counterclockwise as we already did for the boundary of the domain. Since the
outer boundary of the hole is obviously inside the parametric domain, the distinction
between lower and upper maximum connected horizontal component is now reversed –
see again Figure 3. This implies that, in this case, a left turn before or after an MHC
is the one which imposes a boundary condition on the left–hand side or right–hand
side of the considered horizontal component. For an LMHC with hi edges, we have
(d + 1)hi − d(hi − 1) = hi + d degrees of freedom as before. Again if we have t LMHC,
then will have 2t left turns or right turns, hence we have t + 1 left turns and t− 1 right
turns. Each left turn imposes one boundary condition, hence it reduces the number of
degrees of freedom by d. Summing up we get

t
∑

i=1

(hi + d)− (t + 1)d =

t
∑

i=1

hi + td− td− d =

t
∑

i=1

hi − d

degrees of freedom.

Remark 10. If the considered domain is characterized by one or more holes, for each
of the d vertical integrations, any hole reduces the total degrees of freedom by d.

Theorem 11. If assumption A0 is satisfied, the dimension of the space Sℓ is given by

D = c +
p

2
d + Cd2 −Hd2, (7)

where c is the number of cells of the domain, p the number of cells along its perimeter,
C the number of connected components of the domain, and H the number of holes.

Proof. The first contribution simply arises from the c constant values for r(x, y) that
we associate to each cell of the considered domain. For each left edge considered in
the d horizontal integrations, the involved partial derivatives l1, . . . , ld are constant with
respect to the variable y. This leads to d times one degree of freedom for each vertical
segment on the left boundary. The contribution to the available degrees of freedom
which arises from the d vertical integrations is slightly more involved. However, we
know from the previous analysis that is equal to d(h + Cd−Hd) for a domain with C
connected components and H holes. We may then conclude that the dimension of the
space generated by the set of feasible characteristic data is

c + d (v + h + Cd−Hd) = c + d
p

2
+ Cd2 −Hd2,

which directly leads to (7).

Remark 12. When C = 1 and H = 0, the value of D in (7) reduces to the dimension
of bivariate tensor–product splines, defined by only single knots, on a rectangular grid,
namely D = (h + d)(v + d) = hv + (h + v)d + d2 = c + p

2d + d2.
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4 Tensor–product spline bases

In this section we prove that the number of tensor product B–splines of degree (d, d)
defined by only single knots in both directions and whose support overlaps a given
domain is also equal to D. We focus again on the ring Rℓ = Ω0 \Ωℓ+1 for a fixed level ℓ.

4.1 Offset to a domain

By considering the cells which belong to the the grid of Rℓ or to the extension of this
grid outside the boundary of this ring, let Rℓ

k be the offset region at distance k from Rℓ

so that

Rℓ
0 = {cells inside Rℓ which have at least one point along the boundary of Rℓ},

Rℓ
k+1 = {cells 6⊆ Rℓ

k which have at least one point in common with Rℓ
k}.

We introduce the definitions of the offset curve to the ring Rℓ at a certain distance and
of its length.

Definition 13. The offset curve to the ring Rℓ is the piecewise linear curve defined
as follows.

(I) C0, the offset curve at distance 0, is the boundary of the ring.

(II) Given the offset regions Rℓ
k and Rℓ

k+1 for k ∈ Z
+,

(a) Rℓ admits offset at distance k + 1
2 if any cell in Rℓ

k+1 is related to Rℓ
k through

one of the three connections shown in Figure 5; if this is the case, the off-
set curve at distance k + 1

2 , indicated as Ck+ 1

2

, is the piecewise linear curve

obtained by collecting together the contributions of any cell as shown in Fig-
ure 5;

(b) Rℓ admits offset at distance k +1 if the relationship between any cell in Rℓ
k+1

and Rℓ
k falls into one of the three cases shown in Figure 6; if this is the case,

the offset curve at distance k + 1, indicated as Ck+1, is the piecewise linear
curve defined by the exterior boundary of Rℓ

k+1.

If condition (a) or (b) in the above Definition is not satisfied, then the ring Rℓ does
not admit an offset at distance greater or equal to k + 1

2 or k + 1, respectively. These
conditions allow to guarantee that the piecewise linear curve which defines the offset at
a certain distance is self–intersection free. This property is needed to ensure that the
basis counting we are going to introduce is always feasible. Figure 7 shows a simple
example of offset region and offset curve to the ring considered in Figure 3.

We may observe that, in our case of degree d and only single knots at all levels, the
support of any B–spline is always composed by (d + 1) × (d + 1) elementary cells of
the parametric grid. If the degree d is even, we can then identify each basis function
with the central elementary cell of its support. When the degree d is odd, instead, we
may identify each basis function with the center of its support. These naive anchors are

13



Rℓ
k

Rℓ
k

Rℓ
k

Cℓ

k+ 1

2

Cℓ

k+ 1

2

Cℓ

k+ 1

2

Figure 5: Admissible connections between a cell of Rℓ
k+1 and the offset region Rℓ

k for

defining the offset at distance k+ 1
2 : one point (left), one side (center), and two adjacent

sides (right). The piecewise linear contributions to the offset curve with respect to any
of the three cases are also shown (magenta line).

Rℓ
k

Rℓ
k

Rℓ
k Cℓ

k+1

Cℓ
k+1

Cℓ
k+1

Figure 6: Admissible connections between a cell of Rℓ
k+1 and the offset region Rℓ

k for
defining the offset at distance k + 1: two free sides (left), one free side (center), and one
free point (right). The piecewise linear contributions to the offset curve with respect to
the three admissible cases are also shown (magenta line).

called odd and even depending on the degree. They are shown in Figure 8 for the first
four low degree cases.

Definition 14. The length of an offset curve is the number of odd or even anchors
that hit the offset itself.

Let C∗
k be the offset at distance k to a connected component of the ring or to one of

its hole. We define extremal corners of C∗
k the following four corners:

• the highest p and the lowest x of the leftmost corners of C∗
k ,

• the highest q and the lowest y of the rightmost corners of C∗
k ,

The remaining part of C∗
k is characterized by a certain number of left corners (Lc) and

right corners (Rc) which, should increase or decrease, the length of Ck by two or one, in
order to compute the length of Ck+1 or Ck+ 1

2

, respectively (see Figure 9). Using similar

arguments as in the proof of Lemma 9, we may observe that the invariant property of a
domain composed by C connected components, H holes, l left turns and r right turns,
is that

l − r = 4C − 4H. (8)

When C∗
k is the offset to a connected component of the boundary, assuming C∗

k to
be counterclockwise oriented, the number of left corners always exceeds the number of
right corners by 4 (see Figure 10). When C∗

k is the offset to a hole, in order to keep the

14



Figure 7: Offset region Rℓ
1 (hatched cells on the left) to the ring Rℓ considered in

Figure 3, and the corresponding offset curve C 1

2

(magenta line on the right). According

to Definition 13, Rℓ does not admit an offset at distance greater than 1
2 .

Figure 8: Basis functions representation in terms of odd (d = 1, 3, . . .) and even (d =
2, 4, . . .) anchors. From left to right: d = 1, 2, 3, 4.

Ck

Ck

Ck
Ck

Ck+1

Ck+1

C
k+ 1

2

C
k+ 1

2

→

→

←

←

↓

↓

↓ ↓

Lc : Lk → Lk+1 ⇒ +2 Lc : Lk → L
k+ 1

2

⇒ +1Rc : Lk → Lk+1 ⇒ −2 Rc : Lk → L
k+ 1

2

⇒ −1

Figure 9: Classification of the corners along the offset curve and influence on the com-
putation of the length according to Definition 14.

classification of the corners shown in Figure 9) still valid, we assume C∗
k to be clockwise

oriented. In this case, the number of right corners always exceeds the number of left
corners by 4 (see again Figure 10). In both cases the number 4 is given by the extremal
corners of the piecewise linear curve. This explains the terms +4C and −4H in equations
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Rc

Rc

RcRc
Rc

Rc

Rc

Rc

Rc

Rc

Rc
Rc

Rc

Rc

Rc

Rc

LcLc

Lc

Lc

Lc

Lc

Lc

Lc

Lc

Lc

Lc
LcLc

Lc

LcLc

→

→

→

→→→

←

←

←

←

↓

↓

↓

↓↓

↑
↑

↑

↑

↑

Figure 10: Corner classification for the ring of Figure 3: distinction between left (Lc)
and right (Rc) corners. In this case: C = H = 1, Lc = Rc = 16, and L0 = L 1

2

= 138.

(8).

Lemma 15. The length of the offset curve to the ring can be recursively computed as
follows.

(I) Base case: the length of C0 is equal to the perimeter of the ring, i.e., L0 = p.

(II) Recursive case: given the length of the offset curve at distance k ∈ Z
+, indicated

as Lk,

Lk+ 1

2

= Lk + 4C − 4H, Lk+1 = Lk + 8C − 8H. (9)

Proof. In virtue of Figure 9, we have

Lk+1 = Lk + 2(l − r), Lk+ 1

2

= Lk + l − r.

By substituting (8) into the above relations, we obtain the two recursive equations in
(9).

We may observe that

Lk = p + 8k(C −H), Lk+ 1

2

= p + 4(2k + 1)(C −H).

From the above relations we can compute the two sums
n

∑

k=0

Lk = (n + 1)p + 4n(n + 1)(C −H), (10)

n
∑

k=0

Lk+ 1

2

= (n + 1)p + 4(n + 1)2(C −H), (11)

which will be used in the proof of Theorem 17.
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4.2 Basis functions enumeration

According to the previous analysis, the second assumption on the domain configuration
is as follows.

A1 The ring Rℓ admits offsets at distance less or equal to (d− 1)/2.

This means that even degrees d = 2n require offset at distances n− 1
2 , while odd degrees

d = 2n + 1 require offsets at distances n.
Let an offset–segment be the segment between two consecutive odd or even anchors

along the offset curve at distance k or k + 1
2 , respectively, for any k = 0, 1, . . .. We

may observe that the offsetting procedure preserves the number of MHCs. This means
that for any MHC along the ring Rℓ there exists a corresponding MHC along each offset
curve that the ring admits. Moreover,

• for any lower MHC along Rℓ composed by n elementary horizontal segments, the
corresponding MHC along the offset curve at distance (d − 1)/2 is composed by
m = n− (d− 1) offset–segments;

• for any upper MHC along Rℓ composed by n elementary horizontal segments, the
corresponding MHC along the offset curve at distance (d − 1)/2 is composed by
m = n + (d− 1) offset–segments.

Remark 16. If the ring Rℓ satisfies condition A1, then it also satisfies condition A0.

Proof. If the domain admits offsets at distance less or equal to (d− 1)/2, the number m
of offset–segments along any MHC along the offset curve at distance (d − 1)/2, which
corresponds to a lower MHC along the boundary of Rℓ, is at least 1. The number
n = m + d− 1 of elementary horizontal segments which compose this lower MHC along
Rℓ is then greater or equal to d.

We can formalize the counting of basis functions whose support has some non–empty
intersections with the ring Rℓ as follows.

Theorem 17. The number of basis functions in the set

T = {τ : τ ∈ T ℓ ∧ supp τ ∩Rℓ 6= ∅}

is equal to D (see Theorem 11) provided that assumption A1 holds. In this case, T is a
basis of Sℓ.

Proof. As shown in Figure 8 for the low degree cases, if the degree is even, i.e., d = 2n,
we identify each basis function with the central elementary cell of its support. The total
number of basis functions in T ℓ whose support intersects with Ω0 \ Ωℓ+1 is given by

c +

n−1
∑

k=0

Lk+ 1

2

(12)
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(a) First term in (12). (b) Second term in (12) for d = 2. (c) Second term in (12) for d = 4.

Figure 11: Number of tensor–product B–splines of degree 2 and 4 whose supports inter-
sect the domain.

The first term counts all the basis function centered in a cell inside the domain. The
second term instead counts each cell centered along offset curves at distances

1

2
, 1 +

1

2
, . . . , n−

1

2
.

The support of B–splines centered on the cells along these offset curves overlaps with
the domain (see also Figure 11). By substituting (11) into (12), we obtain

c + np + 4n2(C −H) = c +
d

2
p + 4

(

d

2

)2

(C −H) = D.

As already mentioned, when the degree d is odd, i.e., d = 2n + 1, we identify each basis
function with the center of its support. The total number of basis functions in T ℓ which
intersect with Ω0 \ Ωℓ+1 is given by

(

c−
p

2
+ C −H

)

+

n
∑

k=0

Lk (13)

The first term counts all the basis function centered in a grid point inside the domain.
The second term counts each cell centered along offset curves at distances

0, 1, . . . , n,

i.e. that overlaps with the domain (see also Figure 12). By substituting (10) into (13),
we obtain

c +

(

n +
1

2

)

p + [4n(n + 1) + 1](C −H) = c +
d

2
p + 4

(

d

2

)2

(C −H) = D.

Obviously, the functions in T are linearly independent, hence they form a basis of Sℓ.

Figure 13 shows some admissible and non–admissible domain configurations.
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(a) First term in (13). (b) Second term in (13) for d = 3.

Figure 12: Number of tensor–product B–splines of degree 3 whose supports intersect
the domain.

Figure 13: Examples of admissible (top) and non–admissible (bottom) domain configu-
rations for d = 2.

5 The hierarchical space and its basis

Starting from the analysis of the previous section, we can now consider piecewise poly-
nomial spaces of degree d and regularity d−1 defined on the nested sequence of domains
introduced in (1).

5.1 Definition of the space

To generalize the previous results by considering all the levels of the hierarchy, we
consider a function f in the space

W =
{

f ∈ Cd−1(Ω0) ∧ f
∣

∣

Rℓ ∈ V ℓ, ℓ = 0, . . . , N − 1
}

.
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We assume that all rings Rl = Ω0 \Ωℓ+1, for ℓ = 0, . . . , N − 1, satisfy the condition A1
introduced in Section 3 with respect to the grid of V ℓ.

5.2 Hierarchical decomposition

The restriction of f to the ring R0 = Ω0 \ Ω1 can be expressed as a linear combination
of the basis functions in T 0 also restricted to this ring, namely

f
∣

∣

R0 =
∑

τ∈T 0, supp τ∩R0 6=∅

cττ
∣

∣

R0 .

We can then define a corresponding function f0, together with a residual function r0,
as

f0 =
∑

τ∈T 0, supp τ∩R0 6=∅

cττ, r0 = f − f0,

so that
f0

∣

∣

R0 = f
∣

∣

R0 , r0
∣

∣

R0 = 0. (14)

From the dimension formula derived in the previous sections, the restriction of r0 to
R1 = Ω0 \Ω2 can then be expressed as a linear combination of the basis functions in T 1

also restricted to this ring, namely

r0
∣

∣

R1 =
∑

τ∈T 1, supp τ∩R1 6=∅

cτ τ
∣

∣

R1 . (15)

Let τ̂ be a basis function in T 1 for which supp τ̂ ∩ R0 6= ∅. According to (14), when
we consider the sum on the right–hand side of (15) restricted to a cell c of the grid
associated to T 1 which also belongs to supp τ̂ ∩R0, we obtain

∑

τ∈T 1

cτ τ
∣

∣

c
= 0.

All the basis function that are non–zero on the cell c are there locally linearly indepen-
dent and the function τ̂ is one of them. This implies that cτ̂ = 0 and, consequently,
relation (15) reduces to

r0
∣

∣

R1 =
∑

τ∈T 1, supp τ ∩Ω1\Ω2 6=∅, supp τ⊆Ω1

cτ τ
∣

∣

R1 .

Let f1 and r1 be

f1 =
∑

τ∈T 1, supp τ ∩Ω1\Ω2 6=∅, supp τ⊆Ω1

cτ τ, r1 = f − f1 − f0.

They satisfy
(

f1 + f0
)
∣

∣

R1 = f
∣

∣

R1 , r1
∣

∣

R1 = 0. (16)
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As before, the restriction of r1 to R2 = Ω0 \ Ω3 can then be expressed as a linear
combination of the basis functions in T 2 also restricted to this ring, namely

r1
∣

∣

R2 =
∑

τ∈T 2, supp τ ∩Ω2\Ω3 6=∅

cτ τ
∣

∣

R2 , (17)

which, in view of (16), using similar arguments as before reduces to

r1
∣

∣

R2 =
∑

τ∈T 2, supp τ ∩Ω2\Ω3 6=∅, supp τ⊆Ω2

cτ τ
∣

∣

R2 . (18)

Let f2 and r2 be

f2 =
∑

τ∈T 2, supp τ ∩Ω2\Ω3 6=∅, supp τ⊆Ω2

cττ, r2 = f − f2 − f1 − f0,

so that
(

f2 + f1 + f0
)∣

∣

R2 = f
∣

∣

R2 , r2
∣

∣

R2 = 0. (19)

By iterating this argument for all the N levels of the hierarchy, we obtain

fN−1 =
∑

τ∈T N−1, supp τ ∩ΩN−1\ΩN 6=∅, supp τ⊆ΩN−1

cτ τ,

and
rN−1 = f − fN−1 − . . .− f2 − f1 − f0,

so that
(

fN−1 + . . . + f2 + f1 + f0
)
∣

∣

RN−1 = f
∣

∣

RN−1 ,

and, since ΩN = ∅, i.e., RN−1 = Ω0 \ ΩN = Ω0,

rN−1
∣

∣

RN−1 = rN−1
∣

∣

Ω0 = 0.

This leads to

f =
N−1
∑

i=0

f ℓ. (20)

5.3 The Kraft basis

The selection mechanism for the underlying tensor product B–spline bases T 0, . . . , TN−1

introduced in Section 5.2, is summarized in the following definition, and generalizes
the hierarchical B–spline basis originally introduced by Kraft in [12], where, for any
hierarchical level, only sub–domains with disjoint boundaries defined as union of B–
splines supports of the previous level were considered.

Definition 18. The hierarchical basis K is defined as

K =
N−1
⋃

ℓ=0

{

τ : τ ∈ T ℓ ∧ supp τ ⊆ Ωℓ ∧ supp τ 6⊆ Ωℓ+1
}

.
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At all levels ℓ, the support of the selected functions τ ∈ T ℓ, which are newly added
to the hierarchical basis Kℓ, is entirely contained in the corresponding domain Ωℓ but
not in Ωℓ+1. These basis functions satisfy the following two conditions

supp τ ∩Rℓ−1 = ∅ and supp τ ∩
(

Ωℓ \ Ωℓ+1
)

6= ∅.

The refined domain Ωℓ+1 is then covered by basis functions τ ∈ T ℓ+1. As proved in
Theorem 19, the linear independence of the basis K is preserved by this construction.

Theorem 19. If assumption A1 on the domain configuration holds, K is a basis of the
space W .

Proof. We have to prove that

1. any f ∈W belongs to the span of K,

2. the basis functions in K are linearly independent, i.e.,
∑

τ∈K

dττ = 0 ⇒ dτ = 0 ∀τ ∈ K. (21)

The first statement above follows directly from the hierarchical decomposition developed
in Section 5.2. From equation (20) we obtain

f = f0 + f1 + . . . + fN−1

=
∑

τ∈T 0, supp τ 6=∅

cτ τ +
∑

τ∈T 1, supp τ⊆Ω1\Ω2

cττ + . . . +
∑

τ∈T N−1, supp τ⊆ΩN−1

cτ τ,

where

f
∣

∣

Rℓ =

ℓ
∑

i=0

f i
∣

∣

Rℓ ∈ V ℓ,

for ℓ = 0, . . . , N − 1, and then f ∈ span W .
To prove the second statement, we may observe that the sum in (21) can be re-

arranged by separating the basis functions of the hierarchical basis which come from
different levels of the underlying sequence {T ℓ}ℓ=0,...,N−1 as

∑

τ∈K∩T 0

dτ τ +
∑

τ∈K∩T 1

dτ τ + . . . +
∑

τ∈K∩T N−1

dττ = 0 .

Considering all basis functions in the first sum of the above sequence, we may observe
that these are the only non–zero functions on the ring defined by Ω0\Ω1. Now, since this
set of basis function given by K∩T 0 is just a subset of T 0, the functions that it contains
are locally linearly independent on Ω0 \ Ω1 and then, each coefficient dτ associated to
a basis function τ ∈ K ∩ T 0 is zero. In the same way, the functions in K ∩ T 1 are
linearly independent. Except for functions in K ∩ T 0, only these functions are non-zero
on Ω1 \ Ω2. Again, in view of their local linear independence, this implies that dτ = 0
for τ ∈ K ∩ T 1, and the same can be said for the next levels of the hierarchy.
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6 A simple refinement algorithm

We assume that, for any level, the number of cells in each direction, is a multiple of d.
By denoting as d–grid of level ℓ the aligned disjoint boxes composed of d× d cells with
respect to the grid of V ℓ (see Figure 14), a naive algorithm to guarantee satisfaction of
assumption A1 is based on the following observation.

(a) Grid of level 0. (b) 2–grid of level 0.

(c) Grid of level 0,1. (d) 2–grid of level 0,1.

(e) Grid of level 0,1,2. (f) 2–grid of level 0,1,2.

Figure 14: Grid and d–grid.

Remark 20. If Ωℓ+1, for ℓ = 0, . . . , N − 2, can be decomposed into a d–grid of level ℓ,
then assumption A1 is satisfied.
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A simple refinement procedure based on the above observations may be summarized
as follows.

Algorithm 21.

Input:

I1 A nested hierarchy of domains
{

Ωℓ
}

ℓ=0,...,N
so that

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN ,

where each Ωℓ can be decomposed into a d–grid of level ℓ and ΩN = ∅;

I2 a subset Φ ⊆ Ωℓ of cells marked to be refined.

1. Ω̂0 = Ω0;

2. for ℓ = 0, . . . , N − 1
Ω̂ℓ+1 = Ωℓ+1 ∪ C

where C is the union of all the cells c which belong to the d–grid of level ℓ so that
c ∩ Φ 6= ∅;

Output: the enlarged hierarchy of domains {Ω̂ℓ}ℓ=0,...,N so that

Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N ,

where each Ω̂ℓ ⊇ Ωℓ is the union of disjoint boxes composed by d× d cells with respect
to the grid of V ℓ−1.

Example 22. By considering the input data shown in Figure 15 with d = 2, the
application of steps 2 of Algorithm 21 requires the three following iterations:

• ℓ = 0: enlargement of Ω1 with 1 box composed by 2 × 2 cells with respect to the
grid of V 0 to define Ω̂1, see Figure 16 (a)–(b);

• ℓ = 1: enlargement of Ω2 with 2 boxes composed by 2× 2 cells with respect to the
grid of V 1 to define Ω̂2, see Figure 16 (c)–(d);

• ℓ = 2: definition of Ω̂3 as union of 2 disjoint boxes composed by 2 × 2 cells with
respect to the grid of V 2, see Figure 16 (e)–(f).
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(a) {Ωℓ}ℓ=0,1,2,3 with Ω3 = ∅. (b) Area selected to be refined: Φ.

Figure 15: Input data for Algorithm 21 considered in Example 22. The three domains
Ω0 (black), Ω1 (magenta), Ω2 (green) on the left, must be refined according to the subset
Φ of marked cells shown on the right (hatched region).

7 Closure

The dimension of smooth bivariate hierarchical tensor–product B–spline spaces defined
on general domains has been identified. A detailed analysis of the admissible domain
configurations covered by the proposed analysis has been presented, leading to the for-
mulation of assumption A1. This includes a simple algorithm which ensures the repeated
fulfillment of these condition during the refinement procedure. The development of a
more sophisticated algorithm based on weaker assumptions on the domain configuration
which allows anyway to satisfy condition A1 may be the subject of further studies.

The hierarchical basis can be suitably modified in order to define a piecewise polyno-
mial basis which is non–negative and consists of locally supported basis functions which
also form a partition of unity. The possibility of modifying the basis functions to define
a normalized weighted basis is discussed in [24].
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[24] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach
to adaptive local refinement in isogeometric analysis. Technical report, 2011. FB
Mathematik, TU Kaiserlautern.

28



Technical Reports of the Doctoral Program

“Computational Mathematics”

2011

2011-01 S. Takacs, W. Zulehner: Convergence Analysis of Multigrid Methods with Collective Point
Smoothers for Optimal Control Problems February 2011. Eds.: U. Langer, J. Schicho
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