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Abstract

In this paper, we present our initial results on the behavioral analy-
sis of computer algebra programs. The main goal of our work is to find
typing and behavioral errors in such programs by static analysis of the
source code. This task is more complex for widely used computer algebra
languages (Maple and Mathematica) as these are fundamentally different
from classical languages: for example they support non-standard types of
objects, e.g. symbols, unevaluated expressions, polynomials etc.; more-
over they use type information to direct the flow of control in the pro-
gram and have no clear difference between declaration and assignment.
For this purpose, we have defined the syntax and the formal type system
for a substantial subset of the computer algebra language Maple, which
we call MiniMaple. The type system is implemented by a type checker,
which verifies the type correctness and respectively reports typing errors.
We have applied the type checker to the Maple package DifferenceDiffer-
ential developed at our institute. Currently we are working on a formal
specification language of MiniMaple and the specification of this package.
The specification language will be used to find errors in computer algebra
programs with respect to their specifications.

*The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.
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1 Introduction

Computer algebra programs written in symbolic computation languages such
as Maple and Mathematica sometimes do not behave as expected, e.g. by
triggering runtime errors or delivering wrong results. There has been a lot of
research on applying formal techniques to classical programming languages, e.g.
Java [13], C# [3] and C [5] etc., but we aim to apply the same techniques
to computer algebra languages. Therefore our aim is to design and develop a
tool for the static analysis of computer algebra programs [23]. The tool will
find errors in programs annotated with extra information such as variable types
and method contracts [20], in particular type inconsistencies and violations of
method preconditions.

As a starting point, we have defined a subset of the computer algebra lan-
guage Maple called MiniMaple. Since type safety is a prerequisite of program
correctness, we have formalized a type system for MiniMaple and implemented
a corresponding type checker. The type checker has been applied to the Maple
package DifferenceDifferential [9] developed at our institute for the computation
of bivariate difference-differential dimension polynomials. Furthermore, we have
defined a specification language to formally specify the behavior of MiniMaple
procedures. As the next step, we will develop a tool to automatically detect
errors in MiniMaple programs with respect to their specifications.

Figure 1 gives a sketch of the final system (the verifier component is to be
developed); any MiniMaple program is parsed to generate an abstract syntax
tree (AST). The AST is then annotated by type information and used by the
verifier to check the correctness of a program. Error and information messages
are generated by the respective components.

There are various computer algebra languages, Mathematica and Maple be-
ing the most widely used by far [24], both of which are dynamically typed. We
have chosen in our work Maple for the following reasons:

e Maple has an imperative style of programming while Mathematica has a
rule-based programming style with more complex semantics.

e Maple has type annotations for runtime checking which can be directly
applied for static analysis. (There are also parameter annotations in Math-
ematica but they are used for selecting the appropriate rule at runtime).

Still the results we derive with type checking Maple can be applied to Mathe-
matica, as Mathematica has almost the same kinds of runtime objects as Maple.

During our study, we found the following special features for type checking
Maple programs (which are typical for most computer algebra languages):

e The language supports some non-standard types of objects, e.g. symbols,
unevaluated expressions and polynomials.

e There is no clear difference between declaration and assignment. A global
variable is introduced by an assignment; a subsequent assignment may
modify the type information for the variable.
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Figure 1: Sketch of the System

e The language uses type information to direct the flow of control in the
program, i.e. it allows some runtime type-checks which selects the re-
spective code-block for further execution. This makes type inference more
complex.

e The language allows runtime type checking by type annotations but these
annotations are optional which give rise to type ambiguities.

e Maple values are organized in a kind of polymorphic type system [6] with a
sub-typing relationship such that we can assign a value to different types.
This also makes type inference more complex.

The rest of the paper is organized as follows: in Section II, we describe
state of the art related to our work. In Section III, we introduce the syntax
for MiniMaple by an example. In Section IV, we explain our type system
for MiniMaple. In Section V, we discuss our formal specification language for
MiniMaple. Section VI presents conclusions and future work.

2 State of the art

In this section we first sketch state of the art of type systems for Maple and then
discuss the application of formal techniques to computer algebra languages.
Although there is no complete static type system for Maple; there have been
several approaches to exploit the type information in Maple for various purposes.
For instance, the Maple package Gauss [21] introduced parameterized types in
Maple. Gauss run on top of Maple and allowed to implement generic algorithms



in Maple in an AXIOM-like manner. The system supported parameterized types
and parameterized abstract types, however these were only checked at runtime.
The package was introduced in Maple V Release 2 and later evolved into the
domains package [1].

In [8], partial evaluation [25] is applied to Maple. The focus of the work
is to exploit the available type information for generating specialized programs
from generic Maple programs. The language of the partial evaluator has similar
syntactic constructs (but fewer expressions) as MiniMaple and supports very
limited types e.g. integers, rationals, floats and strings.

In comparison to the approaches discussed above, MiniMaple uses the type
annotations provided by Maple for static analysis. It supports a substantial
subset of Maple types in addition to named types.

Various specification languages have been defined to formally specify the
behavior of programs written in standard classical programming languages, e.g.
Java Modeling Language [13] for Java, Spec# [3] for C# and ACSL [5] for ANSI
C: these specification languages are used by various tools for extended static
checking [10] and verification [15, 11] of programs written in the corresponding
languages.

Also variously the application of formal methods to computer algebra has
been investigated. For example [12] applied the formal specification language
Larch [14] to the computer algebra system AXIOM respective its programming
language Aldor. A methodology for Aldor program analysis and verification
was devised by defining abstract specifications for AXIOM primitives and then
providing an interface between these specifications and Aldor code. The project
FoCal.iZe [26] aims to provide a programming environment for computer algebra
to develop certified programs to achieve high levels of software security. The
environment is based on functional programming language FoCal [22], which
also supports some object-oriented features and allows the programmer to write
formal specifications and proofs of programs.

The work presented in [7] aims at finding a mathematical description of
the interfaces between Maple routines. The paper mainly presents the study
of the actual contracts in use by Maple routines. The contracts are state-
ments with certain (static and dynamic) logical properties. The work focused
to collect requirements for the pure type inference engine for existing Maple
routines. The work was extended to develop the partial evaluator for Maple
mentioned above [8]. The problem of statically type-checking MiniMaple pro-
grams is related to the problem of statically type-checking scripting languages
such as Ruby [16], but there are also fundamental differences due to the different
language paradigms.

The specification language for MiniMaple fundamentally differs from those
for classical languages such that it supports some non-standard types of ob-
jects, e.g. symbols, unevaluated expressions and polynomials etc. The language
also supports abstract data types, while the existing specification languages are
weaker in such specifications. In contrast to the computer algebra specification
languages above, our specification language is defined for the commercially sup-
ported language Maple, which is widely used but was not designed to support



static analysis (type checking respectively verification). The challenge here is
to overcome those particularities of the language that hinder static analysis.

3 MiwniMaple

MiniMaple is a simple but substantial subset of Maple that covers all the syn-
tactic domains of Maple but has fewer alternatives in each domain than Maple;
in particular, Maple has many expressions which are not supported in our lan-
guage. The complete syntactic definition of MiniMaple is given in [18]. The
grammar of MiniMaple has been formally specified in BNF from which a parser
for the language has been automatically generated with the help of the parser
generator ANTLR.
The top level syntax for MiniMaple is as follows:

Prog := Cseq;
Cseq := EMPTY | C,Cseq
C := .. | LIseq := E,FEseq | ...

A program is a sequence of commands, there is no separation between dec-
laration and assignment.

Listing 1 gives an example of a MiniMaple program which we will use in the
following sections for the discussion of type checking and behavioral specifica-
tion. The program consists of an assignment initializing a global variable status
and an assignment defining a procedure prod followed by the application of the
procedure. The procedure takes a list of integers and floats and computes the
product of these integers and floats separately; it returns as a result a tuple of
the products. The procedure may also terminate prematurely for certain inputs,
i.e. either for an integer value 0 or for a float value less than 0.5 in the list; in
this case the procedure computes the respective products just before the index
at which the aforementioned terminating input occurs.

In the procedure header, the variable status has no type information at
the “global“ declaration, because global variables cannot have type information
in Maple. In the body of the procedure, the local variables z, si and sf are
annotated with the types. In the body of the loop, the variable x can be of
type integer or float depending on the type of the selected element of the list;
respectively after the body of the loop z can have any of the two types (integer
or float) depending upon the execution of the corresponding if-else branch.

As one can see from the example, we make use of the type annotations that
Maple introduced for runtime type checking. In particular, we demand that
function parameters, function results and local variables are correspondingly
type annotated. Based on these annotations, we define

e a language of types and
e a corresponding type system

for the static type checking of MiniMaple programs.



1. status:=0;
2. prod := proc(l::list(Or(integer,float)))::[integer,float];

3 global status;

4 local i, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
5. for i from 1 by 1 to nops(l) do
6. x:=l[i;

7. status:=i;

8 if type(x,integer) then

9 if (x = 0) then

10. return [si,sf];
11. end if;

12. sii=si¥*x;

15. elif type(x,float) then

14. if (x < 0.5) then
15. return [si,sf];
16. end if;

17. sf:=sf*x;

18. end if;

19. end do;

20. status:=-1;

21. return [si,sf];

22. end proc;

23. result := prod[l, 8.54, 34.4, 6, 8.1, 10, 12, 5.4]);
2/. print(result);
25. print(status);

Listing 1: An example MiniMaple program

4 A Type System for MiniMaple

A type is (an upper bound on) the range of values of a variable. A type system
is a set of formal typing rules to determine the variables types from the text
of a program. A type system prevents forbidden errors during the execution
of a program [6]. It completely prevents the untrapped errors and also a large
class of trapped errors. Untrapped errors may go unnoticed for a while and later
cause an arbitrary behavior during execution of a program, while trapped errors
immediately stop execution.

A type system is a decidable logic with various kinds of judgments; for
example the typing judgment

7w+ E:(7)exp

can be read as “in the given type environment 7, F is a well-typed expression
of type 77. A type system is sound, if the deduced types indeed capture the
program values exhibited at runtime.

In the following we describe the main properties of a type system for Mini-
Maple. Subsection A sketches its design, subsections B and C discuss its formal
definition and subsection D presents its implementation and application. A
proof of the soundness of the type system is still open.



4.1 Design

MiniMaple uses Maple type annotations for static type checking, which gives
rise to the following language of types:

T ::= integer | boolean | string | float | rational | anything
| { T }|lst( T)|[ Tseq] | procedure[ T |( Tseq )
| I( Tseq ) | Or( Tseq ) | symbol | void | uneval | |

The language supports the usual concrete data types, sets of values of type
T ({ T}), lists of values of type T (list( T )) and records whose members have
the values of types denoted by a type sequence Tseq ([ Tseq ]). Type anything
is the super-type of all types. Type Or( Tseq ) denotes the union type of
various types, type uneval denotes the values of unevaluated expressions, e.g.
polynomials and type symbol is a name that stands for itself if no value has
been assigned to it. User-defined data types are referred by I while I( Tseq )
denotes tuples (of values of types Tseq) tagged by a name I.

A sub-typing relation (<) is defined among types, i.e. integer < rational
< ... < anything, such that integer is sub-type of rational and anything is
the super-type of all types.

In the following, we demonstrate the problems arising from type checking
MiniMaple programs using the example presented in the previous section.

4.1.1 Global Variables

Global variables (declarations) can not be type annotated; therefore to global
variables values of arbitrary types can be assigned in Maple. We introduce global
and local contexts to handle the different semantics of the variables inside and
outside of the body of a procedure respective loop.

e In a global context new variables may be introduced by assignments and
the types of variables may change arbitrarily by assignments.

e In a local context variables can only be introduced by declarations. The
types of variables can only be specialized i.e. the new value of a variable
should be a sub-type of the declared variable type.

e The sub-typing relation is observed while specializing the type of a vari-
able.

4.1.2 Type Tests

Maple supports type tests (type(,T)) to direct the control flow of a program.
Different branches of a conditional may have different pieces of type information
for the same variable. We keep track of the type information introduced by the
branches to allow only satisfiable tests and as a result we combine the types of
the variable from all the branches of a conditional. Our type system also allows
negation of a type test in conditional. Negation is only possible if the identifier



has a union type, i.e. Or(Tseq) as declared type, as a result we subtract the
(negated) type that appears in type test from the declared type.

For our example program our type system (described in the following) will
generate the type information depicted in Listing 2.

1. status:=0;

2. prod := proc(l::list(Or(integer,float)))::[integer,float];

3. # m={I:list(Or(integer,float))}

4 global status;

5. local i, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
6. # m={..., i:symbol, x:Or(integer,float),..., status:anything}
7. for i from 1 by 1 to nops(l) do
8 x:=l[i];
9

. status:=i;
10. # n={..., i:integer, ..., status:integer}
11. if type(x,integer) then
12. # w={..., Izinteger, x:integer, si:integer, ..., status:integer}
13. if (x = 0) then
14. return [si,sf];
15. end if;
16. si:=si*x;
17. elif type(x,float) then
18. # n={..., i:integer, x:float, ..., sf:float, status:integer}
19. if (x < 0.5) then
20. return [si,sf];
21. end if;
22. sf:=sf*x;
23. end if;
24. # m={..., i:integer, x:Or(integer,float),..., status:integer}
25. end do;
26. # m={..., i:symbol, x:Or(integer,float),..., status:anything}
27. status:=-1;
28. # m={..., i:symbol, x:Or(integer,float),..., status:integer}
29. return [si,sf];
30. end proc;

31. result := prod([1, 8.54, 34.4, 6, 8.1, 10, 12, 5.4]);
32. print(result);
33. print(status);

Listing 2: A MiniMaple procedure type-checked

The program is annotated with the type environment (a partial function) of
the form #m ={variable:type,...}. For example, the type environment at line 6
shows the types of the respective variables as determined by the static analysis
of parameter and identifier declarations (global and local).

The static analysis of the two branches of the conditional command in the
body of the loop introduces the type environments at lines 72 and 18 respec-
tively; the type of variable x is determined as integer and float by the condi-
tional type-expressions respectively.

There is more type information to direct the program control flow for an
identifier z introduced by an expression type(I,T) at lines 17 and 17.

By analyzing the conditional command as a whole, the type of variable z is
determined as Or(integer, float) (at line 24), i.e. the union type of the two
types determined by the respective branches.



The local type information introduced/modified by the analysis of body of
loop does not effect the global type information. The type environment at line
6 and 26 reflects this fact for variables status, i and z. This is because of the
fact that the number of loop iterations might have an effect on the type of the
variable otherwise and one cannot determine the concrete type by the static
analysis. To handle this non-determination of types we put a reasonable upper
bound (least fixed point) on the types of such variables. As a special case this
least fixed point is the type of a variable prior to the body of a loop. For example
take the following program (which is not correct according to our type system):

local x::list(anything), y::list(anything), a::integer, b::integer;

while a < b do

% X:=Y;

if type(x,list(anything)) then
J- yi=[x];

end if}
end do;

In this program, the number of loop iterations influence the types of variables
z and y at lines ¢ and j respectively. The static analysis of the loop would give
the following type information:

® iteration 1, r={x:list(anything), y:list(list(anything)) ,...}
® iteration 2, r={x:list(list(anything)), y:list(list(list(anything))),...}

After each iteration the types of variables z and y grow such that one cannot
determine the concrete types by the static analysis of the loop. To handle this
non-determination of types we put a reasonable upper bound on the types of
variables. This upper bound is the type of a variable prior to the body of a loop.
In other words, while analyzing the loop we ignore the new type information
introduced by the body of the loop.

4.2 Typing Judgments

In this subsection we explain the typing judgments for some expressions and
commands of MiniMaple. These judgments use the following kinds of objects
(“Identifier” and ”Type* are the syntactic domains of identifiers/variables and
types of MiniMaple respectively):

e 7: Identifier — Type: a type environment, i.e. a (partial) function from
identifiers to types.

e ¢ € {global, local}: a tag representing the context to check if the cor-
responding syntactic phrase is type checked inside/outside of the proce-
dure/loop.

e asgnset C Identifier: a set of assignable identifiers introduced by type
checking the declarations.

10



e cset C Identifier: a set of thrown exceptions introduced by type checking
the corresponding syntactic phrase.

e 7set C Type: a set of return types introduced by type checking the cor-
responding syntactic phrase.

e rflag € {aret, not_aret}: areturn flag to check if the last statement of every
execution of the corresponding syntactic phrase is a return command.

MiniMaple supports various types of expressions but boolean expressions
are treated specially because of the test type(I,T) that gives additional type
information about the expression. The typing judgment for boolean expressions

7w + E:(m)boolexp

can be read as ”with the given 7, F is a well-typed boolean expression with new
type environment 71 “. The new type environment is produced as a fact of type
test that might introduce new type information for an identifier.

The typing judgment for commands

7, ¢, asgnset b C:(my, Tset, eset, rflag)comm

can be read as ”in the given type environment 7, context ¢ and an assignable
set of identifiers asgnset, C is a well-typed command and produces (71, Tset,
eset, rflag) as type information”.

4.3 Typing Rules

In this subsection we explain some typing rules to derive typing judgments for
boolean expressions and commands. These typing rules use different kinds of
auxiliary functions and predicates as given below.

4.3.1 Auxiliary Functions

o update(w, (Id, Idseq), (1,7seq)): updates the type environment with the
given identifiers and their types.

e specialize(my,ma): specializes the identifiers of former type environment to
the identifiers in the latter type environment with respect to their corre-
sponding types.

e combine(m,m2): combines the identifiers in the two environments with
respect to their types.

e override(my,m2): overrides the identifiers of former type environment to
those in the latter type environment with respect to their corresponding

types.

o restrict(m,idset): restricts the type environment to only those variables
that are in the given set (of identifiers).

o superType(r1,72): returns the super-type between the two given types.

11



4.3.2 Auxiliary Predicates

e canSpecialize(m1,m2): returns true if all the common identifiers (in both
type environments) have a super-type between their corresponding types.

e matchType(T1,T2): returns true (in most cases) if the former type is general
(super) type than the latter type. Type anything matches every type
being the super-type of all types.

e isNotRepeated (I, Iseq): returns true if every identifier in the given se-
quence occurs only once in it.

o isAssignable((I, Iseq),s): returns true if all the identifiers in the given
sequence are also in the given set of identifiers s.

The typing rule for boolean expressions is as follows:

e type([,T)

7w I:(m)id
7w F T:(1)type
match Type(T1,72)
7w b type(L,T):({I:72 } ) boolexp

The phrase “type(I,T)* is a well-typed boolean expression if the declared
type of identifier (1) is the super-type of T (7). The boolean expression
may introduce new type information for the identifier.

Typing rules for assignment, conditional and loop commands are given be-
low.

o [ Iseq :== E, FEseq
For local context

m b I:(m)id
7 b Iseq:(Tseqq)idseq
isNotRepeated(I,Iseq)
7w E:(12)exp
7w b Eseq:(Tseqs)expseq
isAssignable((I1seq), asgnset)
matchTypeSeq((r1, Tsequ), (T2, Tseqz))
m, local, asgnset - I, Iseq := E,Fseq
:(update(r,(I,Iseq), (2, Tseq2)),{},{ },not_aret)comm

The phrase ” I,Iseq := F,Fseq” is a well typed assignment command in a
local context only if the types of expressions (E and FEseq) are the subtypes
of the declared identifiers types (I and Iseq). The assignment command
updates the type environment with identifiers and their corresponding
subtypes.

12



For global context

isNotRepeated(I,Iseq)
7w E:(7)exp
7 Eseq:(Tseq)expseq
w, global, asgnset & I Iseq :=
E,Eseq:(update(n,(IIseq),(T, 7seq)),{},{} not_aret)comm

The phrase "I, Iseq := E,FEseq” is a well typed assignment command in a
global context; it allows to change the types of identifiers arbitrarily.

e if F then Cseq Elif end if

7w+ E: (7’)boolexp  canSpecialize(m,m’)
specialize(m,m’), ¢, asgnset b Cseq:(my,7sety,esety,r flagy)cseq
m, ¢, asgnset & Elif :(mwa,wset, Tseto,esety,r flags)elif
m, ¢, asgnset - if £ then Cseq Elif end
if:(combine(my,mq),Tsety U Tsetq,esety U eseta,ret(r flagr, rflags))comm

The phrase “if E then Cseq Elif end if“ is a well typed conditional
command if the type of expression E does not conflict global type infor-
mation. The conditional command combines the type environment of its
two conditional branches (if and elif), because we are not sure which of
the branch will be executed at runtime.

e for [ from E; by E> to FE3 do Cseq end do

7w+ Ep: (integer)exp 7+ E: (integer)exp
7wk Es: (integer)exp
override(m,{:integer}), local, asgnset
F Cseq:(m,7sety,esety,r flagy)cseq
m, ¢, asgnset - for I from F; by FE> to E3 do Cseq end
do:(m,Tsetq,esety,r flagr )comm

The phrase “for I from F; by Fs to E5 do Cseq end do” is a well typed
loop command if it does not influence the global type information. The
loop command leaves the input type environment m unchanged because
otherwise number of loop iterations might influence the type information.

4.4 Application

Based on the type system sketched above we have implemented a type checker
for MiniMaple [17, 18] in Java (1504 classes and 15K+ lines of code).

Figure 2 shows that the output of the type checker applied to a file containing
the source code of the example program from the previous section. It shows that
the file has successfully parsed and also presents the type annotations for the
first assignment command. In the second part, it shows the resulting type

13



environment with the associated program identifiers and their respective types
introduced while type checking. The last message indicates that the program
type checked correctly.

/home/taimoor/antlr3/Test6.m parsed with no errors.
Generating Annotated AST...

#commseq#

#comm#

#asgncomm#

#expression#

#idexp#

status

#expression#
#numexp#
0

skkskkokkkkk | INTEGER| EXPRESSION-ANNOTATION BEGINskskokskkokokokok
PI -> []

Type -> integer

#xkxkxk%%% | INTEGER| EXPRESSION-ANNOTATION ENDskskskokokokkokkokokk

GLOBAL CONTEXT FOR ASSIGNMENT-COMMAND

Fkxkkdokkkk | ASSTGNMENT | COMMAND-ANNOTATION START*¥kkkkskok*k
PI -> [

status:integer

]

RetTypeSet -> {}

ThrownExceptionSet -> {}

RetFlag -> not_aret

*xkkckkokkxk | ASSTGNMENT | COMMAND-ANNOTATION END*skkkskkskokskxk

sk kkkkkkkk COMMAND-SEQUENCE-ANNOTATION START*skskskskokskokokk
PI -> [
prod:procedure[[integer,float]] (1ist (Or (integer,float)))
status:integer

result: [integer,float]

]

RetTypeSet —> {}

ThrownExceptionSet -> {}

RetFlag -> not_aret

sk kkkkkkkk COMMAND-SEQUENCE-ANNOTATION ENDs sk sksksksksk sk ok ok ok k

Annotated AST generated.
The program type-checked correctly.

Figure 2: Parsing and Type Checking the Program

The main test case for our type checker is the Maple package Difference-
Differential [9] developed by Christian Dénch at our institute. The package
provides algorithms for computing difference-differential dimension polynomials
by relative Grobner bases in difference-differential modules according to the
method developed by M. Zhou and F. Winkler [27].

We manually translated this package into a MiniMaple package so that the
type checker can be applied. This translation consists of

e adding required type annotations and

14



e translating those parts of the package that are not directly supported into
logically equivalent MiniMaple constructs.

No crucial typing errors have been found but some bad code parts have been
identified that can cause problems. These code parts refer to those variables

e that are declared but not used therefore cannot be type checked and

e that have duplicate declarations in global and local declarations.

5 A Formal Specification Language for MiniMaple

Based on the formalism of our type system we have defined a formal specification
language for MiniMaple. The specification language is a logical formula language
that mainly uses MiniMaple notations but also has its own notations. This
specification language will be used as described in the conclusions.

Formula Language

In general the formula language consists of basic logical formulas/expressions
but also supports logical (existential and universal), numerical (add, mul, min
and max) and sequence (seq) quantifiers representing truth values, numeric
values and sequence of values respectively. We have extended the Maple syntax
for these quantifiers, e.g. logical quantifiers are quantified over typed variables.
Furthermore the numerical quantifiers are extended so that they can be applied
over filtered (logical condition) values of their corresponding specified range of
quantified variables. The example for these quantifiers is explained later in the
procedure specification of this section.

The language allows to formally specify the behavior of the procedures as
a state relationship, e.g. by specifying pre/post-conditions of a procedure and
other constraints. The specification language consists of the elements given
below.

5.1 Specification Declarations

At the top of MiniMaple program we can declare respectively define mathemat-
ical functions, user-defined named and abstract data types and axioms. The
syntax of specification declarations

decl ::= EMPTY
| (define(I,rules);
| ‘type/1:=T; | ‘type/I;
| assume(spec-expr); | I(spec-expr);) decl

LK

is mainly borrowed from Maple. The phrase “define(I,rules);* can be used
for defining mathematical functions as shown in the following definition of the
factorial function:
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define(fac, fac(0) = 1, fac(n::integer) = n * fac(n -1));

N

User-defined data types can be declared with the phrase "‘type/I‘:=T;“ as
shown in the following declaration of ”ListInt” as the list of integers:

‘type/ListInt‘:=list(integer);

The phrase ”‘type/I‘;” can be used to declare abstract data type with the
name I, e.g. the following example shows the declaration of abstract data type
“stack”.

‘type/stack’;

Axioms can be introduced by the phrase “assume(spec-expr);* as the fol-
lowing example shows an axiom for the computation of ged of two integers,
where n is a procedure parameter:

assume( forall(a::integer, b::integer,
l<=a and a<=n and 1<=b and b<=n
implies ged(a,b) = ged(b, a mod b)) );

The entities introduced by the specification declarations can be used in the
following specifications.

5.2 Procedure Specification

The purpose of a procedure specification is to constrain the behavior of a pro-
cedure. A procedure specification consists of a pre-condition, the set of global
variables that can be modified and the post condition, describing the relation-
ship between pre and post state. By an optional exception clause we can specify
the exceptional behavior of a procedure. The procedure specification syntax is
influenced by the Java Modeling Language:

proc-spec := requires spec-expr;
global Iseq;
ensures spec-expr; excep-clause

Listing 3 shows an example for the procedure specification. The specification
is a big logical disjunction to formulate two possible behaviors of the procedure:

1. when the procedure terminates normally and

2. when the procedure terminates prematurely.

(*@
requires true;
global status;
ensures
(status = -1 and RESULT[1] = mul(e, e in 1, type(e,integer))
and RESULT[2] = mul(e, e in 1, type(e,float))
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer)
implies 1[i]<>0)
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and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float)
implies 1[i]>=0.5))
or
(1<=status and status<=nops(l)
and RESULT(1] = mul(l[i], i=1..status-1, type(1[i],integer))
and RESULT[2] = mul(l[i], i=1..status-1, type(l[i],float))
and ((type(l[status],integer) and l[status]=0)
or (type(l[status],float) and 1[status]<0.5))
and forall(i::integer, 1<=i and i<status and type(l[i],integer)
implies 1[i]<>0)
and forall(i::integer, 1<=i and i<status and type(l[i],float)
implies 1[i]>=0.5));
@*)
proc(l::list(Or(integer,float)))::[integer,float]; ... end proc;

Listing 3: A MiniMaple procedure formally specified

The listing gives a formal specification of the example procedure introduced
in Section III. The procedure has no pre-condition as shown in the requires
clause; the global clause says that a global variable status can be modified by
the body of the procedure. The normal behavior of the procedure is specified
in the ensures clause.

The post condition specifies that, if the complete list is processed then we
get the result as the product of all integers and floats in the list but if procedure
terminates pre-maturely then we only get the product of integers and floats till
the value of variable status (index of the input list).

From the example one can also notice the application of numerical quantifier
mul. The quantifier multiplies only those elements of the input array [ that
satisfy the test type(e,integer).

5.3 Loop Specification

Loops can be specified by invariants and termination terms denoting non-negative
integers as follows:

loop-spec := invariant spec-expr; decreases spec-expr;

An Invariant presents partial correctness of a loop and it must hold after each
iteration of the loop, even if the loop does not execute at all. A termination
term is added to specify the total correctness of the loops, it guarantees that
after each iteration the value of the termination term decreases and respectively
terminates.

The following example specifies the loop that iterates over integers from
1...100 respectively computes the sum.

i:=1;s:=0;n:=100;

while (i <= n) do{

(*Qinvariant s = OLD s + i - 1; decreases n-i;@%)
s:=s+ii:=1+1;

}
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From the example one can see the relationship between the loop variables that
holds after every iteration and that the value of the termination term decreases
after every iteration.

Loop specifications help in reasoning about loops, i.e. about partial correct-
ness [19] (invariants) and total correctness [19] (termination term).

5.4 Assertions

An assertion constrains the state of the execution at the point where it occurs.
Furthermore, an assertion splits the verification proof into two parts,

1. a proof obligation and

2. an assumption for the rest of the proof.

Assertions have Maple borrowed syntax as given:
asrt := ASSERT (spec-expr, (EMPTY | “I%));

An assertion can be a logical formula or a named assertion. The following
example shows a named assertion (”test failed”).

x:=Ly=xx:=x4+1y;
ASSERT (type(y,integer), "test failed);

6 Conclusions and Future Work

In this paper we gave an overview of a substantial subset of Maple called Mini-
Maple. We have defined a formal type system which makes use of Maple anno-
tations for the static (compile-time) type checking. We have implemented the
corresponding type checker and applied it to a Maple package developed at our
institute. As a result some problematic code parts were identified.

We also presented our initial work on a formal specification language for
MiniMaple that can be used to specify the behavior of MiniMaple programs.
We may use this specification language to generate executable assertions that are
embedded in MiniMaple programs and check at runtime the validity of pre/post
conditions. Our main goal, however, is to use the specification language for
static analysis, in particular to detect violations of method preconditions. Here
we currently investigated two possibilities:

1. We may directly generate verification conditions and use Satisfiability
Modulo Theories (SMT) [2] solvers or interactive theorem provers to prove
their correctness. The former are fully automated semi-decision proce-
dures that may give ”don’t know” results. The later require human assis-
tance by adding additional information (loop invariants) and guiding the
correctness proof.
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2. We may use some existing framework to generate verification conditions
and prove the correctness, e.g. by the Boogie [4] framework developed
by Microsoft. Here we need to translate our specification annotated Min-
iMaple program into an intermediate language of Boogie and then use the
various proving back-ends of Boogie.

The formal specification of the DifferenceDifferential package will be the main
test for our specification language and checking framework.
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