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Abstract. This paper provides an overview over our results on the con-
struction and analysis of a non-standard �nite element method that is
based on the use of boundary integral operators for constructing the
element sti�ness matrices. This approach permits polyhedral element
shapes as well as meshes with hanging nodes. We consider the di�u-
sion equation and convection-di�usion-reaction problems as our model
problems, but the method can also be generalized to more general prob-
lems like systems of partial di�erential equations. We provide a rigorous
H1- and L2-error analysis of the method for smooth and non-smooth
solutions. This a priori discretization error analysis is only done for the
di�usion equation. However, our numerical results also show good per-
formance of our method for convection-dominated di�usion problems.

Keywords: non-standard FEM, boundary integral operators, Tre�tz
method, polyhedral meshes, convection-di�usion-reaction problems

1 Introduction

We consider and analyze a non-standard �nite element method (FEM) that was
introduced by Copeland, Langer, and Pusch [4] and that is based on element-
local boundary integral operators. This non-standard FEM permits polyhedral
element shapes as well as meshes with hanging nodes. The method employs ele-
mentwise PDE-harmonic trial functions, and can thus be interpreted as a local
Tre�tz method. Indeed, E. Tre�tz proposed to approximate the solution of the
Dirichlet problem for the Laplace equation by means of a �nite superposition of
harmonic functions with unknown coe�cients which are chosen in such a way
that the Dirichlet boundary conditions are approximated in some weak sense
[20]. In our approach, we do not explicitely use PDE-harmonic trial functions
for computing the element sti�ness matrices. Instead these local sti�ness matri-
ces are generated by a local boundary element method (BEM) since the intergrals
over the polyhedral elements can be transformed to boundary integrals. This is



the reason why we call this method BEM-based FEM. This construction prin-
ciple requires the explicit knowledge of the fundamental solution of the partial
di�erential operator, but only locally in every polyhedral element. This allows
us to solve PDEs with elementwise constant coe�cients. The BEM-based FEM
has its historical root not only in the Tre�tz method, but also in the symmet-
ric boundary domain decomposition method proposed by Hsiao and Wendland
[12]. Moreover, the idea of decomposing the computational domain into smaller
subdomains can already be found in Tre�tz' paper and is of course the central
topic of Hsiao's and Wendland's paper on domain decomposition methods.

In this paper we consider the di�usion equation and convection-di�usion-
reaction problems as our model problems, but the method can also be general-
ized to more general problems like the Helmholtz equation and systems of PDEs
including the linear elasticity system and the time-harmonic Maxwell equations
with elementwise constant or, at least, elementwise smooth coe�cients [4,3]. We
review the results of the papers [9] and [8] which provided a rigorous H1- and
L2-error analysis, respectively. This analysis is not trivial since the geometric
properties of the polyhedral elements and variational crimes arising from the
approximation of the Steklov-Poincaré operator must be handled appropriately.
We generalize these discretization error estimates to non-smooth solutions by
means of space interpolation technique. We mention that non-smooth solutions
are typical for PDE problems with jumping coe�cients. This a priori discretiza-
tion error analysis is only done for the di�usion equation. However, �rst exper-
iments published in [10] have already shown very good numerical performance
for convection-dominated di�usion problems as well.

2 The BEM-based FEM for Convection-Di�usion-

Reaction Problems

2.1 Skeletal variational formulation

We follow the approach taken in [9] for the Laplace equation in order to derive
the so-called skeletal variational formulation for a convection-di�usion-reaction
problem. We consider the Dirichlet boundary value problem

Lu = −div(A∇u) + b · ∇u+ cu = 0 in Ω,

u = g on ∂Ω
(1)

in a bounded Lipschitz domain Ω ⊂ R3 with the boundary ∂Ω as our model
problem. Here A(x) ∈ R3×3, b(x) ∈ R3, and c(x) ∈ R are the coe�cient func-
tions of the partial di�erential operator L, and g is the given Dirichlet data in
H1/2(∂Ω). We assume that A(x) is symmetric and uniformly positive, and that
c(x) ≥ 0. While we restrict ourselves to the pure Dirichlet problem here, the
generalization to mixed Dirichlet/Neumann problems is straightforward.

The corresponding variational formulation reads as follows: �nd u ∈ H1(Ω)
with γ0Ωu = g such that∫

Ω

(A∇u · ∇v + b · ∇u v + cuv) dx = 0 ∀ v ∈ H1
0 (Ω), (2)



where γ0Ω : H1(Ω) → H1/2(∂Ω) refers to the Dirichlet trace operator from the
domain Ω to its boundary and H1

0 (Ω) = {v ∈ H1(Ω) : γ0Ωv = 0}. We require
that the coe�cients A, b, c are L∞(Ω) and that there exists a unique solution
of (2).

Assume now that we are given a �nite decomposition T of Ω into mutually
disjoint Lipschitz polyhedra. As opposed to a standard �nite element method,
we do not require the existence of a reference element to which all elements
T ∈ T can be mapped, but rather allow T to contain an arbitrary mixture
of polyhedral element shapes. For reasons that will become clear later on, we
require the coe�cients A(x), b(x), and c(x) to be piecewise constant with respect
to the polyhedral mesh T .

From the variational formulation and the density of C∞0 (T ) in L2(T ), it
follows that div(A∇u) = b · ∇u + cu ∈ L2(T ) for every element T ∈ T , and
we can conclude that the �ux A∇u is in H(div, T ). Let nT denote the outward
unit normal vector on ∂T . Then the �ux has a well-de�ned Neumann trace
γ1Tu := A∇u · nT ∈ H−1/2(∂T ), also called the conormal derivative of u; cf. [6].
Moreover, we have the generalized Green's identity∫

T

A∇u · ∇v dx = −
∫
T

div(A∇u)v dx+ 〈γ1Tu, γ0T v〉 ∀v ∈ H1(T ). (3)

Here and below, 〈·, ·〉 denotes the duality pairing on H−1/2(∂T )×H1/2(∂T ) (the
particular element boundary ∂T will always be clear by context). Inserting (3)
into (2) and remembering that Lu = 0 in L2(T ), we obtain

0 =
∑
T∈T

∫
T

(A∇u · ∇v + b · ∇u v + cuv) dx =
∑
T∈T

(∫
T

Lu v dx︸ ︷︷ ︸
=0

+〈γ1Tu, γ0T v〉
)
.

Fix now some element T ∈ T and observe that u|T is the unique solution of the
local problem

Lϕ = 0, γ0Tϕ = γ0Tu.

Here again we must require that these local problems do indeed have unique
solutions. If we denote by ST : H1/2(∂T ) → H−1/2(∂T ) the Steklov-Poincaré
operator or Dirichlet-to-Neumann map for this local problem, we therefore have
γ1Tu = ST γ

0
Tu, yielding the equation∑

T∈T
〈ST γ0Tu, γ0T v〉 = 0 ∀v ∈ H1

0 (Ω).

The above formulation operates not on the functions u and v themselves, but
only on their Dirichlet traces on the element boundaries ∂T . The idea is therefore
to work with function spaces which are de�ned only on these boundaries. We call
ΓS :=

⋃
T∈T ∂T the skeleton of the mesh T and introduce a skeletal function

space W = H1/2(ΓS) consisting of the traces of all functions from H1(Ω) on



ΓS . We then search for a skeletal function û ∈ W which satis�es the Dirichlet
boundary condition û|∂Ω = g as well as the skeletal variational formulation∑

T∈T
〈ST û|∂T , v̂|∂T 〉 = 0 ∀ v̂ ∈W0 = {v̂ ∈W : v̂|∂Ω = 0} . (4)

This skeletal variational formulation is equivalent to the standard variational
formulation (2) in the sense that the traces û|∂T ∈ H1/2(∂T ) obtained from
(4) match the traces γ0Tu of the function u ∈ H1(Ω) obtained from (2). Con-
versely, u|T can be recovered from û|∂T by solving a local Dirichlet problem
in T , i.e., u|T = HT û|∂T with the element-local harmonic extension operator
HT : H1/2(∂T ) → H1(T ). This motivates using (4) as a starting point for dis-
cretization in order to obtain a numerical method for (1).

We remark that another interpretation of (4) is that of a weak enforcement
of the continuity of conormal derivatives on inter-element boundaries.

2.2 Boundary Integral Operators

Evaluating the Dirichlet-to-Neumann map ST used above essentially corresponds
to solving a local problem Lϕ = 0 on T with the given Dirichlet data and
then obtaining the conormal derivative γ1Tϕ of its solution. These local problems
are in general not analytically solvable, and we approximate their solutions by
the Galerkin discretization of element-local boundary integral equations. In the
following, we outline some standard results on boundary integral operators. A
more detailed treatment of these topics can be found in, e.g., [13,15,17,18].

We say that a fundamental solution of the partial di�erential operator L
is a function G(x, y) such that LxG(x, y) = δ(y − x), where δ is the Dirac δ-
distribution and x, y ∈ Rd. Fundamental solutions for L from (1) with constant
coe�cients A, b, c are given in [17]; in particular, in R3 and under the assumption
c+ ‖b‖2A−1 ≥ 0, we have

G(x− y) = G(z) =
1

4π
√
detA

exp
(
b>A−1z − λ‖z‖A−1

)
‖z‖A−1

,

where ‖x‖A−1 =
√
x>A−1x and λ =

√
c+ ‖b‖2A−1 .

More generally, we will assume that the coe�cients A, b, c are constant only
within each element. This leads to a potentially di�erent fundamental solution
in each element T , in the following denoted by GT (x, y), and allows us to treat
PDEs with piecewise constant coe�cients.

We now introduce the boundary integral operators

VT : H−1/2(∂T )→ H1/2(∂T ), KT : H1/2(∂T )→ H1/2(∂T ),

K ′T : H−1/2(∂T )→ H−1/2(∂T ), DT : H1/2(∂T )→ H−1/2(∂T ),

called, in turn, the single layer potential, double layer potential, adjoint double
layer potential, and hypersingular operators. For su�ciently regular arguments,



they admit the integral representations

(VT v)(y) =

∫
∂T

GT (x, y)v(x) dsx,

(KTu)(y) =

∫
∂T

γ̃1T,xGT (x, y)u(x) dsx,

(K ′T v)(y) =

∫
∂T

γ1T,yGT (x, y)v(x) dsx,

(DTu)(y) = −γ1T,y
∫
∂T

γ̃1T,xGT (x, y)
(
u(x)− u(y)

)
dsx,

where γ1T,y refers to the conormal derivative γ1T with respect to the variable y,

and γ̃1T,x refers to the modi�ed conormal derivative

γ̃1Tu = γ1Tu+ (b · nT )γ0Tu,

associated with the adjoint problem, with respect to the variable x.
In the literature, we �nd two representations of the Steklov-Poincaré operator

in terms of the boundary integral operators, namely,

ST = V −1T ( 12I +KT ) = DT + ( 12I +K ′T )V
−1
T ( 12I +KT ). (5)

The �rst one is called the non-symmetric representation, and the latter is called
the symmetric representation of the Steklov-Poincaré operator.

2.3 Discretization

Discretization of the Skeletal Function Space. We employ a Galerkin
approach to the discretization of the skeletal variational formulation (4). To this
end, we �rst discretize every element boundary ∂T by a conforming triangulation
FT composed of triangles. The number of triangular boundary elements per
polyhedral element should be uniformly bounded. Furthermore, we assume that
the element discretizations are matching in the sense that, for any two elements
T1 and T2 having a common interface Γ12 = T 1 ∩ T 2 6= ∅, any triangle τ ∈
FT1

with τ ∩ Γ12 6= ∅ should also belong to FT2
. In other words, inter-element

boundaries must be triangulated identically in both elements. Finally, we require
that the element meshes FT are quasi-uniform and shape-regular in the usual
sense, with constants which are uniform over all elements T .

This construction naturally gives us a triangulation F =
⋃
T∈T FT of the

skeleton, on which we now construct a discrete trial space Wh ⊂W of piecewise
(per boundary triangle τ ∈ F) linear and continuous functions. The space Wh

is spanned by the nodal functions {φi}, where i enumerates the vertices of the
triangulation F , and where each basis function φi has the value 1 in the i-th
vertex, 0 in all other vertices, and is linear on each triangle τ ∈ F . The space
Wh

0 =Wh∩W0 is constructed fromWh by excluding those basis functions which
belong to vertices on ∂Ω.



Assuming that the given Dirichlet data g is piecewise linear, we thus arrive
at the following Galerkin equations as the discrete version of (4): �nd uh ∈Wh

such that uh|∂Ω = g and∑
T∈T
〈STuh|∂T , vh|∂T 〉 = 0 ∀ vh ∈Wh

0 . (6)

In the general case, the Dirichlet data g can be approximated piecewise linearly
by interpolation (if continuous) or by L2 projection onto the boundary triangles.

Discretization of the Dirichlet-to-Neumann Map. The boundary integral
operator representation (5) of ST contains the inverse of the single layer poten-
tial operator VT , which is in general not computable exactly. Hence, we need to
approximate the bilinear form 〈ST ·, ·〉. To do this, we employ a mixed piecewise
linear/piecewise constant scheme, where Dirichlet data is approximated piece-
wise linearly, while Neumann data is approximated by piecewise constants, as
described in, e.g., [5,18,11].

Observe that, due to (5), the Neumann data corresponding to a function
uT ∈ H1/2(∂T ) can be written as

STuT = DTuT + ( 12I +K ′T )tT (7)

with tT = V −1T ( 12I +KT )uT ∈ H−1/2(∂T ). Again referring to (5), we see that
tT = STuT is itself already the sought Neumann data. We will approximate ST
by �rst approximating tT in a suitable space of piecewise constant functions and
then substituting this approximation for tT in (7).

Let {φT,i} denote the nodal piecewise linear functions restricted to the local
mesh FT , where now i enumerates the vertices only of FT . Furthermore, intro-
duce a space of piecewise constant boundary functions ZhT spanned by the basis
{ψT,k}, where k enumerates the triangles τ ∈ FT , such that ψT,k ≡ 1 on the
k-th triangle and ψT,k ≡ 0 on all other triangles.

For any function uT ∈ H1/2(∂T ), we compute the approximation thT ≈ tT
of its Neumann data by the Galerkin projection of the equation VT tT = ( 12I +
KT )uT to the piecewise constant functions. In other words, we seek thT ∈ ZhT
satisfying the variational equation

〈ψh, VT thT 〉 = 〈ψh, ( 12I +KT )uT 〉 ∀ψh ∈ ZhT .

A computable approximation to STuT is then given by

S̃TuT := DTuT + ( 12I +K ′T )t
h
T ,

and our fully discretized variational formulation takes the following form: �nd
uh ∈Wh such that uh|∂Ω = g and∑

T∈T
〈S̃Tuh|∂T , vh|∂T 〉 = 0 ∀ vh ∈Wh

0 . (8)

The corresponding sti�ness matrix is assembled, as in the FEM, from the
contributions from element sti�ness matrices. The latter are computed using the
fully numerical integration technique described by Sauter and Schwab [17].



3 Discretization Error Analysis for the Di�usion

Equation

There is no complete error analysis of the presented method for general elliptic
operators L of the form (1). However, for the special case of the Laplace operator,
rigorous error estimates in the H1 and L2 norms are given in [9] and [8], respec-
tively. Even in the Laplacian case, the analysis is nontrivial. Among the main
technical hurdles are the general polyhedral element shapes, which means that no
reference element is available. This rules out the standard technique widely used
in FEM analysis of transforming to the reference element, estimating a quan-
tity of interest there, and transforming back. In particular, this complicates the
derivation of Dirichlet and Neumann approximation properties for our discrete
skeletal function spaces. An auxiliary regular tetrahedral decomposition of each
polyhedral element T is used as an analytical tool to overcome these di�culties.
Furthermore, the approximation of ST by S̃T is a �variational crime� leading to
a consistency error which has to be treated either by Strang's lemma [9] or by
passing to an equivalent mixed formulation [8]. In both cases, estimating the
consistency error requires novel results on explicit bounds for boundary integral
operators [16] and a notion of regularity for polyhedral elements which relies on
uniform bounds for Poincaré constants and the so-called Jones parameter. The
regularity assumptions used in the previous works are outlined below.

Assumption 1 We assume that the polyhedral mesh T satis�es the following
conditions.

� There is a small, �xed integer uniformly bounding the number of boundary
triangles of every element.

� Every element T ∈ T has an auxiliary conforming, quasi-regular, tetrahedral
triangulation (cf. [2]) with regularity parameters which are uniform across
all elements.

De�nition 1 (Uniform domain [14]). A bounded and connected set D ⊂ Rd
is called a uniform domain if there exists a constant CU such that any pair of
points x1 ∈ D and x2 ∈ D can be joined by a recti�able curve γ(t) : [0, 1] → D
with γ(0) = x1 and γ(1) = x2, such that the arc length of γ is bounded by
CU |x1 − x2| and

min
i=1,2

|xi − γ(t)| ≤ CU dist(γ(t), ∂D) ∀t ∈ [0, 1].

If D is a uniform domain, we denote the smallest such constant CU by CU (D)
and call it the Jones parameter of D.

Any Lipschitz domain is a uniform domain. However, its Jones parameter
may be arbitrarily large.

De�nition 2 (Poincaré constant). For a uniform domain D, let CP (D) be
the smallest constant such that

inf
c∈R
‖v − c‖L2(D) ≤ CP (D) diam(D) |v|H1(D) ∀v ∈ H1(D).



For convex domains D, one can show that CP (D) ≤ π−1, cf. [1]. Estimates
for star-shaped domains can be found in [19,21].

Assumption 2 We assume that there are constants C∗U > 0 and C∗P > 0 such
that, for all T ∈ T ,

CU (T ) ≤ C∗U , CU (BT \ T ) ≤ C∗U ,
CP (T ) ≤ C∗P , CP (BT \ T ) ≤ C∗P ,

where BT is a ball (or a suitable Lipschitz domain) enclosing T which satis�es
dist(∂BT , ∂T ) ≥ 1

2 diam(T ).

Under the assumptions stated above, we may now formulate the main results
on the discretization error. Note that the discrete solution uh ∈ Wh of (8) is
only de�ned on the skeleton. In order to compare it with the exact solution
uΩ ∈ H1(Ω) of (2) with traces u ∈W , we use the harmonic extension operator
HT . Within any element T , the error to be estimated is thus

uΩ −HT (uh|∂T ) = HT
(
(u− uh)|∂T

)
,

or globally HS(u− uh) with the piecewise harmonic extension operator

HS : H1/2(ΓS)→ H1(Ω), ∀T ∈ T : (HSv)|T = HT (v|∂T ).

Theorem 1 (H1 error estimate, [9]). Let L = −∆, and let the mesh T
satisfy Assumptions 1 and 2. Assume further that the given Dirichlet data g is
piecewise linear and that the exact solution uΩ of (2) lies in H2(Ω). With u ∈W
the solution of the skeletal variational formulation (4) and uh ∈Wh the solution
of the discretized skeletal formulation (8), we have the error estimate

|HS(u− uh)|H1(Ω) ≤ C
( ∑
T∈T

h2T |uΩ |2H2(T )

)1/2
≤ C h |uΩ |H2(Ω),

where the constant C depends only on the mesh regularity parameters, hT =
diamT denotes the element diameters, and h = maxT hT denotes the mesh size.

Proof (Outline). The proof hinges on three results, namely, (i) a quasi-optimal
bound for the discretization error in terms of the best approximation error for the
exact Dirichlet and Neumann data, (ii) an approximation error estimate for the
Dirichlet data, and (iii) an approximation error estimate for the Neumann data.
All of these estimates need to be made explicit in terms of the mesh regularity
parameters, and problem-adapted norms have to be used. The details may be
found in [9].

Theorem 2 (L2 error estimate, [8]). Let the assumptions of Theorem 1 be
satis�ed. Assume further that the adjoint problem is H2-coercive, i.e., that the
solution w ∈ H1

0 (Ω) of∫
Ω

∇v · ∇w dx =

∫
Ω

HS(u− uh) v dx ∀v ∈ H1
0 (Ω)



lies in H2(Ω) and satis�es the estimate

|w|H2(Ω) ≤ C ‖HS(u− u
h)‖L2(Ω).

Then we have the quasi-optimal L2 discretization error estimate

‖HS(u− uh)‖L2(Ω) ≤ C h
2 |uΩ |H2(Ω),

where the constant C depends only on the mesh regularity parameters.

Proof (Outline). Due to the consistency error introduced by approximating the
bilinear form 〈ST ·, ·〉, Galerkin orthogonality is violated and the usual Aubin-
Nitsche technique is not available. This may be remedied by passing to an equiv-
alent mixed formulation, searching for the unknowns (u,

⊗
T∈T tT ), which makes

the error by the approximation S̃T ≈ ST explicit and thus restores Galerkin or-
thogonality. Many of the technical tools used to prove Theorem 1 can then be
reused. The details may be found in [8].

In many practical applications, we have to deal with heterogeneous coe�-
cients. If the coe�cients in the PDE (1) have jumps across interfaces, or if the
computational domain is non-convex and non-smooth, or if there are changes
in the boundary conditions, then we cannot expect a smooth solution uΩ , i.e.,
the assumption uΩ ∈ H2(Ω) is too restrictive. The following theorem provides
a convergence rate estimate for this case too.

Theorem 3 (H1 error estimate under reduced regularity assumptions).
Let the assumptions of Theorem 1 hold with the exception of the regularity as-
sumption imposed on the exact solution, uΩ ∈ H2(Ω). Instead, we only assume
uΩ ∈ H1+s(Ω) with some 0 < s ≤ 1. Then we have the error estimate

‖HS(u− uh)‖H1(Ω) ≤ C hs ‖uΩ‖H1+s(Ω),

where the constant C again depends only on the mesh regularity parameters.

Proof (Outline). Theorem 1 together with Friedrichs' inequality implies

‖HS(u− uh)‖H1(Ω) ≤ C h ‖uΩ‖H2(Ω).

From the proof of Theorem 1, one easily obtains the stability estimate

‖HS(u− uh)‖H1(Ω) ≤ C ‖uΩ‖H1(Ω).

The statement then follows by a space interpolation argument (cf. [15]).

4 Numerical Results for a Convection-Di�usion Problem

The following example with strongly varying di�usion coe�cients is adapted
from [7]. We solve

−div(A∇u) + (β, β, β)> · ∇u = 0 in Ω,

u = g on ∂Ω,



where Ω = (0, 1)3 is the unit cube, β = 50, and

A(x, y, z) =

{
104, 1

3 < x, y, z < 2
3 ,

1, else,
g(x, y, z) =

{
1, z = 0,

0, else.

The non-symmetric linear systems resulting from either method are solved
using GMRES, restarted every 500 iterations. Due to the strongly varying dif-
fusion, GMRES takes a very high number of iterations to converge to a given
accuracy, even on relatively small problems. A simple row scaling preconditioner
can mitigate this problem ([7]), and we thus modify the linear system to be
solved,

S uh = fh −→ DS uh = Dfh,

where S is the sti�ness matrix, uh and fh are the vectors corresponding to the
discrete solution and right-hand side, respectively, and

D = diag(1/‖S1‖p, . . . , 1/‖Sn‖p)

is a diagonal matrix containing the reciprocal p-norms of the rows of the sti�ness
matrix S. In our experiments, we chose p = 1.

Fig. 1. Cross section through Ω at x = 0.5, computed by BEM-based FEM.

Figure 1 shows a solution computed using the BEM-based FEM for a mesh
with 456 769 vertices and mesh size h ≈ 0.0232924. Table 1 displays GMRES
iteration numbers for a standard FEM using piecewise linear trial functions and
the BEM-based FEM, without and with the row scaling preconditioner.



degrees of freedom
199 1153 7921 59041 456769

without row scaling
FEM 59 178 469 6042 19597
BEM-based FEM 57 123 442 5356 15756

with row scaling
FEM 42 87 135 229 440
BEM-based FEM 50 87 129 215 376

Table 1. Iteration numbers using GMRES(500), without and with row scaling.

5 Conclusion and Outlook

We have summarized recent results on the so-called BEM-based FEM, giving a
brief derivation of the method for a general elliptic partial di�erential equation
and outlining the analysis in the Laplacian case for solutions of full as well as
reduced regularity. We also have given new numerical results for a convection-
di�usion benchmark problem.

The employed solution technique, namely, GMRES with a simple row scaling
preconditioner, is clearly not optimal, and the development of optimal solvers
will be a topic of future research. Furthermore, previous experiments in [10]
have shown that, while stability of the method is superior to a standard piece-
wise linear FEM, additional stabilization is required for convection-dominated
problems.

Acknowledgments. The support by the Austrian Science Fund (FWF) under
grant DK W1214 is gratefully acknowledged.
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