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A Robust Preconditioner for Distributed
Optimal Control for Stokes Flow with Control
Constraints

Markus Kollmann and Walter Zulehner

Abstract This work is devoted to the construction and analysis of sbisolution
techniques for the distributed optimal control problemtfar Stokes equations with
inequality constraints on the control. There the first osletem of necessary and
sufficient optimality conditions is nonlinear. A primal-glactive set method is ap-
plied in order to linearize the system. In every step a lirsgadle point system has
to be solved. For this system, we analyze a block-diagoreadqurditioner that is
robust with respect to the discretization parameter asagdihe active set.

1 Introduction

Velocity tracking plays an important role in fluid mechani¢fere the main fo-
cus is to steer the velocity to a desired state (target \gloloy controlling it by
some force, which is typically restricted by inequality straints. The correspond
ing nonlinear optimality system can be solved by a primatdutive set method,
which is equivalent to a semi-smooth Newton method (cf..[Ble resulting linear
system in each Newton step is a parameter dependent sadiai@pblem. In this
paper we discuss the preconditioned MinRes method forrspliese linear prob-
lems robustly with respect to the discretization paramatet the involved active
set.

A similar approach is presented in [7] for a distributed oyati control of elliptic
equations with various types of inequality constraintsemha preconditioner is
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constructed based on the mapping properties of the invapedators in Sobolev
spaces equipped with the standard norms.

Our construction of a preconditioner and the analysis asedban a resultin [14],
where a block-diagonal preconditioner for the distributg@timal control problem
for the Stokes equations without constraints is presemtbith is robust with re-
spect to the discretization parameter and the model paeanTétis preconditioner
is based on the mapping properties of the involved operato&obolev spaces
equipped with non-standard norms. Here we use this pretioneli also in the case
of constrained optimization and show its robustness wisipeet to the discretiza-
tion parameter and the involved active set.

The paper is organized as follows: In Sect. 2 we introducevéhecity tracking
problem, discretize it by a finite element method and deteerésulting linearized
system. Section 3 deals with the analysis of our block-diagpreconditioner used
in a MinRes method for the linear system. In Sect. 4 we presemie numerical
experiments. The paper ends with a few concluding remarks.

2 The Optimal Control Problem

As a model problem, we consider the following velocity triack problem for
Stokes flow with distributed control: Find the velocitye H}(Q)9, the pressure
peL3(Q):={qeL?(Q): [oqdx=0}, and the forcd € L2(Q)9 that minimizes
the cost functional

1 2 a2
‘](uvf):é“u_ud”LZ(Q)+§||f|||_2(g) ) (1)
subject to the state equations

—Au+0Op=f InQ, divu=0 inQ,
u=0 onlr, fa<f<fy, a.e.inQ.

Here Q is an open and bounded domain ¥ (d € {1,2,3}) with Lipschitz-
continuous boundar, ug € L?(Q)Y is the desired velocityy > 0 is a cost pa-
rameter and,, fp, € L?(Q)9 are the lower and upper bounds for the control variable
f, respectively.

In order to solve this optimal control problem, we considex first-discretize-
then-optimize strategy. As an example of a discretizati@thod we discuss the
finite element method using the Taylor-Hood element on alstmpsubdivision of
Q consisting of continuous and piecewise quadratic funstfon the velocity and
the force and continuous and piecewise linear functiont®pressure.

The discrete counterpart of (1) is:

R 1 a
Minimize é(uh—udh)TM(uh—udh)+§thth, (2)
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subject to the state equations

Kup—DTpn = Mfp,
—Dup =0,
fah th < fbh )

whereM denotes the mass matrix representing th@)? scalar produck denotes
the stiffness matrix representing the vector Laplace dpen the finite element
spacep denotes the divergence matrix representing the diverggmestor on the
involved finite element spaces ang, f, andpy, are the coordinate vectors of f
andp w.r.t. the nodal basis, respectively.

The first order system of necessary and sufficient optimeditditions of (2) can
be expressed as follows (cf. [5] for the continuous case):

Mup, +Kap —Dpp = Mug, ,
—D0p =0,
aMf, —MOp+2z,=0,
Kuh—DTph—th:O,
—Dup =0,
zn — max{0,zn + ¢(fh — fp,) } —min{0,z, — c(fa, — fn)} =0,

3)

for anyc > 0 with Lagrange multipliers§iy,, pr andzy.

In order to solve this system, we propose a primal-dual acset method
as introduced in [1]. The strategy proceeds as follows: Gitlee k-th iterate
(Unk,Pnk,fhk,Onk,Phk,Znk), the active sets are determined by

ES {i P2+ olfh— fh) >0} ;
oo ={i:dy—c(fl, — fh) <0},

Wherez*h‘k is thei-th component ok, and the inactive se¥ is the complement

of @ U.« in the set of all indices. One step of the primal-dual actatensethod
for the solution of (3), given in terms of the new iterate deas follows:

M 0 0 K -D' O Up k1 Mug,

0 0 0O -D O 0 Ph.k+1 0

0 0 aM —M O I fhl’kJrl _ 0 4
K -D" =M 0 0 O Ohksr | 0 - (4)
-D 0 O 0 0 o Phkt1 0

0 0 cXxee O O X4/ \Znks1 C(X oy Fon + Xy fan)
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wherexﬂkh Xo andy are diagonal 0-1-matrices representing the characteristi

functions of.«, ", &, and.@ = @, U<, respectively. Since we focus here on
the solution of individual steps, we drop the iteration inffem now on.
By eliminatingf, andz, from the third and the last line the resulting system

Jx=Dbreads: .
(%) ()= () ©

M 0 (K =DT\ 1 _(aMc, 0
(oo)’ B_(D o)—B’ C_( o o)

o Mudh o 0 ([ Unp A Oh
9n< 0 >, gh<gh1>’ Wh<ph), Wh<ﬁh>7

Mc, =M — P," (PMM’lP{QyT)il Py,
_ -1
O, =Py’ (PyM P, T) (Pt +Poyfay)

with

A

where

andP,, is a rectangular matrix consisting of those rowggf which belong to the
active indices, similar foP .

The system matrix7” is symmetric and indefinite. For solving the corresponding
linear system we propose a MinRes method, see, e.g., [18joutipreconditioning
the convergence rate would deteriorate with respect to ideeatization parameter
h and the cost parametar. Therefore, preconditioning is an important issue.

3 A Robust Preconditioning Technique

In this section, we discuss a preconditioning strategy liersaddle point system
(5). Due to the symmetry and coercivity properties of thearhyihg operators the
blocks fulfill the following propertiesk = KT >0, M =MT > 0 andM¢_, =
Mcy/T > 0. For our choice of the finite element functiobsis of full rank.

In [14] a block-diagonal preconditioner is constructed ttoe distributed opti-
mal control problem of the Stokes equations without coim#isaon the control. Its
robustness w.r.th and a is shown for this case, which corresponds to the setting
o = 0.

This preconditioner reads as follows:

& = diag (P, P2) , (6)
whereP; = diag (P,aDP~DT) andP, = a 1P, with P = M + a'/2K. The idea

is now to use this preconditioner also in our case. The needrédm contains the
main result of this paper, where we use the following notatkor any symmetric



Optimal Control for Stokes Flow 5

and positive (semi-) definite matri@ we denote by - | the energy (semi-) norm
induced byQ.

Theorem 1. The system matri¥” of (5) satisfies:

2 < SUP <tlx|l» VX,

with constants c€ independent of the discretization parameter h and thezadéet
.

Proof. Due to Theorem 2.6 from [14], it is necessary and sufficieptrave

TB 2
h BWh - 2
cr[Whllg, < [lwhllZ+ SUD! < Ty [[Whllp, @)
IFnll3,
T, \2
C ||W < m C 8
Co W[, < ||| + sup < T [Wnl3, (8)
m#0 |1 h||F’1

with rp, = (‘é:) fl = (é:) for constants;, T, ¢, andT, independent of the
discretization parametérand the active set/. For proving (7), we first show

T

C3 [|Whl|p, < SUp < T [whllp, 9)

H hlle, —

for constantg; andcs independent of the discretization paramétand the active
set.e/. In order to prove (9) we have to verify the conditions of thee@rem of
Brezzi [3]:

The boundedness of the bilinear forms, segndb, associated witK andD is
trivial. Using Friedrichs inequality with constaat we can show the coercivity of
a

1 2
T valunlf = min{ oo o2 .

1
2 2
a(un,un) = [[unllic = 5 llunliv + 57

N

Since

sup b(Vh,pn) _ sup P D% ph' D

= ||Pnllpp-107 = —=|Phllapp-107
h#0 HVhHP h#£0 ”VhH DP~-D \/— abP-1DT »

the inf-sup condition ob is satisfied. Hence (9) follows.
From (9) and the fact thd@ = a~1P; we get

Vags||whllp, < SUIO| < Vacs||whlp, - (10)

Furthermore we have
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2 2 2
0 < [[Whlla = [lunlla < W[5, - (11)

Therefore, combining (10) with (11) yields (7). Equation ¢&n be shown analo-
gously. O

As a consequence of Theorem 1 we have:

K@) = |2 A | 5| H 2] 5 <

o1 ol

(12)

i.e., the condition number of the preconditioned systenoistoled independently of
hand.«. Therefore, the number of iterations of the preconditiok@iRes method
can be bounded independentiytodnd.es (see e.g. [6]).

Remark 1 The result of Theorem 1 can be shown not only on the discretd le
but also on the continuous level using the correspondingst@mdard norms in
H3(Q) x L3(Q) for u andp as well as for the Lagrange multipliefisand 5.

Remark 2Using the standard norms kg (Q) x L3(Q), as it is done in [7] for the
elliptic case, leads to the preconditioner:

whereM denotes the mass matrix for the pressure element. In thés oag can
show a similar result as in Theorem 1.

Remark 3If we consider the distributed optimal control problem foetStokes
equations with different observation and control domdahsand Q,, we end up
with the following linear system:

M, O K —DT\ /un Muyg,
0 0 -D 0 ph| | O
K —D" —a"IM, 0 On | — 0 ’
-D 0 0 0 Ph 0

whereM1 and M, are the mass matrices d& and Q,, respectively. With the
preconditioner? from above, one can show a similar result as in Theorem 1 with
robustness w.r.ty, Q1 and Q.

4 Numerical Experiments

The numerical experiments are carried out on the unit squameinQ = (0,1) x
(0,1) C R2. The initial mesh contains four triangles obtained by cating the
two diagonals. The final mesh was constructed by appliingiform refinement
steps to the initial mesh, leading to a meshgize 2%, For constructing a prac-
tically realizable preconditioner we proceed as followsstFwe replace the ma-

trix D (M -+ al/zK)leT by (a¥2Mp =1+ Kp*1)71 as proposed in [4], wheré,,
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denotes the stiffness matrix for the pressure element. Tempplication of the
preconditioner would require the multiplication of a vadimm the left by the in-
verse of the matriced! + a*/?K, M, andK . These actions are replaced by one
step of a V-cycle iteration foM + a/2K andK, and by one step of a symmetric
Gauss-Seidel iteration favl,. The V-cycle is done with one step of a symmetric
Gauss-Seidel iteration for the pre-smoothing process anthe post-smoothing
process. The resulting realizable preconditioner is spkgequivalent to the theo-
retical preconditioner according to the analysis in [2,9,211, 10].

We demonstrate the efficiency of our solver with two diffénerescribed active
sets.

As a first test case, the active setis chosen as the set of all indices of those
nodes which lie in the upper half of the computational dom@&able 1 shows the
condition number of the preconditioned system matrix witbcpnditionerZ? for
various values oh and a, wherek denotes the number of refinementsjs the
total number of degrees of freedom of the discretized ogiiynsystem (5). In the

Table 1 Condition numbers

k N a

107 10% 105 104 10°% 102 10! 1
4 9030 >500 709 1392 749 812 868 9.2 9.53
5 36486 >500 74 14.16 825 881 93 9.72  9.99
6 146694 >500 79 1463 887 946 992 10.16 10.34
7 588294 >500 83 1521 9.06 9.79 10.25 10.47 10.66

second test case, the active séts chosen as a randomly distributed set, having the
same cardinality as in the first test case. Table 2 shows thditgan number of the
preconditioned system matrix with preconditior&r

Table 2 Condition numbers

k N a
101 10% 104 1
4 9030 >500 7.34 741 952
5 36486  >500 4.95 821 9.98
6 146694 133  6.13 888  10.34
7 588294 1665 6.71 9.12 1058

Additional numerical experiments using the preconditiof® showed that the
preconditioner?? has a better performance than the standard one, e.g., \ubile t
preconditioner?s behaves reasonably only for > 102, the preconditioner”
behaves reasonably as longag 10-°.
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5 Concluding Remarks

In order to develop a robust solver for the linear system (8)used the block-
diagonal preconditioning technique introduced in [14].eTfreconditioner con-
structed there was reused for the control constrainedilaliséd optimal control

problem for the Stokes equations and robustness w.r.t.islceetization parameter
as well as the active set was shown. Even though the precammelitis not robust

w.r.t. o, the numerical experiments show a good performance of tesomditioner

as long asx is not extremely small.
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