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Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Veronika Pillwein

Communicated by: Ulrich Langer
Ronny Ramlau

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



A Robust Preconditioner for Distributed
Optimal Control for Stokes Flow with Control
Constraints

Markus Kollmann and Walter Zulehner

Abstract This work is devoted to the construction and analysis of robust solution
techniques for the distributed optimal control problem forthe Stokes equations with
inequality constraints on the control. There the first ordersystem of necessary and
sufficient optimality conditions is nonlinear. A primal-dual active set method is ap-
plied in order to linearize the system. In every step a linearsaddle point system has
to be solved. For this system, we analyze a block-diagonal preconditioner that is
robust with respect to the discretization parameter as wellas the active set.

1 Introduction

Velocity tracking plays an important role in fluid mechanics. There the main fo-
cus is to steer the velocity to a desired state (target velocity) by controlling it by
some force, which is typically restricted by inequality constraints. The correspond-
ing nonlinear optimality system can be solved by a primal-dual active set method,
which is equivalent to a semi-smooth Newton method (cf. [8]). The resulting linear
system in each Newton step is a parameter dependent saddle point problem. In this
paper we discuss the preconditioned MinRes method for solving these linear prob-
lems robustly with respect to the discretization parameterand the involved active
set.

A similar approach is presented in [7] for a distributed optimal control of elliptic
equations with various types of inequality constraints, where a preconditioner is
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2 Markus Kollmann and Walter Zulehner

constructed based on the mapping properties of the involvedoperators in Sobolev
spaces equipped with the standard norms.

Our construction of a preconditioner and the analysis are based on a result in [14],
where a block-diagonal preconditioner for the distributedoptimal control problem
for the Stokes equations without constraints is presented,which is robust with re-
spect to the discretization parameter and the model parameter. This preconditioner
is based on the mapping properties of the involved operatorsin Sobolev spaces
equipped with non-standard norms. Here we use this preconditioner also in the case
of constrained optimization and show its robustness with respect to the discretiza-
tion parameter and the involved active set.

The paper is organized as follows: In Sect. 2 we introduce thevelocity tracking
problem, discretize it by a finite element method and derive the resulting linearized
system. Section 3 deals with the analysis of our block-diagonal preconditioner used
in a MinRes method for the linear system. In Sect. 4 we presentsome numerical
experiments. The paper ends with a few concluding remarks.

2 The Optimal Control Problem

As a model problem, we consider the following velocity tracking problem for
Stokes flow with distributed control: Find the velocityu ∈ H1

0(Ω)d, the pressure
p∈ L2

0(Ω) :=
{

q∈ L2(Ω) :
∫

Ω q dx= 0
}

, and the forcef ∈ L2(Ω)d that minimizes
the cost functional

J(u, f) =
1
2
||u−ud||2L2(Ω)+

α
2
||f||2L2(Ω) , (1)

subject to the state equations

−∆u+∇p = f in Ω , div u = 0 in Ω ,

u = 0 onΓ , fa ≤ f ≤ fb a.e. inΩ .

Here Ω is an open and bounded domain inRd (d ∈ {1,2,3}) with Lipschitz-
continuous boundaryΓ , ud ∈ L2(Ω)d is the desired velocity,α > 0 is a cost pa-
rameter andfa, fb ∈ L2(Ω)d are the lower and upper bounds for the control variable
f, respectively.

In order to solve this optimal control problem, we consider the first-discretize-
then-optimize strategy. As an example of a discretization method we discuss the
finite element method using the Taylor-Hood element on a simplicial subdivision of
Ω consisting of continuous and piecewise quadratic functions for the velocity and
the force and continuous and piecewise linear functions forthe pressure.

The discrete counterpart of (1) is:

Minimize
1
2
(uh −udh)

TM(uh −udh)+
α
2

fh
TMf h , (2)
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subject to the state equations

Kuh −DTph = Mf h ,

−Duh = 0 ,

fah ≤ fh ≤ fbh ,

whereM denotes the mass matrix representing theL2(Ω)d scalar product,K denotes
the stiffness matrix representing the vector Laplace operator on the finite element
space,D denotes the divergence matrix representing the divergenceoperator on the
involved finite element spaces anduh, fh andph are the coordinate vectors ofu, f
andp w.r.t. the nodal basis, respectively.

The first order system of necessary and sufficient optimalityconditions of (2) can
be expressed as follows (cf. [5] for the continuous case):

Muh +Kûh −DT p̂h = Mudh ,

−Dûh = 0 ,

αMf h −Mûh + zh = 0 ,

Kuh −DTph −Mf h = 0 ,

−Duh = 0 ,

zh −max
{

0,zh + c(fh − fbh)
}

−min{0,zh − c(fah − fh)}= 0 ,











































(3)

for anyc> 0 with Lagrange multiplierŝuh, p̂h andzh.
In order to solve this system, we propose a primal-dual active set method

as introduced in [1]. The strategy proceeds as follows: Given the k-th iterate
(uh,k ,ph,k , fh,k , ûh,k , p̂h,k ,zh,k), the active sets are determined by

A
+

k =
{

i : zi
h,k+ c( f i

h,k− f i
bh
)> 0

}

,

A
−

k =
{

i : zi
h,k− c( f i

ah
− f i

h,k)< 0
}

,

wherezi
h,k is the i-th component ofzh,k and the inactive setIk is the complement

of A
+

k ∪A
−

k in the set of all indices. One step of the primal-dual active set method
for the solution of (3), given in terms of the new iterate, reads as follows:

















M 0 0 K −DT 0
0 0 0 −D 0 0
0 0 αM −M 0 I
K −DT −M 0 0 0
−D 0 0 0 0 0
0 0 cχAk 0 0 χIk

































uh,k+1
ph,k+1
fh,k+1
ûh,k+1
p̂h,k+1
zh,k+1

















=

















Mudh

0
0
0
0

c(χ
A

+
k

fbh + χ
A

−
k

fah)

















, (4)
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whereχ
A

+
k

, χ
A

−
k

andχAk are diagonal 0-1-matrices representing the characteristic

functions ofA +
k , A

−
k andAk = A

+
k ∪A

−
k , respectively. Since we focus here on

the solution of individual steps, we drop the iteration index from now on.
By eliminating fh andzh from the third and the last line the resulting system

K x= b reads:
(

A BT

B −C

)(

wh

ŵh

)

=

(

eh

gh

)

, (5)

with

A =

(

M 0
0 0

)

, B=

(

K −DT

−D 0

)

= BT , C=

(

α−1MCA
0

0 0

)

,

eh =

(

Mudh

0

)

, gh =

(

0
gh1

)

, wh =

(

uh
ph

)

, ŵh =

(

ûh
p̂h

)

,

where

MCA
= M −PA

T (PA M−1PA
T)−1

PA ,

gh1 = PA
T (PA M−1PA

T)−1
(PA + fbh +PA − fah) ,

andPA is a rectangular matrix consisting of those rows ofχA which belong to the
active indices, similar forPA ± .

The system matrixK is symmetric and indefinite. For solving the corresponding
linear system we propose a MinRes method, see, e.g., [13]. Without preconditioning
the convergence rate would deteriorate with respect to the discretization parameter
h and the cost parameterα. Therefore, preconditioning is an important issue.

3 A Robust Preconditioning Technique

In this section, we discuss a preconditioning strategy for the saddle point system
(5). Due to the symmetry and coercivity properties of the underlying operators the
blocks fulfill the following properties:K = KT > 0, M = MT > 0 andMCA

=
MCA

T ≥ 0. For our choice of the finite element functions,D is of full rank.
In [14] a block-diagonal preconditioner is constructed forthe distributed opti-

mal control problem of the Stokes equations without constraints on the control. Its
robustness w.r.t.h andα is shown for this case, which corresponds to the setting
A = /0.

This preconditioner reads as follows:

P = diag (P1,P2) , (6)

whereP1 = diag
(

P,αDP−1DT
)

andP2 = α−1P1 with P= M +α1/2K . The idea
is now to use this preconditioner also in our case. The next theorem contains the
main result of this paper, where we use the following notation: For any symmetric
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and positive (semi-) definite matrixQ we denote by‖ · ‖Q the energy (semi-) norm
induced byQ.

Theorem 1.The system matrixK of (5) satisfies:

c‖x‖P ≤ sup
y6=0

yTK x
‖y‖P

≤ c‖x‖P ∀x ,

with constants c, c independent of the discretization parameter h and the active set
A .

Proof. Due to Theorem 2.6 from [14], it is necessary and sufficient toprove

c1‖wh‖2
P1

≤ ‖wh‖2
A+ sup

r̂h 6=0

(

r̂T
h Bwh

)2

‖r̂h‖2
P2

≤ c1‖wh‖2
P1

, (7)

c2‖ŵh‖2
P2

≤ ‖ŵh‖2
C+ sup

rh 6=0

(

rT
h Bŵh

)2

‖rh‖2
P1

≤ c2‖ŵh‖2
P2

, (8)

with rh =

(

vh
qh

)

, r̂h =

(

v̂h
q̂h

)

for constantsc1, c1, c2 and c2 independent of the

discretization parameterh and the active setA . For proving (7), we first show

c3‖wh‖P1
≤ sup

r̂h 6=0

r̂T
h Bwh

‖r̂h‖P1

≤ c3‖wh‖P1
, (9)

for constantsc3 andc3 independent of the discretization parameterh and the active
setA . In order to prove (9) we have to verify the conditions of the Theorem of
Brezzi [3]:

The boundedness of the bilinear forms, saya andb, associated withK andD is
trivial. Using Friedrichs inequality with constantcF we can show the coercivity of
a:

a(uh,uh) = ‖uh‖2
K ≥ 1

2cF
‖uh‖2

M +
1

2
√

α
√

α‖uh‖2
K ≥ min

{

1
2cF

,
1

2
√

α

}

‖uh‖2
P .

Since

sup
v̂h 6=0

b(v̂h,ph)

‖v̂h‖P
= sup

v̂h 6=0

ph
TDv̂h

‖v̂h‖P
= ‖ph‖DP−1DT =

1√
α
‖ph‖αDP−1DT ,

the inf-sup condition ofb is satisfied. Hence (9) follows.
From (9) and the fact thatP2 = α−1P1 we get

√
αc3‖wh‖P1

≤ sup
r̂h 6=0

r̂T
h Bwh

‖r̂h‖P2

≤
√

αc3‖wh‖P1
. (10)

Furthermore we have
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0≤ ‖wh‖2
A = ‖uh‖2

M ≤ ‖wh‖2
P1

. (11)

Therefore, combining (10) with (11) yields (7). Equation (8) can be shown analo-
gously. ⊓⊔
As a consequence of Theorem 1 we have:

κ(P−1
K ) := ‖P−1

K ‖P‖K −1
P‖P ≤ c

c
, (12)

i.e., the condition number of the preconditioned system is bounded independently of
h andA . Therefore, the number of iterations of the preconditionedMinRes method
can be bounded independently ofh andA (see e.g. [6]).

Remark 1.The result of Theorem 1 can be shown not only on the discrete level
but also on the continuous level using the corresponding non-standard norms in
H1

0(Ω)×L2
0(Ω) for u andp as well as for the Lagrange multipliersû and p̂.

Remark 2.Using the standard norms inH1
0(Ω)×L2

0(Ω), as it is done in [7] for the
elliptic case, leads to the preconditioner:

Ps = diag (K ,Mp,K ,Mp) , (13)

whereMp denotes the mass matrix for the pressure element. In this case, one can
show a similar result as in Theorem 1.

Remark 3.If we consider the distributed optimal control problem for the Stokes
equations with different observation and control domainsΩ1 andΩ2, we end up
with the following linear system:









M1 0 K −DT

0 0 −D 0
K −DT −α−1M2 0
−D 0 0 0

















uh
ph
ûh
p̂h









=









Mudh

0
0
0









,

whereM1 and M2 are the mass matrices onΩ1 and Ω2, respectively. With the
preconditionerP from above, one can show a similar result as in Theorem 1 with
robustness w.r.t.h, Ω1 andΩ2.

4 Numerical Experiments

The numerical experiments are carried out on the unit squaredomainΩ = (0,1)×
(0,1) ⊂ R

2. The initial mesh contains four triangles obtained by connecting the
two diagonals. The final mesh was constructed by applyingk uniform refinement
steps to the initial mesh, leading to a meshsizeh = 2−k. For constructing a prac-
tically realizable preconditioner we proceed as follows: First we replace the ma-

trix D
(

M +α1/2K
)−1

DT by
(

α1/2Mp
−1+Kp

−1
)−1

as proposed in [4], whereKp
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denotes the stiffness matrix for the pressure element. Thenthe application of the
preconditioner would require the multiplication of a vector from the left by the in-
verse of the matricesM +α1/2K , Mp andKp. These actions are replaced by one
step of a V-cycle iteration forM +α1/2K andKp and by one step of a symmetric
Gauss-Seidel iteration forMp. The V-cycle is done with one step of a symmetric
Gauss-Seidel iteration for the pre-smoothing process and for the post-smoothing
process. The resulting realizable preconditioner is spectrally equivalent to the theo-
retical preconditioner according to the analysis in [2, 12,9, 11, 10].

We demonstrate the efficiency of our solver with two different prescribed active
sets.

As a first test case, the active setA is chosen as the set of all indices of those
nodes which lie in the upper half of the computational domain. Table 1 shows the
condition number of the preconditioned system matrix with preconditionerP for
various values ofh andα, wherek denotes the number of refinements,N is the
total number of degrees of freedom of the discretized optimality system (5). In the

Table 1 Condition numbers

k N α
10−7 10−6 10−5 10−4 10−3 10−2 10−1 1

4 9 030 >500 70.9 13.92 7.49 8.12 8.68 9.2 9.53
5 36 486 >500 74 14.16 8.25 8.81 9.3 9.72 9.99
6 146 694 >500 79 14.63 8.87 9.46 9.92 10.16 10.34
7 588 294 >500 83 15.21 9.06 9.79 10.25 10.47 10.66

second test case, the active setA is chosen as a randomly distributed set, having the
same cardinality as in the first test case. Table 2 shows the condition number of the
preconditioned system matrix with preconditionerP.

Table 2 Condition numbers

k N α
10−12 10−8 10−4 1

4 9 030 >500 7.34 7.41 9.52
5 36 486 >500 4.95 8.21 9.98
6 146 694 133 6.13 8.88 10.34
7 588 294 16.65 6.71 9.12 10.58

Additional numerical experiments using the preconditioner Ps showed that the
preconditionerP has a better performance than the standard one, e.g., while the
preconditionerPs behaves reasonably only forα ≥ 10−2, the preconditionerP
behaves reasonably as long asα ≥ 10−5.
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5 Concluding Remarks

In order to develop a robust solver for the linear system (5) we used the block-
diagonal preconditioning technique introduced in [14]. The preconditioner con-
structed there was reused for the control constrained distributed optimal control
problem for the Stokes equations and robustness w.r.t. the discretization parameter
as well as the active set was shown. Even though the preconditioner is not robust
w.r.t. α, the numerical experiments show a good performance of this preconditioner
as long asα is not extremely small.

Acknowledgements The research was funded by the Austrian Science Fund (FWF): W1214-N15,
project DK12.
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