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A LOCAL FOURIER CONVERGENCE ANALYSIS OF A

MULTIGRID METHOD USING SYMBOLIC COMPUTATION

VERONIKA PILLWEIN AND STEFAN TAKACS

Abstract. For iterative solvers, besides convergence proofs that may state

qualitative results for some classes of problems, straight-forward methods to
compute (bounds for) convergence rates are of particular interest. A widely-

used straight-forward method to analyze the convergence of numerical methods

for solving discretized systems of partial differential equations (PDEs) is local
Fourier analysis (or local mode analysis). The rates that can be computed with

local Fourier analysis are typically the supremum of some rational function.

In the past this supremum was merely approximated numerically by interpo-
lation. We are interested in resolving the supremum exactly using a standard

tool from symbolic computation: cylindrical algebraic decomposition (CAD).

In this paper we work out the details of this symbolic local Fourier analysis
for a multigrid solver applied to a PDE-constrained optimization problem.

1. Introduction

As mentioned in the abstract, in this work we introduce symbolic local Fourier
analysis (sLFA) for analyzing the convergence behavior of a numerical method.
Local Fourier analysis (or local mode analysis) is a commonly used approach for
designing multigrid methods and analyzing their convergence properties. It dates
back to the late 1970s when A. Brandt [2] proposed to use Fourier series in the
analysis of multigrid methods. Local Fourier analysis provides a framework to
analyze various numerical methods with a unified approach that gives quantitative
statements on the methods under investigation, i.e., it leads to the determination
of sharp convergence rates. Typically in multigrid theory the fact of convergence
is shown and neither sharp nor realistic bounds for convergence rates are provided,
cf. standard analysis [7].

Local Fourier analysis can be justified rigorously only in special cases, e.g., on
rectangular domains with uniform grids and periodic boundary conditions. How-
ever, results obtained with local Fourier analysis can be carried over rigorously to
more general classes of problems, cf. [3]. Moreover, it can be viewed as heuristic
approach for a wide class of applications.

We understand local Fourier analysis as a machinery, which we apply in this
paper to a model problem and a particular multigrid solver. A similar viewpoint was
taken in [19], where also a local Fourier analysis software was presented that can be
configured using a graphical user interface and allows ot approximate (numerically)
smoothing and convergence rates based on local Fourier analysis approaches for
various problems and different multigrid-methods.

1991 Mathematics Subject Classification. Primary 68W30, 65N12, 26D05, 65N55.
The research was funded by the Austrian Science Fund (FWF): W1214-N15, projects DK6 and

DK12, and grant P22748-N18.

1



2 VERONIKA PILLWEIN AND STEFAN TAKACS

As a model problem for the proposed machinery, we choose the application of
a multigrid method to a particular PDE-constrained optimization problem. This
problem is characterized by a parameter-dependent linear system which is not pos-
itive definite. Therefore the construction of a parameter-robust numerical method
for such a problem is non-standard. More or less the same problem an the same
smoother have been analyzed in [1] using classical local Fourier analysis, i.e., there
the smoothing rate was approximated numerically. Here we present a symbolic
analysis providing sharp, exact upper bounds. Still, we keep in mind that this
analysis can be carried over to a variety of other problems and other (multigrid)
solvers.

In [12] we used the proposed method for a one dimensional problem and proving
smoothing properties only, which was a much easier task to handle. The goal of the
present paper is to demonstrate that the analysis can be carried out in an entirely
symbolic way and as such leads to sharp estimates for the convergence rates also
for two dimensional problems. Aiming at an audience from both numerical and
symbolic mathematics we try to stay at an elementary level and keep this note
self-contained.

For deriving the explicit representation of the convergence rates, we use Cylindri-
cal Algebraic Decomposition (CAD), a well established method in symbolic com-
putation. It was introduced for solving the problem of quantifier elimination in
the theory of real numbers. Below we see that the bound for the convergence rate
is defined as the supremum over a certain rational function (after an appropriate
rewriting). This allows us to invoke CAD in the solution of the problem. CAD has
been applied earlier in the analysis of (systems of) ordinary and partial differential-
difference equations [8], where the necessary conditions for stability, asymptotic
stability and well-posedness of the given systems were transformed into statements
on polynomial inequalities using Fourier or Laplace transforms.

This paper is organized as follows. In Section 2 the numerical method analyzed in
this paper using symbolic local Fourier analysis is introduced. We recall the method
of classical local Fourier analysis and present the setup for the model problem in
Section 3. In Sections 4 and 5 the symbolic local Fourier analysis is carried out to
give sharp bounds for the convergence rates in the one and two dimensional case,
respectively.

2. Model problem

The convergence analysis presented in this paper should be understood as a
machinery that can be applied to various problems and solvers. The analysis is
carried out for the optimization problem constrained to a partial differential equa-
tion (PDE-constrained optimization problem), introduced in Subsection 2.1, and a
multigrid solver, introduced in Subsection 2.2.

2.1. A PDE-constrained optimization problem. The analysis is carried out
for the following model problem, which is an optimal control problem of tracking
type.

Problem 2.1. Find state y and control u such that they minimize

J(y, u) :=
1

2

∫
Ω

(y(x)− yD(x))2 dx +
α

2

∫
Ω

u2(x) dx,
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subject to the elliptic boundary value problem (BVP)

−∆y = u in Ω and y = 0 on ∂Ω.

Here, for d = 1, 2, 3 the set Ω ⊂ Rd is a given domain with sufficiently smooth

boundary ∂Ω and ∆ is the standard Laplace operator, i.e., ∆ := ( ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
).

Moreover, the desired state yD and the regularization or cost parameter α > 0 are
assumed to be given.

The solution of the optimal control problem is characterized by its optimality
system (Karush Kuhn Tucker system or KKT-system), which consists of state y,
control u and and Lagrange multiplier, say p. The relation u = α−1p follows
directly from the KKT-system, which allows to eliminate u. This leads to the
reduced KKT-system, which reads as follows.

Problem 2.2. Let yD ∈ L2(Ω) and α > 0 be given. Find (y, p) ∈ X := V × V :=
H1

0 (Ω)×H1
0 (Ω) such that

(y, ỹ)L2(Ω) + (∇p,∇ỹ)L2(Ω) = (yD, ỹ)L2(Ω)

(∇y,∇p̃)L2(Ω) − α−1(p, p̃)L2(Ω) = 0

holds for all (ỹ, p̃) ∈ X.

Here,∇ := ( ∂
∂x1

, . . . , ∂
∂xd

) is the (weak) gradient and (u, v)L2(Ω) :=
∫

Ω
u(x) v(x) dx

is the standard scalar product on L2(Ω). The details can be found in literature,
cf. [11, 13, 12] and others.

For finding the approximate solution to this problem, we discretize the problem
using finite elements. We assume to have for k = 0, 1, 2, . . . a sequence of rectangular
grids partitioning the given domain Ω. The finite dimensional subspaces Vk ⊂ V
consist of continuous functions which are bilinear on each rectangular element.
Here, the dimension Nk depends on the grid level k. By Galerkin principle, we
replace the original Hilbert space V by the subspaces Vk in Problem 2.2. Assuming
to have a nodal basis Φk := (ϕk,i)

Nk
i=1 for Vk, we can rewrite the (discretized)

optimality system in matrix-vector notation as follows:(
Mk Kk

Kk −α−1Mk

)
︸ ︷︷ ︸

Ak :=

(
y
k
p
k

)
︸ ︷︷ ︸
xk :=

=

(
g
k
0

)
︸ ︷︷ ︸
f
k

:=

,

where the mass matrix Mk and the stiffness matrix Kk are given by

Mk := ((ϕk,j , ϕk,i)L2(Ω))
Nk
i,j=1 and Kk := ((∇ϕk,j ,∇ϕk,i)L2(Ω))

Nk
i,j=1,

respectively, and the right hand side vector g
k

is given by

g
k

:= ((yD, ϕk,i)L2(Ω))
Nk
i=1.

The symbols y
k

and p
k

denote the coordinate vectors of the corresponding functions
yk and pk with respect to the nodal basis Φk.

2.2. A multigrid method. In this subsection we briefly introduce the multigrid
framework that we want to analyze. Multigrid methods consist of two main parts:
smoothing and coarse-grid correction. Intuitively speaking, the smoother is applied
in order to reduce the amplitude of high-frequency modes of the defect, whereas the
coarse-grid correction takes care of the low-frequency modes of the overall defect.
The local Fourier analysis ensures this in a formal way.
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Starting from an initial approximation x
(0)
k , one step of the multigrid method

with νpre + νpost smoothing steps for solving a discretized equation Ak xk = f
k

on
grid level k is given by:

• Apply νpre (pre-)smoothing steps

(2.1) x
(0,m)
k := x

(0,m−1)
k + τ Â−1

k (f
k
−Ak x(0,m−1)

k ) for m = 1, . . . , νpre

with x
(0,0)
k := x

(0)
k , where the choice of the damping parameter τ and the

preconditioner Âk is discussed below.

• Apply coarse-grid correction

– Compute the defect f
k
− Ak x

(0,νpre)
k and restrict to the coarser grid

(grid level k − 1)

r
(1)
k−1 := Pk−1

k (f
k
−Ak x

(0,νpre)
k ).

– Solve the problem

Ak−1p
(1)
k−1

= r
(1)
k−1

on the coarser grid.
– Prolongate the correction step to the finer grid (level k) and update

the iterate

x
(1,−νpost)
k := x

(0,νpre)
k + Pkk−1p

(1)
k−1

.

If the problem on the coarser grid is solved exactly (two-grid method), then
we obtain

x
(1,−νpost)
k := x

(0,νpre)
k + Pkk−1A−1

k−1P
k−1
k (f

k
−Ak x

(0,νpre)
k ).

• Apply νpost (post-)smoothing steps

(2.2) x
(1,m)
k := x

(1,m−1)
k + τ Â−1

k (f
k
−Ak x(1,m−1)

k ) for m = −νpost + 1, . . . , 0

to obtain the next iterate x
(1)
k := x

(1,0)
k .

Here, the intergrid-transfer operators Pkk−1 and Pk−1
k are chosen to be block-

diagonal, i.e.,

Pkk−1 =

(
P kk−1

P kk−1

)
and Pk−1

k =

(
P k−1
k

P k−1
k

)
,

which means that the intergrid-transfer is done for the functions y and p sepa-
rately. Because we have nested spaces, i.e., Vk ⊆ Vk+1, the intergrid-transfer oper-
ators P kk−1 and P k−1

k can be chosen in a canonical way: we choose the canonical

embedding as P kk−1 and its transpose as restriction P k−1
k .

In practice the problem on grid level k − 1 is handled by applying one step (V-
cycle) or two steps (W-cycle) of the proposed method, recursively, and just on the
coarse grid level k = 0 the problem is solved exactly. We restrict our analysis to
two-grid iteration, i.e., we assume that the problem on the coarser grid is solved
exactly.

For the choice of the smoother, several possibilities have been proposed in the
literature. Here the analysis is carried out for collective point smoothers which have
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been proposed in, e.g., [18, 1, 10, 17] to name a few. The smoother is characterized

by the following choice of the preconditioning matrix Âk:

Âk =

(
diagMk diagKk

diagKk − 1
α diagMk

)
and τ > 0 properly chosen.

The local Fourier analysis yields how the parameter τ shall be chosen. Moreover,
we note that this smoother is easy to implement in an efficient way, see, e.g., [10].
Numerical examples show good behavior of multigrid methods using such iterations
as smoothing procedures and have been discussed in, e.g., [1, 10].

3. symbolic local Fourier analysis (sLFA)

In this section, we recall the method of local Fourier analysis and give some
preliminary results that are used to derive convergence results for the model problem
in Sections 4 and 5. For this purpose in Subsection 3.1, we introduce the iteration
matrix and the convergence rate. In the following subsections, we use local Fourier
analysis to derive the symbol of the the iteration matrix. In Subsection 3.5, we
comment on the use of CAD.

3.1. Iteration matrix. For sake of simplicity, we restrict ourselves in this work
to the two-grid analysis, i.e., we assume that the problem is solved exactly on the
coarser grid within the approximation step. Still we are interested in convergence
properties independent of the grid level k and of the choice of the parameter α.

The main goal of a convergence analysis is to find a (sharp) bound for the
convergence rate. The sharp bound for the convergence rate is the smallest factor
q such that the norm of the error after the n + 1-st iterate can be bounded by q
times the error after the n-th iterate, i.e., such that

‖x(n+1)
k − xk‖X ≤ q ‖x

(n)
k − xk‖X

is satisfied, where xk := A−1
k f

k
is the exact solution and ‖ · ‖X is an appropriate

norm. The choice of this norm is discussed below.
Using (2.1) – (2.2) and xk = A−1

k f
k
, we obtain

x
(n+1)
k − xk = TGk−1

k (x
(n)
k − xk),

where the iteration matrix TGk−1
k is given by

TGk−1
k := S

νpost
k

(
I − Pkk−1A−1

k−1P
k−1
k Ak

)︸ ︷︷ ︸
CGk−1

k :=

S
νpre
k

and the iteration matrix of the smoother, Sk, is given by

Sk := I − τ Â−1
k Ak.

Certainly, the convergence rate can be bounded from above by the matrix norm of
the iteration matrix, i.e.,

(3.1) q ≤ qTG = ‖TGk−1
k ‖X

holds. This estimate is sharp if we consider the supremum over all possible starting
values or, equivalently, all possible right-hand sides. If qTG < 1 is satisfied, the
method converges for all starting values. If qTG is independent of hk and α, (or
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any other parameter) we have robust and optimal convergence behavior, i.e., the
number of iterations is independent of those parameters.

3.2. Local Fourier analysis framework. The idea of (local) Fourier analysis is
to simplify the problem such that the eigenvectors and the eigenvalues of mass and
stiffness matrix can be written down explicitly. Therefore, typically uniform grids
are assumed. Whereas more rigorous approaches of Fourier analysis assume the
domain to be an interval or a rectangular domain and incorporate corresponding
boundary terms, in local Fourier analysis the boundary is neglected by assuming
periodic boundary conditions.

This allows to extend a bounded domain Ω to the entire space Rd, see [3]. In
this section, we restrict for sake of simplicity to the two dimensional case, so we
consider the case Ω := R2. Let us stress once more that good convergence and
smoothing rates computed using local Fourier analysis for simple cases, typically
also indicates good behavior of the analyzed methods in more general cases.

We assume to have on each grid-level k = 0, 1, 2, . . . a uniform grid with nodes

xk,n1,n2 := (hk n1, hk n2) for (n1, n2) ∈ Z2,

where the uniform grid size is given by hk = 2−k. The discretization is done using
the Courant element, so the functions in Vk are given by fixing the values on the
grid points only, i.e., using a grid function

uk : hk Z2 → R
xk,n1,n2 → uk(xk,n1,n2).

Within the quadrilaterals in between, the functions in Vk are bilinear. Certainly,
for (bounded) domains the number of nodes is bounded and therefore all the nodes
can be enumerated. So, the grid functions are basically just vectors where the
dimension equals the number of nodes.

The local Fourier analysis is based on Fourier grid functions, which are defined
as follows. For every θ ∈ Θ := [−π, π)2 and every grid level k, the Fourier grid
function ϕk(θ) is given by

ϕk(θ)(xk,n) := ei(θ·xk,n)/hk .

It is easy to see that every grid function can be expressed as linear combination
of countable infinitely many Fourier grid functions. In case of a bounded domain,
just finitely many Fourier grid functions would be necessary. Nonetheless for the
analysis, all θ ∈ Θ = [−π, π)2 are considered.

3.3. Symbols of mass and stiffness matrix. Using standard techniques, one
can explicitly write down the matrices Mk and Kk for the discretization which
we have introduced in subsection 3.2, see, e.g., [18]. Based on such an explicit
representation, we obtain

Mk ϕk(θ) = Mk(θ) ϕk(θ) and Kk ϕk(θ) = Kk(θ) ϕk(θ),

where

Mk(θ1, θ2) =
h2
k

36 ( e−θ1i−θ2i + 4e−θ1i + e−θ1i+θ2i

+ 4e−θ2i + 16 + 4eθ2i

+ eθ1i−θ2i + 4eθ1i + eθ1i+θ2i )
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and

Kk(θ1, θ2) = 1
3 ( − e−θ1i−θ2i − e−θ1i − e−θ1i+θ2i

− e−θ2i + 8 − eθ2i

− eθ1i−θ2i − eθ1i − eθ1i+θ2i ).

The scalars Mk(θ) and Kk(θ), which are obviously eigenvalues, are called symbols.

The preconditioning matrices M̂k = diagMk and K̂k = diagKk are just scaled
identity matrices and the symbol equals the scaling factor, i.e.,

M̂k(θ) = M̂k = 4
9h

2
k and K̂k(θ) = K̂k = 8

3 .

3.4. Symbol of the system matrix Ak and of the iteration matrix. In the
last subsection we have shown that the vector ϕk(θ) is invariant under the action

of Mk, Kk, M̂k and K̂k for all θ ∈ Θ. This can be extended to the block-matrices:
for all θ ∈ Θ the linear span of the vectors

(3.2)

(
ϕk(θ)
~0

)
and

(
~0

ϕk(θ)

)
is invariant under the action of the block matrices Ak and Âk. Again, we can
introduce the symbol:
(3.3)

Ak(θ) =

(
Mk(θ) Kk(θ)
Kk(θ) −α−1Mk(θ)

)
and Âk(θ) =

(
M̂k(θ) K̂k(θ)

K̂k(θ) −α−1M̂k(θ)

)
.

Here, the symbol is a 2-by-2 matrix and therefore it cannot be explained as an
eigenvalue anymore. The symbol Ak(θ) is the representation of the block matrix Ak
with respect to the basis formed by the vectors in (3.2).

Using the symbols of Ak and Âk, we derive the symbol of the iteration matrix
of the smoother:

Sk(θ) = I − τ Âk(θ)−1Ak(θ).

As we are interested in a whole two-grid step, we also have to take the ma-
trix Ak−1, i.e., the system matrix on the coarser grid, and the intergrid transfer
operators into account. The coarse-grid correction operator does not preserve the
linear span given by the vectors in (3.2). One can verify that for all θ ∈ Θ(low) :=

[−π/2, π/2)2, the restriction operator P k−1
k maps both basis functions,

(3.4) ϕk(θ1, θ2), ϕk(θ1, θ2) and ϕk(θ1, θ2), ϕk(θ1, θ2),

to the same function

(3.5) ϕk−1(2θ1, 2θ2)

on the coarser grid. Here and in what follows, θ is given by

θ :=

{
θ + π for θ < 0,
θ − π for θ ≥ 0.

Such a result also holds for the prolongation operator P k−1
k : this operator maps

the function given in (3.5) to a combination of functions in (3.4). Therefore, we
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cannot represent the two-grid correction operator with respect to the basis stated
in (3.2) but with respect to the basis

(3.6)

(
ϕk(θ1, θ2)

~0

)
,

(
~0

ϕk(θ1, θ2)

)
,

(
ϕk(θ1, θ2)

~0

)(
~0

ϕk(θ1, θ2)

)
,(

ϕk(θ1, θ2)
~0

)
,

(
~0

ϕk(θ1, θ2)

)
,

(
ϕk(θ1, θ2)

~0

)
,

(
~0

ϕk(θ1, θ2)

)
,

see, e.g., [18, 1]. The symbol of the matrix Ak with respect to this basis has a
block-diagonal form:

(3.7) Ak(θ1, θ2) =


Ak(θ1, θ2)

Ak(θ1, θ2)

Ak(θ1, θ2)

Ak(θ1, θ2)

 ∈ R8×8.

The symbol of the intergrid transfer operator has a rectangular form, as the
intergrid transfer operator maps from the basis given in (3.6) (for some (θ1, θ2)) to
the basis given in (3.2) (for (2θ1, 2θ2)).

Pkk−1(θ) =



P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)

P kk−1(θ1, θ2)


,

where P kk−1 is given by

P kk−1(θ1, θ2) = 1
4 ( e−θ1i−θ2i + 2e−θ1i + e−θ1i+θ2i

+ 2e−θ2i + 4 + 2eθ2i

+ eθ1i−θ2i + 2eθ1i + eθ1i+θ2i ).

Using these matrices, we can represent the symbol of the two-grid operator by

TGk−1
k (θ) = Sk(θ)νpost

(
I − Pkk−1(θ)

(
Ak−1(2θ)

)−1
(
Pkk−1(θ)

)T
Ak(θ)

)
Sk(θ)νpre .

Here, Ak−1(2θ) is a 2-by-2 matrix defined in (3.3), and Ak(θ) is an 8-by-8 matrix,

as introduced in (3.7). Also the symbol Sk(θ) is a block-diagonal 8-by-8 matrix,
given analogously to (3.7). A similar analysis was done in [1], cf. Theorem 5.1 in
their work. General remarks concerning local Fourier analysis can be found in [18],
the application to the model problem, as done in this paper, is a straight-forward
application of the techniques presented there.

3.5. Estimating the convergence rate. Based on the local Fourier analysis
framework introduced in the last subsections, qTG, the bound of the convergence
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rate, introduced in (3.1), can be computed explicitly using the symbol. Using a
proper choice of the norms we obtain

(3.8) qTG = ‖TGk−1
k ‖X = sup

θ∈Θ
‖TGk−1

k (θ)‖X ,

i.e., the quantity of our interest is the supremum of the norm of the symbol. In
fact, for a given norm ‖ · ‖X the identity (3.8) can be used as a definition for the
norm ‖ · ‖X , cf. Parseval’s identity. In the case of our model problem, the norm of
is a function of the frequency θ, the grid size hk, the damping parameter τ and the
parameter α, cf. the next two sections.

So far, such a supremum was typically approximated numerically. In the next
two sections we show that the norm can also be computed using CAD which allows
to represent the relation between the mentioned parameters and the convergence
rate in a closed form.

4. An all-at-once analysis for the one dimensional case

We start the analysis with the one dimensional case, where we will omit some of
the computational details and rather discuss the main steps of the procedure. We
have summarized the full computations in a Mathematica notebook1. Note that
the symbols of all involved matrices for the one dimensional case can be computed
in a similar way as it was done in Section 3. The details can be found in [16].

As mentioned in the last section, the iteration matrix TGk−1
k describes the con-

vergence properties of the desired multigrid method. Here, we assume νpre =
νpost = 1 and are interested in computing the convergence rate qTG(τ, hk, α) =

‖TGk−1
k ‖X of the two-grid iteration. For defining the norm ‖ · ‖X we use (3.8) and

fix the norm ‖ · ‖X in the Fourier space:

‖(y
k
, p
k
)‖2
X

:= ‖y
k
‖2`2 + α−1‖p

k
‖2`2 .

‖ · ‖X , applied to matrices, is the corresponding operator norm. This definition
mainly measures the scaling between the involved components, y and p.

This choice guarantees that the norm ‖ · ‖X has a product structure:

‖(y
k
, p
k
)‖2X = ‖y

k
‖2V + α−1‖p

k
‖2V ,

where the norm ‖·‖V is independent of the choice of the parameters τ , hk and α. The

norm of TGk−1
k still may depend on τ , hk and α and as we are interested in a worst-

case scenario, we take the supremum also with respect to hk and α. For obvious
reasons, the supremum is not taken with respect to the damping parameter τ , which
shall be chosen in an optimal way.

The convergence rate qTG(τ) is therefore given by

(4.1) q2
TG(τ) = sup

hk>0
sup
α>0

sup
θ∈Θ
‖TGk−1

k (θ)‖2
X
,

where the norm ‖TGk−1
k (θ)‖X depends on all of these variables, τ , hk, α and θ. This

norm can be computed in a straight-forward way. In order to make CAD applicable,
we rewrite this quantity as a rational function. Therefore we replace cos(θ) by a
variable c. The expression can be simplified further using the substitutions η :=

1The document is available online at http://www.risc.jku.at/people/vpillwei/sLFA/
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h4
k/α and γ := c2, which allows to eliminate hk and α and to reduce the polynomial

degree. We obtain

‖TGk−1
k (θ)‖2

X
= σ

(
τ,
h4
k

α
, cos2(θ)

)
,

where

σ(τ, η, γ) =
P1(τ, η, γ)P2(τ, η, γ)

64(9 + η)2(9(−1 + γ)2 + η(1 + 2γ)2)
, with

P1(τ, η, γ) = η
(
γ2τ2 + γ

(
4− 3τ2

)
+ 4(τ − 1)2

)
+ 36

(
γ2τ2 + γ

(
6τ2 − 6τ + 1

)
+ (τ − 1)2

)
P2(τ, η, γ) = η2

(
γ3τ2 + γ2

(
4 + 16τ − 7τ2

)
+ γ

(
8τ2 − 56τ + 52

)
+ 16(τ − 1)2

)
+ 36η

(
2γ3τ2 + γ2

(
28τ2 − 22τ + 5

)
+ γ

(
34τ2 − 34τ + 5

)
+ 8(τ − 1)2

)
+ 1296(γ − 1)2

(
(γ + 1)τ2 − 2τ + 1

)
.

Now (4.1) can be rewritten using the function σ as follows:

(4.2) q2
TG(τ) = sup

η>0
sup

0≤γ≤1
σ(τ, η, γ).

In [12], the authors have discussed that such a problem can be resolved using
quantifier elimination algorithms. As by definition the supremum is the least upper
bound, q2

TG(τ) is the smallest λ satisfying

(4.3) ∀ η > 0 : ∀ 0 ≤ γ ≤ 1 : σ(τ, η, γ) ≤ λ.

The above is a quantified formula with rational content and we are interested in
finding an equivalent quantifier-free condition on λ as a function in τ . This problem
is known to be solvable using Cylindrical Algebraic Decomposition (CAD) [5, 6, 9].
Even though this method provably is correct and terminates on any given input
fitting to the framework, the underlying computations are very involved. The
computational complexity depends heavily on the input parameters such as the
number of inequalities, the polynomial degrees (if the rational input is rephrased as
a logical combination of polynomial inequalities) and the number of variables. In
the worst case it is doubly exponential in the number of variables and this worst-
case bound is not only met in theory, but often experienced in practice. There
are several implementations of CAD available [4, 14, 15], for this work we use
the Mathematica built-in commands “CylindricalDecomposition” and “Resolve”.
The quantifier-free formula allows to directly express qTG as a piecewise rational
function in τ as discussed in [12].

However, the problem (4.3) is too big to allow a direct application of Mathe-
matica’s CAD algorithm and it does not terminate within a reasonable amount
of time (reasonable including a run-time of more than a week). Therefore strate-
gies to accelerate the computations are necessary, besides the obvious reductions
of the number of variables and degrees that was carried out already by substitut-
ing η = h4

k/α. Note that using CAD we are able to actually find (and thereby also
prove) the desired bound – in theory. However, if we can come up with a good
guess for the bound (again assisted by CAD), then CAD can be used to prove the
guess rigorously. Commonly, proving is easier than finding, not only in the context
of CAD. Hence below we first guess the convergence rate using the samples η = 0
and η →∞ and show that the guess is correct in the second step. This approach is



SYMBOLIC LOCAL FOURIER ANALYSIS 11

sufficient to deal with the all-at-once analysis in the one dimensional case. For the
two dimensional case discussed in the next section the formula to be proven is still
too large to be handled directly in this way. Hence the proof is split into smaller
pieces that are reasonably fast, as is detailed below.

Returning to the one dimensional case following the outlined approach, by sam-
pling we obtain

σ0(τ, γ) := σ(τ, 0, γ) = (1 + τ(−2 + τ + γτ))((τ − 1)2 + γ2τ2 + γ(1 + 6(τ − 1)τ)),

σ∞(τ, γ) := lim
η→∞

σ(τ, η, γ)

=
1

64(1 + 2γ)2
(4(τ − 1)2 + γ2τ2 + γ(4− 3τ2))(16(τ − 1)2 + γ3τ2

+ γ2(4 + 16τ − 7τ2) + γ(52− 56τ + 8τ2)).

We compute the supremum using Mathematica’s CAD algorithm for both cases
separately and obtain

q2
0(τ) := sup

0≤γ≤1
σ0(τ, γ) and q2

∞(τ) := sup
0≤γ≤1

σ∞(τ, γ).

Here, both computations are finished after about ten seconds.2 The results are
rather big, which is why they are not displayed here. In particular the splitting
points are algebraic numbers with minimal polynomials up to degree 18 or coeffi-
cients depending on τ , respectively. Hence we only present a simplified version of
the Mathematica input and output for η = 0 here:

In[1]= Resolve[τ > 0 && ForAll[γ, 0 ≤ γ ≤ 1, σ0[τ, γ] ≤ λ], {τ, λ},Reals]

Out[1]= (0 < τ ≤ τ0&&λ ≥ 2(2τ − 1)2(2τ2 − 2τ + 1)) ‖ (τ0 < τ ≤ τ1&&λ ≥ (τ − 1)4)

‖ (τ > τ1&&λ ≥ 2(2τ − 1)2(2τ2 − 2τ + 1))

Above we use τ0, τ1 as abbreviations for the algebraic numbers τ0 ≈ 0.247067
and τ1 ≈ 0.584927 defined by the minimal polynomial 15z4 − 28z3 + 22z2 − 8z+ 1.

As q2
0(τ) is the smallest λ satisfying the above formula, the interpretation of the

result is that q2
0(τ) is a piecewise polynomial in τ :

q2
0(τ) =


2(2τ − 1)2(2τ2 − 2τ + 1), 0 < τ ≤ τ0
(τ − 1)4, τ0 < τ ≤ τ1
2(2τ − 1)2(2τ2 − 2τ + 1), τ > τ1

In the same way, we compute q2
∞(τ). The guess for the uniform bound of the

two-grid convergence rate defined in (4.2) is then given by the maximum of these
two functions, i.e., we define

qGUESS(τ) := max{q0(τ), q∞(τ)}.
By construction, qTG(τ) ≥ qGUESS(τ) holds for all τ . In order to show that this
guess really is an upper bound for all frequencies, we may again set up a quantified
formula

(4.4) ∀ 0 ≤ τ ≤ 1 : ∀ η > 0 : ∀ 0 ≤ γ ≤ 1 : σ(τ, η, γ) ≤ q2
GUESS(τ).

Since qGUESS(τ) is a piecewise defined function, we may split (4.4) into the intervals
used in the piecewise definition. Again we use Mathematica’s CAD algorithm,

2All computations were done on a standard PC (4 cores with 2.67 GHz each). The times are
given to indicate the order of magnitude.
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which reduces these formulas to the logical constant true, which concludes the
proof that qGUESS(τ) is an upper bound. Each of these steps takes about five to
ten seconds. By construction we also know that this upper bound is sharp.

By some straight-forward simplifications, we can rewrite qTG(τ) = qGUESS(τ)
in a nice closed form and we obtain the following theorem.

Theorem 4.1. The convergence rate for the two-grid method in the framework
stated in this section is given by

qTG(τ) = sup
hk>0

sup
α>0

‖TGk−1
k ‖X = max

{
|1− 2τ |

√
2 + 4(τ − 1)τ ,

1

4
(τ − 2)2

}
for all τ ∈ [0, 1], which can be seen in Figure 1.
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1.4
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Figure 1. Two-grid convergence factor depending on damping parameter

This closed form allows to determine the choices of τ that lead to convergence
or as well determine the optimal choice for τ , which is defined by an intersection
point of the two contributing bounds. Thus it is again an algebraic number, whose
minimal polynomial can be given. We keep in mind that the computed rate is the
result of a sharp worst-case analysis of the convergence rate.

5. An analysis for the two dimensional case

In this section, we apply the sLFA as proposed in the last section to a two
dimensional domain. The complete two-grid system, however, is too large for being
analyzed in an all-at-once way, as this was done for the one dimensional case in the
previous section.

The approach, we follow here, is to split the original problems into subproblems.
A common approach is based on the natural splitting of the iteration matrix of
the two-grid-operator into the iteration matrix of the smoothing steps and the
iteration matrix of the coarse-grid-correction step. This can be done either in a
multiplicative way using a pair of norms as introduced by Hackbusch, cf. [7], or
based on splitting the domain of frequencies θ of the Fourier modes. The latter
alternative is more suitable in terms of local Fourier analysis and therefore we stick
to that approach. Again, we refer for the computational details to the Mathematica
notebook3 provided by the authors.

3The document is online available at http://www.risc.jku.at/people/vpillwei/sLFA/
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First remember that the symbol of the two-grid operator was given by

TGk−1
k (θ) = Sk(θ)νpost CGk−1

k (θ)Sk(θ)νpre .

We are interested in computing the supremum of ‖TGk−1
k (θ)‖X for all θ ∈ Θ(low) :=

[−π/2, π/2)2, all grid sizes hk > 0 and all α > 0. For sake of simplicity, we restrict
ourselves here to νpre = νpost = ν/2 ∈ N.

Because of the semi-multiplicativity of any operator norm, we obtain∥∥∥TGk−1
k (θ)

∥∥∥
X
≤
∥∥∥I(q1, q2)ν/2 CGk−1

k (θ) I(q1, q2)ν/2
∥∥∥
X

∥∥∥I(q1, q2)−1 Sk(θ)
∥∥∥ν
X
,

where I(q1, q2) could be any matrix. We use the following ansatz:

(5.1) I(q1, q2) :=



q1

q1

q2

q2

q2

q2

q2

q2


,

where q1, q2 > 0. The fact that both, I(q1, q2) and Sk(θ), are block-diagonal
guarantees∥∥∥I(q1, q2)−1 Sk(θ)

∥∥∥
X
≤ max{q−1

1 ‖Sk(θ1, θ2)‖X , q
−1
2 ‖Sk(θ1, θ2)‖X ,

q−1
2 ‖Sk(θ1, θ2)‖X , q

−1
2 ‖Sk(θ1, θ2)‖X}.

Because of θ := (θ1, θ2) ∈ Θ(low) and

{(θ1, θ2), (θ1, θ2), (θ1, θ2)} ⊂ Θ(high) := [−π, π)2\[−π/2, π/2)2,

the ansatz

q1 := sup
α>0

sup
hk>0

sup
θ∈Θ(low)

‖Sk(θ)‖X and q2 := sup
α>0

sup
hk>0

sup
θ∈Θ(high)

‖Sk(θ)‖X

guarantees ∥∥∥I(q1, q2)−1 Sk(θ)
∥∥∥
X
≤ 1.

Therefore

qTG = ‖TGk−1
k (θ)‖X ≤ q̃TG(q

ν/2
1 , q

ν/2
2 ) := ‖I(q

ν/2
1 , q

ν/2
2 )CGk−1

k (θ) I(q
ν/2
2 , q

ν/2
2 )‖X

holds for all θ ∈ Θ(low), all hk > 0 and all α > 0. In Subsection 5.1 below we show
that

(5.2) q1 ≤ 1 and q2 ≤ qSM < 1.

The quantity qSM above is called the smoothing rate. The smoothing rate indicates
the reduction of the amplitude of the high frequency error modes performed by the
smoother. Due to the fact that typically q1 = 1 holds, we write in a short notation

qTG(q
ν/2
2 ) := qTG(1, q

ν/2
2 ) and I(q

ν/2
2 ) := I(1, q

ν/2
2 ). In Subsection 5.2 we show

that, provided q1 = 1 and q2 ≤ qSM < 1, an optimal and robust convergence result

can be shown, i.e., that q̃TG(q
ν/2
2 ) < 1.

Analyzing the smoothing rate is standard, cf. [18, 1]. Typically such rates are
not used to compute overall convergence rates as outlined above because the local
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Fourier analysis is usually not done using symbolic computation. Commonly, the
convergence rates are approximated numerically which is also possible directly for
the whole two-grid operator.

Nonetheless, the separation of the analysis for smoother and coarse-grid approxi-
mation done in this section simplifies the comparison of different kinds of smoothers
and the analysis for varying numbers of smoothing steps ν. Moreover, the separa-
tion decomposes the original problem to smaller subproblems which seems to be the
key for extending the results presented here to more dimensions. (This is not an is-
sue if convergence rates are approximated numerically because there the complexity
of the analysis is not growing exponentially with the size of the problem.)

5.1. Smoothing rate. The main goal of this section is to compute qSM , as intro-
duced in (5.2). We have

qSM = qSM (τ) := sup
θ∈Θ(high)

sup
hk>0

sup
α>0
‖ I − τ

(
Âk(θ)

)−1

Ak(θ)︸ ︷︷ ︸
Sk(θ) =

‖X .

Analogously to the previous section we replace cos θ1 and cos θ2 by real variables
c1 and c2, respectively. The condition (θ1, θ2) ∈ Θ(high) is equivalent to (c1, c2) ∈
[−1, 1]2\(0, 1]2. Because of symmetry in c1 and c2, it suffices without loss of gen-
erality to consider only (c1, c2) ∈ D := [−1, 0] × [−1, 1]. As in the last section, we
replace h4

k/α by η to reduce the number of variables. Using these substitutions, we
obtain

qSM (τ) = sup
(c1,c2)∈D

sup
η>0

σ(τ, η, c1, c2),

where σ is given by

σ(τ, η, c1, c2) :=
η((2 + c1)(2 + c2)τ − 4)2 + 36(4 + (c1 + c2 + 2c1c2 − 4)τ)2

16(36 + η)
.

With this rewriting the function of our interest is a rational function and we
can invoke CAD to determine q(τ). For this purpose we have used the CAD-
implementation in Mathematica, which took about seven minutes, This shows the
following result.

Theorem 5.1. The smoothing rate for the collective Jacobi iteration in the frame-
work stated in this section is given by

qSM (τ) =

{
1− τ

4 for 0 ≤ τ ≤ 8
7

3τ
2 − 1 for 8

7 < τ ≤ 4
3

.

for all τ ∈ [0, 4
3 ].

Since CAD results in an equivalent reformulation, we know that these bounds
on the smoothing rate are sharp. The graph of the function qSM can be seen in
Figure 2. We see that qSM (τ) takes its minimum for τ = 8

7 with value qSM
(

8
7

)
=

5
7 ≈ 0.714. For the canonical choice τ = 1

2 , we obtain qSM
(

1
2

)
= 7

8 ≈ 0.875. So
we have shown, that there is a qSM such that q2 ≤ qSM < 1. It remains to show
that q1 ≤ 1, i.e., that

sup
θ∈Θ(low)

sup
hk>0

sup
α>0

σ(θ, hk, α, τ) ≤ 1
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Figure 2. Smoothing factor depending on damping parameter τ

holds for all τ > 0. Using the same reformulations as for θ ∈ Θ(high), we can again
compute the supremum using Mathematica’s CAD algorithm in about 22 minutes.
We can observe that for 0 ≤ τ ≤ 8

9 the supremum is equal to 1, which shows q1 ≤ 1.
As an alternative we could simply use CAD to reformulate the formula

∀ θ ∈ Θ(low) : ∀hk > 0 : ∀α > 0 : σ(θ, hk, α, τ) ≤ 1

in quantifier-free formulation, which leads to 0 ≤ τ ≤ 8
9 . This is done by Mathe-

matica’s CAD algorithm in less than one second to the logical constant true, which
also shows q1 ≤ 1.

5.2. Two-grid convergence rate. As mentioned at the beginning of this section,
here we have to analyze

q̃TG(q) := sup
θ∈Θ(low)

sup
hk>0

sup
α>0
‖I(q) CGk−1

k (θ)I(q)‖X .

Again, we compute

σ(θ, hk, α, q) := ‖I(q) CGk−1
k (θ)I(q)‖2

X

first. As in the last section, we replace h4
k/α by η to reduce the number of variables:

the matrix depends on the real variables η, c1, c2 and q. Unfortunately, we were not
able to compute the norm of that matrix by direct computation in an acceptable
time. Certainly, we have

‖I(q) CGk−1
k (θ)I(q)‖2

X

= λmax

(
L−1/2
k I(q) CGk−1

k (θ)I(q) LkI(q) CGk−1
k (θ)I(q) L−1/2

k︸ ︷︷ ︸
Nk :=

)
,

where the matrix Lk represents the norm ‖ · ‖X . Hence we need to compute the
maximal eigenvalue of Nk which is a matrix with rational entries in all the parame-
ters c1, c2, η and q. Here we face another computational challenge, since this task is
too large to be handled directly by Mathematica’s “Eigenvalues” command. Thus
we use interpolation in q to first determine a guess for the eigenvalue and verify
it in a separate step. This can be done, because the matrix has entries that are
polynomial in q with rational coefficients depending on the other variables. If we
multiply the matrix with the common denominator, the matrix entries are poly-
nomials in all the variables with polynomial degree in q up to at most four. (For
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the exact form see the Mathematica notebook.) For the polynomial interpolation
to guess the eigenvalues of the matrix we used a degree bound that was observed
for specific values of c1, c2, and η. It turns out that with multiplicity two each the
eigenvalues are given by

0, q4,
(
e(q) +

√
d(q)

)
and

(
e(q)−

√
d(q)

)
,

where e and d are rational functions in the unknowns c1, c2 and η that are too large
to be displayed here. This guess was verified by comparing it to the characteristic
polynomial of the matrix. Once we have the eigenvalues, it is readily verified that

σ̃(c1, c2, η, q) = e(q) +
√
d(q)

is the maximal eigenvalue and that it is symmetric in c1 and c2. Thus the domain
that needs to be considered for taking the supremum is

D := {(c1, c2, η) | 0 ≤ c1 ≤ c2 < 1 ∧ η > 0},

i.e.,

q̃TG(q)2 = sup
(c1,c2,η)∈D

σ̃(c1, c2, η, q).

As discussed in the previous section, we note that in theory quantifier elimina-
tion using CAD is capable of finding an upper bound for the maximal eigen-
value σ̃(c1, c2, η, q), but in this particular case the memory and time requirements
are too big. Hence, once more, we have to come up with a plausible guess for
the bounds that we need to prove later. As before, since we are aiming at sharp
bounds, it needs to be met at certain places. In order to obtain this conjectured
bound we have a look at the extreme cases with respect to the frequencies c1, c2,
i.e., for (c1, c2) ∈ C := {(0, 0), (0, 1), (1, 0), (1, 1)}. In all these cases, σ̃(c1, c2, η, q) is
independent of η. Note that the function σ̃ is not defined for (c1, c2, η) = (1, 1, 0).
Thus we consider the limit

lim
c2→1

σ̃(1, c2, 0, q),

which gives another candidate for the upper bound. The maximum of all these
samples is q2

GUESS(q) defined by

qGUESS(q) :=

{(
q2+3

4

)
, 0 < q ≤ Q,

q
√
q2 + 1, Q < q < 1,

where Q :=
√

1
15 (4
√

10− 5) is the intersection point of the two bounds. This is

what we use as our conjectured bound, i.e., we guess that σ̃(c1, c2, η, q) ≤ q2
GUESS(q)

is true for all (c1, c2, η, q) ∈ D×(0, 1). It remains to prove that this guess is correct,
where we note again that, if we have shown that qGUESS(q) is an upper bound, we
know by construction that it is sharp.

So, we have to prove that

σ̃(c1, c2, η, q) = e(q) +
√
d(q) ≤ q2

GUESS(q)

is satisfied for all c1, c2, η and q in the domain of interest. First, observe that it
is easily verified that the denominator D is positive in the given range (which is
quickly confirmed by CAD). Therefore it suffices to show

(5.3) D (e(q) +
√
d(q)) ≤ D q2

GUESS(q)
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Then, in order not having to deal with the square root, we use that

y ≥ 0 ∧ x2 ≤ y2 ⇒ x ≤ y.
Hence for each of the intervals q ∈ (0, Q] and q ∈ (Q, 1) we need to show that

R(c1, c2, q, η) := D (q2
GUESS(q)− e(q)) ≥ 0 , and(5.4)

S(c1, c2, q, η) := D2 ((q2
GUESS(q)− e(q))2 − d(q)) ≥ 0(5.5)

to obtain (5.3). As mentioned earlier, this task is still too complicated to be handled
by CAD directly. Hence we break down the computation into smaller pieces by
deriving sufficient conditions in each step that we can verify easily using CAD,
where easily means bounded by 100 seconds computation time for each substep.

Here, we only sketch the arguments for proving the bounds where we go into
slightly more detail for the left bound, i.e., we assume that 0 < q ≤ Q. The proof
of the right bound (i.e., for Q < q < 1) proceeds by exactly the same idea as the
the proof of the left bound and is omitted here.

First note that R(c1, c2, q, η) is a linear polynomial in η, say

R(c1, c2, q, η) = r0(c1, c2, q
2) + r1(c1, c2, q

2)η.

Here we use the fact that all the quantities depend on even powers of q only.
Since η > 0, a sufficient condition for (5.4) is that the coefficients of η are

non-negative. So, a sufficient condition for R ≥ 0 is if the coefficients r0, r1 are
non-negative, and it turns out that indeed we run into this lucky case. This,
however, cannot be shown directly so easily. Hence we iterate the simple idea of
finding a necessary condition for the given coefficient polynomials r0 and r1. These
coefficients are polynomials in c1, c2 and q2 (representing q2) with degrees 6, 6 and
2, respectively. Hence we choose q2 as the main variable. Then we derive necessary
conditions using CAD on the coefficients ai of a generic quadratic polynomial p2(x)
such that

p2(x) = a0 + a1x+ a2x
2 ≥ 0, 0 < x < Q2,

and finally, we verify that our specific coefficients satisfy these conditions using
CAD. This breaking down into smaller subproblems that yield sufficient conditions
for the bound to be proven is a very simple idea. Still, it turned out to be the key
to obtain the proof in reasonable time with reasonable memory consumption. We
simplify the amount of computations considerably, if we exploit the following basic
logical rules

(5.6)
A⇒ (B ∧ C) ⇔ (A⇒ B) ∧ (A⇒ C), and

A⇒ (B ∨ C) ⇔ (A⇒ B) ∨ (A⇒ C).

In the second step we have to show (5.5). Here, the left hand side factors into

1
16 (q2 − 1)DS(c1, c2, q, η),

where S is a polynomial. Since q2 − 1 < 0, it suffices to show that

S(c1, c2, q, η) ≤ 0.

Again, we observe that S is linear in η, i.e., there are polynomials s0 and s1, both
independent of η, such that

S(c1, c2, q, η) = s0(c1, c2, q
2) + s1(c1, c2, q

2)η.

As a necessary condition, we aim at proving that si(c1, c2, q2) ≤ 0 for i = 0, 1.
Now the coefficients s0, s1 are cubic polynomials in q2. We proceed as before and
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determine necessary conditions on the coefficients ai of a generic polynomial p3(x) =
a0 + a1x+ a2x

2 + a3x
3 to be non-negative in the given range using CAD that are

verified for the particular coefficients using CAD and some manual simplifications
by applying the rules (5.6). The procedure for proving the right bound, i.e., the
case when Q < q < 1, is entirely analogous. Combining these results yields the
following theorem.

Theorem 5.2. We have the following upper bound for the convergence rate for
every smoother satisfying the smoothing property (5.2) with smoothing rate qSM
and ν/2 pre- and ν/2 post-smoothing steps: q̃TG(q

ν/2
SM ), where the function q̃TG is

given by

q̃TG(q) =

{ 1
4 (q2 + 3) for 0 < q < Q

q
√
q2 + 1 for Q ≤ q < 1,

where Q =
√

1
15 (4
√

10− 5).
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Figure 3. Two-grid convergence factor depending on smoothing rate

The combination of Theorems 5.1 and 5.2 gives an upper bound for the two-grid
convergence factor, which can be seen for the cases of ν = νpre+νpost = 2 + 2 steps
of the collective Jacobi iteration as smoother in Figure 4. Also this result can be
written in closed form, but since the formulas are rather long we refer once more
to the Mathematica file.
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Figure 4. Two-grid convergence factor depending on τ for ν =
νpre + νpost = 2 + 2 smoothing steps
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The given result is an upper bound for the convergence rate. Contrary to the
one dimensional case, discussed in Section 4, here the bound is not sharp. In fact,
numerical experiments show much faster convergence, cf [17]. Nonetheless, the
result gives quantitative results on both, the choice of the damping parameter τ
and on ν, the number of smoothing steps that have to be applied. Such results
are not obtained using a classical analysis based on smoothing and approximation
property.

Acknowledgments. We thank Walter Zulehner for pointing out this interdisci-
plinary problem.
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15. A. Strzeboński, Solving systems of strict polynomial inequalities, J. Symbolic Comput. 29
(2000), no. 3, 471 – 480.

16. S. Takacs, All-at-once Multigrid Methods for Optimality Systems Arizing from Optimal Con-

trol Problems, Ph.D. thesis, Johannes Kepler University Linz, Doktoral Program Computa-
tional Mathematics, 2012, (in preperation).

17. S. Takacs and W. Zulehner, Convergence Analysis of Multigrid Methods with Collective Point

Smoothers for Optimal Control Problems, Computing and Visualization in Science 14 (2011),
no. 3, 131–141.

18. U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.

19. R. Wienands and W. Joppich, Practical Fourier analysis for multigrid methods, Chapman &
Hall/CRC, 2005.



20 VERONIKA PILLWEIN AND STEFAN TAKACS

Research Institute for Symbolic Computation, Johannes Kepler University Linz,

Austria

E-mail address: veronika.pillwein@risc.jku.at

Doctoral Program Computational Mathematics, Johannes Kepler University Linz,

Austria
E-mail address: stefan.takacs@dk-compmath.jku.at



Technical Reports of the Doctoral Program

“Computational Mathematics”

2012

2012-01 M.T. Khan: Formal Semantics of MiniMaple January 2012. Eds.: W. Schreiner, F. Winkler
2012-02 M. Kollmann, W. Zulehner: A Robust Preconditioner for Distributed Optimal Control for

Stokes Flow with Control Constraints January 2012. Eds.: U. Langer, R. Ramlau
2012-03 W. Krendl, V. Simoncini, W. Zulehner: Stability Estimates and Structural Spectral Properties

of Saddle Point Problems February 2012. Eds.: U. Langer, V. Pillwein
2012-04 V. Pillwein, S. Takacs: A local Fourier convergence analysis of a multigrid method using

symbolic computation April 2012. Eds.: M. Kauers, W. Zulehner

2011

2011-01 S. Takacs, W. Zulehner: Convergence Analysis of Multigrid Methods with Collective Point
Smoothers for Optimal Control Problems February 2011. Eds.: U. Langer, J. Schicho
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by Using Matrix Triangularization May 2011. Eds.: B. Buchberger, V. Pillwein
2011-10 M. Kollmann, M. Kolmbauer: A preconditioned MinRes solver for time-periodic parabolic

optimal control problems August 2011. Eds.: U. Langer, V. Pillwein
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