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Tomographic Reconstruction of Harmonic Functions

I. Georgieva∗ C. Hofreither†

Abstract

We consider an algebraic method for reconstruction of harmonic functions via a

�nite number of values of its Radon projections. More precisely, for given values of

some Radon projections, we seek a harmonic polynomial which matches these data

exactly. In the present work, we focus mostly on the case where these measurements

are taken along equally spaced chords of the unit circle. We present an e�cient

reconstruction algorithm which is robust with respect to noise in the input data and

provide numerical examples.

1 Introduction

The Radon transform, named after Johann Radon who studied it in the early twentieth
century, is the theoretical foundation for tomography methods for shape reconstruction
of objects with non-homogeneous density. These methods were intensively studied in the
1960s and continue to �nd many applications in medicine, electronic microscopy, geology,
biology, materials science, radiology, plasma investigations, �nding defects in nuclear reac-
tors, etc. Modern methods of tomography involve gathering projection data from multiple
directions and applying this data into a tomographic reconstruction software algorithm
processed by a computer. Generally, the output from these reconstruction procedures ap-
pears as 2D slice images. There exist di�erent reconstruction algorithms: �ltered back
projection, iterative reconstruction, direct methods, etc. These procedures give inexact
results: they represent a compromise between accuracy and computation time required.
From the mathematical point of view, the problem is to recover a multivariate function
using information given as line integrals of the unknown function.

An idea suggested by B. Bojanov is to incorporate additional knowledge about the
function to be recovered into approximation methods. It is to be expected that this can
improve the accuracy of the approximation while reducing the amount of input data re-
quired as well as the computational e�ort. In applications, such problem-speci�c knowledge
is often provided in the form of a partial di�erential equation which the unknown satis�es.

In the present work, we concern ourselves with the simple case where the unknown is
harmonic, i.e., satis�es the Laplace equation ∆u = uxx + uyy = 0. This elliptic partial
di�erential equation is important both as a model problem as well as in actual applications,
like heat transport, di�usion problems or Stokes �ow of incompressible �uids.
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2 Preliminaries and related work

Let I(θ, t) denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
from the origin (see Figure 1).
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Figure 1: The chord I(θ, t) of the unit circle.

The chord I(θ, t) is parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2). (1)

De�nition 1. Let f(x, y) be a real-valued bivariate function in the unit disk in R2. The
Radon projection Rθ(f ; t) of f in direction θ is de�ned by the line integral

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √1−t2
−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Johann Radon [22] showed in 1917 that a di�erentiable function f is uniquely deter-
mined by the values of its Radon transform,

f 7→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.

The problem of recovery of a polynomial from a �nite number of values of its Radon
transform may be viewed as a bivariate interpolation problem where the traditional point
values are replaced by the means over chords of the unit circle.

In the following we formulate the problem of recovery of a polynomial from a �nite
number of values of its Radon transform. Essentially, this may be viewed as a bivariate
interpolation problem where the traditional point values are replaced by the means over
chords of the unit circle.

Let Π2
n =

{∑
i+j≤n αijx

iyj : αij ∈ R
}
denote the space of real bivariate polynomials

of total degree at most n. This space has dimension
(
n+2
2

)
. Assume that a set I ={

Im = I(θm, tm) : m = 1, . . . ,
(
n+2
2

)}
of chords of the unit circle is given. Furthermore, to

each chord I ∈ I a given value γI ∈ R is associated. Then, the aim is to �nd a polynomial
p ∈ Π2

n such that ∫
I
p(x) dx = γI ∀I ∈ I. (2)

If this interpolation problem has a unique solution for every choice of values {γI}, then
the scheme I of chords is called regular. The question of how to construct such regular
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schemes has been extensively studied. The �rst general result was given by Marr [19] in
1974, who proved that the set of chords connecting n + 2 equally spaced points on the
unit circle is regular for Π2

n. A more general result for Rd and general convex domains was
published by Hakopian [15] in 1982. Applied to the unit disk in R2, it states that even the
chords connecting any n + 2 distinct points on the unit circle form a regular scheme for
Π2
n.
Another family of regular schemes was provided by Bojanov and Georgieva [2]. They

showed that a scheme consisting of
(
n+2
2

)
chords partitioned into n + 1 subsets such that

the k-th subset consists of k parallel chords is regular for Π2
n, provided that the distances t

satisfy some additional conditions. Particular choices of suitable distances t were later given
by Georgieva and Ismail [11] in terms of zeroes of Chebyshev polynomials of the second
kind, as well as Georgieva and Uluchev [12] in terms of zeroes of Jacobi polynomials.

Bojanov and Xu [5] proposed a regular scheme consisting of
(
n+2
2

)
chords partitioned

into 2b(n + 1)/2c + 1 equally spaced directions, such that in every direction there are
bn/2c+1 parallel chords. The distances t of the chords are zeroes of Chebyshev polynomials
of the second kind.

A mixed regular scheme which incorporates Radon projections and point evaluations
on the unit circle was given by Georgieva, Hofreither, and Uluchev [10].

Many other mathematicians have worked on problems with applications in the math-
ematical foundations of computer tomography, among them [17, 6, 7, 8, 16, 18, 20]. Re-
covery of polynomials in two variables based on Radon projections is also considered in
[1, 21, 3, 4, 13, 14].

3 Description of the method

Assume that we know a priori that the function to be interpolated is harmonic. Then
it seems natural to work in the space Hn of real bivariate harmonic polynomials of total
degree at most n, which has dimension 2n + 1. Let a set of chords of the unit circle
I = {I1, I2, . . . , I2n+1} be given. Furthermore, to each chord I ∈ I a given value γI ∈ R is
associated. Then, the aim is to �nd a harmonic polynomial p ∈ Hn such that∫

I
p(x) dx = γI ∀I ∈ I. (3)

Here the given values γI are the chord integrals corresponding to an unknown harmonic
function u. The hope is that then p approximates u reasonably well.

We call I regular if the interpolation problem (3) has a unique solution for all given
values {γI}.

The regular schemes which we work with were constructed with the help of methods
from symbolic computation [9], and we brie�y present them below.

Theorem 1 ([9]). Let the chords I be given by Im = I(θm, t), where the angles θm are

equally spaced over the unit circle (0, 2π) and t ∈ (0, 1) is not a zero of any Chebyshev

polynomial of the second kind U1, . . . , Un. Then the interpolation problem (3) has a unique

solution in Hn for any given data {γI}.
In fact, in [9], arbitrarily spaced angles θm were admitted, however in the present

work we stick with equally spaced chords. Some possible con�gurations which satisfy the
assumptions of Theorem 1 are shown in Figure 2.
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The proof uses the following basis of the harmonic polynomials,

φ0(x, y) = 1, φk,1(x, y) = Re(x+ iy)k, φk,2(x, y) = Im(x+ iy)k,

which is equal, in polar coordinates, to

φk,1(r, θ) = rk cos(kθ), φk,2(r, θ) = rk sin(kθ).

We have shown the following analogue to Marr's formula [19] in the harmonic case.

Lemma 2. The Radon projections of the basis harmonic polynomials satisfy∫
I(θ,t)

φk,1 dx =
2

k + 1

√
1− t2Uk(t) cos(kθ),∫

I(θ,t)
φk,2 dx =

2

k + 1

√
1− t2Uk(t) sin(kθ).

Under the assumption of constant tm = t, we can use this lemma to derive the following
representation of the system matrix corresponding to (3): A = CD, where

C =


1 cos(θ1) sin(θ1) cos(2θ1) sin(2θ1) . . . cos(nθ1) sin(nθ1)
1 cos(θ2) sin(θ2) cos(2θ2) sin(2θ2) . . . cos(nθ2) sin(nθ2)
...

...
...

...
...

. . .
...

...
1 cos(θ2n) sin(θ2n) cos(2θ2n) sin(2θ2n) . . . cos(nθ2n) sin(nθ2n)
1 cos(θ2n+1) sin(θ2n+1) cos(2θ2n+1) sin(2θ2n+1) . . . cos(nθ2n+1) sin(nθ2n+1)

 ,

D = diag(α0, α1, α1, . . . , αn, αn)

with the column factors αk = 2
k+1

√
1− t2Uk(t) > 0.

The matrix C is the same as for the one-dimensional problem of interpolation with a
trigonometric polynomial of degree n in [0, 2π] at the points {θ1, . . . , θ2n+1}. We use the
fact that C is invertible if and only if the angles θm are pairwise distinct to show that A
is invertible in this case.

4 Inversion of the linear system

For the equally spaced angles θm = 2πm
2n+1 and t ∈ (0, 1) such that Uk(t) 6= 0 for all

k ∈ {0, . . . , n}, we use the orthogonality of the columns of C to derive the explicit inverse

A−1 = diag(β0, β1, β1, . . . , βn, βn)C>,

Figure 2: Regular schemes according to Theorem 1.

4



where the row factors

βk =


1

2(2n+1)(
√

1− t2)−1 = 1
2n+1α

−1
k , k = 0,

k+1
2n+1(

√
1− t2Uk(t))−1 = 2

2n+1α
−1
k , k ≥ 1

serve to normalize the orthogonal system formed by the columns of C.
Note that the action of the matrix C> is essentially a discrete Fourier transform of

the given data. This suggests an e�cient algorithm for the solution of the linear system:
using a suitable Fast Fourier Transform (FFT), we can compute the coe�cients of the
interpolating polynomial in slightly worse than linear (O(n)) time. Having such a quasi-
optimal solution method available is invaluable for practical large-scale problems.

5 Condition number

With the use of the explicit formula for A−1, it is not di�cult to compute the singular
values of both A and A−1. This allows us to obtain a uniform bound for the spectral
condition number of A, to be precise,

κ2(A) ≤ 2
√

2,

again under the assumption of equally spaced angles and constant t. The signi�cance of
this result is that the method is very stable with respect to errors in the input data, i.e.,
noise in the given measurements results in an error which is of the same order of magnitude.
Indeed, our numerical examples con�rm this.

6 Numerical Examples

6.1 Example 1

In this example, we restrict ourselves to the case where the chords I form a regular (2n+1)-
sided convex polygon inscribed in the unit circle (cf. Figure 2, �rst picture), i.e., Im =
I(θm, tm) with

θm =
2πm

2n+ 1
, tm = t = cos

π

2n+ 1
for m = 1, . . . , 2n+ 1. (4)

We approximate the harmonic function

u(x, y) = exp(2y) cos(2x)

by a harmonic polynomial p ∈ Hn given 2n + 1 values of its Radon projections taken
along the edges of a regular (2n + 1)-sided convex polygon (Figure 2, �rst picture), i.e.,
θm and tm are chosen according to (4). In Figure 3, we display the function u as well
as its interpolating polynomial of degree 12 (using information from 25 chords) and the
resulting error. For Figure 6.1, we vary the degree of the interpolating polynomial and
plot the resulting relative L2-errors. We see that the error decreases exponentially with n,
indicating that the smooth function u is being approximated with optimal order.
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Figure 3: Example 1, n = 12: function u, interpolant p, error u− p
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Figure 4: Example 1: errors. x-axis: degree of interpolating polynomial. y-axis: relative
L2-error

6.2 Example 2

We consider the same problem as in Example 1, but with arti�cially added measurement
noise. For this, we add to the given values of the Radon projections random numbers
from a normal distribution with zero mean and standard deviation ε. We perform three
experiments with error levels ε ∈ {10−3, 10−6, 10−9}. The resulting relative errors in the
reconstructed function are plotted in Figure 6.2. We see that the input function is recon-
structed to the accuracy limit given by the noise level. No ampli�cation of the noise or
instabilities are observed.
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Figure 5: Example 2: errors with noisy data. Displayed are three experiments with noise
levels of 10−3, 10−6, 10−9. x-axis: degree of interpolating polynomial. y-axis: relative
L2-error

6.3 Example 3

We test our method on a function which is given by the harmonic extension of the quadratic
spline f(θ), −π ≤ θ ≤ π, where θ is the angle on the unit circle.

f(θ) =



−1
2(θ + π

2 )(θ + 3
2π), −π ≤ θ < −π

2 ,

1
2(θ − π

2 )(θ + π
2 ), −π

2 ≤ θ <
π
2 ,

−1
2(θ − π

2 )(θ − 3
2π), π

2 ≤ θ < π.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Note that f(θ) is a periodic C1-function with discontinuous second derivative. The
resulting harmonic function u has the series representation (in polar coordinates)

u(r, θ) =

∞∑
k=1

(−1)kr2k−1
4 cos ((2k − 1)θ)

(2k − 1)3π
.

For our chords I, we choose the edges of a regular (2n + 1)-sided convex polygon (cf.
Figure 2, �rst picture).

Figure 6 shows the relative L2-errors for varying degree n of the interpolating polyno-
mial. The last column of the table displays the ratio between successive errors. This rate
of convergence approaches 8 and thus suggests that the interpolation error is of the order
O(n−3).
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Figure 6: log-log-plot of the relative L2 errors for varying degree n

n relative L2 error rate

2 2.97973 · 10−2 �
4 6.08456 · 10−3 4.90
8 9.26954 · 10−4 6.56
16 1.23962 · 10−4 7.47
32 1.58587 · 10−5 7.82

Table 1: Relative L2 errors for varying degree n

7 Conclusion and outlook

We have stated an interpolation problem for a harmonic function in the unit disk given
certain values of its Radon projections and have provided an e�cient algorithm for solving
this problem in the case when the Radon projections are taken along equally spaced chords
in the unit circle which is robust with respect to noise in the input data. Moreover, we
are able to compute the coe�cients of the interpolating polynomial in slightly worse than
linear time. Our numerical experiments for recovery of functions which are C∞ in the
closed unit disk have shown exponential convergence.

In future work, we plan to derive cubature formulae for harmonic functions given Radon
projection type of data and investigate error estimates for such interpolation methods and
cubature rules. Some possible modi�cations to the problem (3) include the replacement of
some of the chord integral conditions by di�erent interpolation conditions, for instance some
point values on the unit circle; the incorporation of a �too large� data set, |I| > dimP , via,
e.g., least-squares minimization; the treatment of more general PDEs. For many problems,
allowing the interpolation of functions satisfying an inhomogeneous partial di�erential
equation of the form ∆u = f would be highly useful and is a possible subject of further
work.
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2011-04 S.K. Kleiss, B. Jüttler, W. Zulehner: Enhancing Isogeometric Analysis by a Finite Element-
Based Local Refinement Strategy April 2011. Eds.: U. Langer, J. Schicho

2011-05 M.T. Khan: A Type Checker for MiniMaple April 2011. Eds.: W. Schreiner, F. Winkler
2011-06 M. Kolmbauer: Existence and Uniqueness of Eddy current problems in bounded and un-

bounded domains May 2011. Eds.: U. Langer, V. Pillwein
2011-07 M. Kolmbauer, U. Langer: A Robust Preconditioned-MinRes-Solver for Distributed Time-

Periodic Eddy Current Optimal Control Problems May 2011. Eds.: R. Ramlau, W. Zulehner
2011-08 M.Wiesinger-Widi: Sylvester Matrix and GCD for Several Univariate Polynomials May 2011.

Eds.: B. Buchberger, V. Pillwein
2011-09 M. Wiesinger-Widi: Towards Computing a Gröbner Basis of a Polynomial Ideal over a Field
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