
Computing coset leaders and leader

codewords of binary codes

M. Borges-Quintana M.A. Borges-Trenard

I. Márquez-Corbella E. Mart́ınez-Moro

DK-Report No. 2012-07 05 2012

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Manuel Kauers
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Veronika Pillwein

Communicated by: Franz Winkler
Veronika Pillwein

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



Computing coset leaders and leader codewords
of binary codes

M. Borges-Quintana† M.A. Borges-Trenard†

I. Márquez-Corbella‡

E. Martı́nez-Moro‡

† Department of Mathematics, Faculty of Mathematics and Computer Science.

Universidad de Oriente, Santiago de Cuba, Cuba.

mijail@csd.uo.edu.cu, mborges@csd.uo.edu.cu
‡ SINGACOM group. Universidad de Valladolid.

Castilla, Spain.

http://www.singacom.uva.es

imarquez@agt.uva.es, edgar@maf.uva.es

December, 2011

Abstract

We present an algorithm for computing the set of all coset leaders of a
binary code C ⊂ Fn

2. The method is adapted from some of the techniques
related to the computation of Gröbner representations associated with codes.
The algorithm provides a Gröbner representation of the binary code and the
set of coset leaders CL(C ). Its efficiency stands on the fact that its com-
plexity is linear on the number of elements of CL(C ), which is smaller than
exhaustive search in Fn

2. It is also shown that the same algorithm could pro-
vide a set of codewords which form a test set for decoding by a gradient-like
decoding algorithm.

Keywords Binary codes Cosets leaders Test set Gröbner
representations.

1



1 Introduction
Section 4 of this work was developed during a stay of Borges-Quintana (October-
November 2011) at RISC-Linz. Borges-Quintana would like to thank the invi-
tation of Prof. Dr. Franz Winkler and the DK-Doctoral Program that partially
founded the research stay. The RISC’s sysadmin were also very helpful in giving
me very useful hints for using the advantage of some powerful computers available
in RISC, which were necessary for some of the computation in Section 4.

The error-correction problem in coding theory addresses given a received word
recovering the codeword closest to it with respect to the Hamming distance. This
previous statement is the usual formulation of the Complete Decoding Problem
(CDP). The t-bounded distance decoding (t-BDD) algorithms determine a code-
word (if such a word exists) which is at distance less or equal to t to the received
word. If t is the covering radius of the code then the bounded distance decoding
problem is the same as CDP. In the CDP of a linear code of length n, C ⊂ Fn

q those
errors that can be corrected are just those related to the coset leaders, which are
vectors of smallest weight in the cosets Fn

q/C . When there is more than one leader
in a coset there is more than one choice for the error. Therefore the following pro-
blem known as the coset weights problem (CWP) naturally arises:

Input: A binary r×n matrix H, a vector s ∈ Fn
2 and a non-negative integer t.

Problem: Does a binary vector e ∈ Fn
2 of Hamming weight at most t exist such

that He = s?

Recall that H can be considered as the parity check matrix of a binary code and s
the syndrome of a received word, thus the knowledge of e would solve the t-BDD
problem. Unfortunatelly the hope of finding an efficient t-BDD algorithm is very
bleak since it was proven that the CWP is NP-complete [4]. Thus the computation
of all the coset leaders is also NP-complete. The study of the set of coset leaders
is also related to the study of the set of minimal codewords, which have been used
in the Maximum Likelihood Decoding Analysis [2] and which are also related
to the minimal access structure of secret sharing schemes [13]. Furthermore, the
computation of all coset leaders of a code allows to know more about its internal
structure [7]. In connection to this item we will show that the algorithm presented
here can be adapted to compute a set of codewords which is a test set [2], we call
this set the set of leader codewords and we also show that the leader codewords
are zeroneighbors; moreover, any optimal test set is a subset of the set of leader

2



codewords. In addition, the set of leader codewords can be used to compute all
coset leaders corresponding to a given received word.

All problems mentioned before are considered to be hard computational pro-
blems (see for example [2, 4]) even if preprocesing is allowed [10]. However,
taking into account the nature of the problem, to develop an algorithm for com-
puting the set of all coset leaders of a binary code, in the vector space of 2n vectors,
by generating a number of vectors close to the cardinality of this set may be quite
efficient. This is our purpose extending some results on Gröbner representations
for binary codes. For previous results and applications of Gröbner representations
for linear codes see [6, 7, 5], for a summary of the whole material we refer the
reader to [8]. We extend some settings of previous work in order to obtain the
set of all coset leaders keeping record of the additive structure in the cosets. The
presentation of the paper is done in a “Gröbner bases”-free context.

The outline of the paper is as follows. In Section 2 we review some of the
standard facts on binary linear codes and their Gröbner representation. Section 3
gives a concise presentation of the results in this paper. Definition 3.1 corres-
ponds to the construction of List, the main object that is used in the algorithm
proposed, while Theorem 3.1 guarantees that all coset leaders will belong to List.
In this section it is presented the algorithm CLBC for computing the set of all
coset leaders. At the end of the section we show an application to a binary linear
code with 64 cosets and 118 coset leaders. Section 4 is devoted to show how the
algorithm can be adapted to compute the set of leader codewords and some related
results are shown. In Section 5 we discuss some complexity issues. Finally some
conclusions are given which include further research.

2 Preliminaries
Let F2 be the finite field with 2 elements and Fn

2 be the F2-vector space of dimen-
sion n. We will call the vectors in Fn

2 words. A linear code C of dimension k and
length n is the image of an injective linear mapping L : Fk

2 → Fn
2, where k ≤ n,

i.e. C = L(Fk
2). From now on, we will use the term code to mean binary linear

code. The elements in C are called codewords. For a word y ∈ Fn
2 the support

of y is supp(y) = {i ∈ {1, . . . ,n} | yi 6= 0} and the Hamming weight of y is the
cardinal of supp(y) and is denoted by wt(y). The Hamming distance between two
words c1,c2 is d(c1,c2) = wt(c1− c2) and the minimum distance d of a code is
the minimum weight among all the non-zero codewords. Let t =

[d−1
2

]
, where [·]

is the greatest integer function. It is well known that CDP has a unique solution

3



for those vectors in B(C , t) = {y ∈ Fn
2 | ∃c ∈ C s.t. d(c,y)≤ t}. The parameter t

is called the error-correcting capability of the code.

Definition 2.1 The words of minimum Hamming weight in the cosets of Fn
2/C are

called coset leaders.

Cosets corresponding to elements in B(C , t) have a unique leader, however, in
general outside B(C , t) there may be also cosets with a unique leader. Let CL(C )
denote the set of coset leaders of the code C and CL(y) the subset of coset leaders
corresponding to the coset C + y. Let ei i = 1, . . . ,n be the i-th vector of the
canonical basis X = {e1, . . . , en} ⊂ Fn

2 and 0 the zero vector of Fn
2. The following

theorem gives some relations between cosets [12, Corollary 11.7.7].

Theorem 2.1 Given w ∈ CL(C ), such that w = w1 + ei for some w1 ∈ Fn
2 and

i ∈ supp(w). Then, w1 ∈ CL(w1).

Remark 2.1 The subword w1 of w is called a descendant of w (see [12, p. 459,
460]).

Definition 2.2 A Gröbner representation of Fn
2/C [6, 8] is a pair N,φ where:

1. N is a transversal of Fn
2/C such that 0 ∈ N and for each n ∈ N\{0} there

exists ei, i ∈ 1, . . . ,n, such that n = n′+ ei and n′ ∈ N.

2. φ : N×{ei}n
i=1 → N is the function Matphi that maps each pair (n,ei) to

the element of N which belongs to the coset of n+ ei.

3 Computing the set of coset leaders
A key point of the algorithms for computing Gröbner representations is the con-
struction of an object we called List which is an ordered set of elements of Fn

2 w.r.t.
a linear order≺ defined as follows: w≺ v if wt(w) < wt(v) or wt(w) = wt(v) and
w ≺1 v, where ≺1 is any admissible order on Nn (see [3, p. 167]). We will refer
to such kind of orders as weight compatible orderings. In order to use ≺1 on Fn

2 it
would be enough to consider 0 and 1 of F2 as the 0 and 1 of N. Note that ≺ is a
well-ordering on Fn

2 (see [1, p. 277]) because Fn
2 is a finite set. One can not expect

admissibility of ≺ on Fn
2 (1+1 = 0 in F2), but we have the following property

v≺ w provided that supp(v)⊂ supp(w). (1)

4



Definition 3.1 (Construction of List) . Let List be the ordered structure given by
the following axioms

1. 0 ∈ List.

2. If v ∈ List is such that wt(v) = wt(N(v)) (where N(v) = min≺{w | w ∈
List∩ (C +v)}), then {v+ ei : i /∈ supp(v), i ∈ {1, . . . ,n}} ⊂ List.

Remark 3.1 As a possible set N of a Gröbner representation we can take the
subset of List given as {N(v) | v ∈ List}.

Remark 3.2 We start List with 0 and we will see that, whenever condition 2.
holds for v, the vector v will be a coset leader of C + v. Then, we insert v + ei
to List, for i = 1, . . . ,n and i /∈ supp(v) (see Theorem 2.1). It is not necessary to
introduce v + ei, for i ∈ supp(v), because in this case v + ei ≺ v and then v + ei
has been already considered in List since it is an ordered structure.

Next theorem states that List in Definition 3.1 includes the set of coset leaders.

Theorem 3.1 Let w ∈ CL(C ), then w ∈ List.

Proof. We will proceed by Noetherian Induction on the words of Fn
2 with the

ordering ≺ (see[1, p. 277]). Then 0 ∈ CL(C ) and by definition it belongs to List,
let be w ∈ CL(C )\{0}. Assume the property valid for any word less than w with
respect to ≺, i.e. u ∈ List provided u ∈ CL(C ) and u ≺ w. Taking i ∈ supp(w),
we write w = u+ei where u ∈ Fn

2, then by Theorem 2.1, u ∈ CL(C ). In addition,
|supp(u)| = |supp(w)| − 1, thus u ≺ w. Therefore, by applying the induction
principle we have u ∈ List. If u is a coset leader belonging to List it is clear that
wt(u) = wt(N(u)). As a consequence, by 2. in Definition 3.1, w = u + ei ∈ List.
�

Algorithm 1 (CLBC)

Input: H: A parity check matrix of a binary code C .

Output: CL(C ),φ : The set of all coset leaders and the function Matphi.

1: List← [0], N← /0, r← 0, CL(C )← []
2: while List 6= /0 do
3: τ ← NextTerm[List], s← τH
4: j←Member[s,{s1, . . . ,sr}]

5



5: if j 6= false then
6: for k ∈ supp(τ) such that τ = τ ′+ ek with τ ′ ∈ N do φ(τ ′,ek)← τ j
7: if wt(τ) = wt(τ j) then
8: CL(C )[τ j]← CL(C )[τ j]∪{τ}
9: List← InsertNext[τ,List]

10: end if
11: else
12: r← r +1, sr← s, τr← τ , N← N∪{τr}
13: CL(C )[τr]← CL(C )[τr]∪{τ}
14: List← InsertNext[τr,List]
15: for k ∈ supp(τr) such that τr = τ ′+ ek with τ ′ ∈ N do
16: φ(τ ′,ek)← τr
17: φ(τr,ek)← τ ′

18: end for
19: end if
20: end while
21: return CL(C ), φ

Where

1. InsertNext[τ,List] Inserts all the sums τ +ek in List, where k /∈ supp(τ), and
keeps List in increasing order w.r.t. the ordering ≺.

2. NextTerm[List] returns the first element from List and deletes it from this
set.

3. Member[ob j,G] returns the position j of ob j in G if ob j ∈ G and false
otherwise.

Theorem 3.2 CLBC computes the set of coset leaders of a given binary code and
its corresponding Matphi.

Proof. Note that when an element τ is taken out from List by NextTerm the
elements to be inserted in List by InsertNext are of the form τ + ek, where k /∈
supp(τ). As a consequence, τ + ek � τ . Then all elements generated by CLBC in
List, after τ is taken out, are greater than τ . Therefore, when τ is the first element
in List in Step 3, all elements of List that shall be analyzed by CLBC are greater
than τ .

Let us prove that the procedure generates List according to Definition 3.1.
First, by Step 1, 0 ∈ List. Let τ = NextTerm[List] in Step 3, in this step the

6



syndrome s of τ is computed. Thus we have two cases regarding the result of
Step 4, namely

1. Assume j = “false”, thus Steps 5 and 11 guaranty us to find N(τ) as the
least element in List having the same syndrome as τ . When we are in this
case N(τ) = τ , see in Step 12 the construction of N and in Step 14 it is
performed 2. of Definition 3.1.

2. On the other hand, assume j 6= “false” (an element N(τ) = τ j has been
already computed), if we have wt(τ) = wt(τ j), in Step 9 it is performed 2.
of Definition 3.1.

Therefore CLBC constructs the object List following Definition 3.1. By Theo-
rem 3.1, the set of coset leaders is a subset of List. Then Steps 8 and 13 assure the
computation of this set. The procedure computes the Matphi structure as a direct
consequence of Steps 6, 16, 17. The reason for including Step 17 is that in this
case

τr + ek = τ
′ ≺ τr

and those elements τr +ek, where k ∈ supp(τr), are not inserted in List since τ ′ has
been already considered when τr is computed as a new element of N. In addition,
since (1), all subwords of τr are also least elements of their cosets according to ≺,
so τ ′ = N(τ ′) (note τ ′ is a coset leader and by Theorem 3.1 it belongs to List).

We have proved that CLBC guarantees the outputs we are claiming. Termina-
tion is a consequence of the fact that the cardinal of the set of elements belonging
to List is less than n|CL(C )|. Then, to a certain extent (when the set of coset
leaders has been computed) no more elements are inserted in List in Steps 9 and
14. Therefore, the list get empty, and by Step 2, CLBC terminates.�

Remark 3.3 In Steps from 14 to 17, the pairs (τr,ek), where k ∈ supp(τr), are
not necessary to compute the coset leaders but for computing the structure Matphi
and could be removed if we are only interested in the coset leaders.

Example 3.1 Define the [n = 10, k = 4, t = 1] code with parity check matrix H

H =


1 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1

 .

7



We use GAP 4.12 [11] and the GAP’s package GUAVA 3.10 for Coding The-
ory. We have built in this framework a collection of programs we call GBLA LC
“Gröbner Bases by Linear Algebra and Linear Codes” [9]. In particular, we have
run the function “CLBC” of GBLA LC (Coset Leaders of Binary Codes), it gives
a list of three objects as an output, the first one is the set of coset leaders, the
second one the function Matphi, and the third one the error correcting capability
of the code. The complete set of coset leaders is the list below with 64 components
and each component corresponds to a coset with its cosets leaders, the set N is
composed by the first elements of each component. We have indicated with arrows
some places in the list below, which we are going to use during the example. The
elements in the list CL(C ) are

[ [1], [e1], [e2], [e3], [e4], [e5], [e6], [e7], [e8], [e9], [e10],
[e1 + e2,→ e5 + e6←], [e1 + e3,e5 + e7], [e1 + e4,e5 + e8],
[e1 + e5,e2 + e6,e3 + e7,e4 + e8], [e1 + e6,e2 + e5], [e1 + e7,e3 + e5],
[e1 + e8,→ e4 + e5←], [e1 + e9], [e1 + e10], [e2 + e3,e6 + e7],
[e2 + e4,e6 + e8], [e2 + e7,e3 + e6], [e2 + e8,→ e4 + e6←], [e2 + e9], [e2 + e10],
[e3 + e4,e7 + e8], [e3 + e8,e4 + e7], [e3 + e9], [e3 + e10],
[e4 + e9], [e4 + e10], [e5 + e9], [e5 + e10], [e6 + e9], [e6 + e10],
[e7 + e9], [e7 + e10], [e8 + e9], [e8 + e10], [e9 + e10],
[e1 + e2 + e3,e1 + e6 + e7,e2 + e5 + e7,e3 + e5 + e6],
→ [e1 + e2 + e4,e1 + e6 + e8,e2 + e5 + e8,e4 + e5 + e6]←,
[e1 + e2 + e7,e1 + e3 + e6,e2 + e3 + e5,e5 + e6 + e7],
[e1 + e2 + e8,e1 + e4 + e6,e2 + e4 + e5,e5 + e6 + e8],
[e1 + e2 + e9,e5 + e6 + e9], [e1 + e2 + e10,e5 + e6 + e10],
[e1 + e3 + e4,e1 + e7 + e8,e3 + e5 + e8,e4 + e5 + e7],
[e1 + e3 + e8,e1 + e4 + e7,e3 + e4 + e5,e5 + e7 + e8],
[e1 + e3 + e9,e5 + e7 + e9], [e1 + e3 + e10,e5 + e7 + e10], [e1 + e4 + e9,e5 + e8 + e9],
[e1 + e4 + e10,e5 + e8 + e10], [e1 + e5 + e9,e2 + e6 + e9,e3 + e7 + e9,e4 + e8 + e9],
[e1 + e5 + e10,e2 + e6 + e10,e3 + e7 + e10,e4 + e8 + e10], [e1 + e6 + e9,e2 + e5 + e9],
[e1 + e6 + e10,e2 + e5 + e10], [e1 + e7 + e9,e3 + e5 + e9], [e1 + e7 + e10,e3 + e5 + e10],
[e1 + e8 + e9,e4 + e5 + e9], [e1 + e8 + e10,e4 + e5 + e10], [e1 + e9 + e10],
[e2 + e3 + e8,e2 + e4 + e7,e3 + e4 + e6,e6 + e7 + e8], [e5 + e9 + e10] ]

Note that y = e4 + e5 + e6 in CL(C )43 = [e1 + e2 + e4,e1 + e6 + e8,e2 + e5 +
e8,e4 + e5 + e6] (pointed by arrows) is a coset leader such that no descendant of
y (see Remark 2.1) is in N (see the previous elements pointed by arrows). This

8



shows the importance of considering all coset leaders in 3. of Definition 3.1 and
not only the coset leaders belonging to N like in previous works.

The algorithm could be adapted without incrementing the complexity to get
more information like the Covering radius and the Newton radius. In this case by
analyzing the last element CL(C )64 = [e5 + e9 + e10] we have a coset of highest
weight which also contains only one leader; therefore, the Covering radius and
the Newton radius are equal to 3. Moreover, for computing these parameters the
algorithm does not need to run until the very end.

As we state before, the set N would be enough to compute the Weight Distribu-
tion of the Coset Leaders WDCL = (α0, . . . ,αn) where αi is the number of cosets
with coset leaders of weight i, i = 1, . . . ,n of the code. We can provide also an
object which gives more information about the structure of the code, that would
be the numbers of coset leaders in each coset (#(CL)).

WDCL = [1,10,30,23,0,0,0,0,0,0,0].

#(CL) = [1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,4,1,1,1,1,2,2,2,2,2,2,4,2,2,2,4,4,
1,1,1,4,4,4,2,2,2,2,2,4,4,1,1,1,2,2,2,2,4,1,1,1,2,2,2,1,1,1,1].

It is also interesting to note that there are more cosets with one leader (19) than
the cosets corresponding to B(C , t) (11). Therefore, there are 30 of the 64 cosets
where the CDP has a unique solution.

4 Computing a test set
In this section we show how the Algorithm CLBC can be adapted to compute a set
of codewords which is a test set (see [2]). We will call this set of codewords the
leader codewords, by using this set, we show an algorithmic way for computing
all coset leaders corresponding to the coset of a given received word. We also
show the connection between the leader codewords and the set of zero neighbors
[2]. A test set T ⊆ C is a set of codewords such that every word y either lies in
D(0) (the Voronoi region of the all-zero vector, see more details in Section 4.1) or
there is a v ∈T such that wt(y−v) < wt(y). The algorithm which uses a test set
for doing complete decoding is called a gradient-like decoding algorithm.

Definition 4.1 (leader codewords) The set of leader codewords is defined as

L(C ) = {n1 + ei +n2 | i = 1, . . .n, i /∈ supp(n1), n1 + ei 6= n2,
n1,n2 ∈ CL(C ) and H · (n1 + ei) = H ·n2} .

9



As a matter of efficiency we are only interested in the case supp(n1 + ei)∩
supp(n2) = /0.

Algorithm 2 (CLBC2)

Input: H: A parity check matrix of a binary code C .

Output: CL(C ), L(C ): The set of coset leaders and the set of leader codewords.

1: List← [0], N← /0, r← 0, CL(C )← [], L(C )← [] .
2: while List 6= /0 do
3: τ ← NextTerm[List], s← τH
4: k←Member[s,{s1, . . . ,sr}]
5: if k 6= false then
6: if wt(τ) = wt(τk) then
7: CL(C )[τk]← CL(C )[τk]∪{τ}
8: List← InsertNext[τ,List]
9: end if

10: for i ∈ supp(τ) such that τ = τ ′+ ei with τ ′ ∈ CL(C ) do
11: L(C )← L(C )∪τ j∈C [τk] {τ + τ j}
12: end for
13: else
14: r← r +1, sr← s, τr← τ , N← N∪{τr}
15: CL(C )[τr]←{τ}
16: List← InsertNext[τr,List]
17: end if
18: end while
19: return CL(C ), L(C )

Proof. We have shown already that Algorithm CLBC computes the set of coset
leaders, what we need to do is to identify the steps of the algorithm where it
is necessary to insert the computation of the leader codewords. By considering
Definition 4.1, it should be from Step 5 to Step 10 of Algorithm CLBC, because
τ = n1 + ei and n2 are in the same coset. Therefore, the steps from 10 to 12 of
Algorithm CLBC2 compute the leader codewords. �

Theorem 4.1 The subset L1(C ) of L(C ) is a test set, where L1(C ) is defined as

L1(C ) = {n1 + ei +n2 | i = 1, . . .n, i /∈ supp(n1), wt(n1 + ei) > wt(n2),
n1 ∈ CL(C ),n2 ∈ N and H · (n1 + ei) = H ·n2} ,

where N denotes the set of minimal elements w.r.t. ≺ of each coset.

10



Remark 4.1 1. Note that if L1(C ) is a test set also L(C ) is a test set. In
order to construct the subset L1(C ) we consider fewer pairs (n1 +ei,n2) in
contrast with the whole set of pairs considered in L(C ); however, we point
out that the resulting set of codewords n1 +ei +n2 maybe would be the same
in some cases and if so L1(C ) = L(C ).

2. We emphasize also that the condition wt(n1 + ei) > wt(n2) in L1(C ) is just
a question of better efficiency in order to compute the codewords. The di-
fference between the two sets of leader codewords could lie only in the con-
dition on n2 in L1(C ), that n2 is not only a coset leader (like in L(C )) but
the least element in its coset according to ≺.

3. According to the previous item L(C ) can be rewritten as

L(C ) = {n1 + ei +n2 | i = 1, . . .n, i /∈ supp(n1), wt(n1 + ei) > wt(n2),
n1,n2 ∈ CL(C ) and H · (n1 + ei) = H ·n2} .

Proof. Let y ∈ Fn
2 be a word which is not a coset leader. Let s = supp(y) and

define n1 such that n1 = es1 + . . . + esl is a coset leader and n1 + esl+1 is not a
coset leader. It is clear that l < |s|, otherwise y would be a coset leader. Let
n2 = N(n1 + esl+1) and c = n1 + esl+1 + n2, note that wt(n1 + esl+1) > wt(n2);
therefore, c ∈ L1(C ) and wt(y− c) < wt(y), which completes the proof. �

The following theorem gives a bound for the weight of a leader codeword.

Theorem 4.2 For every codeword c ∈ L(C ), wt(c) ≤ 2ρ + 1, where ρ is the
covering radius of C .

Proof. Let c ∈ L(C ), then there exist n1, n2 ∈ CL(C ) and i ∈ {1, . . . ,n}, i /∈
supp(n1) such that wt(n1 +ei) > wt(n2) and c = n1 +ei +n2. Taking into account
that wt(n1)≤ ρ and wt(n2)≤ ρ , then, wt(c)≤ 2ρ +1. �

Theorem 4.3 Let y ∈ Fn
2 be a received word, the following algorithm computes

the set of coset leaders associated to y.

Algorithm 3

Input: y ∈ Fn
2, L(C ).

Output: CL(y).

1. Compute N(y) by gradient-like decoding using the test set L1(C ).

11



2. Do y = N(y), S = {y} and L = L(C ).

3. If there exists c ∈ L s.t. wt(y− c) = wt(y) then GOTO Step 4 else GOTO
Step 5.

4. L := L\{c}; S := S∪{y− c}; GOTO Step 3.

5. RETURN(S).

Proof. Step 1 of the algorithm is guaranteed by Theorem 4.1, let y = N(y). Let
i ∈ supp(y) and n1 be such that y = n1 + ei. By Theorem 2.1, n1 is a coset leader.
The rest of the proof is straightforward from the definition of leader codewords.
�

4.1 Leader codewords and Zero neighbors
In this section we have compiled some basic facts related to Zero-Neighbors (see
[2]).

The Voronoi region D(c) of c ∈ C is defined as

D(c) = {y ∈ Fn
2 : ∀c′ ∈ C (d(y,c)≤ d(y,c′))}.

Note that D(0), the voronoi region of the all-zero codeword, is the set of coset
leaders.

Let A ⊂ Fn
2 and let χ(A) be formed by all words in Fn

2 at distance 1 from A.
The boundary of A is defined as

∂ (A) = χ(A)∪χ(Fn
2 \A).

A nonzero codeword z∈C is called a zeroneighbor if its Voronoi region shares
a common boundary with D(0), i.e., if ∂ (D(z))∩ ∂ (D(0)) 6= /0. Denoting the set
of zeroneighbors by Z , this set has the the following property

(χ(D(0))∩D(z) 6= /0)⇒ z ∈Z .

The previous property is the only property of the set Z that is essential for
successful decoding (see [2] ) and this set satisfies

χ(D(0))⊂
⋃

z∈Z
D(z). (2)

It is possible to restrict the test set of vectors by choosing a smallest subset of
Z with this property, such a set is denoted by Zmin, although such a set need not
to be unique, its size is well defined.

12



Theorem 4.4 (χ(D(0))∩D(z) 6= /0)⇔ z ∈ L(C ).

As a simple consequence of the previous theorem we have that L(C ) ⊂ Z .
Proof.
χ(D(0))∩D(z) 6= /0⇔ ∃n1 ∈ D(0), i ∈ {1, . . . ,n}\ supp(n1)
(n1 + ei ∈ χ(D(0)) ∧ n1 + ei ∈ D(z))⇔
∃n1 ∈ D(0), i ∈ {1, . . . ,n}\ supp(n1)
(n1 + ei /∈ D(0) ∧ ∀c ∈ C (wt(z− (n1 + ei))≤ wt(c− (n1 + ei))))⇔
∃n1 ∈ D(0), i ∈ {1, . . . ,n}\ supp(n1),n2 ∈ CL(C )
(n2 = z− (n1 + ei) ∧ wt(n2) < wt(n1 + ei))⇔
∃n1,n2 ∈ CL(C ), i ∈ {1, . . . ,n}\ supp(n1)
(n2 = z− (n1 +ei) ∧ H · (n1 +ei) = H ·n2 ∧ wt(n2) < wt(n1 +ei) )⇔ z ∈ L(C ).
�

Remark 4.2 By Theorem 4.4, Algorithm CLBC2 computes a set of zero-neight-
bors, which is the set of leader codewords. The algorithm could also compute
a subset L1(C ) that could be smaller and is also a test set. Theorem 4.3 shows
that the subset L(C ) of Z allows to compute by Algorithm 3 all coset leaders
corresponding to a given received word. Theorem 4.2 shows that not only the
weight of the codewords in a minimal test set are bounded by 2ρ + 1 but for any
leader coderword also.

From Theorem 4.4 and the connection of this property with (2) we can get the
following statement.

Theorem 4.5 Let C be a binary code, then any set Zmin is a subset of L(C ).

Proof. Let Zmin be a minimal test set. Then for any z ∈Zmin we have χ(D(0))∩
D(z) 6= /0, since z could otherwise be removed from Zmin and this would imply
that it is not a minimal test set. Then, let be n1 ∈ D(0) and i /∈ supp(n1) such that
n1 +ei ∈ χ(D(0)) and n1 +ei ∈D(z). Let be n2 = z−n1−ei, thus, n2 ∈ CL(C );
consequently, z ∈ L(C ). �

Example 4.1 We use the same code represented in Example 3.1. There is a built
in function “CLBC2” in GBLA LC which performs Algorithm 2 to compute L(C )
and a variant of the same function which computes L1(C ) and L(C ) at the same

13



time. For this code we got that L1(C ) = L(C ) and the set of leader codewords is

L(C ) = {e3 + e4 + e7 + e8, e2 + e4 + e6 + e8, e2 + e3 + e6 + e7,
e1 + e4 + e5 + e8, e1 + e3 + e5 + e7, e1 + e2 + e5 + e6,
e4 + e6 + e7 + e9 + e10, e3 + e6 + e8 + e9 + e10, e2 + e7 + e8 + e9 + e10,
e2 + e3 + e4 + e9 + e10, e1 + e5 + e6 + e7 + e8 + e9 + e10,
e1 + e3 + e4 + e5 + e6 + e9 + e10, e1 + e2 + e4 + e5 + e7 + e9 + e10,
e1 + e2 + e3 + e5 + e8 + e9 + e10}.

The only codeword different from the all-zero vector that is missing in L(C )
is the codeword (1,1,1,1,1,1,1,1,0,0) of weight 8, which is expected because
in Example 3.1 we show that the covering radius of C is 3 and we have shown
in Theorem 4.2 that the weight of a leader codeword is less than or equal to
2 ·3+1 = 7.

Now in the following table we show the result of the computations with other
two codes.

code(n, k, d) 2k 2n−k | L1(C ) | | L(C ) |
Golay Code(23, 12, 7) 4096 2048 253 253
BCH(21, 12, 5) 4096 512 478 549

From this table one can see the nice property of the Golay code of being a
perfect code, the code is bigger than the BCH code, because, although they have
the same number of codewords, in the Golay code there are 4 times the number of
cosets. However, the number of elements in L(C ) is less than in the BCH code.
Also because the Golay code is perfect, it is not a surprise that L1(C ) = L(C )
in this case. Note also that the results for the BCH code say that L1(C ) could be
smaller than L(C ).

The following calculations were done with the computer “Roadrunner” (102
Gb RAM, 3.05 Ghz, using one of the 12 processors), at the beginning the computa-
tions last for more than 5 days and after some improvements in the implementation
we have arrived to the following

code(n, k, d) 2k 2n−k | L1(C ) | | L(C ) | time (h:min.:sec.)
QR(31, 16, 7) 65536 32768 5324 5828 15:47:21
BCH(31, 16, 7) 65536 32768 5606 5828 13:18:33

Note that both codes have the same number of leader codewords, but the se-
cond one has more codewords in the subset L1(C ). Also the second code has
119568 coset leaders and the first one has 98550.

14



5 Complexity Analysis
For a detailed complexity analysis and some useful considerations from the com-
putational point of view we refer the reader to [7]. In the case of this paper, the
difference is that we work out the set of all coset leaders and not only a set of cano-
nical forms (N). Next theorem shows an upper bound for the number of iterations
that Algorithm CLBC will perform.

Theorem 5.1 CLBC computes the set of coset leaders of a given binary code C
of length n after at most n|CL(C )| iterations.

Proof. Note that the number of iterations is exactly the size of List. In the proof
of Theorem 3.2 was shown that the algorithm follows this definition to construct
the object List. It is clear that the size of List is bounded by n|CL(C )|, note that
we can write List, as a set as follows

List = {w+ ei | w ∈ CL(C ) and i ∈ {1, . . . ,n}}.

�

Remark 5.1

1. By the proof above we require a memory space of O(n|CL(C )|).
We assume that for computing the set of coset leaders it is required at least
O(|CL(C )|); therefore, CLBC is near the optimal case of memory require-
ments.

2. CLBC generates at most n|CL(C )| words from Fn
2 to compute the set of

coset leaders. An algorithm for computing this set needs to generate from
Fn

2 at least a subset formed by all coset leaders, i.e. |CL(C )|; therefore, the
algorithm is near the optimal case of computational complexity.

3. CLBC2 by its nature has the same complexity as CLBC. The advantage of
computing the set of leader codewords is that it supplies an algorithmic way
of solving similar problems that Matphi solves but with a structure which is
considerately smaller.

15



6 Conclusion
The Algorithm CLBC is formulated in this paper, which turns out to be quite effi-
cient for computing all coset leaders of a binary code from memory requirements
and computational complexity view. Although, as it is expected, the complexity
of the algorithm is exponential (in the number of check positions).

The difference of CLBC with its predecessors rely also in the computation of
all coset leaders instead of a set of representative leaders for the cosets, however,
it supports the computation of the function Matphi. We remark that the compu-
tation of Matphi is not necessary at all for the main goal of computing the coset
leaders. We have kept this resource in the algorithm because this structure pro-
vides some computational advantages (see [6, 7, 8]) and, although the algorithm
will be clearly faster without computing Matphi, the nature of the computational
complexity and space complexity will remain the same.

Algorithm CLBC can be transformed into Algorithm CLBC2 to compute the
set of leader codewords, which turn out to be a set of zeroneighbors that is a test
set. The set of leader codewords allows to compute all coset leaders correspon-
ding to the coset of a received word. We have shown also that the set of leader
codewords contains any minimal test set.

Unfortunately, a generalization to non-binary linear codes is not trivial from
this work. The main reason seems to be that the solution based on Hamming
weight compatible orderings will not continue being possible; the error vector
ordering it is used in the general approach [7] is not a total degree compatible
ordering, although it allowed to set up the computational environment in order to
compute Gröbner representations for linear codes.

Acknowledgment:
Authors are very acknowledged to anonymous referee for interesting and detailed
comments in an earlier version of this report.

References
[1] W. W. Adams, Ph. Loustaunau. An introduction to Gröbner bases. American

Mathematical Society, Providence, RI (1994).

[2] A. Barg. Complexity issues in coding theory. In Handbook of Coding Theory,
Elsevier Science, Vol. 1, 1998.

16



[3] T. Becker, V. Weispfenning. Gröbner Bases. A Computational Approach to
Commutative Algebra. Springer-Verlag, New York (1993).

[4] E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg. On the Inherent In-
tractability of Certain Coding Problems. IEEE Transactions on Information
Theory, Vol. IT-24, N. 3, 384–386 (1978).

[5] M. Borges-Quintana, M.A. Borges-Trenard, P. Fitzpatrick, E. Martı́nez-Moro.
On a Gröbner bases and combinatorics for binary codes. Appl. Algebra Engrg.
Comm. Comput, Vol. 19, N. 5, 393–411 (2008).

[6] M. Borges-Quintana, M.A. Borges-Trenard, E. Martı́nez-Moro. A general
framework for applying FGLM techniques to linear codes. AAECC 16, Lecture
Notes in Comput. Sci., Springer, Berlin, Vol. 3857, 76–86, 2006.

[7] M. Borges-Quintana, M.A. Borges-Trenard, E. Martı́nez-Moro. On a Gröbner
bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr., Vol.
10, N. 2, 151–191 (2007).

[8] M. Borges-Quintana, M.A. Borges-Trenard, E. Martı́nez-Moro. A Gröbner
representation of linear codes. In: T. Shaska, W.C. Huffman, D. Joyner, V.
Ustimenko (eds.) Advances in Coding Theory and Cryptography, 17–32, World
Scientific (2007).

[9] M. Borges-Quintana, M.A. Borges-Trenard, E. Martı́nez-Moro. GBLA-LC:
Gröbner Bases by Linear Algebra and Linear Codes. In: ICM 2006. Mathe-
matical Software, EMS, 604–605 (2006).

[10] J. Bruck, M. Naor. The Hardness of Decoding Linear Codes with Prepro-
cessing. IEEE Trans. on Inf. Th. , Vol 36, NO. 2, (1990)

[11] The GAP Group, GAP – Groups, Algorithms, and Programming. Version
4.12 (2009). http://www.gap-system.org.

[12] W.C. Huffman, V. Pless. Fundamentals of error-correcting codes. Cambridge
University Press, Cambridge (2003).

[13] J. Massey. Minimal codewords and secret sharing. In: Proc. 6th Joint
Swedish–Russian Workshop on Information Theory, Mölle, Sweden, 246–249
(1993).

17



Technical Reports of the Doctoral Program

“Computational Mathematics”

2012

2012-01 M.T. Khan: Formal Semantics of MiniMaple January 2012. Eds.: W. Schreiner, F. Winkler
2012-02 M. Kollmann, W. Zulehner: A Robust Preconditioner for Distributed Optimal Control for

Stokes Flow with Control Constraints January 2012. Eds.: U. Langer, R. Ramlau
2012-03 W. Krendl, V. Simoncini, W. Zulehner: Stability Estimates and Structural Spectral Properties

of Saddle Point Problems February 2012. Eds.: U. Langer, V. Pillwein
2012-04 V. Pillwein, S. Takacs: A local Fourier convergence analysis of a multigrid method using

symbolic computation April 2012. Eds.: M. Kauers, W. Zulehner
2012-05 I. Georgieva, C. Hofreither: Tomographic Reconstruction of Harmonic Functions April 2012.

Eds.: U. Langer, V. Pillwein
2012-06 M.T. Khan: Formal Semantics of a Specification Language for MiniMaple April 2012. Eds.:

W. Schreiner, F. Winkler
2012-07 M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella and E. Mart́ınez-Moro:

Computing coset leaders and leader codewords of binary codes May 2012. Eds.: F. Win-
kler, V. Pillwein

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.


