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Abstract

We develop a method for evaluation of A. Einstein’s strength of systems of partial differential and
difference equations based on the computation of Hilbert-type dimension polynomials of the associ-
ated differential and difference field extensions. Also we present algorithms for such computations,
which are based on the Grobner basis method adjusted for the modules over rings of differential,
difference and inversive difference operators. The developed technique is applied to some funda-
mental systems of PDEs of mathematical physics such as the diffusion equation, Maxwell equations
and equations for an electromagnetic field given by its potential. In each of these cases we deter-
mine the strength of the original system of PDEs and the strength of the corresponding systems of
partial difference equations obtained by forward and symmetric difference schemes. In particular,

we obtain a method for comparing two difference schemes from the point of view of their strength.
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I. INTRODUCTION

The concept of the strength of a system of partial differential equations (PDEs) was
introduced by A. Einstein as a measure for the size of the solution space of such a system.
In [6] A. Einstein defined the strength of a system of partial differential equations governing

b}

a physical field as follows: ”...the system of equations is to be chosen so that the field
quantities are determined as strongly as possible. In order to apply this principle, we propose
a method which gives a measure of strength of an equation system. We expand the field
variables, in the neighborhood of a point P, into a Taylor series (which presupposes the
analytic character of the field); the coefficients of these series, which are the derivatives of
the field variables at P, fall into sets according to the degree of differentiation. In every such
degree there appear, for the first time, a set of coefficients which would be free for arbitrary
choice if it were not that the field must satisfy a system of differential equations. Through
this system of differential equations (and its derivatives with respect to the coordinates) the
number of coefficients is restricted, so that in each degree a smaller number of coefficients
is left free for arbitrary choice. The set of numbers of 'free’ coefficients for all degrees of

differentiation is then a measure of the 'weakness’ of the system of equations, and through

this, also of its ’strength’.”

Calculating by hand A. Einstein found out, that, for example, the potential and field
formulations of Maxwell equations have different strengths for the dimension four. However,
he did not obtain the exact expression of the above-mentioned number of free coefficients
as a function of the degree of differentiation. Even though there were a number of works
on the strength of a system of differential equations (in particular, on its relation to Cartan
characters), see, for example, [20-22, 25-28]; and [30], there was no method of evaluating
such a function until 1980 when A. Mikhalev and E. Pankratev [23] showed that the strength
of a system of algebraic partial differential equations (that is, a system of the form f; =
0, ¢ € I, where f; are multivariate polynomials in unknown functions and their partial
derivatives) is expressed by Kolchin’s differential dimension polynomial associated with the
differential field extension defined by the system. This observation allowed A. Mikhalev and
E. Pankratev to develop two methods of determining the strength of a system of algebraic
PDEs via computing the differential dimension polynomial of the corresponding differential

field extension. The first method is based on construction of a characteristic set of the



ideal of differential polynomials defined by the system and then computing the differential
dimension polynomial using the leading terms of the elements of the characteristic set (the
idea of this approach comes from the original proof of Kolchin’s theorem, see [9, Chapter
II, Theorem 6]). The second approach is based on the works by J. Johnson [7, &, who
showed that the differential dimension polynomial of a differential field extension can be
computed as a Hilbert polynomial of the associated module of Kahler differentials. Using
free resolutions for such a module, A. Mikhalev and E. Pankratev [23] evaluated the strength
of several well-known systems of PDEs including the wave equation, both forms of Maxwell
equations, Dirac equations (with zero mass), Lame equations, and some other systems of
PDEs of mathematical physics. Note that A. Einstein, K. Mariwalla, M. Sue and some
other authors who investigated the concept of strength in 1970s characterized the strength
of a system by the "coefficient of freedom”, an integer, that is fully determined by the
leading coefficient of the differential dimension polynomial. The fact that such a polynomial
provides a far more precise description of the strength than its leading term was justified
by the result of W. Sit [29] who proved that the set of differential dimension polynomials is
well-ordered with respect to the natural order (f(¢) < ¢(t) if and only if f(r) < g(r) for all
sufficiently large integers r); this result allows one to distinguish two systems of PDEs with

the same " coefficient of freedom” by their strength.

Since 1980s the technique of dimension polynomials has been extended to the analysis
of systems of algebraic difference and difference-differential equations. In a series of works
whose results are summarized in [18] the second author proved the existence and devel-
oped some methods of computation of dimension polynomials of difference field extensions
and systems of algebraic difference equations. These polynomials determine A. Einstein’s
strength of a system of algebraic partial difference equations (we give the details in Section
3 of this work) and, in particular, allow one to evaluate the quality of difference schemes for

PDEs from the point of view of their strength.

The next step in the analysis of systems of PDEs and systems of partial difference equa-
tions is to consider their degrees of freedom with respect to different groups of basic operators
(differentiations or translations). Theorems on multivariate dimension polynomials proved in
[15-17] (see also [18, Chapters 3, 4, 7]) allow to characterize the strength of a system of par-
tial differential, difference or difference-differential equations in the case when the ”weights”

of basic operators of different groups are different. Methods of computations of multivari-



ate dimension polynomials for systems of differential, difference and difference-differential
equations were developed in [1, 5, 1518, 31], and [32] with the use of generalizations of the
Grobner basis technique. In particular, the first author has implemented in Maple two algo-
rithms of computation of bivariate difference-differential dimension polynomials via relative
Grobner bases introduced in [31].

In this paper we present the theory and technique of differential, difference, and difference-
differential dimension polynomials together with the applications of this technique to the
analysis of fundamental systems of PDEs of mathematical physics and corresponding sys-
tems of partial difference equations. In particular, we develop a method that allows one to
compute the strength of such systems in the sense of A. Einstein and compare different dif-
ference schemes for a given system of PDEs by their strength. We illustrate this method with
the computation of the strength of the diffusion equation, Maxwell equations and equations
for an electromagnetic field given by its potential, as well as with the computation of the
strength of systems of difference equations obtained from these PDEs via different difference

schemes.

II. PRELIMINARIES

In this section we present some basic concepts and results that are used throughout
the paper. In what follows, N,Z, Q, and R denote the sets of all non-negative integers,
integers, rational numbers, and real numbers, respectively. The number of elements of a set
A is denoted by |A|. As usual, Q[t] denotes the ring of polynomials in one variable ¢ with
rational coefficients. By a ring we always mean an associative ring with unit element. Every
ring homomorphism is unitary (maps unit element onto unit element), every subring of a
ring contains the unit element of the ring. Unless otherwise indicated, by a module over a

ring R we always mean a unitary left R-module.
2.1. Differential and difference rings and fields

A differential ring (respectively, a difference ring) is a commutative ring R together with
a finite set A = {01,...,0,,} of mutually commuting mappings of R into itself such that
each ¢; is a derivation of R (respectively, 0; are injective endomorphisms of R also called
translations). The set A is said to be the basic set of the differential (or difference) ring R,

which is also called a A-ring. If a A-ring is a field, it is called a A-field (this is a differential
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field if A is a set of mutually commuting derivations and a difference field if the elements
of A are endomorphisms). If d,...,d,, are automorphisms of a difference ring R, we say

that R is an inversive difference ring with the basic set A. In this case we denote the set
{61, .., 0m, 671, ..., 0,1} by A* and call R a A*-ring (if R is a field, it is called an inversive
difference field or a A*-field).

Let R be a A-ring and Ry a subring (ideal) of R such that §(Ry) C Ry for any § € A.
Then Ry is called a A-subring (respectively, a A-ideal) of R. If Ry is a A-subring of R, we
also say that R is a A-ring extension of R.

If the elements of A act on R as mutually commuting derivations, we say that Ry is a
differential subring (differential ideal) of R; if the elements of A are mutually commuting
injective endomorphisms, we say that Ry is a difference subring (difference ideal) of R.
Anyway, the prefix A-, depending on the context, means either ”differential” or ” difference”,
while the prefix A*- means ”inversive difference”. If R is a A*-ring (this assumption implies
that A is a set of mutually commuting automorphisms of R), then a subring (ideal) Ry of R
is called a A*-subring (respectively, A*-ideal) of R if a(Ry) C Ry for any o € A*. (A*-ideals
are also called reflexive difference ideals of R; this term, as well as the term A*-ideal, is also
used for ideals I of a difference A-ring R such that for any 6 € A, a € R, the inclusion
d(a) € I implies a € I). If Ris a A- (or A*-) field and Ry a subfield of R which is also a A-
(respectively, A*-) subring of R, then Ry is said to be a A- (respectively, A*-) subfield of R
while R is called a A- (respectively, A*-) field extension (or overfield) of Ry. In this case we
also say that we have a A-(or A*-) field extension R/Ry.

If Ris a A-ring with a basic set A = {d1,...,0,,}, then O (or © if the set A is fixed) will

denote the free commutative monoid generated by 41, ..., d,,. Elements of © will be written
in the multiplicative form 6% ... 6% (ki,... k, € N) and considered as the corresponding

mappings of R into itself. If R is an inversive difference (A*-) ring, then I'n (or T if the set
A is fixed) will denote the free commutative group generated by the set A. It is clear that
elements of the group I' (written in the multiplicative form % ... where i1,..., i, € Z)
act on R as automorphisms and © is a subsemigroup of I'.

Let R be a A-ring and S C R. Then the intersection of all A-ideals of R containing S
is denoted by [S]. Clearly, [S] is the smallest A-ideal of R containing S; as an ideal, it is
generated by the set ©S = {0(a)|0 € O, a € S}. If J = [S], we say that the A-ideal J is
generated by the set S called a set of A-generators of J. If S is finite, S = {ay,...,ar}, we
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write J = [aq, ..., ax] and say that J is a finitely generated A-ideal of the A-ring R. (In this
case elements ay, ..., a; are said to be A-generators of J.) If R is an inversive difference
(A*-) ring and S C R, then the smallest A*-ideal of R containing S is denoted by [S]* (as an
ideal, it is generated by the set I'S = {v(a)|y € I', a € S}. If S is finite, S = {a1,...,ax},
we write [aq, ..., ag]" for I = [S]* and say that [ is a finitely generated A*-ideal of R; in this

case the elements aq, ..., a are called A*-generators of I.

Let R be a A-ring, Ry a A-subring of R and B C R. The intersection of all A-subrings
of R containing Ry, and B is called the A-subring of R generated by the set B over Ry; it
is denoted by Ro{B}. (As a ring, Ro{B} coincides with the ring Ro[{6(b)|b € B,0 € O}]
obtained by adjoining the set {#(b)|b € B,0 € O} to the ring Ry). The set B is said to be
the set of A-generators of the A-ring Ro{ B} over Ry. If this set is finite, B = {b1,..., by},
we say that R = Ro{B} is a finitely generated A-ring extension (or A-ring extension) of
Ry and write R' = Ro{by,...,bx}. If R is a A-field, Ry a A-subfield of R and B C R,
then the intersection of all A-subfields of R containing Ry and B is denoted by Ry(B)
(or Ro(by,...,bg) if B = {by,...,b} is a finite set). This is the smallest A-subfield of R
containing Ry and B; it coincides with the field Ro({6(b)|b € B,0 € ©}). The set B is
called a set of A-generators of the A-field Ro(B) over Ry. If R is an inversive difference
(A*-) ring, Ry a A*-subring of R and B C R. Then the intersection of all A*-subrings of
R containing Ry and B is the smallest A*-subring of R containing Ry and B. This ring
coincides with the ring Ro[{v(b)|b € B,~ € T'}]; it is denoted by Ro{B}*. The set B is
said to be a set of A*-generators of Ry{B}* over Ry. If B = {by,...,b;} is a finite set, we
say that S = Ro{B}"* is a finitely generated A*-) ring extension (or A*-overring) of Ry and
write S = Ro{by,...,bx}*. If Ris a A*field, Ry a A*-subfield of R and B C R, then the
intersection of all A*-subfields of R containing Ry and B is denoted by Ry(B)*. This field
coincides with the field Ro({(b)|b € B,y € I'}). The set B is called a set of A*-generators of
the A*-field extension Ry(B)* of Ry. If B is finite, B = {by, ..., b}, we write Ry(b1, ..., bg)"
for Ry(B)*.

In what follows we often consider two or more A- (or A*-) rings Ry,..., R, with the
same basic set A = {dy,...,6,,}. Formally speaking, it means that for every i = 1,...,p,
there is some fixed mapping v; from the set A into the set of all derivations or injective
endomorphisms of the ring R; such that any two mappings v;(9;) and v;(d5) of R; commute

(1 < j,k <n). We shall identify elements ¢; with their images v;(d;) and say that elements
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of the set A act as mutually commuting derivations or injective endomorphisms of the ring
R, (i=1,...,p).

Let Ry and R be differential or difference or inversive difference rings with the same basic
set A. A ring homomorphism ¢ : Ry — Ry is called a A-homomorphism if ¢(5(a)) = d(¢(a))
for any § € Aja € R;. (Clearly, if ¢ : Ry — Ry is a A-homomorphism of A*-rings, then
#(0(a)) = §(¢p(a)) for any 6 € A* a € Ry.) If Ry and Ry are two A-overrings of the same
A-ring Ry and ¢ : Ry — Rs is a A-homomorphism such that ¢(a) = a for any a € Ry, we
say that ¢ is a A-homomorphism over R, or that ¢ leaves the ring Ry fixed. It is easy to see
that the kernel of any A-homomorphism of A-rings ¢ : R — R’ is a A-ideal of R (moreover,
in the case of difference rings, this kernel is a reflexive difference ideal of R;). Conversely,
let g be a surjective homomorphism of a A-ring R onto a ring S such that Ker g is a A- or
A*- (if R is a difference A-ring) ideal of R. Then there is a unique structure of a A-ring on
S such that g is a A-homomorphism. In particular, if I is a A- or A*- (if R is a difference
A-ring) ideal of a A-ring R, then the factor ring R/I has a unique structure of a A-ring
such that the canonical surjection R — R/I is a A-homomorphism. In this case R/I is said

to be the A-factor ring of R by 1.

If a A- (or A*-) ring R is an integral domain, then its quotient field Q(R) can be naturally
considered as a A- (respectively, A*-) overring of R. (If A consists of derivations, then they
extend to Q(R) via the quotient rule). In this case Q(R) is said to be the quotient A-
(respectively, A*-) field of R. Clearly, if a A- (or A*-) field K contains an integral domain
R as a A- (respectively, A*-) subring, then K contains the quotient A- (respectively, A*-)

field Q(R).

2.2. Differential, difference, and inversive difference polynomials. Algebraic

differential and difference equations.

With the above notation, let R be a A- (or A*-) ring and let U = {uy|\ € A} be a family
of elements in some A- (respectively, A*-) ring extension of R. We say that the family U is
A-algebraically dependent over R, if the family OU = {0(u,)|0 € O, € A} is algebraically
dependent over R (that is, there exist elements vy, ..., v € OU and a non-zero polynomial
f(Xq, ..., Xg) with coefficients in R such that f(vy,...,v,) = 0). Otherwise, the family U
is said to be A-algebraically independent over R or a family of A-indeterminates over R. In

the last case, the A-ring S = R{(ux)aea} is called the algebra of A-polynomials over R. If A
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consists of derivations (respectively, injective endomorphisms), then S is also called a ring
of differential (respectively, difference) polynomials in the difference (or o-) indeterminates
{(ux)rea} over R. If R is a A*-ring and the family U considered above is A-algebraically
independent over R, then the ring R{(ux)xea}* is called the algebra of A*-polynomials in
the A*-indeterminates uy over R.

If a family consisting of one element u is A-algebraically dependent over R, the element
u is said to be A-algebraic over R. If the set {#(u)|0 € O} is algebraically independent over
R, we say that u is A-transcendental over the ring R.

Let R be a A-field, L a A-field extension of R, and A C L. We say that the set A is
A-algebraic over R if every element a € A is A-algebraic over R. If every element of L is
A-algebraic over R, we say that L is a A-algebraic field extension of R.

The following statement is proved in [9, Chapter 1, Section 6], [3, Chapter 2, Theorem I],

and [10, Propositions 3.3.7, 3.4.4] for differential, difference and inversive difference rings.

Proposition I1.1 . Let R be a A- (respectively, A*-) ring and I an arbitrary set. Then
there exists an algebra of A- (respectively, A*-) polynomials over R in a family of A- (respec-
tively, A*-) indeterminates with indices from the set I. If S and S are two such algebras,
then there exists a A-isomorphism S — S’ that leaves the ring R fized. If R is an integral

domain, then any algebra of A- (respectively, A*-) polynomials over R is an integral domain.

The algebra of A-polynomials over a A-ring R in a family of A-indeterminates with indices
from a set [ is a polynomial R-algebra in the set of indeterminates ©Y = {y; ¢ }icr9co With
indices from the set I x ©. This algebra, as it is shown in [9, Chapter 1, Section 6], [3,
Chapter 2, Theorem 1], and [10, Propositions 3.3.7] can be viewed as a A-ring extension of
R where 0(y;9) = yis0 for any 6 € A, y,9 € OY. Setting y; = y;1 we can write y; 9 as Oy;. If
R is a A*-ring, then the algebra of A*-polynomials over R in A-indeterminates with indices
from a set [ is a polynomial R-algebra S in the set of indeterminates I'Y = {y; , }icrver
with indices from the set I x I". As it is shown in [10, Propositions 3.4.4], S can be treated
as a A*-ring extension of R where 0(y;) = yi s, for any 6 € A* vy, € I'Y. In what follows
we denote y; 1 by y; and write y;, (y € I') as yy;.

Let R be a A-ring, R{(y;)icr} an algebra of difference polynomials in a family of A-
indeterminates {(y;)icr}, and {(7;)icr} a set of elements in some A-ring extension of R.

Since the set {6;)|i € 1,0 € O} is algebraically independent over R, there exists a unique
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ring homomorphism ¢, : R[(8y;)icr0c0] — R[0(1:)ic1 pco] that maps every y; onto 6(n;) and
leaves R fixed. Clearly, ¢, is a surjective A-homomorphism of R{(y;)icr} onto R{(7;)icr};
it is called the substitution of (n;)ie; for (yi)icr. Similarly, if R is a A*-ring, R{(y;)ier}* an
algebra of A*-polynomials over R and (7;);c; a family of elements in a A*-ring extension of
R, one can define a surjective A-homomorphism R{(y;)icr}* — R{(7;)ics}* that maps every
y; onto 7; and leaves the ring R fixed. This homomorphism is also called the substitution of
(mi)ier for (vi)ier- (It will be always clear whether we talk about substitutions for difference
(A-) or inversive difference (A*-) polynomials.) If g is a A- or A*- polynomial, then its image
under a substitution of (7;);es for (v;):es is denoted by g((7;)ier). The kernel of a substitution
is a A- (or A*- if we deal with difference or inversive difference polynomials) ideal of the
A-ring R{(y;)ier} (respectively, of the A*-ring R{(y;)ics}* if we consider substitution for
inversive difference polynomials). This kernel is called the defining A- (or A*-) ideal of the
family (n;);er over R.

If Ris a A- (or A*-) field and (7;);cr is a family of elements in some A- (respectively, A*-)
overfield S, then R{(7;):esr} (respectively, R{(n;):csr}*) is an integral domain (it is contained
in the field S). It follows that the defining A- (or A*-) ideal P of the family (7;);e; over
R is a prime A- (or A*- if we consider differences or inversive differences) ideal of the ring
R{(yi)ier} (respectively, of the ring of A*-polynomials R{(y;)ics}*). Therefore, R{(n;)icr)
can be treated as the quotient A-field of the A-ring R{(y;)icr}/P. (In the case of inversive
difference rings, the A*-field R{(7;):er)* can be considered as a quotient A*-field of the

Ar-ring R{(y:)ier}"/P.)
Let K be a A- (or A*-) field and s a positive integer. By an s-tuple over K we mean

an s-dimensional vector a = (ay, ..., as) whose coordinates belong to some A- (respectively,

A*-) overfield of K.

Definition I1.2 Let K be a A- (or A*-) field and let R be the algebra of A- (respectively,
A*-) polynomials in finitely many A- (respectively, A*-) indeterminates i, .. .,ys over K.
Furthermore, let ® = {f;|7 € J} be a set of A- (respectively, A*-) polynomials in R. An s-
tuplen = (m, ..., ns) over K is said to be a solution of the set ® or a solution of the system
of algebraic A- (respectively, A*-) equations f;(yi,...,ys) =0 (j € J) if ® is contained in
the kernel of the substitution of (n1,...,ns) for (y1,...,ys). In this case we also say that n

annuls ®.



A system of algebraic difference equations @ is called prime if the A-ideal (or A*-ideal in
the case of a system of difference or inversive difference equations) generated by ® in the
ring of A (or A*- if we deal with inversive difference equations) polynomials is prime.

As we have seen, if one fixes an s-tuple n = (n,...,ns) over a A- (or A*-) field K, then all
A- (respectively, A*-) polynomials of the ring K{y1,...,ys} (respectively, K{y,...,ys}"),
for which 7 is a solution, form a prime A- (respectively, A*-) ideal, the defining A- (respec-
tively, A*-) ideal of . If ® is a subset of K{yy,...,ys} (vespectively, K{yi,...,ys}"), then
an s-tuple n = (1, ...,ns) over K is called a generic zero of ® if for any A- (respectively,
A*-) polynomial f, the inclusion f € ® holds if and only if f(n;,...,ns) =0.

Two s-tuples n = (m1,...,ns) and ¢ = ((y,...,(s) over a A- (or A*-) field K are called
equivalent over K if there is a A-homomorphism K (ny,...,ns) — K{((1,...,(s) (respectively,
K{n,...,ns)* — K{(,...,()*) that maps each n; onto ¢; and leaves the field K fixed.

Proposition I1.3 (see ([, Chapter 2, Theorem VII], [10, Propositions 3.2.6, 3.8.7]). Let
R denote the algebra of A- (or A*-) polynomials in s A- (respectively, A*-) indeterminates
Y1, .-, Ys over a A- (respectively, A*-) field K.

(i) A set ® G R has a generic zero if and only if ® is a prime A- (or A*-, if we consider
differences or inversive differences) ideal of R. If (m,...,ns) is a generic zero of ®, then
K{n,...,ns) is A-isomorphic to the A- (respectively, A*-) quotient field of R/®.

(ii) Any s-tuple over K is a generic zero of some prime A- (or A*-, if we deal with
difference or inversive difference polynomials) ideal of R. If two s-tuples over K are generic

zeros of the same prime A- (or A*-) ideal of R, then these s-tuples are equivalent.

2.3. Ring of differential, difference, and inversive difference operators. Dif-

ferential, difference, and inversive difference modules.

Let R be a differential or difference ring with a basic set A = {d;,...,d,,} and let © be
the free commutative semigroup generated by A. If 6 = 5]1“1 L 0Fm e O (ky, ...k € N),
then the number ord = " k, is called the order of §. Furthermore, for any r € N, the
set {0 € ©|ordf < r} is denoted by O(r).

Definition IL.4 An expression of the form ), o asf, where ag € R for any 6 € © and only
finitely many elements ag are different from 0, is called a A-operator over the ring R. (If A

is the set of mutually commuting derivations, then a A-operator is also called a differential
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operator; if A consists of mutually commuting injective endomorphisms, a A-operator is
called o difference operator ). Two A-operators ), g agl and Y, bef are considered to be

equal if and only if ag = by for all 0 € ©.

The set of all A-operators over a A-ring R can be equipped with a ring structure if we
set D peo @0 + D geo Dol = D pcolas + 00)0, ad geq gl = Y peo(aag)d, (3 ycq aed)b =
Y oco 9(001), da = ad + 6(a) (respectively, da = d(a)é if R is a difference ring and A is
the basic set of endomorphisms of R) for any A-operators Y ,_q agl, > ycq bof and for any
a € R, 0 € A, and extend the multiplication by distributivity. The ring obtained in this way
is called the ring of A-operators over R; it will be denoted by D. (If A is a set of derivations,
D is also said to be the ring of differential operators over the differential ring R; if A is a

set of endomorphisms, D is called the ring of difference operators over R.)

The order of a nonzero A-operator A =, o agfl € D is defined as the number ord A =
max{ordf |ag # 0}. We also set ord() = —oc.

Let D, = {A € D]ord A < r} for any r € N and let D, = 0 for any r € Z,r < 0. Then
the ring D can be treated as a filtered ring with the ascending filtration (D,),cz. Below,

while considering D as a filtered ring, we always mean this filtration.

Definition I1.5 Let R be a A-ring and D the ring of A-operators over R. Then a left D-
module is called a A-R-module. (If A is a set of derivations, we also use the term differential
R-module; if A is a set of endomorphisms, we use the term difference R-module). In other
words, an R-module M is a A-R-module if the elements of A act on M in such a way that
Mz +y)=0d(x)+(y), §(8z) =8 (0x), and §(ax) = d(a)x + ad(x) (if A consists of deriva-
tions, so A- means “differential”) or 6(ax) = §(a)d(x) (if A consists of endomorphisms,
so A- means "difference”) for any x,y € M;6,8 € A; a € R. If R is a A-field, then a
A-R-module M 1is also called a vector A-R-space.

If R is an inversive difference ring with basic set A = {d1,...,d,,} and I' is the free
commutative group generated by A, then the order of an element v = 6 ... ¢%» € T
(k1,...,km € Z) is defined as ordy = 3" | |k,|. Also, for any r € N, we set I'(r) = {y €
['|ord~ < r}. In this case, by a A*-operator we mean an expression of the form Z'yEF a7,
where a, € R for any v € I' and only finitely many elements a., are different from 0. As in
the case of A-operators, two A*-operators are considered to be equal if and only if for any

v € T, the coefficients of v in these operators are the same.
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Clearly, a A*-ring R can be also treated as a A-ring, so every A-operator over R can be
also considered as a A*-operator. The set of all A*-operators over the ring R can be naturally
considered as a ring extension of the ring D of A-operators over R where the operation are
defined in the same way as they are defined in D with additional rules §ta = 6~ '(a)d~*
and 6671 =671 =1 (a € R, § € A) extended by distributivity. The resulting ring will be
denoted by D*; it is called the ring of A*-operators (or inversive difference operators) over
R. A left D*-module is called a A*-R-module (or an inversive difference R-module). Such a
module is actually a A-R-module M with an additional action of the elements of the form
61 (6 € A) such that 6(67'(x)) = 671(d(x)) for any x € M (the other rules are the same
as in Definition II1.5 except for that the elements é and ¢" are taken from the set A* rather

than from A).

The order of a nonzero A*-operator A = ) _a,y € D* is defined as the number

vyel
ord A = max{ord~y|a, # 0}, and we also set ord0 = —oo. The ring D* will be treated as a
filtered ring with the ascending filtration (D}),cz where D = {A € D*|ord A < r} for any

r € Nand D) =0 for any r € Z,r < 0.

III. DIFFERENTIAL AND DIFFERENCE DIMENSION POLYNOMIALS

In this section we present main theorems on dimension polynomials of differential and
difference modules and field extensions. Then we show how one can determine the strength
of a system of partial differential or difference equations by computing the corresponding

dimension polynomial.

With the above notation, let R be a A- (respectively, A*-) ring. We say that a A-R-
module (respectively, A*-R-module) M is finitely generated, if it is finitely generated as a
left D- (respectively, D*-) module. By a filtered A- (respectively, A*-) module we always
mean a left D- (respectively, D*-) module M equipped with an exhaustive and separated
filtration. Thus, a filtration of M is an ascending chain (M,.),cz of R-submodules of M such
that D, M, C M, (respectively, D*M, C M, ) for all r,s € Z, M, = 0 for all sufficiently
small r € Z, and |J,., M, = M. A filtration (M,),cz of M is called excellent if all R-

modules M, (r € Z) are finitely generated and there exists ry € Z such that M, = D,_,,M,,

(respectively, M, = D:_ . M,,) for any r € Z,r > ro. Note that if R is a A-field and M is a

T—T0
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finitely generated A-R-module,

for some fi,..., fs € M, then
(- 320)
i=1

is an excellent filtration of M, and a similar remark can be made about a finitely generated

A*-R-module.

reZ

The following result combines theorems on dimension polynomials of differential and dif-
ference modules obtained in [7] and [12] (see also [10, Theorems 5.1.11, 6.2.5 and Propositions

5.2.12, 6.2.17]).

Theorem II1.1 Let R be a A-field whose basic set consists of m operators (derivations or
injective endomorphisms). Let D be the ring of A-operators over R, and let (M,),cz be an
excellent filtration of a A-R-module M. Then there exists a polynomial 1(t) € QIt] with the
following properties.

(1) ¥(r) = dimg(M,) for all sufficiently large r € Z, that is, there exists ro € Z such that
the last equality holds for all integers r > rq. (as usual, dimg(M,) denotes the dimension of
the vector R-space M,.).

(ii) deg(t) < m and the polynomial 1)(t) can be written as

w(t) = Zm:Ci (t + 2)
i=0 !
where ¢y, 1, ...,Cpn € Z and

(t+z> ()t +i—1).. . (t+1)

7 - 7l

(this polynomial takes integer values for all sufficiently large integer values of t).
(i) The integers d = deg(t), ¢, and cq (if d < m) do not depend on the choice of the
excellent filtration of M. Furthermore, c,, is equal to the mazimal number of elements of M

linearly independent over the ring D.

The polynomial 1(t) whose existence is established by Theorem III.1 is called the A-
dimension polynomial (differential or difference dimension polynomial depending on the

nature of the set A) of the A-R-module M associated with the excellent filtration (M, ) ez.

13



The integers d, ¢,,, and ¢, are called the A-type, A-dimension, and typical A-dimension of
M, respectively. A number of results on differential and difference dimension polynomials,
as well as some methods of their computation, can be found in [10, Chapters 5 - 9].

The following is an analog of Theorem III.1 for inversive difference modules (see [10,

Theorem 6.3.3 and Proposition 6.3.15] or [18, Theorems 3.5.2, 3.5.8]).

Theorem II1.2 Let R be a A*-field whose basic set A consists of m automorphisms of
R, and let (M,),cz be an excellent filtration of a A*-R-module M. Then there exists a
polynomial x(t) in one variable t with rational coefficients such that

(i) x(r) = dimg(M,) for all sufficiently large r € 7 ;

(ii) deg x(t) < m and the polynomial x(t) can be represented in the form

2"a m
X(t)ZWt +o(t™)

where a € Z and o(t™) is a polynomial in Q[t] of degree less than m.
(iii) The integers a, d = deg x(t) and the coefficient of t¢ in the polynomial x(t) do not
depend on the choice of the excellent filtration of M. Furthermore, a is equal to the maximal

number of elements of M linearly independent over the ring D*.

The polynomial x(t) is called the A*-dimension polynomial of the A*-R-module M asso-
ciated with the excellent filtration (M,),cz.

The next result combines Kolchin’s theorem on differential dimension polynomial [9,
Chapter II, Theorem 6] and the corresponding result for difference field extensions proved

in [12].

Theorem II1.3 Let K be a A-field whose basic set consists of m operators (derivations or
endomorphisms). Let L = K(m,...,ns) be a A-field extension of K generated by a finite
family n = {m,...,ns}. Then there exists a polynomial ¢,k (t) € Q[t] with the following
properties.
(i) oy (r) =trdegx K({0n; |0 € ©(r),1 < j < s}) for all sufficiently large r» € N.
(ii) deg ¢y (t) < n and the polynomial ¢y i (t) can be written as
Snirc(t) = Y _ (t JZF Z)
=0

7
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where ag, . . ., Gy, € 7.

(iii) The integers am,d = deg ¢y i (t) and aq are invariants of the polynomial ¢y (t), that
18, they do not depend on the choice of a system of o-generators n. Furthermore, a,, = A-
trdegx L where A-trdegx L denotes the A-transcendence degree of L over K, that is, the
mazximal number of elements &, ...,& € L such that the family {0&]0 € ©,1 < i < k} is

algebraically independent over K.

The polynomial ¢,k (t) whose existence is established by Theorem IIL.3 is called the A-
(differential or difference depending on the nature of A) dimension polynomial of the A-field
extension L of K associated with the system of A-generators 1. The integers d = deg ¢, k(1)
and ay are called, respectively, the A-type and typical A-transcendence degree of L over K.

These invariants of ¢, x(t) are denoted by A-typex L and A-t.trdegx L, respectively.

Notice that if the elements n,...,n are A-algebraically independent over K (that is,
the set {0n; |0 € ©,1 < ¢ < s} is algebraically independent over K) and ¢,k (t) is the
corresponding difference dimension polynomial of L/K (we use the notation of the last

theorem), then

Oy (r) = trdegg K({mn; |T €T, 1 <j<s})=s- CardO(r) = s(r i m)
m
for all sufficiently large r € N (Card ©(r) is the number of solutions (k1,...,k,) € N of
the inequality ki + - -+ + k,, < r; it is well known (see, for example, [10, Proposition 2.1.9))
that this number is ("7™)). Therefore, in this case

Goiic(t) = s(t + m).

m

The following theorem shows the existence of a dimension polynomial of a finitely gener-

ated inversive difference field extension.

Theorem III.4 Let K be a A*-field whose basic set A consists of m automorphisms of
K. As before, let I be the free commutative group generated by A, and for any r € N, let
L(r)y={yel'|ordy <r}. Furthermore, let L = K(ny,...,ns)" be a A*-field extension of K
generated by a finite family n = {m,...,ns}. Then there exists a polynomial 1y k(t) € Q[t]
with the following properties.

(i) Yy k(r) =trdege K({yn;|v € I'(r),1 < j < s}) for all sufficiently large r € N.
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(ii) deg i (t) < m and the polynomial Yy K (t) can be written as
2"a . m
Yol (t) = —t" +o(t™)

where a € Z and o(t™) is a polynomial in Q[t] of degree less than m.
(iii) The integers a, d = deg i,k (t) and the coefficient of t* in the polynomial 1y (t) do
not depend on the choice of a system of generators n. Furthermore, a = A-trdegy L.

(iv) If m,...,ns are A-algebraically independent over K, then

o= B ()( )

k=0

Let us consider a prime system of algebraic A- (differential or difference) or A*-(inversive

difference) equations

Aiyr,...,ys) =0 (t=1,...,p) (1)
where A;(y1,...,ys) are A- (or A*- ) polynomials in the ring R = K{yi, ..., ys} (respectively,
in R = K{y1,...,ys}*) and let P be a prime A-ideal (respectively a prime A*-ideal if we
consider the difference or inversive difference case) of R generated by the right-hand sides
of system (1). Furthermore, let 7; be the canonical image of y; in the factor ring R/P
(1 <i < s). Itis easy to see that for every r € N the intersection PN R, is a prime ideal of the
ring R, and the quotient fields of the rings R,./P N R, and K[{f(n;) |0 € O(r), 1 < j < s}]
(respectively, K[{y(n;)|y € I'(r), 1 < j < s}]) are isomorphic. Considering the case of
algebraic differential or difference equations we can apply Theorem III.3 and obtain that

there exists a polynomial ¢p(t) in one variable ¢ with rational coefficients such that
op(t) =trdegxr K({6(n;) |0 € ©(r), 1 < j < s}) =trdegx(R./PNR,)

for all sufficiently large r € Z, deg ¢p(t) < m and the polynomial ¢p(t) can be written as

m

op(t) = a; (t J; Z)

i=0

where ay, ..., 0, € Z and a,, = A-trdegx K({68(n;) |0 € ©(r), 1 < j < s}).
In the case of a system of difference equations (including the case when such a system
involves negative degrees of basic translations, which act as automorphisms), one can apply

Theorem I11.4 that shows the existence of a polynomial ¥p(t) € Q[t] such that

Yp(r) = trdeg K({y(1;) [y € T(r), 1 < j < s}) = trdegx (R, /P N R,)
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for all sufficiently large r € Z, deg(t) < m and the polynomial ¢p(t) can be written as

2"a

Up(t) = =4 4 o(t")

where ap = o-trdegix (R/P).

With the above notation, the numerical polynomial ¢p(t) (respectively, ¥p(t)) is called
a differential (respectively, difference) dimension polynomial of system (1). It is also said to

be a A- (respectively, A*-) dimension polynomial of the system.

Taking into account Einstein’s approach described in the Introduction, one can say that
for all sufficiently large r, the value ¢p(r) of the differential dimension polynomial ¢p(t) of a
system of algebraic differential equations is the number of Taylor coefficients of order < r of
an analytic solution that can be chosen arbitrarily. (These Taylor coefficients are the values
of derivatives of order < r of the solution computed at the point in whose neighborhood
we consider its expansion. The dependence of coefficients is understood as their algebraic
dependence over the field of coefficients of the system.) Thus, ¢p(t) can be viewed as a
measure of strength of system (1), so the problem of computation of differential dimension
polynomials is important not only for the study of differential algebraic structures, but also
for the study of equations of mathematical physics.

Considering a system of equations in finite differences over a field of functions in several
real variables, one can use Einstein’s approach to define the concept of strength of such a
system as follows (cf. Einstein’s description of the strength of a system of PDEs presented

in the Introduction). Let

Ai(fi,.. ., fs) =0 (1=1,...,p) (2)

be a system of equations in finite differences with respect to s unknown grid functions
f1,-.., fs in n real variables 1, ..., z, with coefficients in some functional field K. We also
assume that the difference grid, whose nodes form the domain of considered functions, has
equal cells of dimension hy x --- x h, (hq,...,h, € R) and fills the whole space R". As an
example, one can consider a field K consisting of a zero function and fractions of the form
u/v where u and v are grid functions defined almost everywhere and vanishing at at most
finitely many nodes. (As usual, we say that a grid function is defined almost everywhere if

there are at most finitely many nodes where it is not defined.)
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Let us fix some node P and say that a node Q has order i (with respect to P) if the
shortest path from P to Q along the edges of the grid consists of i steps (by a step we mean
a path from a node of the grid to a neighboring node along the edge between these two
nodes). Say, the orders of the nodes in the two-dimensional case are as follows (a number

near a node shows the order of this node). Let us consider the values of the unknown grid

FIG. 1. 2-dimensional grid

functions fi, ..., fs at the nodes whose order does not exceed r (r € N). If f;,..., fs should
not satisfy any system of equations (or any other condition), their values at nodes of any
order can be chosen arbitrarily. Because of the system in finite differences (and equations
obtained from the equations of the system by transformations of the form f;(xq,...,z) —
fi(xr + kiha, ... x5 + kphy) with ky, ...k, € Z, 1 < j < s), the number of independent
values of the functions fi,..., fs at the nodes of order < r decreases. This number, which
is a function of r, is considered as a ”"measure of strength” of the system in finite differences
(in the sense of Einstein). We denote it by S,.

With the above conventions, suppose that the transformations «; of the field of coefficients

K defined by
Oéjf(l‘l, . ,%n) = f(l’h ey L1, 25 —+ hj, Cen 7$‘n)

(1 < j < n) are automorphisms of this field. Then K can be considered as an inversive dif-
ference field with the basic set 0 = {«4, ..., @, }. The replacement of the unknown functions
fi by difference indeterminates y; (i = 1,...,s) leads to a system of algebraic difference
equations of the form (1). If this system is prime (e.g., we deal with a system of linear
difference equations), then its difference dimension polynomial ¢(¢) expresses the strength

Sy. Thus, this polynomial can be naturally viewed as the measure of Einstein’s strength of a
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given system of equations in finite differences. In what follows, the A*-dimension polynomial

W (t) will be called the difference dimension polynomial of the system.

Methods of computation of A- and A*- dimension polynomials of a system of algebraic
partial differential or difference equations developed so far are based either on building of a
characteristic set of the considered above associated A- (or A*- ) ideal P in K{yi,...,ys}
or on constructing a free resolution of the module of Kéahler differentials associated with the
extension K(ny,...,ns) (or K(n,...,ns)*). The corresponding computations can be found,
for example, in [10, Chapter 9] and [18, Chapter 7]. The main drawback of the mentioned
approaches is the lack of efficient algorithms for constructing characteristic sets and serious
restrictions on the systems to which one can apply the method of free resolutions. In the
last case, a system of difference equations with inversive difference operators is supposed
to be linear and symmetric, that is, whenever an equation involves a A*-operator w =
a o8 ok g, 88§k (a; € K), which contains a term adl ... o (a € K, a #
0), then it also contains all terms of the form b6 ... 5 with nonzero coefficients b € K
and all 2™ distinct combinations of signs before [q,...,l,. In what follows we explain a
method of computation of dimension polynomials (and therefore, the strength of a system of
algebraic partial differential or difference equations), which does not have these restrictions.

Implementations for computing Grobner bases in modules of differential and difference
operators are available, e.g., in the Mgfun package [2] for Maple or in the Plural extension

of Singular [11].

IV. COMPUTATION OF THE STRENGTH OF A SYSTEM OF DIFFERENCE
EQUATIONS VIA GROBNER AND GENERALIZED GROBNER BASIS TECH-
NIQUES. EXAMPLES

Let K be a difference or inversive difference field of characteristic 0 with basic set A =
{61,...,0m}. As we have seen, the ring of A-operators over K carries many properties of a
polynomial ring in m variables over K. In order to underline the relationship between the
Grobner basis method for A-K-modules considered below and the classical Grobner basis
technique for polynomial ideals we will denote the ring of A-operators over K by K[A] and
set

[A] := {6 ... 6Fkm | ko Ky € NTL
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Similarly, if A is a family of mutually commuting automorphisms of K, we set
[A*] = {o% - 6% | ky, .. Ky € Z)

and denote the ring of A*-operators over K by K[A*]. Furthermore, a free left K[A]-
(respectively, K[A*]-) module with a set of free generators £ = {ey, ..., ¢e,} will be denoted
by K[A]E (respectively, K[A*]E) and [A]E (respectively, [A*]E) will denote the set of all
elements of the form \e; where 1 < i < ¢ and X € [A] (respectively, A € [A*]. Such elements
of the free module are called terms.

Let E = {e1,...,e,} be a finite set of free generators of the left K[A*] module K[A*|E
and F' C K[A*|FE finite. There are two popular approaches for computing a Grébner basis of
the left K[A*]-module ga+(F'). The first approach is due to the second author [16, 18] - the
idea also appears [19] — works by introducing new variables for the inverses d;',... 6! of
01, - ..,0, and doing computations in the resulting free module of difference operators. The
second approach, originated by the second author [13], was enhanced by Winkler and Zhou
[31, 32] who introduced the concept of so-called generalized term orders therefore making

K[A*]E a well-ordered set. In the following we will outline the first approach. Proofs for

termination and correctness of the algorithms can be found, e.g, in [16, 18, 19].

A. Computing Grobner bases of inversive difference modules via standard bases

of associated difference modules

Let K be a differential (respectively, difference) field with basic set A = {d1,...,d,,} of

derivations (respectively, endomorphisms) of K.

Definition IV.1 Let < be a total order on the set of terms [A|E such that for all elements
L# X \n,u€[A]e e € E we have

1. e < JAe,
2. ude < une’ whenever e < ne’.

Then the relation < is called an admissible order.

For any f =aifi + ...+ anfn € K[A]E with aq,...,a, € K, f1,..., fn € [A]E and for a

given admissible order < we denote the highest term appearing in f with nonzero coefficient
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by 1t(f), i.e.,
It(f) == m&x{fi | 1 <i<n,a; # 0},
and call it the leading term of f. The corresponding coefficient is called the leading coefficient

of f and is denoted by lc(f).

Definition IV.2 Let f,g € K[A]E\ {0} and < an admissible order. If there exists A € [A]

with 1t(Ag) = 1t(f) we say that f is reducible to h := f — )\tg;g modulo g and write

f—q N

Otherwise we say that f is irreducible modulo g. Let G = {¢1,...,9,} C K[A|E\ {0}. If
there exist n € N, fo, ..., fu, i1, ... i € {1,...,p} such that

f=/o g4 f1 T g T T g fo=tr
we say that f is reducible to r modulo G. Otherwise we say that f is irreducible modulo G.

The process of reduction is described by the following algorithm.

Algorithm 1 Reduction_algorithm
IN: 0# f € K[A]E, finite G C K[A]E, and an admissible order <,

OUT: r € K[A]FE such that f is reducible to » modulo G and r is irreducible modulo G.

r:=f
while there exist g € G and X\ € [A] such that 1t(Ag) = 1t(r) do

le(r)
c(9)d

end while

ro=r—A\

return r

Definition IV.3 Let < be an admissible order, N a submodule of K[X]E and G C N\ {0}
finite such that every 0 # f € N 1is reducible to 0 modulo G. Then G is called a Grobner
basis of the module N.

Every finitely generated K[A]-module M has a Grobner basis that can be computed, e.g.,
via Buchberger’s algorithm starting with any finite generating set G of M (see Algorithm 2
below).
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Definition IV.4 Let < be an admissible order on [AlE, g1,9o € K[A]E \ {0}, A\, A €
[A],e1,eq € E such that 1t<(g1) = Mep and lt2(g2) = Agea. The least common multiple

lem(1t<(g1),1t<(g2)) of lt<(g1) and 1t<(g2) is defined by

lCIIl(>\1, )\2)61 if €1 = €9,
lem(1t<(g1),1t<(g2)) :=
0 if €1 7é €9.

Let uy,uy € [A] be given by

. lem(lt<(g1), 16<(g2))

) _ lem(It<(g1), 1t<(g2))
b 1t<(91)

d =
o = 1t<(g2)

Then the S-polynomial S(g1, g2) of g1 and g is defined by

(251 g2
S(g1, =u —u :
(91,92) Meo(gr)  Cle<(go)

Algorithm 2 Buchberger’s_algorithm
IN: G C K[A]E\ {0} finite, < an admissible order,

OUT: G C K[A]E \ {0} being a Grébner basis of K[A]<é>-
G:=G
while there exists g,¢’ € G such that S(g,g’) is not reducible to 0 modulo G do
G := G U {Reduction_algorithm(S(g,¢'),G, <)}
end while

return G

The following theorem being a special case of [15, Thm. 4.12] and [I8, Thm. 3.3.15]
describes how to obtain the dimension polynomial associated with a system of differential

or difference equations.

Theorem IV.5 Let M be a difference K-vector space generated (as a left K[A]-module)
by elements my, ..., mq, F' a free K[A]-module with set of free generators E = {e1,..., €4},
7w : F — M the difference epimorphism (e; — m; fori =1,...,q) and N := ker(w). Let
G C K[A|E be a Grobner basis of N with respect to the term order < defined by

Oyt Okme; < G- Slme;

< (k1++km,27k1,,]€m) <lex (l1+"'+lm,j7l1,...,lm),
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where <iox denotes the lexicographic order. Forr € Z let

M, == { m € [A{m4,...,my} | ord X <r} and
Ui ={Xe € [A]E | ord A <7 and Xe # plt<(g) for any g € G, € [A]}.

Then (M, ),cz is an excellent filtration of M and for any r € N the set w(U,.) is a basis for

the K -vector space M,

The following proposition is obtained from [10, Prop. 2.2.11.] by realizing that a term e is
irreducible if and only if there exist no n € [A],g € G with lt(g) = pe and nu = .

Proposition IV.6 With the notation of Theorem IV.5 for everyi=1,...,q, let
Gi={lt(g) | g € G, lt(g) € [A]e;}

and let Ay = (N k) € NIGx2m satisfy the following condition: for every
It(g) = ' --- g ... Bhme; € G

there exists j € {1,..., |G|} with (Nij1,. .- Nijom) = (@1, -, Qm, b1, ..., by).
Furthermore, for any l,n € N with 1 < n and 0 < [ < n, let A(l,n) denote the set of
all l-element subsets of {1,...,n} and for every 1 < i < q,0 # & € A(l,|Gi]), let Nigy :=

max ee Aijix ond Nigr = 0. Finally, for any 1 <i < q,& € A(l,|G;|) let fie:= i’zl i k-
Then
5 5 YR ol v
i=1 1=0 ECA(L|G:))

An idea of the following kind was also by Ziming Li and Min Wu [19]. Let K be an inver-
sive difference field with basic set of automorphisms A = {d;,...,d,,} and FF C K[A*|E a
finite set of generators for a left K[A*] module. Let ay, ..., am, 51, ..., Bm be endomorphisms

of K such that for i =1,...,m and k € K we have
a; (k) := 0;(k), and Bi(k) == 6; (k).

Then K can be considered as a difference field with basic set ¥ := {aq,...,am, G, .-,
Bm}. By p: KIA*] — K[X]/k{({aufie —e | 1 < i < m,e € E}) we denote the natural

isomorphism

p:oi . ghme s ozllnax{kl’o} . aﬁax{km’o}ﬁinax{_kl’o} . etk 0 (e€ ).
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Let F:= p(F)U{aifBie—e |1 <i<m, e € E}. Then, K[A*|E/a-(F) is isomorphic
to K[X)E/ks(F), so in order to compute the A*-dimension polynomial of a A*-K-module
K[A*|E/ka«(F) associated with a finite system of generators F', it suffices to compute
the Y-dimension polynomial of the ¥-Kmodule K[%]E/ s (F) associated with the set of

generators F.

B. Examples for the computation of differential and difference dimension polyno-

mials

In this subsection we give several examples for the computation of differential dimension
polynomials associated with systems of differential equations arising in mathematical physics

and of difference dimension polynomials associated with their difference schemes.

Example IV.7 (Diffusion equation in 1-space)

The diffusion equation in one spatial dimension for a constant collective diffusion coefficient
a and unknown function u(x,t) describing the density of the diffusing material at given
position x and time t is given by

u(x,t)  0*u(x,t)
oo ®)

Differential dimension polynomial
Let K be a differential field with basic set A = {J, = 3%, 0y = %} containing a and let
M be a differential K-vector space generated as K[A]-module by one generator m satisfying
the defining equation

_ 2
dm = ad,;m.

Then M s isomorphic to the factor module of a free K[A]-module with free generator e by
its submodule N generated by

G := {6;e — ad2e}.

Since G consists of only one element there are no S-polynomials. Therefore G is already a
Grébner basis of N for any admissible order on [Ale. Let the admissible order < on [Ale be
given by

Sheoite < Sldlte = (ky + Kty Ky i) <tex (Lo =+ Uy Ly 1)
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Then for all 2 < r € N we have

U, = {6F6Fe | ky + k <7, 6F6Fe is irreducible modulo G}
= {e,de, ... 00e, 0,00, ..., 0,00 e},

and therefore |U,| = 2r + 1.
Thus, the differential dimension polynomial associated with the diffusion equation in one
spatial dimension for a constant collective diffusion coefficient is given by ¢(r) = 2r + 1.
Difference dimension polynomial for forward difference scheme
In order to obtain a forward difference scheme for the diffusion equation (3) every oc-

8“6(”;"5) and 8“5;;"5) is replaced by u(zx + 1,t) — u(z,t) and u(z,t + 1) — u(z,t),

curence of

respectively. We obtain
u(z,t+1) —u(z,t) = alu(z + 2,t) — 2u(x + 1,t) + u(z,t)). (4)

Let K be an inversive difference field with basic set A = {0, : x — x+ 1,0, : t — t + 1}
containing a and let M be an inversive difference K -vector space generated as a left K[A*]-

module by one generator m satisfying the defining equation
Sm —m = a(62m — 25,m +m).

Then M is isomorphic to the factor module of a free K[A*]-module with free generator e by
its submodule N generated by

G = {6ie — adZe + 2ad.e — (1 + a)e}.

We will compute the difference dimension polynomial associated with the difference scheme
(4) using the method described at the end of subsection A. Thus, we consider K as a difference
field with basic set ¥ ={a, :x—x+ 1L ap:t—t+ 1,6, :x—x—1,0 :t—t—1}. Let
G = {g1 == e —aaZe+2aa,e — (1+a)e, go := a6 —e, g3 := e —e} and I =gy <é)
Then K[X)e/I is isomorphic K[A*|e/N wvia the isomorphism

a2 ot B Blte o 35 g M
We fix an admissible order < on [X]e defined by
a at Qbs Qb c ct Qdge 2d .
O{xlattﬁxl tte_<axzatt/61‘z tte'/;\
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(az + ag + bx + bt7 Qg G, bCEv bt) <lex (CCE + Ct + d:v + dta Cgy Ct,y dﬂm dt)

and compute a Grébner basis of I with respect to <. The S-polynomial S(g1,g2) of g1 and
go 1S given by
1 1
S(gh 92) = _2awﬁm€ - aatﬁxe + (1 + a) ﬁxe + aze

and 1s reducible modulo gy to —%atﬁxe + (1 + %) Bre+ aze — 2e, which is irreducible modulo
G. Hence, g4 := —%atﬂxe—k (1 + i) Bre+aze—2e should be inserted into G. For S(g1,93) =

—2a B — taife + (14 1) aufie + a2e we have
1, 9 1
S(91,93) g3 _aat Bre+aze+ | 14+ P aBe — 2a,e

9 1 1
—g e+ | 1+ p o Bre — 20,6 — aate

1 1
—g |1+ - ufe—(1+-)e
a a

g3 0.
Furthermore
1
S(g1,94) = acate+ (a+1)a2fre — 20,00, — —aiB.e — 2aa’e
a
1
+ <1 + —) thﬁxe
a
1
—g (a+ 1)049265356 — 20,0436 — —afﬁxe + agoue
a
1
+ (1 + —) afre — (14 a)aze
a
1
—g 20,040, — —afﬂxe + azape + (2a + 2)a B
a
+(2+2/a)ufre — (1 +a)aze+ (=2 —a —1/a)fB,e
1
— g —aa?ﬁxe + agape + (2a + 2)afre + (2 + 2/a)ay e
—(1+a)aze —2ce + (=2 —a—1/a)f,e
1
—q (204 2)a,Bre + (1 + —) afre — (14 a)aze
a
+(=2—a—1/a)Be
1
— g (1 + —) aifre — (1 +a)age+ (=2 —a—1/a)B,e
a
+(2a + 2)e
g4 0
S(92,93) = aufee—afe

26



—g —ffe +e
—gs 0
S(g2,91) = acie+ (a+1)af.e — 2aae — ae
—g, (a+1)ayfe — (1 +a)e
g2 0
S<g37 94) = ao‘zﬁte + (CL + 1)515156 - Bze - 2@6156
= G5
1 1 1
S(gla 95) = -1 + - O‘xﬁxﬁte + _amﬁxe - _atﬁte
a a a
1
+ (1 + _) ﬁte
a
1 1
—>g2 _O-/:L’ﬁa:e - _atﬂte
a a
1 1
—g, ——ufe + —e
a a
g3 0
1 1
5(927 95) = - (1 + a) @%ﬁte + aﬂie + 23, 58e — Bre
= UGe

Further computations of the S-polynomials S(gi, gs), 1 < i <5, show that all of them are

reducible to 0 modulo {g1,...,96}. Hence, a Grébner basis for I is given by

{91 = que — aaze + 2acze — (1 +a)e,

g2 = awﬁme — €,

g3 = ay e — e,
1 1

ga = __atﬂxe + 1 1+- ﬁxe + aze — 267
a a

g5 = aafe + (a + 1), 8, — Bre — 2afe,

g6 — — (1 + é) ﬁgﬁte + éﬁge + QBzﬁte - ﬁte}'

Applying Proposition IV.6 we obtain

H{X € [X]e | ord(N) < r, A is irreducible modulo G}| = 5r.
for all sufficiently large r. Therefore, the inversive difference dimension polynomial associ-
ated with the difference scheme (4) is given by ¢(r) = br.

27



Difference dimension polynomial for symmetric difference scheme

In order to obtain a space symmetric difference scheme for the diffusion equation (3)
0*u(z,t) Ou(z,t)
——= and ——=
Ox? ot
and u(x,t + 1) — u(z,t), respectively. We obtain

every occurrence of is replaced by u(x + 1,t) — 2u(z,t) + u(x — 1,t)

w(z,t+1) —u(x,t) = a(u(zr + 1,t) — 2u(x,t) + u(z — 1,1)). (5)

Let K be an inversive difference field with basic set A = {0, : x — v+ 1,0, : t — t + 1}
containing a and let M be an inversive difference K -vector space generated as a left K[A*]-

module by one generator m satisfying the defining equation
Sm —m = a(6,m — 2m + 6, 'm).

Then M is isomorphic to the factor module of a free K[A*|-module with free generator e by
its submodule N generated by

G :={6;e — ade — 6, e + (2a — 1)e}.

Now consider K as a difference field with basic set ¥ = {a, :x— x4+ 1l,ap : t—t+ 1,0, :
x—x—1,0:t—t—1}. Let G := {n == e—aze—Gre+(2a—1)e, go := a,fre—e, g3 :=
aiBe — e} and I =kisy (G). Then K[S)e/I is isomorphic K[A*]e/N via the isomorphism

ataft B fre v b6 e,
Let us fix an admissible order < on [X]e defined by
ot Ble < fpof Bl s
(az + ap + by + by, Az, Az, by, by) <tex (o + ¢t + do + dy, Coy €1y dip, di)
A Grobner basis of I is then given by

{91 = aﬁzﬁte — (2a — 1)ﬁzﬁte - ﬁx + a’ﬁte7
1 1
=t Be— (2= 1) et
a a
g3 = aife — e,

gs = aqgze — age + afze — (2a — 1)e}.
Applying Proposition IV.6 we obtain
H{X € [X]e | ord(A) < r, A is irreducible modulo G}| = 4r
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for all sufficiently large r. Hence, the inversive difference dimension polynomial associated
with the difference scheme (5) is given by ¢(r) = 4r.

Thus, the symmetric difference scheme for the diffusion equation has higher strength
(that is, smaller dimension polynomial) than the forward scheme, so the symmetric scheme

1s more preferable from the point of view of strength.

Example IV.8 (Maxwell equations for vanishing free current density and free
charge density)

Let E = (Ey, Ey, Es), D = (Dy,Dy,D3), H = (Hy,H>, Hs), B = (B1,Bs,Bs), Jr =
(J1, Ja2, J3) and py be functions of (x,y,z,t) that denote electric field strength, electric
displacement wvector, magnetic field strength, magnetic displacement vector, free current

density and free charge density, respectively. With

0 0 0
V.— <£7a_y’&)

Mazxwell’s equations in 3 spatial dimensions are given by

0B oD
VD:pf, VB:O, VXE‘{'E:O, and VXH:Jf—f—E

Assuming Jy = 0 and py = 0, Mazwell’s equations can be considered as a set of homogeneous
linear differential equations.
Differential dimension polynomial

Let K be a differential field with basic set A = {6, = 2,6, = 2.6, = 2.6, = 2}.

oz’ 8_y’ 920 Yt

Assuming Jr =0 and py = 0 Mazwell’s equations give rise to a differential K[A]-module M
with generators ey, eq, e3,dy, ds, ds, hy, ho, h3, by, ba, by satisfying

0pdy +0ydy +0,d3 = 0 = ;b1 + 6,by + 0,03,

5y€3 — (5262 + (5tb1 = 0 = 5yh3 - (5Zh2 — (Stdl,

(5Z€1 — (55,;63 + (Stbg = 0 = 5zh1 — (thg — (Stdg,

(Sweg - (5y61 + 5tb3 = 0 = 6mh2 - 5yh1 - (Stdg.
Then M is isomorphic to the factor module of a free K[0,,0y,0., 6:]-module with free gener-
ators pi,...,p12 by its submodule N generated by

G = {6zp7 + 0yps + 6.D9, 0zP10 + Oyp11 + 0:p12, 0yp3 — 6.2 + 610,

dyPs — 0:p5 — 01p7, 001 — 02P3 + D11, 02p4 — OxPs — OiPs,
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0xp2 — Oyp1 + 0eD12, 6205 — OyPa — OiDo }-
We define an admissible order < by
00 00602 0yt ej, < ObrOln Ot oyte;, =
(ay + ay + a, + a, j1, az, ay, @z, ar)
<jex (by + by + b, + by, 2, bs, by, b2, by).
Then G is a Grobner basis and by Proposition IV.6 the differential dimension polynomial

associated with Maxwell’s equations for vanishing free current density and free charge density

1S given by

19 , 55, 137
=ty 23222 29
o(r) Tttt

Difference dimension polynomial for forward difference scheme
Let K be an inversive difference field with basic set A = {6, : © — x+ 1,0, : y
y+1,0, 2 2+ 1,8 1t — t+ 1}. If we replace every occurrence of 0; in G by 6; — 1,

where i € {x,y, z,t}, we obtain a set

G = {0:p7 — p7+ 0yps — s + 6-po — po,
0zP1 — P10 + 0yp1 — P11+ 02p2 — pi2,
dyps — p3 — 0.p2 — P2 + dep1 — Pro,
O0yPe — P6 — 0-P5 — D5 — O1p7 — P,
0:p1 — P1 — 0zp3 — P3 + Oep1 — P,
0:p1 — Pa — 0zP6 — P6 — OtPs — Ps,
0zp2 — P2 — Oyp1 — p1 + 0ep2 — P12,
0:P5 — Ps — OyPa — Pa — 0Py — Py }-
associated with Maxwell’s equations for vanishing free current density and free charge den-
sity. Applying the Buchberger algorithm we obtain the following 80-element Grobner basis

G of the associated Koy, oy, o, oy, By, By, Bz, Bi]-submodule of the free module with free

generators py,. .., Pio-

G = {ﬁxﬁyﬁzpw + Bxﬁyﬂzpll - ﬁxﬁypm + ﬁzﬁyﬁzplo - ﬁxﬁzpll - ﬁyﬁzploa ﬁyﬁzpw - axﬁyﬁzplo
+ ﬁyﬁzpll - ﬁypm + 6yﬁzp10 - ﬂzplla ﬁxﬂyﬁzpﬁ) + 6ccﬂyﬁzp8 - 6x5yp9 + 6x5yﬁzp7
- 6xﬁzp8 - ﬂyﬁzp% ﬁyﬁzpf) - O‘mﬁyﬁz}% + ﬁyﬁzpﬁé - 6yp9 + ﬁyﬁz}h - ﬁzp& ﬁyﬁzﬁt]h
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— ByB:0ps — ByB:pr + ByB-0eps + B=Bpe — Bybips, —ByBipr + =8y Bepws + ByBipe + Bypr
— BybBips — Bepe, —B2B:0iPs + Bol:ps — BoB:0tp6 + 02506 + Bal3: 010 — BuBips, BalBips
— Bups + Buips + @202 0ipa — Bibe — BulBias BelByBibe — BulBype — BuBylBips + BrlyBipa

+ ByBips — Babipas BuBipy — PaPo — 0tyfalBipa — BalBips + Bolia + Beps, =By B:0ip10
+ ByB:p10 — ByB:0ips + ByB:bipa + B:6tps — Bybip2, ByBipro — Bypio + =8y Bip2 + By bips
— ByBip2 — B3, BeB.0ip11 — Buf2p11 — BuB25tps + B.6ip3 + B 0:0tp1 — B Bip1, —BuBip11
+ Bep11 + BeBipz + B Bip1 — Bips — Bufip1, —BeByBip12 + BeBypi2 — BBy BiD2
+ B8y 0ip1 + By Bipa — Bufipr, —Bubip12 + Bepr2 — ayfeBipr — Bulbipa + BeBip1 + Bip2,
— Bipe + P9 — b5 + vy Bipa + Bips — Bipa, —Bips + @ Bips + ps — Bipe — 2 Bipa
+ Beps, —oyBips — Bepr + :0ps + Bips + 7 — Bivs, —Biprz2 + P12 + awBep2 — oy fipy
— Bipa + Bipr, —Bepin + pui — o Bips + Bips + . Bipr — Bepr, —Bipio + Pio + oy Bips
— a.Bp2 — Bips + Bib2, oy Bepi1 — Bap12 + B.p10 — Bap11 + P12 — B:Dio, 0y B.ps — BP9
+ . f.p7 — Bops + P9 — Bap7, —upy + P + QuPs — QyPa — Ps + Pa, —uPs + Ps — QaPe
+ Pe + Q2Py — P4, —OuP7 + QyPe + P7 — Q:P5 — Pe + P5, P12 — P12 + QP2 — QyP1 — P2
+ P1, QP11 — P11 — OzP3 + P3 + QP1 — P1, P10 — Pio T QyP3 — QP2 — P3 + P2, OzP12
+ aypi1 — P12 + azPro — P11 — Pro, =Py + QP — Py + QaP7 — Py — Pr}
U{aifBipj —p; |i€{x,y, 2t} je{l,..., 12} }.
Applying Proposition IV.6 we obtain that the difference dimension polynomial associated

with the forward difference scheme is given by
o(r) = 4r* + 187" + 357 + 31r + 12.

Difference dimension polynomial for symmetric difference scheme

Let K be an inversive difference field with basic set A ={6, :x—x+1,0,:y—y+1,6,:
zr z+1,0; : t — t+1}. Using the symmetric difference scheme we replace every occurrence
of 0; in G by 3(6; — 6;) (i € {w,y, 2,t}) and arrive at a set
G = {0up7 — P + 0yps — ps + -y — Do,
dzP10 — P10 + Oypi1 — P11 + 02p12 — D12,

dyps — p3 — 0.pa — P2 + dpro — Pios
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5yp6 — Pe — 0.ps — D5 — OuP7 — D1,
0:p1 — P1 — 0zP3 — P3 + 0P11 — Put,
0.P4 — Pa — 02P6 — D6 — OtPs — Ds,
0zP2 — P2 — Oyp1 — P1 + OtP12 — D12,

0uPs5 — P5 — OyDa — Da — 0Py — Do}

Proceeding as above we obtain that the corresponding difference dimension polynomial is
given by
4, 96 5 2
o(r) =4r* + 37 + 3677 + 4r + 22.

Comparing difference dimension polynomials computed for the forward and symmetric
difference schemes we can conclude that the strength of the system of difference equations
obtained via forward difference scheme is higher than the strength of the system obtained
with the use of symmetric difference scheme. This time we obtain that the forward scheme

1s more preferable from the point of view of strength.

Example IV.9 (Equations for electromagnetic field given by potential)
An electromagnetic field can be defined by the differential equations describing its potential, cf

[10, Ex. 9.2.6.]. The corresponding system of PDEs, which involves four unknown functions

(1, x), . Ua(21, .. x4), 1S as follows.
4
0
jzlal‘j J
4
0? 0?
; ((%?% O, O, %’) =0 ()

Differential dimension polynomial

Let K be a differential field with basic set A = {J; = 8?1:-

(7) and (6) give rise to a differential K[A]-module M with generators my, ..., my satisfying

| i=1,...,4}. Then equations

fori=1,...,4 the defining equations

4
Z 5jmj = 0,
j=1

1

4
Jj=
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Then M is isomorphic to the factor module of a free K[A]-module with free generators

i:1,...,4}. 8)

a1 $as $a3 $aq b1 b2 ¢b3 cba .
01105°05° 05 ey, < 07105°05° 0" ey, 1=

€1,...,e4 by its submodule N generated by

4 4
{Zchej} {Z 526Z 0;0 e]
j=1 J=1

Defining an admissible order < by

(al + ag + as + a4aj17a1aa2a a’37at)

<lex (b1 + b2 + b3 + by, 2, b1, by, b3, ba),
we obtain the following Grobner basis G for N.

G = {6 + 53¢ + 03€® + 635¢°
51e® + 03 + 6ie* + o3¢’
5ie + d5e + dje + dae
S1e + 096> + 05€® + 04e?
61t — 01040 + 05e* — 50462 + 02e* — 53647}

Applying Proposition IV.6 we obtain that the differential dimension polynomial associated
with (7) and (6) is given by

11 17
o(r) =r* + 27“ +7r+4

Difference dimension polynomial for forward difference scheme
Let K be an inversive difference field with basic set A ={6; - x; —x;+1|i=1,... 4}
Replacing every occurrence of 6 in (8) by o — 1 (k =1,...,4) we obtain that the desired

dimension polynomial is the A* dimension polynomial associated with the factor module of

the free K[A*]-module E = Z K[A*e; by its K[A*]-submodule generated by the set

4
{Z 5j€j — 6]‘} U
j=1

4
{Z ((5]261 — 25j67l + €; — 5i5jej + 52-63- + 5jej — ej)

j=1

z‘:1,...,4}.
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Exploring the idea described at the end of subsection A, let us consider K as a difference

field with basic set
Y=Aa; i~ + 1,6 —ax—1]i=1,...,4}
and let the admissible order < be given by
aftagtagiadt B O B e, < oftaftaaf B B B,
<= (a1 + b+ +ag+bygi,a, ... a4,b1,...,0y)

Lex (C1+d1—|—"'+C4+d4,i701,...,C4,d1,...,d4).

Using the Maple package “Ore_Algebra” [2/]] for computing a Grébner basis of the K[X]-

submodule generated by

4
{Z ajej — 6]‘} U
7j=1

4
2
{ E (ajel- — 205e; + e; — qua e + ey + age; — ej)
J=1

z’:1,...,4}

{0645861, aszfrer, azfser, a1 fser, 04%61, ayfge, 04%65617

we obtain the set of leading terms of the Gréobner basis

a1 B 57 05e1, asfirea, aafses, an fBsea, ey, aufses,
Bséa, aafs 6 07€1, 04%55@561, 04255257@617 04355627
a1ﬂﬁ@7ﬂ§€2, azfBres, azfees, a1 fses, 04%637 (4€4, 04365?53682617
B35 06 Br€2, 04%555662, 04255?5753627 a§65e3, 04166576%&37 agfreq,
€4, a1 54, 04%64, 5%53535361, a35§5§5§€2, a4 3506 07€3,
04%555663, 0625525753637 04%5564, 130764, B?Béﬁ?ﬁ%ez,
333 33 B3 es, a3 05 Bsea, 33 Bre, B3 33 37 G5 es,
04355%5364, 535{?5364}-
Applying Proposition IV.6 we compute the difference dimension polynomial associated with
a forward difference scheme for (7) and (6) to be

7 43
P(r) = 15r% — 57“2 + ?T‘Q + 2.

Difference dimension polynomial for symmetric difference scheme
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Let K be an inversive difference field with basic set A = {6; s x; — x;+1 | i=1,...,4}.
Replacing every occurrence of &y, in (8) by (6, — 6;") (k=1,...,4) we obtain the set

{Z %(53' - 5j1)€j} U

j=1
1
{Z Z (5J26z — 262' + 5]'_26i
j=1
_6i5j€j + 515;163' + 51‘_153'6]' - 6{15;1%-) 1= 1, PN ,4} s
4
which generates a K[A*]-submodule N of the free K[A*]-module M = ZK[A*]ei such
i=1

that the difference dimension polynomial of our system of difference equations is the A*-
dimension polynomial of M/N.
Using the approach described at the end of subsection A, we treat K as a difference field

with basic set

Y=Aay i~ + 1,6 x—ax—1]i=1,...,4}

and consider the admissible order < given by

a1 a2 a3z a4 2bi gba 2bs Qba c1 co _c3 ¢4 ndi nde ads ndy
artagtag’ oyt B 057 057 Byter < ot o’ ag’ oyt By B2 B5° Byt e

S (a1—|—b1—|—~~~—|—a4+b4,i,a1,...,a4,bl,...,b4)

Lex (Cl—|—d1+"'—|—C4+d4,i,01,...,C4,d1,...,d4).

Once again using the Maple package “Ore_Algebra” for computing a Grébner basis of the
K[X]-submodule generated by

{
¢

we obtain the set of leading terms of the Grobner basis

N | —

(o — ﬁj)ea} U

M- -

AN,

2 -2
(&jei — 2e; + a; e
1

— o€ + Oéiﬁjej + ﬁiajej - ﬁiﬁjej)

z‘:1,...,4}

{04458617 asfrer, agfser, arfsen, 04%617 ayfses, 04%55617 asBres,
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iz fB5€2, 1 B5€2, 04%62, ayFges, 53647 043555661, 0435562, agfres,

vz fFses, a1 Bse3, afes, agey, 5356575861, ;5 06 57€1, oz%fiaﬂﬁez,

04%5563, agfireq, azfeeq, arfseq, 043647 553565758627 054215556ﬁ7@27
0435556637 0655564, §B6ﬁ7ﬁ8€37 04421555657637 04%555664, B§B6ﬁ7e4}

Applying Proposition V.6 we compute the difference dimension polynomial associated with

a symmetric difference scheme for (7) and (6) to be
¢(r) = 16r° — 8r® 4 24r + 8.

Comparing difference dimension polynomials computed for the forward and symmetric dif-
ference schemes we see that in this case, as in the previous example, the forward scheme is

more preferable from the point of view of strength.

CONCLUSION

We have developed a method for evaluation of the strength of systems of partial differen-
tial and difference equations based on the computation of the corresponding differential and
difference dimension polynomials. We have also presented algorithms for such computation
that extend the Grobner basis technique to the cases of differential, difference, and inversive
difference modules. Finally, we have determined the strength of some fundamental systems
of PDEs of mathematical physics and the strength of the corresponding systems of partial

difference equations obtained by the forward and symmetric difference schemes.
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