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Interpolation of Harmonic Functions Based on

Radon Projections

Irina Georgieva∗ Clemens Hofreither†

Abstract

We consider an algebraic method for reconstruction of a harmonic

function in the unit disk via a �nite number of values of its Radon pro-

jections. The approach is to seek a harmonic polynomial which matches

given values of Radon projections along some chords of the unit circle. We

prove an analogue of the famous Marr's formula for computing the Radon

projection of the basis orthogonal polynomials in our setting of harmonic

polynomials. Using this result, we show unique solvability for a family

of schemes where all chords are chosen at equal distance to the origin.

For the special case of chords forming a regular convex polygon, we prove

error estimates on the unit circle and in the unit disk. We present an

e�cient reconstruction algorithm which is robust with respect to noise in

the input data and provide numerical examples.

1 Introduction

Most methods for approximate reconstruction of a univariate function are based
on sampling its values at a �nite number of points, and the tools used are usually
those of interpolation. This is a natural approach to approximation of univariate
functions since a table of function values is a standard type of information that
comes as output in practical problems and processes described by functions in
one variable. Moreover, the Lagrange interpolation problem by polynomials is
always solvable.

In the multivariate case, such an approach encounters serious di�culties. For
example, the pointwise interpolation by multivariate polynomials is no longer
possible for every choice of the nodes. Furthermore, there are many practical
problems in which the information about the relevant function comes as a set
of functionals which are not point evaluations. In many situations, a table of
mean values of a function of d variables on (d− 1)−dimensional hyperplanes is
considered to be the most natural type of data for multivariate functions. For
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instance, in tomography and electronic microscopy, often the data consist of
values of linear integrals over line segments.

The work of the Austrian mathematician Johann Radon in the early twenti-
eth century, in particular his results on the Radon transform later to be named
after him [23], laid the theoretical foundation for tomography methods for shape
reconstruction of objects with non-homogeneous density. These methods have
many important practical applications, for example in medicine, radiology and
geology.

From the mathematical point of view, the problem is to recover a multivari-
ate function using information given as line integrals of the unknown function.
Great e�orts have been made to develop fast and e�ective high-accuracy al-
gorithms for solving this problem. These methods are in general of two types:
integral and algebraic. The integral methods are based on the Radon transform.
Here all considerations are in continuous form and they come to discretization
immediately before the implementation of the recovery algorithm. In the alge-
braic methods, discretization of the problem is carried out immediately, and the
problem is then reduced to solving a linear or nonlinear system of equations. The
approach described in the present paper falls into the latter category. More pre-
cisely, reconstruction of the unknown function is formulated as an interpolation
problem where an approximate function is sought in an appropriate polynomial
space such that it matches the given Radon projections.

An idea suggested by B. Bojanov is to incorporate additional knowledge
about the function to be recovered into approximation methods. It is to be
expected that this can improve the accuracy of the approximation while reduc-
ing the amount of input data required as well as the computational e�ort. In
applications, such problem-speci�c knowledge is often provided in the form of a
partial di�erential equation which the unknown satis�es. For the time being, we
concern ourselves with the simple case where the unknown is harmonic, i.e., sat-
is�es the Laplace equation ∆u = uxx +uyy = 0. This elliptic partial di�erential
equation is important both as a model problem as well as in actual applications,
like heat transport, di�usion problems or Stokes �ow of incompressible �uids.

The present work expands on the earlier article [9]. Therein, �rst results on
interpolation of harmonic functions based on Radon projections along the sides
of regular polygons were presented. Tools from symbolic computation were used
intensively in the proofs.

Here we treat a more general setting. First of all, for a formula which gives
integrals of certain harmonic basis polynomials and which was proved symbol-
ically in [9] for a particular choice of parameters, we now give a general and
analytic proof for arbitrary parameters. This result may be viewed as a har-
monic analogue to the classic Marr's formula [20]. This allows us to generalize
the existence and uniqueness theorem from [9] to a larger class of chord schemes.

For a special case, we perform a more detailed analysis of the resulting
method. We obtain error estimates for the interpolation scheme on the unit
circle and in the unit disk in the L2- and maximum norms. Furthermore, we
are able to show that the condition number of the matrix associated with the
interpolation problem is uniformly bounded by a small constant independent of
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the degree of the interpolating polynomial n, indicating that the interpolation
process is robust with respect to noise.

2 Preliminaries and related work

Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we
denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
from the origin (see Figure 1).

0

I t

t

1

Figure 1: The chord I(θ, t) of the unit circle.

The chord I(θ, t) is parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2). (1)

De�nition 1. Let f(x, y) be a real-valued bivariate function in the unit disk D.
The Radon projection Rθ(f ; t) of f in direction θ is de�ned by the line integral

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √1−t2

−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Johann Radon [23] showed in 1917 that a di�erentiable function f is uniquely
determined by the values of its Radon transform,

f 7→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.

Further work in this area was done by John [18].
In the following we formulate the problem of recovery of a polynomial from

a �nite number of values of its Radon transform. Essentially, this may be
viewed as a bivariate interpolation problem where the traditional point values
are replaced by the means over chords of the unit circle.

Let Π2
n =

{∑
i+j≤n aijx

iyj : aij ∈ R
}

denote the space of real bivariate

polynomials of total degree at most n. This space has dimension
(
n+2
2

)
. Assume

that a set I =
{
Im = I(θm, tm) : m = 1, . . . ,

(
n+2
2

)}
of chords of the unit circle

is given. Furthermore, to each chord I ∈ I a given value γI ∈ R is associated.
Then, the aim is to �nd a polynomial p ∈ Π2

n such that∫
I

p(x) dx = γI ∀I ∈ I. (2)
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If this interpolation problem has a unique solution for every choice of values
{γI}, then the scheme I of chords is called regular. The question of how to
construct such regular schemes has been extensively studied. The �rst general
result was given by Marr [20] in 1974, who proved that the set of chords con-
necting n+ 2 equally spaced points on the unit circle is regular for Π2

n. A more
general result for Rd and general convex domains was published by Hakopian
[15] in 1982. Applied to the unit disk in R2, it states that even the chords
connecting any n+ 2 distinct points on the unit circle form a regular scheme for
Π2
n.
Bojanov and Georgieva [2] constructed another family of schemes where(

n+2
2

)
chords are partitioned into n+1 subsets such that the k-th subset consists

of k parallel chords. They showed that these schemes yield a unique interpo-
lation polynomial in Π2

n provided that the distances t satisfy some additional
conditions involving the Chebyshev polynomials of the second kind. Partic-
ular choices of suitable distances t were later given by Georgieva and Ismail
[11] in terms of zeroes of Chebyshev polynomials of the second kind, as well as
Georgieva and Uluchev [12] in terms of zeroes of Jacobi polynomials.

Bojanov and Xu [5] proposed a regular scheme consisting of
(
n+2
2

)
chords

partitioned into 2b(n + 1)/2c + 1 equally spaced directions, such that in every
direction there are bn/2c+ 1 parallel chords. The distances t of the chords are
zeroes of Chebyshev polynomials of the second kind.

A mixed regular scheme which incorporates Radon projections and point
evaluations on the unit circle was given by Georgieva, Hofreither, and Uluchev
[10].

Many other mathematicians have worked on problems with applications in
the mathematical foundations of computer tomography, among them [17, 6,
7, 8, 16, 19, 21]. Recovery of polynomials in two variables based on Radon
projections is also considered in [1, 22, 3, 4, 13, 14].

3 Interpolation by harmonic polynomials

In this section, we state an interpolation problem for a harmonic function in
the unit disk given values of its Radon projections over a set of chords and
derive existence and uniqueness conditions for the corresponding interpolating
harmonic polynomial.

If we know a priori that the function to be interpolated is harmonic, it is
natural to work in the space

Hn =
{
p ∈ Π2

n : ∆p = 0
}

of real bivariate harmonic polynomials of total degree at most n, which has
dimension 2n+ 1. Analogously to (2), we prescribe chords

I = {I(θm, tm) : m = 1, . . . , 2n+ 1}

of the unit circle and associated given values {γI}, and wish to �nd a harmonic
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polynomial p ∈ Hn such that∫
I

p(x) dx = γI ∀I ∈ I. (3)

Again we call I regular if the interpolation problem (3) has a unique solution
for all given values {γI}. In the following, we construct one family of such regular
schemes.

We use the basis of the harmonic polynomials

φ0(x, y) = 1, φk,1(x, y) = Re(x+ iy)k, φk,2(x, y) = Im(x+ iy)k.

In polar coordinates, they have the representation

φk,1(r, θ) = rk cos(kθ), φk,2(r, θ) = rk sin(kθ).

Expanding the harmonic polynomial p in this basis,

p = p0φ0 +

n∑
k=1

(pk,1φk,1 + pk,2φk,2),

we obtain a linear system Ap = γ equivalent to (3) with the matrix

A =


∫
I1

1
∫
I1
φ1,1 . . .

∫
I1
φn,1

∫
I1
φn,2∫

I2
1

∫
I2
φ1,1 . . .

∫
I2
φn,1

∫
I1
φn,2

...
...

. . .
...

...∫
I2n+1

1
∫
I2n+1

φ1,1 . . .
∫
I2n+1

φn,1
∫
I2n+1

φn,2

 . (4)

The scheme I is regular if and only if A is regular.

3.1 Analogue of Marr's formula

The following result, which gives a closed formula for the entries of the matrix A,
can be considered a harmonic analogue to Marr's formula [20]. A special case of
this harmonic version was �rst derived using tools from symbolic computation
[9], and we now give an analytic proof in a more general setting.

Theorem 1. The Radon projections of the basis harmonic polynomials are given

by ∫
I(θ,t)

φk,1 dx =
2

k + 1

√
1− t2Uk(t) cos(kθ),∫

I(θ,t)

φk,2 dx =
2

k + 1

√
1− t2Uk(t) sin(kθ),

where k ∈ N, θ ∈ R, t ∈ (−1, 1), and Uk(t) is the k-th Chebyshev polynomial of

second kind.
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Proof. Fix a chord I(θ, t) and let α = arccos t, and hence

sinα =
√

1− cos2 α =
√

1− t2.

Then the chord intersects the unit circle at points with the arguments θ±α. For
computing the integral over the chord I(θ, t), we pass to the complex plane C.
There, the chord I(θ, t) is parameterized by z0 +sz, s ∈ (−1, 1), where z0 = teiθ

and z = ieiθ sinα. Let

γ(s) = z0 + sz = γ̃1(s) + iγ̃2(s) ∈ C, γ̃(s) = (γ̃1(s), γ̃2(s))> ∈ R2.

Note that

|γ′(s)| = |γ̃′1(s) + iγ̃′2(s)| =
√
γ̃′1(s)2 + γ̃′2(s)2 = |γ̃′(s)|.

Then ∫
I(θ,t)

φk,1 dx =

∫ 1

−1
φk,1(γ̃(s)) |γ̃′(s)| ds

=

∫ 1

−1
Re
[
(γ̃1(s) + iγ̃2(s))k

]
|γ′(s)| ds

=

∫ 1

−1
Re
[
γ(s)k

]
|γ′(s)| ds.

All of the integrals are real. However, a complex integral over the interval
(−1, 1) of the real axis is equivalent to a real integral over the same interval,
and therefore we can write∫ 1

−1
Re
[
γ(s)k

]
|γ′(s)| ds = Re

∫ 1

−1
γ(s)k |γ′(s)| ds,

where the right-hand side can now be viewed as a complex integral. Indeed, let
γ(s)k = a(s) + ib(s) with real functions a, b. Then

Re

∫ 1

−1
γ(s)k|γ′(s)| ds = Re

[∫ 1

−1
a(s)|γ′(s)| ds+

∫ 1

−1
ib(s)|γ′(s)| ds

]
=

∫ 1

−1
a(s)|γ′(s)| ds =

∫ 1

−1
Re
[
γ(s)k

]
|γ′(s)| ds.
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Since |γ′(s)| = |z| = sinα, we have

Re

∫ 1

−1
γ(s)k |γ′(s)| ds = sinα Re

∫ 1

−1
eiθk(t+ is sinα)k ds

= sinα Re

[
eiθk

(k + 1)i sinα

[
(cosα+ si sinα)(k+1)

]1
s=−1

]
= Re

[
1

(k + 1)

eiθk

i
(ei(k+1)α − e−i(k+1)α)

]
= Re

[
2

(k + 1)
eiθk sin((k + 1)α)

]
= Re

[
2

(k + 1)
eiθkUk(t)

√
1− t2

]
=

2

k + 1

√
1− t2Uk(t) cos(kθ).

Above we used that, by de�nition, Uk(cosα) = sin((k+1)α)
sinα . The proof for φk,2

is completely analogous.

3.2 Existence and uniqueness

Using Theorem 1, it is easy to see that the matrix A given in (4) has the 2n+ 1
columns1

...
1

 ,


 Uk(t1) cos(kθ1)

...
Uk(t2n+1) cos(kθ2n+1)

 ,

 Uk(t1) sin(kθ1)
...

Uk(t2n+1) sin(kθ2n+1)

 , k = 1, . . . , n

 ,

and thus the interpolation scheme is regular if and only if these column vectors
are linearly independent. For the case of constant distances tm = t, this is easy
to establish and leads to the following result.

Theorem 2 (Existence and uniqueness). The interpolation problem (3) has a
unique solution for the choice I = {I(θm, tm) : m = 1, . . . , 2n+ 1} with

0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π,

while the distances tm = t ∈ (−1, 1) are constant and t is not a zero of any

Chebyshev polynomial of the second kind U1, . . . , Un.

See Figure 2 for some examples of schemes which satisfy the conditions of
the above theorem.
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Figure 2: Some admissible schemes according to Theorem 2.

In the following proof and later on, we use the notations

c(k) := (cos(kθ1), . . . , cos(kθ2n+1))>,

s(k) := (sin(kθ1), . . . , sin(kθ2n+1))>,

Q :=

 . . .
1 c(1) s(1) . . . c(n) s(n)

. . .

 ,

αk :=
2

k + 1

√
1− t2Uk(t),

F := diag(α0, α1, α1, . . . , αn, αn).

Proof. Under the assumption of constant tm = t and using the harmonic basis
introduced above, Theorem 1 yields the representation A = QF of the system
matrix corresponding to (3). Then, using the column-wise linearity of the de-
terminant, we have detA = α0

∏n
k=1 α

2
k detQ. Under the assumptions of the

theorem, all the αk are nonzero.
The functions {1, cos(x), sin(x), . . . , cos(nx), sin(nx)} form a basis of the

trigonometric polynomials of degree at most n. Indeed, the matrix Q is the
same as for the one-dimensional problem of interpolation with a trigonometric
polynomial of degree n in [0, 2π] at the points {θ1, . . . , θ2n+1}. It is well-known
that Q is invertible if and only if the angles θm are pairwise distinct ([25]), which
proves the theorem.

4 Inversion of the linear system for equispaced

angles

For equally spaced angles, the columns of Q are orthogonal. We exploit this
fact to derive a simple representation of the inverse of the system matrix A.

Theorem 3. Assume chords with equally spaced angles θm = 2πm
2n+1 and �xed

distance tm = t ∈ (0, 1), m = 1, . . . , 2n + 1, such that Uk(t) 6= 0 for all k ∈
{0, . . . , n}. Then the inverse of A is given by

A−1 = EQ>,
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where

E = diag(β0, β1, β1, . . . , βn, βn),

βk =


1

2(2n+1) (
√

1− t2)−1 = 1
2n+1α

−1
k , k = 0,

k+1
2n+1 (

√
1− t2Uk(t))−1 = 2

2n+1α
−1
k , k ≥ 1.

The proof follows easily from the following lemma.

Lemma 4. For equally spaced angles θm, it holds

• c(k1) ⊥ c(k2) and s(k1) ⊥ s(k2) for k1, k2 ∈ {0, . . . , n} and k1 6= k2,

• c(k1) ⊥ s(k2) for k1, k2 ∈ N0,

• |c(0)| =
√

2n+ 1, |s(0)| = 0, |c(k)| = |s(k)| =
√

2n+1
2 for k ≥ 1,

• c(k) = c(k+l(2n+1)) and s(k) = s(k+l(2n+1)) for k ∈ {0, . . . , n}, l ∈ N0,

• c(k) = c((2n+ 1)− k) and s(k) = −s((2n+ 1)− k) for k ∈ {0, . . . , n}.

Proof. The statements are easily proved by trigonometric identities or passing
to the complex plane.

Proof of Theorem 3. Since A = QF , we need to show EQ>QF = I. The �rst
three statements of the above lemma show that Q>Q is the diagonal matrix

Q>Q = diag

{
2n+ 1,

2n+ 1

2
, . . . ,

2n+ 1

2

}
,

and the statement follows by de�nition of αk and βk.

Remark. Note that the action of the matrix Q> is essentially a discrete Fourier
transform of the given data. This suggests an e�cient algorithm for the solution
of the linear system: using a suitable Fast Fourier Transform (FFT), we can
compute the coe�cients of the interpolating polynomial in O(n log n) time.

5 Analysis

For the numerical analysis that follows, we make the stronger assumption that
the chords form a regular convex (2n+1)-sided polygon inscribed in the unit cir-
cle; cf. Figure 2, �rst picture. We thus consider the sequence I(n) = {I(θ

(n)
m , t(n)) :

m = 1, . . . , 2n+ 1} of schemes with the angles and the distances, respectively,

θ(n)m =
2πm

2n+ 1
, t(n) = cos

π

2n+ 1
, for m = 1, . . . , 2n+ 1. (5)
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Furthermore, assume that the given data {γI} are the Radon projections of
some unknown harmonic function u ∈ C2(D). By Theorem 2, the resulting
interpolation problem∫

I

p(n)(x) dx =

∫
I

u(x) dx ∀I ∈ I(n).

is uniquely solvable for every n ∈ N. Thus we obtain a sequence of interpolating
harmonic polynomials p(n) ∈ Hn. For ease of notation, we omit the superscript
(n) in most cases in the following but keep in mind the dependence on n.

5.1 Error estimate

In this section, we give error estimates for the interpolating polynomial p(n) in
terms of the smoothness of the boundary data f = u|∂D. Being de�ned on the
unit circle, f can be written as a periodic function of the angle θ. We will also
rely on its Fourier series, i.e., let (fk)k∈Z be the Fourier coe�cients of f such
that

f(θ) = f0 +

∞∑
k=1

(fk cos(kθ) + f−k sin(kθ)). (6)

For simplicity, we will assume that the Fourier series converges uniformly to f .
In this case, the series of functions of (r, θ)

f0 +

∞∑
k=1

(fkr
k cos(kθ) + f−kr

k sin(kθ))

converges uniformly on the unit disk, and its limit is a harmonic function,
namely, u; cf. [24]. Introducing integer indices k ∈ Z for the basis polynomials,

φk :=

{
φk,1, if k ≥ 0

φ−k,2, if k < 0,

this allows us to write the harmonic function u as the uniformly convergent
series

u =
∑
k∈Z

fkφk.

The error estimates are based on the following idea: due to linearity of the
interpolation operator and the existence of a unique solution shown in Theo-
rem 2, it is clear that the low frequency components, fk : |k| ≤ n, are reproduced
exactly in the interpolating polynomial p(n). The question is therefore how the
high frequency components, fk : |k| > n, in�uence the interpolating polynomial.
It turns out that every high frequency component fk is mirrored to a low fre-
quency contribution δkfk′ with |k′| < n, where δk is a coe�cient which we can
bound uniformly. This e�ect is very similar to the aliasing phenomenon known
from sampling sinusoidals at equal intervals. By imposing a decay condition
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on the high frequency components, we can thus obtain a bound on the total
interpolation error.

Due to the above considerations, smoothness of f will be quanti�ed by the
decay of its Fourier coe�cients fk in the following. To be precise, we will require
that the Fourier coe�cients of f decay like |fk| = O(|k|−s) with some positive
parameter s. Translated into a Sobolev space setting, this assumption means
that f lies in the Hilbert space H`(∂D) with Sobolev parameter ` < 2s− 1.

Before we proceed with the error estimate, we need a small technical lemma.

Lemma 5. Let

a(k, n) :=
k + 1

Uk(cos π
2n+1 )

.

For n ∈ N, we have

1 = a(0, n) ≤ a(1, n) ≤ . . . ≤ a(n− 1, n) ≤ a(n, n) ≤ 2.

Proof. By the de�nition of Un(t), we have that

a(k, n) =
(k + 1) sin π

2n+1

sin
[
(k + 1) π

2n+1

] .
All arguments to sin are in the range (0, π), and thus the sines are all positive.
In particular, Uk(cos π

2n+1 ) > 0, and we use the well-known fact |Uk(t)| ≤ k+ 1
to conclude that 1 ≤ a(k, n). Rewriting further, we get

a(k, n) =
(k + 1) π

2n+1
2n+1
π sin π

2n+1

sin
[
(k + 1) π

2n+1

] =

sin(x(n))
x(n)

sin(y(k,n))
y(k,n)

(7)

with
x(n) =

π

2n+ 1
, y(k, n) = (k + 1)

π

2n+ 1
.

We have 0 < y(k, n) < π, and the function y 7→ sin y
y is monotonically decreasing

and positive in this interval. Since clearly y(k, n) < y(k+ 1, n), this means that
sin(y(k,n))
y(k,n) is monotonically decreasing in k, and thus a(k, n) is monotonically

increasing in k.
Since x(n)→ 0 as n→∞, then sin(x(n))

x(n) → 1. On the other hand, y(n, n)→
π
2 , so

sin(y(n,n))
y(n,n) → 2

π . Using (7), this shows that a(n, n)
n→∞−−−−→ π

2 .
In order to show monotonicity of a(n, n), we rewrite again, yielding

a(n, n) =
(n+ 1) sin π

2n+1

sin(n+ 1) π
2n+1

=
(n+ 1)2 sin π

2(2n+1) cos π
2(2n+1)

sin(n+ 1) π
2n+1

.

Since sin(n+ 1) π
2n+1 = sin(2n+ 2) π

4n+2 = sin(π2 + π
4n+2 ) = cos π

4n+2 , we get

a(n, n) = 2(n+ 1) sin
π

4n+ 2
.
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We want to show that a(n, n) = (2n + 2) sin π
4n+2 decreases when n increases.

Set y := π
4n+2 . Then a(n, n) = ( π2y + 1) sin y = f(y). As n → ∞, y decreases

monotonically to 0, so in order to prove that a(n, n) is decreasing, we have to
prove that f(y) is increasing. For this purpose we calculate the derivative

f ′(y) =
1

2y2
[−π sin y + (πy + 2y2) cos y].

Then we put g(y) = −π sin y + (πy + 2y2) cos y. We see that g(0) = 0 and
g′(y) = 4y cos y + (πy + 2y2) sin y. Since 0 < y < π

2 , then g′(y) > 0, g(y) >

g(0) = 0 and hence f ′(y) > 0. It follows that a(n, n)
n→∞
↘ π

2 .
Finally it is easily computed that a(1, 1) = 2, which, together with the

monotonicity, proves the upper bound for a(n, n).

Lemma 6. Assume that f = u|∂D has a uniformly convergent Fourier series

(6) and its Fourier coe�cients (fk)k∈Z decay like |fk| ≤ M |k|−s with M > 0,
s > 1. Let

p(n) = p
(n)
0 φ0 +

n∑
k=1

(p
(n)
k φk + p

(n)
−kφ−k) ∈ Hn

be the interpolating polynomial of degree n obtained by our method. Then the

error in the coe�cients of the interpolating polynomial p(n) satis�es

|fk − p(n)k | ≤MCsn
−s ∀|k| ≤ n,

where Cs is a constant which depends only on s.

Proof. In this proof, we use integer indices: for k ∈ Z, we denote

h(k) :=

{
c(k), if k ≥ 0

s(−k), if k < 0,

and write

ψk := φk|∂D =

{
cos(|k|θ), if k ≥ 0

sin(|k|θ), if k < 0

for the harmonic basis functions restricted to the unit circle. Under the assump-
tions, we then have

f =
∑
k∈Z

fkψk, u =
∑
k∈Z

fkφk.

Let Φ denote the operator which, for a given function u, computes its Radon
projections along the 2n+ 1 chords Im, i.e.,

Φ : C(D)→ R2n+1,

u 7→

(∫
I1

u, . . . ,

∫
I2n+1

u

)>
.

12



With the help of Theorem 1 for the basis harmonic functions, we get

Φ(φk) =
2

|k|+ 1

√
1− t2U|k|(t)h(k) = α|k|h(k) ∀k ∈ Z. (8)

We keep in mind that pk = p
(n)
k as well as most other terms above depend

on the scheme and thus on n, but omit the superscript for ease of notation.
With the index function

i(k) =


1 if k = 0,

2k, if k > 0,

−2k + 1, if k < 0,

which maps indices of Fourier coe�cients to column numbers of our matrix A,
we have, for k ∈ {−n, . . . , n},

pk = [A−1Φu]i(k) = [A−1Φ
∑
j∈Z

fjφj ]i(k) = [A−1
∑
j∈Z

fj(Φφj)]i(k),

where the sum and the operator Φ may be exchanged because each component
of Φ is just an integral and the sum is uniformly convergent by the assumption
on f . Using (8) and that A−1 is a matrix and thus a bounded operator, we
obtain

pk = [A−1
∑
j∈Z

fjα|j|h(j)]i(k) =
∑
j∈Z

fjα|j|[A
−1h(j)]i(k)

=
∑
j∈N0

fjαj [A
−1c(j)]i(k) +

∑
j∈N

f−jαj [A
−1s(j)]i(k).

For k ∈ {0, . . . , n}, the i(k)-th row of Q> is c(k), and thus we have from
Theorem 3 and Lemma 4

[A−1c(j)]i(k) = [EQ>c(j)]i(k) =


βk|c(k)|2, if j = N0(2n+ 1) + k,

βk|c(k)|2, if j = N(2n+ 1)− k,
0, otherwise.

Similarly, for k ∈ {1, . . . , n}, the i(−k)-th row of Q> is s(k), and hence

[A−1s(j)]i(−k) = [EQ>s(j)]i(−k) =


βk|s(k)|2, if j = N0(2n+ 1) + k,

−βk|s(k)|2, if j = N(2n+ 1)− k,
0, otherwise.

13



Therefore the cosine coe�cients pk, k ∈ {0, . . . , n}, are

pk = αkβk|c(k)|2fk +

∞∑
l=1

(αl(2n+1)+kβk|c(k)|2fl(2n+1)+k)

+

∞∑
l=1

(αl(2n+1)−kβk|c(k)|2fl(2n+1)−k))

= fk +

∞∑
l=1

βk|c(k)|2(αl(2n+1)+kfl(2n+1)+k + αl(2n+1)−kfl(2n+1)−k)

since αkβk|c(k)|2 = 1. For the sine coe�cients p−k, k ∈ {1, . . . , n}, we get
analogously

p−k = f−k +

∞∑
l=1

βk|s(k)|2(αl(2n+1)+kfl(2n+1)+k − αl(2n+1)−kfl(2n+1)−k).

Using Lemma 5 and the fact ‖Uj‖∞ = j + 1, we have

αjβk|c(k)|2 = αjβk|s(k)|2 =
Uj(t)

Uk(t)

k + 1

j + 1
≤ 1 · k + 1

Uk(t)
≤ 2,

and we get, for any k ∈ {−n, . . . , n},

|pk − fk| ≤
∞∑
l=1

2
(
|fl(2n+1)+|k||+ |fl(2n+1)−|k||

)
.

Using the assumption that |fk| ≤M |k|−s, we have

|pk − fk| ≤ 2

∞∑
l=1

(
M(l(2n+ 1) + |k|)−s +M(l(2n+ 1)− |k|)−s

)
= 2M

∞∑
l=1

(l(2n+ 1))
−s

[(
1 +

|k|
l(2n+ 1)

)−s
+

(
1− |k|

l(2n+ 1)

)−s]
(∗)
≤ 2M

(2n+ 1)s

∞∑
l=1

l−s(1 + 2s)

≤ 2M(1 + 2s)

(2n+ 1)s

(
1 +

1

s− 1

)
= M

2(1 + 2s)

2s
s

s− 1

1

(n+ 1
2 )s
≤MCsn

−s

with Cs = 2(1+2s)
2s

s
s−1 . For s ≥ 2, one can estimate Cs ≤ 5.

In the estimate marked with (∗), we used the fact that(
1 +

|k|
l(2n+ 1)

)−s
=

 1

1 + |k|
l(2n+1)

s

≤ 1
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and (
1− |k|

l(2n+ 1)

)−s
=

 1

1− |k|
l(2n+1)

s

≤
(

l(2n+ 1)

l(2n+ 1)− n

)s
≤ 2s,

because l(2n+ 1)− n ≥ n+ 1 > 2n+1
2 .

We can now use this result on the decay of the error in the Fourier coe�cients
in order to derive error estimates in function spaces. First, the following theo-
rem states that the L2-error on the boundary behaves like O(n−(s−1/2)). Indeed,
this is the same order of convergence that the partial sums of the Fourier series
exhibit. Since the latter are the L2-best approximating trigonometric polyno-
mials, our method has optimal convergence on the boundary in a certain sense.
Clearly, for harmonic functions, due to the maximum principle the largest error
is to be expected on the boundary.

Theorem 7. Assume that f = u|∂D has a uniformly convergent Fourier series

(6) and its Fourier coe�cients (fk)k∈Z decay like |fk| ≤ M |k|−s with M > 0,
s > 1. Let p(n) ∈ Hn be the interpolating polynomial of degree n obtained by

our method. Then the approximation error on the unit circle satis�es

‖f − p(n)‖L2(∂D) ≤MCn−(s−1/2)

with a constant C which depends only on s.

Proof. Let f∗n be the best-approximating (in L2) trigonometric polynomial to
f of degree n. Its coe�cients are just the �rst 2n + 1 Fourier coe�cients (fk),
that is, f∗n =

∑
|k|≤n fkφk|∂D. Using the L2(∂D)-orthogonality of (φk|∂D)k, we

see that

‖f − p(n)‖2L2(∂D) = ‖f − f∗n + f∗n − p(n)‖2L2(∂D)

= ‖f − f∗n‖2L2(∂D) + ‖f∗n − p(n)‖2L2(∂D)

= ‖
∑
|k|>n

fkφk‖2L2(∂D) + ‖
∑
|k|≤n

(fk − p(n)k )φk‖2L2(∂D)

=
∑
|k|>n

f2k‖φk‖2L2(∂D) +
∑
|k|≤n

(fk − p(n)k )2‖φk‖2L2(∂D)

≤ π
∑
|k|>n

f2k + 2π
∑
|k|≤n

(fk − p(n)k )2.

Using the assumption for the decay of fk to estimate the �rst term and
Lemma 6 to estimate the second term we have

‖f − p(n)‖2L2(∂D) ≤M
2π
∑
|k|>n

|k|−2s + 2M2C2
sπ

∑
|k|≤n

n−2s

≤ 2πM2

2s− 1
n−(2s−1) + 6πM2C2

sn
−(2s−1) = O(n−(2s−1)),

where we used that
∑
k>n k

−` ≤ 1
(`−1)n`−1 .
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Lemma 8. For any harmonic function u ∈ C2(D) with boundary data f = u|∂D
for which the Fourier series (6) converges uniformly, we have

‖u‖L2(D) ≤ ‖f‖L2(∂D).

Proof. Using the orthogonality of {φk} and {φk|∂D} as well as the facts

‖φk‖2L2(D) =

{
π, k = 0,
π

2|k|+2 , k 6= 0,
‖φk‖2L2(∂D) =

{
2π, k = 0,

π, k 6= 0

which are easy to prove by direct calculations, we have

‖u‖2L2(D) = ‖
∑
k∈Z

fkφk‖2L2(D) = πf20 +
∑

k∈Z\{0}

π

2|k|+ 2
f2k

and
‖u‖2L2(∂D) = 2πf20 + π

∑
k∈Z\{0}

f2k ,

from which the statement follows.

Remark. Under the assumptions of Theorem 7 and using Lemma 8, we imme-
diately obtain an L2 error estimate within the unit disk, namely,

‖u− p(n)‖L2(D) = O(n−(s−1/2)).

Our experiments have however shown that this convergence rate does not seem
to be optimal: in practice, we get an additional half order of n, i.e., O(n−s).
How to prove this observation is still an open question.

Finally we prove an error estimate in the maximum norm. We remark that,
on the unit circle, the order of convergence is the same as that of the partial
sums of the Fourier series of f .

Theorem 9. Under the assumptions of Theorem 7, we have

‖u− p(n)‖∞ = O(n−(s−1)).

Proof. We �rst consider the error maxθ∈(−π,π) |f(θ)−p(n)(θ)| on the unit circle.
If f∗n is the best L2-approximating trigonometric polynomial of degree n to f ,
i.e., the truncated Fourier series f∗n =

∑
|k|≤n fkφk|∂D, then, for any θ ∈ (−π, π),

we have

|f(θ)− p(n)(θ)| ≤ |f(θ)− f∗n(θ)|+ |f∗n(θ)− p(n)(θ)|

≤ Cn−(s−1) +
∑
|k|≤n

|fk − p(n)k | · (max
x∈∂D

|φk(x)|) = O(n−(s−1)),

since the harmonic basis functions φk restricted to the unit circle can be written
cos(kθ) or sin(kθ) and thus are bounded by 1. The statement for the entire disk
D follows by the maximum principle for harmonic functions.
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5.2 Condition number

Theorem 10. If the chords I form a regular convex polygon, the spectral con-

dition number of A(n) = A is bounded by

κ2(A) ≤ 2
√

2

independently of n.

Proof. Recall that A = QF and A−1 = EQ>. We then see that

A>A = FQ>A = FE−1EQ>A = FE−1A−1A = FE−1

is a diagonal matrix, and thus the singular values σk of A are given by

σ2
k =

αk
βk

= α2
k ·

1

αkβk
=

4

(k + 1)2
(1− t2)U2

k (t) ·

{
2n+ 1, k = 0,
2n+1

2 , else.

Lemma 5 shows that the σk are monotonically decreasing. In particular, the
largest and smallest singular values are

σmax = σ0 = 2
√

2n+ 1
√

1− t2,

σmin = σn =
√

2

√
2n+ 1

n+ 1

√
1− t2|Un(t)|.

Using Lemma 5 to estimate, we get

κ2(A) =
σmax

σmin

=
√

2
n+ 1

|Un(t)|
≤ 2
√

2.

6 Numerical Experiments

6.1 Example 1

We approximate the harmonic function

u(x, y) = arctan
y + 2

x+ 2

by a harmonic polynomial p(n) ∈ Hn given 2n+1 values of its Radon projections
taken along the edges of a regular (2n+ 1)-sided convex polygon (Figure 2, �rst
picture), i.e., Im = I(θm, t) as in (5). In Figure 3, we display the graph of the
error function u − p(12). For Figure 4, we vary the degree of the interpolating
polynomial and plot the resulting relative L2-errors. We see that the error
decreases exponentially with n, indicating that the smooth function u is being
approximated with optimal order.
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Figure 3: Example 1: error u− p(12)
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Figure 4: Example 1: errors. x-axis: degree of interpolating polynomial. y-axis:
relative L2-error

6.2 Example 2

We consider the same problem as in Example 1, but with arti�cially added mea-
surement noise. For this, we add to the given values of the Radon projections
random numbers from a normal distribution with zero mean and standard devi-
ation ε. We perform three experiments with error levels ε ∈ {10−3, 10−6, 10−9}.
The resulting relative errors in the reconstructed function are plotted in Fig-
ure 5. We see that the input function is reconstructed to the accuracy limit given
by the noise level. No ampli�cation of the noise or instabilities are observed.
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Figure 5: Example 2: errors with noisy data. Displayed are three experiments
with noise levels of 10−3, 10−6, 10−9. x-axis: degree of interpolating polynomial.
y-axis: relative L2-error

6.3 Example 3

We test our method on a function which is given by the harmonic extension of
the quadratic spline f(θ), −π ≤ θ ≤ π, where θ is the angle on the unit circle.

f(θ) =



− 1
2 (θ + π

2 )(θ + 3
2π), −π ≤ θ < −π2 ,

1
2 (θ − π

2 )(θ + π
2 ), −π2 ≤ θ <

π
2 ,

− 1
2 (θ − π

2 )(θ − 3
2π), π

2 ≤ θ < π.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Note that f(θ) is a periodic C1-function with discontinuous second deriva-
tive. The resulting harmonic function u has the series representation (in polar
coordinates)

u(r, θ) =

∞∑
k=1

(−1)kr2k−1
4 cos ((2k − 1)θ)

(2k − 1)3π
.

For our chords I, we choose the edges of a regular (2n+1)-sided convex polygon
(cf. Figure 2, �rst picture).

Figure 6 shows the relative L2-errors for varying degree n of the interpo-
lating polynomial. The last column of the table displays the ratio between
successive errors. This rate of convergence approaches 8 and thus suggests that
the interpolation error is of the order O(n−3).

19



æ

æ

æ

æ

æ

5 10 20

5 ´ 10-5

1 ´ 10-4

5 ´ 10-4

0.001

0.005

0.010

Figure 6: Example 3: log-log-plot of the relative L2 errors for varying degree n.

n relative L2 error rate
2 2.97973 · 10−2 �
4 6.08456 · 10−3 4.90
8 9.26954 · 10−4 6.56
16 1.23962 · 10−4 7.47
32 1.58587 · 10−5 7.82

Table 1: Example 3: Relative L2 errors for varying degree n.

7 Conclusion and outlook

We have stated an interpolation problem for a harmonic function in the unit
disk given certain values of its Radon projections. We have derived a formula
for the Radon projections of certain harmonic basis polynomials which can be
viewed as a harmonic analogue to the classic Marr's formula [20]. We then used
this result to derive a general existence and uniqueness theorem for a class of
chord schemes with constant distances t.

In the special case when the Radon projections are taken along chords with
equally spaced angles, we are able to give an explicit formula for the inverse of
the matrix corresponding to the interpolation problem and have performed a
more detailed analysis of the resulting method. We have derived error estimates
for the interpolation scheme on the unit circle and in the unit disk in the L2-
and maximum norms. The condition number of the matrix associated with
the interpolation problem has been shown to be uniformly bounded by a small
constant independent of the degree of the interpolating polynomial n.

We are able to compute the coe�cients of the interpolating polynomial in
slightly worse than linear time. Our numerical experiments for recovery of func-
tions which are C∞ in the closed unit disk have shown exponential convergence.
For functions with less smooth boundary data, we have observed convergence
with a rate which corresponds to the analytically derived one.

In future work, we plan to derive cubature formulae for harmonic functions
given Radon projection type of data and investigate error estimates for such
interpolation methods and cubature rules. Some possible modi�cations to the
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problem (3) include the replacement of some of the chord integral conditions
by di�erent interpolation conditions, for instance some point values on the unit
circle; smoothing over a too large data set, |I| > dimHn, via, e.g., least-squares
minimization; the treatment of more general partial di�erential equations; al-
lowing interpolation of functions satisfying an inhomogeneous partial di�erential
equation of the form ∆u = f .
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