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Abstract. In this paper, we present and discuss the results of our nu-
merical studies of preconditioned MinRes methods for solving the opti-
mality systems arising from the multiharmonic finite element approxima-
tions to time-periodic eddy current optimal control problems in differ-
ent settings including different observation and control regions, different
tracking terms as well as box constraints for the Fourier coefficients of
the state and the control. These numerical studies confirm the theoretical
results published by the first author in a recent paper.
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1 Introduction

This work is devoted to the study of efficient solution procedures for the following
time-periodic eddy current optimal control problem: Minimize the functional

J(y,u) =
1

2

∫
Ω1×(0,T )

|y − yd|2dx dt +
α

2

∫
Ω1×(0,T )

| curly − yc|2dx dt

+
λ

2

∫
Ω2×(0,T )

|u|2dx dt,

(1)

subject to the state equations
σ
∂y

∂t
+ curl(ν curly) = u, in Ω × (0, T ),

div(σy) = 0, in Ω × (0, T ),

y × n = 0, on ∂Ω × (0, T ),

y(0) = y(T ), in Ω,

(2)

where Ω is a bounded, simply connected Lipschitz domain with the boundary
∂Ω. The domains Ω1 and Ω2 are non-empty Lipschitz subdomains of Ω, i.e.,



Ω1, Ω2 ⊂ Ω ⊂ R3. The reluctivity ν ∈ L∞(Ω) and the conductivity σ ∈ L∞(Ω)
are supposed to be uniformly positive, i.e.,

0 < νmin ≤ ν(x) ≤ νmax, and 0 < σmin ≤ σ(x) ≤ σmax, x ∈ Ω.

We mention that the electric conductivity σ vanishes in regions consisting of
non-conducting materials. In order to fulfill the assumption made above on the
uniform positivity of σ, one can replace σ(x) by max{ε, σ(x)} with some suitably
chosen positive ε, see, e.g., [10,12] for more details. We here assume that the
reluctivity ν is independent of | curly|, i.e. we only consider linear eddy current
problems. The regularization parameter λ > 0, the weight parameter α ≥ 0, and
yd, yc ∈ L2((0, T ),L2(Ω)) are given data, where yd represents the desired state
and yc represents the desired curl of the state.

The problem setting (1)-(2) has been analyzed in [11,12], wherein, due to the
time-periodic structure, a time-discretization in terms of a truncated Fourier
series, also called multiharmonic approach, is used. In [12], we consider the spe-
cial case of a fully distributed optimal control problem for tracking some yd
in the complete computational domain, i.e. Ω1 = Ω2 = Ω and α = 0 in (1),
whereas [11] is devoted to the various other settings including different obser-
vation and control regions, different tracking terms as well as box constraints
for the Fourier coefficients of the state and the control. Similar optimal control
problems for time-periodic parabolic equations and their numerical treatment by
means of the multiharmonic Finite Element Method (FEM) have recently been
considered in [9] and [8]. Other approaches to time-periodic parabolic optimal
control problems have been discussed in [1]. There are many publications on
optimal control problems with PDE constraints given by initial-boundary value
problems for parabolic equations, see, e.g., [14] for a comprehensive presentation.
There are less publications on optimal control problems where initial-boundary
value problems for eddy current equations are consider as PDE constraints, see,
e.g., [16,15] where one can also find interesting applications. The multiharmonic
approach allows us to switch from the time domain to the frequency domain, and,
therefore, to replace a time-dependent problem by a system of time-independent
problems for the Fourier coefficients. Since we are here interested in studying
robust solvers, this special time-discretization technique justifies the following
assumption: Let us assume, that the desired states yd and yc are multiharmonic,
i.e., yd and yc have the form of a truncated Fourier series:

yd =

N∑
k=0

ycd,k cos(kωt) + ysd,k sin(kωt),

yc =

N∑
k=0

ycc,k cos(kωt) + ysc,k sin(kωt).

(3)

Consequently, the state y and the control u are multiharmonic as well, and,
therefore, have a representation in terms of a truncated Fourier series with the



same number of modes N , i.e.,

y =

N∑
k=0

yck cos(kωt) + ysk sin(kωt),

u =

N∑
k=0

uck cos(kωt) + usk sin(kωt).

(4)

Using the multiharmonic representation of yd, yc, y and u, the minimization
problem (1)-(2) can be state in the frequency domain: Minimize the functional

JN =
1

2

N∑
k=0

[ ∑
j∈{c,s}

[ ∫
Ω1

|yjk − yjd,k|
2dx+ α

∫
Ω1

| curlyjk − yjc,k|
2dx

+ λ
∑

j∈{c,s}

∫
Ω2

|ujk|
2dx

]]
,

(5a)

subject to the state equation

kω σysk + curl(ν curlyck) = uck, in Ω, k = 1, . . . , N,

−kω σyck + curl(ν curlysk) = usk, in Ω, k = 1, . . . , N,

curl(ν curlyc0) = uc0, in Ω,
yck × n = ysk × n = 0, on ∂Ω, k = 1, . . . , N,

y0
k × n = 0, on ∂Ω,

(5b)

completed by the divergence constraints
kω div(σyck) = 0, in Ω, k = 1, . . . , N,

kω div(σysk) = 0, in Ω, k = 1, . . . , N,

div(σyc0) = 0, in Ω.
(5c)

Additionally, we add control constraints associated to the Fourier coefficients of
the control u, i.e.

uck ≤ uck ≤ uck, a.e. in Ω, k = 0, 1, . . . , N,

usk ≤ usk ≤ usk, a.e. in Ω, k = 1, . . . , N,
(5d)

and state constraints associated to the Fourier coefficients of the state y, i.e.

yc
k
≤ yck ≤ yck, a.e. in Ω, k = 0, 1, . . . , N,

ys
k
≤ ysk ≤ ysk, a.e. in Ω, k = 1, . . . , N.

(5e)

This minimization problem is typically solved by deriving the corresponding op-
timality system, which is then discretized in space by means of the FEM. Since
even the simple box constraints (5d)-(5e) give rise to nonlinear optimality sys-
tems, we apply a primal dual active set strategy (semi-smooth Newton) approach
for their solution [5]. The resulting procedure is summarized in Algorithm 1.



Input: number of modes N , initial guesses x(k,0) ∈ Rn(k = 0, . . . , N) .
Output: approximate solution x(k,l) ∈ Rn(k = 0, . . . , N).
for k ← 0 to N do

Determine the active sets Eck,0 and Esk,0;
end
Set l := 0;
while not converged do

for k ← 0 to N do
Compute b

(k,l+1)
E , A(k,l+1)

E ;
Solve A(k,l+1)

E x(k,l+1) = b
(k,l+1)
E ;

Determine the active sets Eck,l+1 and Esk,l+1;
end
Set l := l + 1;

end
Algorithm 1: Primal dual active set strategy.

The specific structure of the Jacobi matrix A(k,l+1)
E depends on the actual

computational setting. In our applications A(k,l+1)
E obtains either the form A1,

cf. (6a), or the form A2, cf. (6b). It is clear, that the efficient and parameter-
robust solution of the (N + 1) linear systems of equations at each semi-smooth
Newton step are essential for the efficiency of the proposed method. For further
details we refer to [11].

2 Parameter-robust and efficient solution procedures

In order to discretize the problems in space, we use the edge (Nédélec) fi-
nite element space ND0

0(Th), that is a conforming finite element subspace of
H0(curl, Ω), and the nodal (Lagrange) finite element space S10 (Th), that is a
conforming finite element subspace of H1

0 (Ω). Let {ϕi}i=1,Nh
and {ψi}i=1,Mh

denote the usual edge basis of ND0
0(Th) and the usual nodal basis of S10 (Th),

respectively. We are now in the position to define the following FEM matrices:

(Kν)ij = (ν curlϕi, curlϕj)0,Ω ,

(Mσ,kω)ij = kω(σϕi,ϕj)0,Ω ,

(M)ij = (ϕi,ϕj)0,Ω ,

(Dσ,kω)ij = kω(σϕi,∇ψj)0,Ω ,

where (·, ·)0,Ω denotes the inner product in L2(Ω). Throughout this paper we
are repeatedly faced with the following two types of system matrices:

A1 =


∗ 0 Kν −Mσ,kω

0 ∗ Mσ,kω Kν

Kν Mσ,kω −λ−1∗ 0
−Mσ,kω Kν 0 −λ−1∗

 (6a)



A2 =



∗ 0 Kν −Mσ,kω 0 0 Dσ,kω
T 0

0 ∗ Mσ,kω Kν 0 0 0 Dσ,kω
T

Kν Mσ,kω −λ−1∗ 0 Dσ,kω
T 0 0 0

−Mσ,kω Kν 0 −λ−1∗ 0 Dσ,kω
T 0 0

0 0 Dσ,kω 0 0 0 0 0
0 0 0 Dσ,kω 0 0 0 0

Dσ,kω 0 0 0 0 0 0 0
0 Dσ,kω 0 0 0 0 0 0


.

(6b)
Therein the placeholder ∗ stands for a symmetric and positive semi-definite ma-
trix, that actually depends on the considered setting, cf. Table 1. The family
of problems, that are related with the matrix type A1 and A2 are referred as
Formulation OC-FEM 1 and Formulation OC-FEM 2, respectively. In fact, the
system matrix A1 and A2 are symmetric and indefinite, and obtain a double- or
three-fold saddle point structure, respectively. Since A1 and A2 are symmetric,
the corresponding systems can be solved by a preconditioned Minimal Resid-
ual (MinRes) method, cf. [13]. Typically, the convergence rate of any iterative
Krylov subspace method applied to the unpreconditioned system deteriorates
with respect to the meshsize h, the parameters k = 0, 1, . . . , N and ω involved
in the spectral time-discretization, and the problem parameters ν, σ and λ, cf.
also Tables 2 and 3. Therefore, preconditioning is an important issue.

The proper choice of parameter-robust and efficient preconditioners has been
addressed by the authors in [11,12]. While for equations with system matrices
of type (6a), we propose to use the preconditioner

C := diag
(√

λF ,
√
λF ,

1√
λ
F ,

1√
λ
F

)
, (7)

with the block F = Kν +Mσ,kω+1/
√
λM , for equations with system matrices

of type (6b), we advise to use the preconditioner

CM = diag
(√

λF ,
√
λF ,

1√
λ
F ,

1√
λ
F ,

1√
λ
SJ ,

1√
λ
SJ ,
√
λSJ ,

√
λSJ

)
, (8)

where SJ = Dσ,kω
TF−1Dσ,kω. In a MinRes setting, the quality of the precon-

ditioners C and CM , used for the system matrices A1 and A2, respectively, is
in general determined by the condition number κ1 or κ2 of the preconditioned
system, defined as follows:

κ1 := ‖C−1A1‖C‖A−11 C‖C and κ2 := ‖C−1M A2‖CM ‖A−12 CM‖CM . (9)

In Table 1, we list the theoretical results, that have been derived for different
settings of (5) in [11,12]. We especially want to point out, that the bounds for
the condition numbers are at least uniform in the space discretization parameter
h as well as the time discretization parameters ω and N . This has the important
consequence, that the proposed preconditioned MinRes method converges within
a few iterations, independent of the discretization parameters that are directly
related to the size of the system matrices.



Table 1. Condition number estimates for different settings. Here (σ) denotes robust-
ness with respect to σ ∈ R+.

parameters domains equations condition number estimate

I α = 0 Ω1 = Ω2 (5a)-(5b) κ1 ≤
√
3 6= c(h, ω,N, σ, ν, λ)

II α = 0 Ω1 = Ω2 (5a)-(5c) κ2 ≤
√
3(1 +

√
5) 6= c(h, ω,N, σ, ν, λ)

III α =∞ Ω1 = Ω2 (5a)-(5c) κ2 ≤ c 6= c(h, ω,N, (σ))
IV α = 0 Ω1 6= Ω2 (5a)-(5c) κ2 ≤ c 6= c(h, ω,N, (σ), Ω1, Ω2)
V α = 0 Ω1 = Ω2 (5a)-(5d) κ2 ≤ c 6= c(h, ω,N, (σ), index sets)
VI α = 0 Ω1 = Ω2 (5a)-(5b) + (5e) κ1 ≤ c 6= c(h, ω,N, σ, ν, λ, index sets)

3 Numerical validation

The main aim of this paper is to verify the theoretical proven convergence rates
by numerical experiments. We consider an academic test problem of the form
(1)-(2) or rather (5) in the unit cube Ω = (0, 1)3, and report on various numeri-
cal test for various computational settings and varying parameters. Since we are
here only interested in the study of the robustness of the solver, it is obviously
sufficient to consider the solution of the system corresponding to the block of
the mode k = 1. The numerical results presented in this section were attained
using ParMax3. We demonstrate the robustness of the block-diagonal precondi-
tioners with respect to the involved parameters. Therefore, for the solution of
the preconditioning equations arising from the diagonal blocks, we use the sparse
direct solver UMFPACK4 that is very efficient for several thousand unknowns
in the case of three dimensional problems [2,3,4]. For numerical tests, where the
diagonal blocks are realized by an auxiliary space preconditioner [6,7], we refer
the reader to [10].

3.1 Test case I

Tables 2-5 provide the number of MinRes iterations needed for reducing the
initial residual by a factor of 10−8. These experiments demonstrate the indepen-
dence of the MinRes convergence rate of the parameters ω, σ, λ and the mesh
size h since the number of iterations is bounded by 28 for all computed constel-
lations. We mention that varying ω also covers the variation of kω in terms of
k. Furthermore, in Table 2 and Table 3 we also report the number of unprecon-
ditioned MinRes iterations, that are necessary for reducing the initial residual
by a factor of 10−8. The large number of iterations in the unpreconditioned case
underline the importance of appropriate preconditioning.

3 http://www.numa.uni-linz.ac.at/P19255/software.shtml
4 http://www.cise.ufl.edu/research/sparse/umfpack/



Table 2. Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 2416, ν = σ = 1), [·] number of MinRes iterations without
preconditioner.

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 7 7 7 7 7 7 7 7 7 6 4
[587] [587] [586] [587] [587] [587] [587] [591] [485] [263] [116]

10−6 21 21 21 21 21 21 20 12 6 4 4
[373] [373] [373] [373] [373] [373] [373] [263] [116] [114] [114]

10−2 20 20 20 20 20 20 20 12 6 4 4
[1134] [1134] [1134] [1136] [1135] [1134] [227] [114] [114] [114] [114]

1 10 10 10 10 10 14 20 12 6 4 4
[2349] [2351] [2349] [2350] [2350] [2274] [222] [114] [114] [114] [114]

102 6 6 6 6 8 10 20 12 6 4 4
[2688] [2681] [2696] [2667] [3291] [2494] [224] [114] [114] [114] [114]

106 4 4 4 6 6 10 20 12 6 4 4
[1152] [1159] [3434] [4697] [4867] [2493] [222] [114] [114] [114] [114]

1010 2 4 4 4 4 10 20 12 6 4 4
[1157] [1163] [4937] [5881] [4791] [2501] [224] [114] [114] [114] [114]

Table 3. Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 16736, ν = σ = 1), [·] number of MinRes iterations without
preconditioner. [-] indicates that MinRes did not converge within 10000 iterations.

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9 9 9 9 9 9 9 10 6 4 4
[708] [708] [708] [708] [708] [708] [708] [711] [578] [308] [134]

10−6 21 21 21 21 21 21 20 18 6 4 4
[825] [824] [825] [825] [825] [825] [824] [307] [134] [132] [132]

10−2 18 18 18 18 18 20 22 20 6 4 4
[6698] [6669] [6696] [6698] [6690] [6676] [1095] [132] [132] [132] [132]

1 10 10 10 10 10 14 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

102 6 6 6 6 8 10 22 20 6 4 4
[-] [-] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

106 4 4 4 6 6 10 22 20 6 4 4
[7365] [7547] [-] [-] [-] [-] [1094] [132] [132] [132] [132]

1010 2 4 4 4 4 10 22 20 6 4 4
[7381] [1545] [-] [-] [-] [-] [1094] [132] [132] [132] [132]



Table 4. Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 124096, ν = σ = 1).

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 13 13 13 13 13 13 13 13 8 4 4
10−8 21 21 21 21 21 21 21 17 8 4 4
10−6 21 21 21 21 21 21 21 20 8 4 4
10−4 20 20 20 20 20 20 28 22 8 4 4
10−2 16 16 16 16 16 18 22 22 8 4 4
1 10 10 10 10 10 12 20 22 8 4 4
102 6 6 6 6 8 10 20 22 8 4 4
104 4 4 4 6 6 10 20 22 8 4 4
106 4 4 4 4 6 10 20 22 8 4 4
108 2 4 4 4 6 10 20 22 8 4 4
1010 3 4 4 4 4 10 20 22 8 4 4

Table 5. Formulation OC-FEM 1 for test case I. Number of MinRes iterations for
different values of ν and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 124096, ω = σ = 1).

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 2 2 3 3 5 13 21 16 6 4 3
10−8 2 2 3 4 7 21 20 10 4 4 3
10−6 2 3 3 5 13 21 16 6 4 4 4
10−4 2 3 4 7 21 20 10 6 4 4 4
10−2 3 4 6 13 21 18 8 4 4 6 6
1 4 4 8 17 28 12 6 4 6 6 9
102 4 4 8 20 22 10 6 4 6 6 8
104 4 4 8 22 20 10 6 4 4 4 8
106 4 4 8 22 20 10 4 4 4 4 8
108 4 4 8 22 20 10 4 4 4 4 8
1010 4 4 8 22 20 10 4 2 4 4 8



3.2 Test case II

Table 6 and Table 7 provide the number of MinRes iterations needed for re-
ducing the initial residual by a factor 10−8. These experiments demonstrate the
independence of the MinRes convergence rate of the parameters ω, σ, λ and the
mesh size h since the number of iterations is bounded by 88 for all computed
constellations.

3.3 Test case III

Numerical results for the observation of the magnetic flux density are reported
in Table 8-11. The robustness with respect to the space and time discretization
parameters h and ω is demonstrated in Table 8. Table 9 and Table 10 describe
the non-robust behavior with respect to the parameters λ and ν. In Table 11
we observe that for large mesh sizes, good iteration numbers are observed even
for small λ. Nevertheless, for fixed λ, the iteration numbers are growing with
respect to the involved degrees of freedom.

The next experiment demonstrates, that robustness with respect to the time
discretization parameter ω cannot be achieved by using the preconditioner C in
Formulation OC-FEM 1. In Table 12 the number of MinRes iteration needed
for reducing the initial residual by a factor of 10−8 are tabled. In Table 13, the
same experiment as in Table 9 is performed, but using Formulation OC-FEM 1
instead of Formulation OC-FEM 2. Indeed, comparing Table 8 with Table 12 and
Table 9 with Table 13 clearly shows, that it is essential to work with Formulation
OC-FEM 2. Beside the robustness with respect to the frequency ω, that is related
to the time discretization parameters, we additionally observe better iteration
numbers with respect to the regularization parameter λ in the interesting region
0 < λ < 1.

3.4 Test case IV

In this subsection we consider a numerical example with different observation
and control domains Ω1 and Ω2, i.e., Ω1 = Ω = (0, 1)3 and Ω2 = (0.25, 0.75)3.
Let us mention that we have to ensure, that Ω1 and Ω2 are resolved by the mesh.
The corresponding numerical results are documented in Table 14-18. Robustness
with respect to the space and time discretization parameters h and ω is demon-
strated in Table 14. Table 15 describes the non-robust behavior with respect
to the parameters λ and ν. Table 16 in combination with Table 18 indicates,
that, for the Formulation OC-FEM 1 in combination with the preconditioner
C, robustness with respect to the frequency ω, that is related to the time dis-
cretization parameters, cannot be obtained. Here, we want to mention, that the
good iteration numbers observed in Table 16 are caused by the special choice of
λ = 1.



Table 6. Formulation OC-FEM 2 for test case II. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 19652, ν = σ = 1).

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 21 19 19 17 17 17 17 17 12 8 10
10−6 33 33 33 33 33 33 29 33 10 8 8
10−2 22 22 22 22 26 31 34 32 14 12 10
1 12 13 14 14 14 14 24 22 10 8 8
102 11 11 13 13 13 18 34 32 14 12 10
106 13 13 13 17 21 28 56 50 22 14 14
1010 31 34 34 23 33 42 80 78 30 20 16

Table 7. Formulation OC-FEM 2 for test case II. Number of MinRes iterations for
different values of ω and λ using the EXACT version of the preconditioner with UMF-
PACK for F (DOF = 143748, ν = σ = 1).

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 27 27 25 25 25 25 25 25 16 8 10
10−6 32 32 32 32 32 32 33 35 14 8 8
10−2 20 20 20 20 23 29 35 34 16 12 10
1 12 12 14 14 14 14 24 26 12 8 8
102 11 11 13 13 13 18 34 34 16 12 10
106 13 13 15 17 21 30 58 60 24 16 14
1010 46 61 65 23 33 42 88 88 38 24 16

Table 8. Observation of the magnetic flux densityB in Formulation OC-FEM 2 for test
case III. Number of MinRes iterations for different values of ω and various DOF using
the EXACT version of the preconditioner with UMFPACK for F (ν = σ = λ = 1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 13 13 14 14 14 16 23 12 9 8 7
2916 11 12 13 13 13 15 29 16 10 8 8
19652 11 11 12 12 12 14 30 21 11 8 8
143748 11 11 12 12 12 14 28 27 13 8 8



Table 9. Observation of the magnetic flux densityB in Formulation OC-FEM 2 for test
case III. Number of MinRes iterations for different values of ν and λ using the EXACT
version of the preconditioner with UMFPACK for F (DOF = 19652, σ = ω = 1). [-]
indicates that MinRes did not converge within 10000 iterations.

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 174 175 175 176 175 213 290 68 14 10 8
10−6 146 146 146 146 177 215 58 12 8 6 8
10−2 272 272 272 289 306 55 13 10 9 10 13
1 290 290 290 292 240 14 8 6 8 10 12
102 475 474 479 448 83 18 12 10 14 14 26
106 193 193 195 179 55 28 18 24 24 26 360
1010 36 38 39 77 84 42 26 36 50 264 [-]

Table 10. Observation of the magnetic flux density B in Formulation OC-FEM 2
for test case III. Number of MinRes iterations for different values of ν and λ using
the EXACT version of the preconditioner with UMFPACK for F (DOF = 143748,
σ = ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 325 324 326 326 327 411 505 65 14 10 8
10−6 289 289 289 289 359 392 53 12 10 6 8
10−2 543 543 543 561 523 52 13 10 8 11 15
1 543 544 541 564 325 14 8 6 8 10 14
102 948 949 941 861 79 18 12 10 14 14 36
106 688 688 680 377 55 30 18 22 26 40 [-]
1010 56 56 55 91 88 42 26 38 54 [-] [-]

Table 11. Observation of the magnetic flux density B in Formulation OC-FEM 2 for
test case III. Number of MinRes iterations for different values of λ and various DOF
using the EXACT version of the preconditioner with UMFPACK for F (ν = σ = ω =
1).

DOF λ

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

500 36 36 37 39 40 16 19 26 30 36 44
2916 115 113 121 121 55 15 18 24 28 38 44
19652 213 214 215 195 55 14 18 24 28 36 42
143748 411 402 392 265 52 14 18 24 30 36 42



Table 12. Observation of the magnetic flux density B in Formulation OC-FEM 1 for
test case III. Number of MinRes iterations for different values of ω and various DOF
using the EXACT version of the preconditioner with UMFPACK for F (ν = σ = λ =
1). [-] indicates that MinRes did not converge within 10000 iterations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

392 4133 [-] 46 20 16 15 21 9 5 4 3
2416 [-] [-] 64 29 15 13 27 12 6 4 4
16736 [-] [-] 102 28 15 13 26 18 7 4 4
124096 [-] [-] 28 13 12 26 24 9 5 4 4

Table 13. Observation of the magnetic flux density B in Formulation OC-FEM 1
for test case III. Number of MinRes iterations for different values of ν and λ using
the EXACT version of the preconditioner with UMFPACK for F (DOF = 16736,
σ = ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 739 901 1073 1140 1462 1153 1548 182 32 19 [-]
10−6 357 361 357 385 478 607 96 17 10 9 18
10−2 234 234 234 253 279 50 9 6 7 6 9
1 260 260 260 259 214 13 7 5 6 6 8
102 462 462 469 440 76 11 6 4 6 6 7
106 79 79 79 73 21 10 4 4 4 4 6
1010 10 10 9 19 22 10 4 3 4 4 6

Table 14. Different control and observation domains in Formulation OC-FEM 2 for
test case IV. Number of MinRes iterations for different values of ω and various DOF
using the EXACT version of the preconditioner with UMFPACK for F (ν = σ = λ =
1).

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

2916 19 19 20 21 23 30 30 22 12 8 8
19652 19 19 20 21 24 30 32 26 12 8 8
143748 19 19 19 21 23 29 32 28 14 10 8



Table 15. Different control and observation domains in Formulation OC-FEM 2 for
test case IV. Number of MinRes iterations for different values of ν and λ using the
EXACT version of the preconditioner with UMFPACK for F (DOF = 19652, σ =
ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 1038 1006 661 3421 [-] [-] [-] 946 49 28 9
10−6 342 344 363 843 6843 7142 619 256 26 9 8
10−2 188 206 209 313 607 204 114 82 79 80 106
1 40 40 41 48 52 30 26 26 26 24 26
102 41 41 42 64 70 40 26 22 22 20 28
106 24 24 30 68 76 38 24 16 26 42 414
1010 22 22 34 88 148 46 44 36 68 276 [-]

Table 16. Different control and observation domains in Formulation OC-FEM 1 for
test case IV. Number of MinRes iterations for different values of ω and various DOF
using the EXACT version of the preconditioner with UMFPACK for F (ν = σ = λ =
1). [-] indicates that MinRes did not converge within 10000 iterations.

DOF ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

2416 34 34 67 61 52 30 22 12 6 4 4
16736 32 33 82 67 51 30 22 20 6 4 4
124096 29 31 83 63 48 30 20 22 8 4 4

Table 17. Different control and observation domains in Formulation OC-FEM 1 for
test case IV. Number of MinRes iterations for different values of ν and λ using the
EXACT version of the preconditioner with UMFPACK for F (DOF = 16736, σ =
ω = 1). [-] indicates that MinRes did not converge within 10000 iterations.

λ ν

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 34 34 36 66 2701 [-] 983 103 60 47 [-]
10−6 31 32 32 87 2630 828 81 46 41 58 73
10−2 29 37 37 66 169 61 43 39 37 43 47
1 19 20 22 29 39 30 25 23 22 21 24
102 10 10 11 20 22 13 12 12 11 10 10
106 6 6 6 20 22 10 6 6 6 6 6
1010 4 4 6 20 22 10 4 4 4 4 6



Table 18. Different control and observation domains in Formulation OC-FEM 1 for
test case IV. Number of MinRes iterations for different values of ω and λ using the
EXACT version of the preconditioner with UMFPACK for F (DOF = 16736, σ = ν =
1). [-] indicates that MinRes did not converge within 10000 iterations.

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 9338 9347 9346 9340 [-] [-] 2630 66 11 6 4
10−6 571 571 571 1075 983 828 169 20 6 4 4
10−2 49 49 122 103 81 61 22 20 6 4 4
1 32 33 82 67 51 30 22 20 6 4 4
102 23 112 60 46 43 13 22 20 6 4 4
106 [-] 46 41 39 12 10 22 20 6 4 4
1010 [-] 58 37 12 6 10 22 20 6 4 4

3.5 Test case VI

Numerical results for the case of state constraints imposed on the Fourier co-
efficients are presented in Table 19-20. Here we choose 15512 random points as
the active sets Ec and Es and solve the resulting Jacobi system. The dependence
of the MinRes convergence rate on the Moreau-Yosida regularization parameter
ε is demonstrated in Table 19 and Table 20. Table 21 clearly demonstrates the
robustness with respect to the parameters λ and ω. We refer the reader to [11]
for a detailed description of the treatment of state constraints via the Moreau-
Yosida regularization. Furthermore, we mention that the presence of constrains
imposed on the control Fourier coefficients finally results in (linearized) systems
with system matrices having the same structure as the system matrix arising
from the case of different observation and control domains.

4 Summary and Conclusion

We demonstrated in many numerical experiments that the preconditioners de-
rived and analysed in [12] and [11] lead to parameter-robust and efficient solvers
in many practically important cases. Therefore, we reported on a broad range
of numerical experiments, that confirm the theoretical convergence rates. Con-
sequently, the multiharmonic finite element discretization technique in combi-
nation with efficient and parameter-robust solvers leads to a very competitive
method. Furthermore, we want to mention, that due to the decoupling nature
of the frequency domain equations with respect to the individual modes, a par-
allelization of the proposed method is straightforward, cf. Algorithm 1.



Table 19. State constraints in Formulation OC-FEM 1 for test case VI. Number of
MinRes iterations for different values of ε and λ using the EXACT version of the
preconditioner with UMFPACK for F (DOF = 16736, ν = σ = ω = 1). [-] indicates
that MinRes did not converge within 10000 iterations.

λ ε

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 88 74 59 45 31 17 9 9 9 9 9
10−6 992 801 612 421 220 36 21 21 21 21 21
10−2 [-] [-] [-] 3259 351 29 20 20 20 20 20
1 [-] [-] [-] 3795 191 24 16 16 14 14 14
102 [-] [-] [-] 1619 120 13 12 10 10 10 10
106 [-] [-] 5852 160 12 10 10 10 10 10 10
1010 [-] 7681 162 12 10 10 10 10 10 10 10

Table 20. State constraints in Formulation OC-FEM 1 for test case VI. Number of
MinRes iterations for different values of ε and λ using the EXACT version of the
preconditioner with UMFPACK for F (DOF = 124096, ν = σ = ω = 1). [-] indicates
that MinRes did not converge within 10000 iterations.

λ ε

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 142 118 94 70 46 22 13 13 13 13 13
10−6 3275 2602 1930 1241 372 35 21 21 21 21 21
10−2 [-] [-] [-] 5482 383 29 18 18 18 18 18
1 [-] [-] [-] 5443 206 24 16 14 13 12 12
102 [-] [-] [-] 1836 124 13 12 10 10 10 10
106 [-] [-] 6619 167 11 10 10 10 10 10 10
1010 [-] 8883 167 11 10 10 10 10 10 10 10

Table 21. State constraints in Formulation OC-FEM 1 for test case VI. Number of
MinRes iterations for different values of ω and λ using the EXACT version of the
preconditioner with UMFPACK for F (DOF = 124096, ν = σ = ε = 1).

λ ω

10−10 10−8 10−6 10−4 10−2 1 102 104 106 108 1010

10−10 22 22 22 22 22 22 22 22 12 6 4
10−6 35 35 35 35 35 35 35 22 8 4 4
10−2 30 30 30 30 30 29 22 22 8 4 4
1 20 20 20 20 20 24 20 22 8 4 4
102 16 16 16 16 18 13 20 22 8 4 4
106 13 13 14 18 12 10 20 22 8 4 4
1010 13 13 16 12 6 10 20 22 8 4 4



Acknowledgements

The authors gratefully acknowledge the financial support by the Austrian Science
Fund (FWF) under the grants P19255 and W1214 (project DK04). The authors
also thank the Austria Center of Competence in Mechatronics (ACCM), which is
a part of the COMET K2 program of the Austrian Government, for supporting
their work on eddy current problems.

References

1. D. Abbeloos, M. Diehl, M. Hinze, and S. Vandewalle. Nested multigrid methods for
time-periotic, parabolic optimal control problems. Computing and Visualization
in Science, 14(1):27–38, 2011.

2. T.A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30:196–199, June 2004.

3. T.A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multi-
frontal method. ACM Trans. Math. Softw., 30:165–195, June 2004.

4. T.A. Davis and I.S. Duff. A combined unifrontal/multifrontal method for unsym-
metric sparse matrices. ACM Trans. Math. Softw., 25:1–20, March 1999.

5. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a
semismooth Newton method. SIAM J. Optim., 13(3):865–888, 2002.

6. R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and
H(div) spaces. SIAM J. Numer. Anal., 45(6):2483–2509, 2007.

7. T.V. Kolev and P.S. Vassilevski. Parallel auxiliary space AMG for H(curl) prob-
lems. J. Comput. Math., 27(5):604–623, 2009.

8. M. Kollmann and M. Kolmbauer. A preconditioned MinRes solver for time-periodic
parabolic optimal control problems. Numerical Linear Algebra with Applications,
2012. doi: 10.1002/nla.1842.

9. M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, and W. Zulehner. A finite
element solver for a multiharmonic parabolic optimal control problem. Computers
and Mathematics with Applications, 2012. doi: 10.1016/j.camwa-2012.06.012.

10. M. Kolmbauer. The Multiharmonic Finite Element and Boundary Element Method
for Simulation and Control of Eddy Current Problems. PhD thesis, Johannes Ke-
pler University, Institute of Computational Mathematics, Linz, Austria, 2012.

11. M. Kolmbauer. Efficient solvers for multiharmonic eddy current optimal control
problems with various constraints and their analysis. IMA J. Numer. Anal., 2012.
(to appear).

12. M. Kolmbauer and U. Langer. A robust preconditioned MinRes solver for dis-
tributed time-periodic eddy current optimal control problems. SIAM Journal on
Scientific Computing, 2012. (to appear).

13. C.C. Paige and M.A.Saunders. Solutions of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12(4):617–629, 1975.

14. F. Tröltzsch. Optimal Control of Partial Differential Equations. Theory, Methods
and Applications. Graduate Studies in Mathematics 112, AMS), Providence, 2010.

15. F. Tröltzsch and I. Yousept. PDE-constrained optimization of time-dependent
3D electromagnetic induction heating by alternating voltages. ESAIM: M2AN,
46:709–729, 2012.

16. I. Yousept. Optimal control of Maxwell’s equations with regularized state con-
straints. Computational Optimization and Applications, 52(2):559–581, 2012.



Technical Reports of the Doctoral Program

“Computational Mathematics”

2012

2012-01 M.T. Khan: Formal Semantics of MiniMaple January 2012. Eds.: W. Schreiner, F. Winkler
2012-02 M. Kollmann, W. Zulehner: A Robust Preconditioner for Distributed Optimal Control for

Stokes Flow with Control Constraints January 2012. Eds.: U. Langer, R. Ramlau
2012-03 W. Krendl, V. Simoncini, W. Zulehner: Stability Estimates and Structural Spectral Properties

of Saddle Point Problems February 2012. Eds.: U. Langer, V. Pillwein
2012-04 V. Pillwein, S. Takacs: A local Fourier convergence analysis of a multigrid method using

symbolic computation April 2012. Eds.: M. Kauers, W. Zulehner
2012-05 I. Georgieva, C. Hofreither: Tomographic Reconstruction of Harmonic Functions April 2012.

Eds.: U. Langer, V. Pillwein
2012-06 M.T. Khan: Formal Semantics of a Specification Language for MiniMaple April 2012. Eds.:

W. Schreiner, F. Winkler
2012-07 M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella and E. Mart́ınez-Moro:

Computing coset leaders and leader codewords of binary codes May 2012. Eds.: F. Win-
kler, V. Pillwein

2012-08 S. Takacs and W. Zulehner: Convergence analysis of all-at-once multigrid methods for elliptic
control problems under partial elliptic regularity June 2012. Eds.: U. Langer, R. Ramlau

2012-09 C. Dönch and A. Levin: Computation of the Strength of PDEs of Mathematical Physics and
their Difference Approximations July 2012. Eds.: F. Winkler, J. Schicho

2012-10 S. Radu and J. Sellers: Congruences Modulo Squares of Primes for Fu’s Dots Bracelet Par-
titions August 2012. Eds.: M. Kauers, V. Pillwein

2012-11 I. Georgieva and C. Hofreither: Interpolation of Harmonic Functions Based on Radon Pro-
jections October 2012. Eds.: U. Langer, V. Pillwein

2012-12 M. Kolmbauer and U. Langer: Efficient solvers for some classes of time-periodic eddy current
optimal control problems November 2012. Eds.: C. Pechstein, W. Zulehner

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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