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Abstract. Given the line integrals of a harmonic function on a �nite set
of chords of the unit circle, we consider the problem of �tting these Radon
projections type of data by a harmonic polynomial in the unit disk. In
particular, we focus on the overdetermined case where the amount of
given data is greater than the dimension of the polynomial space. We
prove su�cient conditions for existence and uniqueness of a harmonic
polynomial �tting the data by using least squares method. Combining
with recent results on interpolation with harmonic polynomials, we ob-
tain an algorithm of practical application. We extend our results to �t-
ting of more general mixed data consisting of both Radon projections
and function values. Numerical results are presented and discussed.

Keywords: multivariate interpolation, Radon transform, harmonic poly-
nomials, least-squares �tting

1 Introduction

There are many important problems in medicine, geophysics, biology, materials
science, radiology, oceanography, and other sciences, where information about
processes can only be obtained by nondestructive testing methods. Among the
most successful techniques for reconstruction of objects with non-homogeneous
density are tomographic imaging methods. Johann Radon and his results on
the Radon transform [23] later to be named after him laid the mathematical
foundation for this approach.

From the mathematical point of view, the problem is to recover a multivariate
function using information given as line integrals of the unknown function. This
problem has been intensively studied since the 1960s by di�erent approaches
[17,5,6,7,15,19,20,24,16] and continues to �nd a lot of applications. Various re-
construction algorithms have been developed: �ltered backprojection, iterative
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reconstruction, direct methods, etc., and some are based on the inverse Radon
transform (see [21] and the bibliography therein).

Another class of methods for function reconstruction use direct interpolation
by multivariate polynomials [20,14,1,4,11,12,13,10]. Many results along these
lines are due to a research group founded by Prof. Borislav Bojanov which studies
approximation problems using Radon projections type of data (see also [2,3,22]).
A key question in this approach is how to construct a regular set of line segments,
i.e., in what manner to choose chords of the unit circle so that there exists a
unique polynomial of a corresponding degree with preassigned Radon projections
over the con�guration of chords.

To improve the approximation accuracy and to reduce the amount of input
data required as well as the computational e�ort, one could try to incorpo-
rate some characteristic about the function to be recovered into approximation
methods. According to this concept, interpolation of a harmonic function by har-
monic polynomials based on Radon projections was studied in [9], where tools
from symbolic computation were used, and in [8], where an analytical proof in
a more general setting was given.

In the present paper, we continue the investigation of approximating har-
monic functions using Radon projections type of data. In particular, we focus on
the overdetermined case where the amount of data is greater than the dimension
of the polynomial space. We use a least-squares method to determine a harmonic
polynomial which �ts the given data.

It turns out that the least-squares �tting problem and the interpolation prob-
lem are closely related. In [12], it was shown for the non-harmonic case that exis-
tence and uniqueness of the least-squares �tting polynomial relies on a regularity
property of a subset of the scheme of chords.

With a similar proof technique, we derive su�cient conditions for existence
and uniqueness of the least-squares harmonic polynomial, making use of recent
results on interpolation with harmonic polynomials. We also consider �tting more
general mixed data consisting of both Radon projections and function values.
A reconstruction algorithm is developed and tested and numerical results are
presented in the last section.

2 Preliminaries and Related Work

Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we
denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
from the origin (see Figure 1). The chord I(θ, t) is parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√
1− t2,

√
1− t2).

De�nition 1. Let f(x, y) be a real-valued bivariate function in the unit disk D.
The Radon projection Rθ(f ; t) of f in direction θ is de�ned by the line integral

Rθ(f ; t) :=
∫
I(θ,t)

f(x) dx =

∫ √1−t2

−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.
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Fig. 1. The chord I(θ, t) of the unit circle.

Johann Radon [23] showed in 1917 that a di�erentiable function f is uniquely
determined by the values of its Radon transform,

f 7→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.

Further works in this area are due to John [18], Solmon [24], and others.

2.1 Interpolation and Fitting by Bivariate Polynomials

A fundamental problem in our investigations is to recover a polynomial using a
�nite number of values of its Radon transform. Essentially, this may be viewed
as a bivariate interpolation problem where the usual function values are replaced
by means over chords of the unit circle.

Let Π2
n =

{∑
i+j≤n aijx

iyj : aij ∈ R
}

denote the space of real bivariate

polynomials of total degree at most n. This space has dimension
(
n+2
2

)
. Assume

that a set I =
{
Im = I(θm, tm) : m = 1, . . . ,

(
n+2
2

)}
of chords of ∂D is given.

Furthermore, to each chord Im ∈ I a given value γm ∈ R is associated. Then,
the aim is to �nd a polynomial p ∈ Π2

n such that

Rθm(p, tm) =

∫
Im

p(x) dx = γm ∀Im ∈ I. (1)

If this interpolation problem has a unique solution for every choice of values
Γ =

{
γm, : m = 1, . . . ,

(
n+2
2

)}
, then the scheme I of chords is called regular.

The question of how to construct such regular schemes has been extensively
studied. The �rst general result was given by Marr [20] in 1974, who proved that
the set of chords connecting n + 2 equally spaced points on the unit circle is
regular for Π2

n. A more general result for Rd and general convex domains was
published by Hakopian [14] in 1982.

Di�erent families of regular schemes of chords of the unit circle were con-
structed by Bojanov and Georgieva [1], Bojanov and Xu [4], Georgieva and
Ismail [11], Georgieva and Uluchev [12], A mixed regular scheme which incor-
porates Radon projections and function values at points on the unit circle was
proposed by Georgieva, Hofreither, and Uluchev [10].
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Georgieva and Uluchev [12] considered a least-squares �tting problem for
the overdetermined case of Radon projections type of data with algebraic poly-
nomials and proved existence and uniqueness of the �tting polynomial. The
proof was based on the above cited previous interpolation results. Moreover,
this least-squares �tting was extended to mixed type data of Radon projections
and function values.

2.2 Interpolation by Harmonic Polynomials

If we know a priori that the function to be interpolated is harmonic, then it
seems natural to work in the space Hn of real bivariate harmonic polynomials of
total degree at most n, which has dimension 2n + 1. Analogous to (1), we pre-

scribe chords I := {I(θi, ti) : θi ∈ [0, π), ti ∈ (−1, 1)}2n+1
i=1 of the unit circle and

associated given values Γ = {γi}2n+1
i=1 , and wish to �nd a harmonic polynomial

p ∈ Hn such that

Rθi(p, ti) =
∫
I(θi,ti)

p(x) dx = γi, i = 1, . . . , 2n+ 1. (2)

Again we call I regular if the interpolation problem (2) has a unique solution
for all given values Γ . In the following, we present one family of such regular
schemes.

We use the following basis of the space of harmonic polynomials Hn,

h0(x, y) = 1,

h2k−1(x, y) = Re(x+ iy)k, h2k(x, y) = Im(x+ iy)k, k = 1, . . . , n,

with representation in polar coordinates

h0(r, θ) = 1,

h2k−1(r, θ) = rk cos(kθ), h2k(r, θ) = rk sin(kθ), k = 1, . . . , n.

Every harmonic polynomial p of degree less than or equal to n can be expanded
in this basis,

p =

2n∑
k=0

pkhk,

where pk are real coe�cients.

The following result, which gives a closed formula for Radon projections
of the basis harmonic polynomials can be considered a harmonic analogue to
the famous Marr's formula [20]. A special case of this harmonic version was
�rst derived using tools from symbolic computation [9]. Later, Georgieva and
Hofreither [8] have given an analytic proof in a more general setting.
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Lemma 1. The Radon projections of the basis harmonic polynomials hk, k ∈ N,
are given by

Rθ(h2k−1, t) =
∫
I(θ,t)

h2k−1(x) dx =
2

k + 1

√
1− t2Uk(t) cos(kθ),

Rθ(h2k, t) =
∫
I(θ,t)

h2k(x) dx =
2

k + 1

√
1− t2Uk(t) sin(kθ),

where θ ∈ R, t ∈ (−1, 1) and Uk(t) is the k-th degree Chebyshev polynomial of
second kind.

The above lemma plays a crucial role in proving regularity of a particular
family of schemes I of chords.

Theorem 1 (Existence and uniqueness [9,8]). The interpolation problem
(2) has a unique solution for any set of chords I = {I(θi, ti)}2n+1

i=1 with

0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π

and with constant distances ti = t ∈ (−1, 1) such that t is not a zero of any
Chebyshev polynomial of the second kind U1, . . . , Un.

See Figure 2 for some examples of schemes which satisfy the conditions of
the above theorem.

Fig. 2. Some admissible schemes according to Theorem 1.

3 Least-squares Fitting

Here we deal with the problem of �tting some given Radon projections of a
harmonic function by a harmonic polynomial in the overdetermined case where
the amount of data is greater than the dimension of the polynomial space. A
least-squares method is used to determine a harmonic polynomial which �ts the
given data. The problem of least-squares �tting of Radon projections was �rst
considered for the case of algebraic polynomials by Marr [20].
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3.1 Radon Projections Type of Data

Let a set I :=
{
I(θi, ti) : θi ∈ [0, π), ti ∈ (−1, 1)

}N
i=1

of N distinct chords of

the unit circle ∂D, be given, and let Γ :=
{
γi
}N
i=1

be the Radon projections of
a harmonic function u along these chords, i.e.,

Rθi(u, ti) = γi, i = 1, . . . , N.

We regard the set of chords I and the set of values Γ generally as data. Finally,

by Λ :=
{
λi
}N
i=1

we denote a set of positive real numbers which we consider to
be weights related to the corresponding Radon projections.

The least squares �tting problem is formulated as follows.
Given data I and Γ , and weights Λ, �nd a polynomial p ∈ Hn, N > 2n+ 1,

such that
N∑
i=1

λi
(
Rθi(p, ti)− γi

)2 → min . (3)

Theorem 2. Assume that data I and Γ , and weights Λ are given. Suppose that
there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n+ 1, such that the interpolatory
scheme of chords

{
I(θ`, t`)

}
`∈J is regular. Then there exists a unique harmonic

polynomial p ∈ Hn for which the minimum in (3) is attained.

Proof. Suppose p is a harmonic polynomial of degree at most n. Then p can be
represented in the form

p =

2n∑
k=0

pkhk.

Since the Radon projection for a �xed line segment is a linear functional it follows
that

Rθi(p; ti) =
2n∑
k=0

pkRθi(hk; ti), i = 1, . . . , N.

Hence, the problem (3) is equivalent to the problem

Φ :=

N∑
i=1

λi

(
2n∑
k=0

pkRθi(hk; ti)− γi

)2

→ min,

where Φ is a function of the coe�cients {pk}, k = 0, 1, . . . , 2n.
Applying the necessary conditions for extrema

∂Φ

∂pj
= 0, j = 0, . . . , 2n,

we obtain the system of linear equations, for j = 0, 1, . . . , 2n,

2n∑
k=0

(
N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti)

)
pk =

N∑
i=1

λiγiRθi(hj , ti), (4)
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with respect to the coe�cients {pk}, k = 0, 1, . . . , 2n.
In order to prove that (4) has a unique solution for arbitrary set Γ of Radon

projections we consider the corresponding homogeneous system

2n∑
k=0

(
N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti)

)
qk = 0, j = 0, 1, . . . , 2n. (5)

Using the linearity of the functionals Rθi(·, ti), we get

N∑
i=1

λiRθi
( 2n∑
k=0

qkhk, ti

)
Rθi(hj , ti) = 0, j = 0, 1, . . . , 2n. (6)

Denote

q :=

2n∑
k=0

qkhk.

Let us note that q is a polynomial from Hn. Then (5) may be rewritten as

N∑
i=1

λiRθi(q, ti)Rθi(hj , ti) = 0, j = 0, 1, . . . , 2n.

We now sum all the equations of (6) multiplied by the corresponding qj and
obtain

N∑
i=1

λi
(
Rθi(q, ti)

)2
= 0.

Hence, by the positivity of the weights λi, we have

Rθi(q, ti) = 0, i = 1, . . . , N.

Since there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n + 1, such that the in-
terpolatory scheme of chords

{
I(θ`, t`)

}
`∈J is regular, we conclude that q ≡ 0.

Then

qk = 0, k = 0, 1, . . . , 2n,

i.e., the homogeneous system (5) has only the zero solution.
Therefore the linear system (4) has a unique solution, and the theorem is

proved. ut

Remark 1. From the proof of Theorem 2, it can be seen that the coe�cients
{pk}2nk=0 of the least-squares �tting polynomial p =

∑2n
k=0 pkhk can be found as

the solution of the following system of linear equations,

2n∑
k=0

ajkpk =

N∑
i=1

bjiγi, j = 0, . . . , 2n.
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In short, the vector p of coe�cients is determined by

Ap = BΓ

with the symmetric and positive de�nite matrix A = (ajk)
2n
j,k=0 and the rectan-

gular matrix B = (bji)
2n, N
j=0,i=1 having entries

ajk =

N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti), bji = λiRθi(hj , ti).

These matrix entries can be computed using the formulas in Lemma 1 for the
Radon projections of the harmonic basis functions.

3.2 Mixed Type of Data

Now, we shall consider a �tting problem for mixed type of data � both Radon
projections and function values. Namely, let the data I and Γ , and the weights

Λ be given as above in Section 3.1. Additionally we take values U :=
{
uj
}M
j=1

of the harmonic function u at arbitrary points X :=
{
xj
}M
j=1

in the closed unit

disk D, i.e.,
u(xj) = uj , j = 1, . . . ,M.

In particular, the points X can be chosen only on the unit circle ∂D. Let Ω :={
ωj
}M
j=1

be given weights corresponding to the function values.

The least squares �tting problem for mixed type of data is formulated as
follows: given

� the data I and Γ , and corresponding weights Λ;
� function values U at points X and weights Ω;

�nd a harmonic polynomial p ∈ Hn, N > 2n+ 1, such that

N∑
i=1

λi
(
Rθi(p, ti)− γi

)2
+

M∑
j=1

ωj
(
p(xj)− uj

)2 → min . (7)

Theorem 3. Assume that mixed type of data I, Γ , X, U , and weights Λ, Ω
are given. Suppose that there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n + 1,
such that the interpolatory scheme of chords

{
I(θ`, t`)

}
`∈J is regular. Then there

exists a unique harmonic polynomial p ∈ Hn for which the minimum in (7) is
attained.

Therefore including a regular interpolatory scheme from Section 2.2 into
the set of chords I assures the uniqueness of the solution to the problem for
mixed data. The proof of the theorem is similar to the proof of Theorem 2 and
the coe�cients of the least-squares minimizing polynomial can be computed by
solving a linear system similar as in Remark 1.
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4 Numerical Examples

4.1 Example 1

We approximate the harmonic function u(x, y) = exp(x) cos(y) by a harmonic
polynomial p ∈ Hn given N = 2(2n+ 1) values of its Radon projections: 2n+ 1
taken along the edges of a regular (2n + 1)-sided convex polygon (Figure 2,
�rst picture), and 2n+ 1 along random chords. The weights are all set to 1. In
Figure 3, we display the scheme of chords, the function u as well as the error
u − p, where p is the least-squares �tting polynomial of degree n = 7 �tting
information on 30 chords.

4.2 Example 2

We consider a similar problem as in Example 1, but in this case the weights are
set to 1 for the chords forming a regular (2n+ 1)-sided convex polygon, and to
100 for the remaining N − (2n+ 1) random chords.

In Figure 4, we plot the scheme of chords, and the error function u−p, where
the degree of the least-squares �tting polynomial p is n = 7 and the number of
chords is N = 30. No qualitative change in behavior from Example 1 is observed.

4.3 Example 3

We again approximate the harmonic function u(x, y) = exp(x) cos(y), but con-
sider the case of noisy data. We start with 2n+1 chords forming a regular convex
polygon and then add a variable number m of additional, randomly distributed
chords such that we have a total of N = 2n+1+m chords. To the exact Radon
projections γi ∈ Γ we add Gaussian random numbers with mean 0 and standard
deviation ε = 10−2 so that we obtain noisy data γ̃i. The weights are all set to 1.
The degree of the least-squares �tting polynomial is kept at n = 7 throughout.

In Figure 5, we plot the relative L2-errors ‖u− p‖L2(D)/‖u‖L2(D) for varying
number of added chords m. We observe that for noisy data, additional pieces of
data improve the approximation. In this particular case, it seems that after an
initial slower decay, the error behaves approximately like O(m−0.8).
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Fig. 3. Example 1, n = 7, N = 30: the scheme of chords, function u, error u− p

Fig. 4. Example 2, n = 7, N = 30: the scheme of chords, error u− p
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Fig. 5. Example 3: errors with noisy data, n = 7. x-axis: number m of additional
chords. y-axis: relative L2-error
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