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Abstract. Tensor–product B–spline surfaces are commonly used as stan-
dard modeling tool in Computer Aided Geometric Design and for nu-
merical simulation in Isogeometric Analysis. However, when considering
tensor–product grids, there is no possibility of a localized mesh refine-
ment without propagation of the refinement outside the region of in-
terest. The recently introduced truncated hierarchical B–splines (THB–
splines) [5] provide the possibility of a local and adaptive refinement pro-
cedure, while simultaneously preserving the partition of unity property.
In this paper we present an effective implementation of the fundamental
algorithms needed for the manipulation of THB–spline representations.
By combining a quadtree data structure — which is used to represent
the nested sequence of subdomains — with a suitable data structure for
sparse matrices, we obtain an efficient technique for the construction and
evaluation of THB–splines.

Keywords: hierarchical tensor–product B–splines; truncated basis; THB–splines;
isogeometric analysis; local refinement

1 Introduction

The de facto standard in computer aided geometric design is the tensor–product
B–spline model together with its non–uniform rational extension (NURBS).
Among other fundamental properties, like minimum support, efficient refine-
ment and degree–elevation algorithms, B–splines are nonnegative and form a
partition of unity. This implies that a B–spline curve/surface is completely con-
tained in the convex hull of a certain set of points, usually referred to as control
net. The shape of the control net directly influences the shape of the B–spline
representation, so that the designer can use it to manipulate the corresponding
parametric representation in a fairly intuitive way. Unfortunately, an unavoid-
able drawback of the tensor–product structure is a global nature of the mesh
refinement which excludes the possibility of a local refinement scheme as illus-
trated in Figure 1(a–c).
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(a) initial grid (b) area of interest (c) knot insertion (d) hierarchical grid

Fig. 1. Adaptive refinement of an initial tensor–product grid (a) with respect to a
localized region (b) may be achieved by avoiding a propagation of the refinement due
to the tensor–product structure (c) through a hierarchical approach (d).

Despite an increasing interest in the identification of adaptive spline spaces
and related applications, see e.g., [7, 15, 17], local mesh refinement remains a
non–trivial and computationally expensive issue. A suitable trade–off between
the quality of the geometric representation (in terms of degrees of freedom needed
to obtain a certain accuracy) and the complexity of the mesh refinement algo-
rithm has necessarily to be taken into account. Different approaches have been
proposed which all extend the standard tensor–product model by allowing T–
junctions between axis aligned mesh segments. Among others, this led to the in-
troduction of hierarchical B–splines (HB–splines) [4, 11, 12], T–splines [16], poly-
nomial splines over T–meshes [2] and – more recently – truncated hierarchical
B–splines (THB–splines) [5] and locally refined B–splines [3].

The idea of performing surface modeling by manipulating the parametric
representation at different levels of details was originally proposed by Forsey and
Bartels [4]. In order to localize the editing of detailed features, the refinement
is iteratively adapted on restricted patches of the surface in terms of a sequence
of overlays with nested knot vectors. Subsequently, Kraft [11, 12] showed that
the hierarchical structure enforced on the mesh refinement procedure can be
complemented by a simple and automatic identification of basis functions which
naturally generalize some of the fundamental properties of tensor–product B–
splines — such as nonnegativity and linear independence — to the case of HB–
splines.

The multilevel approach allows to break the rigidity of a tensor–product con-
figuration by simultaneously preserving an highly organized structure as shown
in Figure 1(d). An example of hierarchical refinements over rectangular–shape
regions is presented in Figure 2.

The hierarchical B–spline model found applications in data interpolation and
approximation [10, 11, 13], as well as in finite element and isogeometric analysis
[1, 14, 17]. Alternative spline hierarchies were also considered in the literature,
see e.g., [9, 18].

Kraft’s basis for HB–splines does not possess the partition of unity property
without additional scaling and it possess only limited stability properties. Trun-
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cated hierarchical B–splines [5] have the potential to overcome these limitations
and provide improved sparsity properties. They were introduced as a possible
extension of normalized tensor–product B–splines to suitably handle the local
refinement in adaptive surface approximation algorithms. This multilevel scheme
was also generalized and further investigated in [6], where particular attention
was devoted to the stability analysis of the proposed hierarchical construction.

In virtue of the multilevel nature of the hierarchical B–spline approach, the
natural choice in terms of data structures is a tree–like representation where
a given refinement level correspond to a certain level of depth in the tree [4].
Related and alternative solutions were also further investigated. An algorithm for
scattered data interpolation and approximation by multilevel bicubic B–splines
based on a hierarchy of control lattices was described in [13]. An implementation
of hierarchical B–splines in terms of a tree data structure whose nodes represent
the B–splines from different levels was recently presented in [1]. Another solution
consists of storing in each node of the tree the data related to a knot span of a
certain level, in particular the significant basis functions acting on it [14].

The goal of the present paper is to introduce an effective implementation
of data structures and algorithms for the newly introduced THB–splines. To
represent the subdomain hierarchy we use a quadtree data structure in com-
bination with sparse matrices. The quadtree provides an efficient and dynamic
data structure for representing the subdomains. It also facilitates the needed
update which may be caused by an iterative refinement process. One key moti-
vation for this choice is to reduce the memory overhead in need for storing the
subdomain hierarchy as much as possible. The selection of (possibly truncated)
basis functions proceeds as described in [5] by means of certain queries which
use the quadtree. The result is encoded by a sequence of sparse matrices. The
quadtree and the related sparse matrices are initially created and subsequently
updated during the refinement procedure. For the hierarchical spline evaluation
algorithm, however, only the access to the sparse matrices is required. This leads
to a reasonable trade–off with respect to memory and time consumption during
both the construction of THB–splines from an underlying subdomain hierarchy
and their evaluation for given parameter values.

The paper is organized as follows. In Section 2 we describe the hierarchical
approach to adaptive mesh refinement together with the definition and eval-
uation of the THB–spline basis. Section 3 introduces the data structures and
algorithms used for the representation of the subdomain hierarchy, while Sec-
tion 4 explains the construction of the matrices needed during the THB–spline
evaluation in more detail. Some numerical results are then presented in Section 5
to illustrate the performance of our approach. Finally, Section 6 concludes the
paper.

2 THB–splines

We define an adaptive extension of the classical tensor–product B–spline con-
struction in terms of a certain number N of hierarchical levels which correspond
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Fig. 2. An example of hierarchical refinement over rectangular–shape regions where
the central area of the mesh is always refined up to the maximum level of detail: two
levels (left), three levels (middle) and four levels (right).

to an increasing level of detail. At each refinement step we select a specific
tensor–product grid associated with the current level. Provided that the se-
quence of tensor–product grids corresponds to a nested sequence of spline spaces
V 0, . . . , V N−1 which satisfies

V `−1 ⊂ V `,

for ` = 1, . . . , N−1, the hierarchical framework allows to consider different types
of grid refinement.

The present paper focuses on the bivariate tensor–product case. However,
the framework can easily be adapted to the multivariate setting and even to
more general spline spaces [5, 6]. Nevertheless, even if the representation model
we are going to introduce may in principle be used to handle non–uniform mesh
refinement and even spaces generated by degree elevation, we will consider only
the dyadic uniform case throughout this paper.

More precisely, we assume that the coarsest spline space V 0 is spanned by
bivariate tensor–product B–splines with respect to two bi–infinite uniform knot
sequences. The finer spaces V ` are obtained by iteratively applying dyadic sub-
division, i.e., each cell of the original tensor-product grid is split uniformly into
four cells.

Let Ω0 be a rectangular planar domain whose edges are aligned with the
tensor-product grid of V 0, and let {Ω`}`=0,...,N−1 be a nested sequence of sub-
domains so that

Ω`−1 ⊇ Ω`, (1)

for ` = 1, . . . , N − 1. Each Ω` is defined as a collection of cells with respect to
the tensor–product grid of level `− 1.

Example 1. Figures 2 and 3 show three subdomain hierarchies which will be
used to demonstrate the performance of our algorithms and data structures:

– rectangular (refinement over rectangular–shaped regions);
– linear (refinement along a diagonal layer);
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(a) Ω0 ⊇ Ω1 (b) Ω0 ⊇ Ω1 ⊇ Ω2 (c) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

(d) Ω0 ⊇ Ω1 (e) Ω0 ⊇ Ω1 ⊇ Ω2 (f) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

Fig. 3. Two nested sequences of subdomains — indicated as linear (top) and curvilinear
(bottom) in Example 1. They satisfy relation (1) with respect to two (left), three
(middle) and four (right) hierarchical levels.

– curvilinear (refinement along a curvilinear trajectory).

By starting with an initial tensor–product configuration at level 0, the tensor–
product grid associated with level `+1 is obtained by subdividing any cell of the
previous level into four parts. Each subdomain Ω` is then defined as a certain
collection of cells with respect to the grid of level ` so that (1) is satisfied. Figure 2
illustrates an example of hierarchical refinement over rectangular–shape regions
where the central area of the mesh is always refined up to the maximum level
of detail. The other two subdomain hierarchies mentioned above are shown in
Figure 3 up to four refinement levels so that Ω0 ⊇ . . . ⊇ Ω3.

For each hierarchical level `, with ` = 0, . . . , N − 1, let B` be the normalized
B–spline basis of the spline space V ` with respect to a certain degree (d, d)
defined on corresponding nested knot sequences. We say that

β ∈ B` is active ⇔ supp0 β ⊆ Ω` ∧ supp0 β 6⊆ Ω`+1,

where supp0 β = suppβ ∩ Ω0 is a slightly modified support definition which
makes local refinements possible also along the boundaries of Ω0. A B–spline
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β ∈ B` is then active if it is completely contained in Ω` but not in Ω`+1, and
passive otherwise.

We may assume the initial domainΩ0 to be an axis-aligned box3. By denoting
with k the number of knot spans of level 0 along the edges ofΩ0, which is assumed
to be the same for both directions, we define a characteristic matrix X` of size
s` × s`, with s` = (2`k + d), for ` = 0, . . . , N − 1. These matrices collect the
information about active/passive B–splines level by level, namely

χ`i,j =

{
1 if β`i,j is active,
0 otherwise,

where β`i,j is a B–spline of level `. The indices i, j are chosen such that exactly

the B-splines β`i,j with i, j = 1, . . . , s` act on Ω0.

Definition 1 ([11, 12], extended in [17]). The hierarchical B–spline (HB–
spline) basis H is defined as the set of all active B–splines defined over the
tensor–product grid of each level,

H =
⋃

`=0,...,N−1

{βi,j ∈ B` : χ`i,j = 1}.

Truncated hierarchical B–splines [5, 6] form a different basis for the same
multilevel B–spline space. The key idea behind this alternative hierarchical con-
struction is to properly exploit the refinable nature of the B–spline basis which
allows to express a B–spline of level ` in terms of (d+2)2 functions which belong
to level ` + 1 and of certain binomial coefficients scaled by a factor 2−d with
respect to any dimension. By using this subdivision rule, any function τ ∈ V `
can be represented according to a two–scale relation with respect to the basis
B`+1 of V `+1, namely

τ =
∑

β∈B`+1

c`+1
β (τ)β,

with certain coefficients c`+1
β (τ) ∈ R. The truncation of τ ∈ V ` with respect to

B`+1 and Ω`+1 is the function trunc`+1τ ∈ V `+1 defined as:

trunc`+1τ =
∑

β∈B`+1,supp β 6⊆Ω`+1

c`+1
β (τ)β.

The overall truncation of a hierarchical B–spline β ∈ B` ∩H is defined by recur-
sively applying the truncation with respect to the different levels,

truncβ = truncN−1(truncN−2 . . . (trunc`+1β)).

By recursively discarding the contribution of active B–splines of subsequent lev-
els from coarser B–splines, we obtain the definition of the truncated basis.

3 Different shapes are easily identified at subsequent levels as shown in Figure 3.
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Definition 2 ([5]). The truncated hierarchical B-spline (THB–spline) basis T
is defined by

T ={truncβ`i,j : χ`i,j = 1, ` = 0, . . . , N − 2} ∪ {βN−1i,j : χN−1i,j = 1}.

Truncated hierarchical B–spline are linearly independent, non-negative, form
a partition of unity and preserve the nested nature of the spline spaces [5].
Moreover, the construction of THB–splines is strongly stable with respect to
the supremum norm provided that the knot vectors satisfy certain reasonable
assumptions — see [6] for more details.

In addition to the characteristic matrices {X`}N−1`=0 , we consider another se-

quence of matrices {C`}N−1`=0 of the same size and with the same sparsity pattern,
i.e. χ`i,j = 0 implies c`i,j = 0. These matrices store the coefficients associated to
the (active) basis functions in the representation of a spline function with respect
to the truncated basis. The following simple algorithm performs the evaluation
of a hierarchical spline function which is represented in terms of THB–splines.

Algorithm EVAL(seqmat X, seqmat C, int D, int LMAX, float U,V)

\\ seqmat X is the sequence of characteristic matrices, i.e., X[L] is the char-
acteristic matrix of level L

\\ seqmat C is the sequence of coefficient matrices associated to the spline
function f , i.e., C[L] is the coefficient matrix of level L

\\ int D is the degree in both directions
\\ int LMAX is the maximum refinement level N − 1
\\ float U,V are evaluation parameters

Identify the (D+1)×(D+1) sub–matrix M of C[0] which contains the coeffi-
cients of those B–splines of level 0 that are non–zero at (U,V)

for L = 1 to LMAX do {

Generate the matrix S by applying one step of B–spline subdivision to M

Identify the (D+1)×(D+1) sub–matrix T of S which contains the coeffi-
cients of those B–splines of level L that are non–zero at (U,V)

for each pair of indices i,j in T do {

if X[L](i,j) == 1 then T(i,j) = C[L](i,j) }

M = T }

return the value f obtained by applying de Boor’s algorithm to M

In this algorithm, the sub-matrices M,S, and T at a certain level are al-
ways accessed by global indices, i.e., indices with respect to the entire array
of all tensor–product splines of that level. The following proposition clarifies
the connection between the evaluation algorithm and the truncated hierarchical
B–spline basis.

Theorem 1. The value f(u, v) computed by the algorithm is the value of a
function represented in the THB–spline basis.
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This can be proved by applying the algorithm to Kronecker–type coefficient
data (where exactly one coefficient is nonzero and equals 1).

The cost of the THB–spline evaluation algorithm EVAL is equal to N−1 times
the application of the B–spline subdivision rule plus the cost due to the standard
de Boor’s algorithm. Consequently, it grows linearly with the number of levels
and quadratically with the degree of the splines. It could be further reduced

– by starting the for loop at the minimum level of functions which are active
at the given point (u, v), and

– by stopping it at the maximum level of functions which are active at this
point.

With this modification, the computational costs grows linearly with the number
of levels which are active at the given point. This number can be controlled by
choosing a suitable refinement strategy.

The following sections discuss data structures and algorithms for manipulat-
ing and storing the subdomain hierarchy and for representing the characteristic
matrices and coefficient matrices.

3 Representing and manipulating the subdomain
hierarchy

The domain Ω0 is now assumed to be a box consisting of 2n × 2n cells of the
coarsest tensor-product grid, where n is a non-negative integer, i.e., k = 2n. This
assumption is made in order to facilitate the use of a quadtree data structure.
Moreover, in order to simplify the implementation, the edges of the coarsest
tensor–product grid should have the length 2N−2, where N is the number of lev-
els. Under this assumption, all coordinates of bounding boxes in the algorithms
presented below are integers.

3.1 The subdomain hierarchy quadtree

We represent the entire subdomain hierarchy by a single quadtree. Each node of
the quadtree takes the form

struct qnode{

aabb box;

int level;

*node nw;

*node ne;

*node sw;

*node se; };

where the axis–aligned bounding box aabb box is characterized by coordinates
of its upper left and lower right corner, level defines the highest level in which
the box is completely contained and nw, ne, sw, se are pointers to the four
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children of the node. These children represent the northwestern, northeastern,
southwestern and southeastern part of the box after the dyadic subdivision. All
pointers to these children are set to null until the node is created during the
insertion process, which is described by the INSERTBOX algorithm below.

LetΩ` =
⋃
i b
`
i , where each b`i is a collection of cells forming a rectangular box.

During the creation of the quadtree which represents the subdomain hierarchy,
for each level `, we insert all boxes b`i which define Ω`. The following recursive
algorithm performs the insertion of a box b`i into the quadtree:

Algorithm INSERTBOX(box B, qnode Q, int L)

\\ box B is the box which will be inserted
\\ qnode Q is the current node of the quadtree
\\ int L is the level
if B == Q.box then {

Q.level = L

visit all nodes in the subtree with root Q; if the level of a node is less
than L then increase it to L }

else {

for child in {Q.nw, Q.ne, Q.sw, Q.se} do {

if child != null then {

If B∩Q.box 6= ∅ then INSERTBOX(B∩Q.box, child, L) }

else {

create the box childbox of child
if B∩childbox 6= ∅ then

create the node child

set child.box to childbox, child.level to Q.level and the
four children to null

INSERTBOX(B∩childbox, child, L) } } }

After each box insertion we perform a cleaning step, visiting all sub–trees
and deleting those where all nodes have the same level. This reduces the depth
of the tree to a minimal value and optimizes the performance of all algorithms.

Example 2. To explain the INSERTBOX algorithm, we consider the subdomain
hierarchy composed of three levels (N = 3), two of which (level 0 and 1) are
initially present. This is shown in Figure 4, together with the related quadtree
representation. The domain Ω0 has k = 16 edges of length 2N−2 = 2. The box
b = [16, 8]× [24, 12] will be inserted at level 2 into the hierarchy. The cells with
respect to the tensor–product grid of level 1 covered by b are depicted in red in
Figure 4.

The execution of the algorithm is illustrated in Figure 5. At each step, we
highlight the current node Q and the corresponding box in the subdomain hi-
erarchy (Figure 5, right and left column, respectively). The insertion starts by
considering the root of the tree, where the box b is compared with the axis–
aligned bounding box stored in the root. Since these two boxes are not the
same, the level of the root remains unchanged.
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Fig. 4. Initial subdomain structure (left) and corresponding quadtree (right) which
stores the boxes related to level 0 and 1 in the hierarchy. The box b = [16, 8] × [24, 12]
(red) has to be inserted into the quadtree at level 2.

Subsequently, we have to identify which boxes between the ones stored in
the four children of the root overlap with b, see Figure 5(a). In this case b is
completely contained in the box represented by the ne child of the root. The
recursive call of INSERTBOX is therefore applied to this child only. The situation
in Figure 5(b) is similar to the previous case. After the split, the algorithm is
recursively applied to the sw child.

In the third step shown in Figure 5(c) instead, the box b overlaps with the
boxes related to two children (nw and ne) of the current node. Then, b is also
subdivided and the recursion is called on both children.

Figure 5(d) shows the last step executed by the insertion of the box b. Two
new nodes are created and inserted into the quadtree. Since these nodes coincide
with the two parts of b, we set their level to 2. Clearly, the box to be inserted
does not necessarily become a single node of the quadtree but it may be stored
into several nodes.

3.2 Queries

In order to create the characteristic matrices introduced in Section 2, we define
three query functions on the quadtree. These queries allow to understand if all
basis functions β of a certain hierarchical level whose support is contained in a
given box b are active or passive.

Given a box b defined as a collection of cells with respect to the tensor–
product grid of level `, the first query (QY1), returns true if

b ⊆ Ω` ∧ b ∩Ωi = ∅, i > `. (2)

Thus, if QY1 returns true, then all the basis functions of level ` whose support
is completely contained in the box b are active, i.e., they are present in the
hierarchical spline basis.

If the second query QY2 returns true then all the basis functions of level `
whose support is contained in the box b are passive, i.e., they are not present in
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(a) first split (left) and quadtree (right)

(b) second split (left) and quadtree (right)

(c) third split (left) and quadtree (right)

(d) two new boxes (left) are inserted into the quadtree (right)

Fig. 5. Different steps performed by the INSERTBOX function to insert the box b =
[16, 8] × [24, 12] into the subdomain hierarchy of Figure 4. The subsequent splits are
shown on the subdomain hierarchy (blue lines on the left) with respect to the visit of
the quadtree (right).
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(a) level 0 and 1 (b) QY1 for level 0 (c) QY2 for level 0 (d) results of QY3

Fig. 6. Results of the three queries functions with respect to a subdomain hierarchy
(a) with two levels. In case of QY1 (b) and QY2 (c), the green/red boxes correspond to a
positive/negative answer. QY3 (d) returns 1 for the green boxes and 0 for the red ones.

the hierarchical spline basis. This is characterized by the following condition:

b ∩Ω` = ∅ ∨ b ⊆ Ω`, for some i > `. (3)

The third query QY3 returns the highest level ` with the property that Ω`

contains the box b.
All the three queries can easily be implemented with the help of the quadtree

structure described before. In particular, the structure of queries QY1 and QY2

is similar. We visit the quadtree until we find a leaf node or a node where the
result of the query changes from to true to false. At that point, we can conclude
the visit and return false. On the other hand, query QY3 requires a complete visit
of the quadtree.

Example 3. Figure 6(b–d) shows the results of the three queries with respect
to the subdomain hierarchy composed of two levels (level 0 and 1) shown on
Figure 6(a) for four sampled boxes of level 0. Figures 6(b) and (c) display the
results of QY1 and QY2 for ` = 0, respectively. The boxes in green correspond to a
positive answer to the query, the red boxes to a negative one. Finally, Figure 6(d)
shows the results for QY3. The green boxes correspond to answer 1 and the red
ones to answer 0.

4 Characteristic matrices

The characteristic matrices identify the tensor–product basis functions which
are present in the hierarchical basis.

4.1 Creating characteristic matrices

By using the quadtree structure defined in Section 3, we can generate the charac-
teristic matrices introduced in Section 2 to represent and evaluate THB–splines.
For the creation of these matrices we considered two different approaches:

– the one–by–one approach where we determine the entries of the characteristic
matrices one by one by applying QY3 to each single basis function;
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– the all–at–once approach where we try to set as many values as possible in
one single step. This requires a more sophisticated algorithm.

During the creation of the characteristic matrices by the all–at–once ap-
proach, we try to set many entries of the matrices at the same time. In order to
do this, the query functions are initially called for boxes which cover the initial
domain Ω0. The SETMAT algorithm below creates the characteristic matrices for
all subdomains in the subdomain hierarchy.

Algorithm SETMAT(qnode Q, seqmat X)

\\ qnode Q is the root of the quadtree which stores the subdomain hierarchy
\\ seqmat X is the sequence of characteristic matrices, i.e. X[L] is the char-
acteristic matrix of level L
for all levels L do {

Create the index set I for all functions of level L acting on Ω0. I is an
axis-aligned box in index space.

SETBOX(B,X[L]) }

SETMAT calls the algorithm SETBOX. When the answer active/passive cannot
be given for the current call, the considered box is split into 4 disjoint axis–
aligned bounding boxes and SETBOX function is recursively applied to them.

Algorithm SETBOX(aabbis I, mat XL)

\\ aabbis I is an axis-aligned box in index space
\\ mat XL is a characteristic matrix of level L
The level L is a global variable
Create the axis-aligned bounding box B covering all cells of level L which

belong to the supports of functions with indices in I

if QY1(B, L) then {

for all indices (i,j) in I do XL[i,j]=1 }

elseif QY2(B, L) then {

for all indices (i,j) in I do XL[i,j]=0 }

elseif I is a single pair (i,j) then {

k = QY3(B, L)

if k == L then XL[i,j]=1

else XL[i,j]=0 }

else {

split I into 4 disjoint axis-aligned bounding boxes I1-I4 by subdividing
each edge (approximately) into halves in index space.

Apply SETBOX to I1-I4 and XL }

Example 4. Figure 7 shows a subdomain hierarchy with two levels, consisting of
a square Ω0 and a subdomain Ω1 in the southeastern corner, which is shown
in blue. The four pictures (a–e) visualize several index sets I (shown by circles)
and the associated boxes B (grey) which are considered by SETBOX when creating
X0 for biquadratic splines.
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(a) (b) (c) (d) (e) (f)

Fig. 7. A subdomain hierarchy with two levels and some of the boxes I in index space
(shown as circles) along with the associated bounding boxes B in parameter space (grey)
considered by SETBOX when creating the characteristic matrix X0 for this subdomain
hierarchy (a–e). Active (green) and passive (red) functions of level 0 (f).

Initially, SETBOX considers the entire set of basis functions (a) and concludes
that it has to be subdivided. The northwestern subset is shown in (b). Query
QY1 returns 1, therefore the functions are all active; no subdivision is needed.
The northeastern and southwestern subsets (not shown) are dealt with similarly.
The southeastern subset (c), however, has to be subdivided. Considering its
northwestern subset (d) does not lead to a conclusion again, needing another
subdivision. The functions in this index set have to be analyzed one-by-one
(not shown). The northeastern and southwestern subsets (not shown) are dealt
with similarly. For the southeastern subset (e), however, query QY2 returns 1,
therefore the functions are all passive. Finally, the procedures arrives at the
correct classification of basis functions of level 0 (f).

As Example 5 shows the all–at–once approach is not necessarily faster com-
pared to the one–by–one mentioned at the beginning of this section. However,
the approach becomes considerably faster with an increasing number of levels.
This is demonstrated by the next example.

Example 5. Figure 8 compares the all–at–once setting with the one–by–one
method. The number of queries called by the one-by-one approach is the same
for the three hierarchical refinements in Figure 9 since it depends solely on the
number of basis functions. This approach is faster for small numbers of basis
functions, which typically correspond to a small numbers of hierarchical levels.
On the other hand, the all–at–once approach becomes faster for higher numbers
of basis functions in all the three considered cases since the number of queries
grows sub–linearly with respect to the number of basis functions.

4.2 Using sparse data structures

The representation of THB–splines in terms of characteristic matrices allows
a fast look–up during the evaluation process and a simple update of the val-
ues when the underlying subdomain hierarchy changes. The drawback of this
representation is the rather large memory consumption, which can exceed the
available physical memory even for relatively small meshes and low numbers of
levels. Indeed, it grows exponentially with the number of levels.
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Fig. 8. The plot visualizes the number of queries needed to create the characteristic
matrices for the three examples in Figure 2, 3 and 9. Compared to the all–at–once
approach (cyan: linear, green: curvilinear, red: square-shaped refinement), the one–by–
one approach (blue: same for all examples) is faster for small numbers of levels and
basis functions, but it becomes slower for higher ones.

Fig. 9. The three subdomain hierarchies considered in Example 6: rectangular (left),
linear (middle) and curvilinear (right) refinement, all with six levels.

This problem can be solved by using a suitable sparse matrix data struc-
ture. For our experiments, we chose the compressed sparse column (CSC) data
structure. The nonzero elements (read first by column) are stored in a one–
dimensional array. A second array stores the row indices corresponding to these
values and a third one collects the indices into the first two arrays of the leading
entry in each column [8].

As detailed in the next section, the CSC structure significantly reduces the
memory consumption of our approach (see Example 6). In addition, the price
paid for reducing the memory requirements is only a small increase of the com-
putational time (see Examples 7 and 8).
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Fig. 10. Memory needed to represent the characteristic matrices without (blue) and
with (green) the use of sparse data structures for different numbers of degrees of freedom
related to the square (top left), the circle (top right) and the line refinement (bottom)
refinement. The dashed red line has slope 1 and indicates linear growth.

5 Examples

We implemented the proposed algorithms and data structures in C++. For the
manipulation of the characteristic matrices we used the sparse MATLAB repre-
sentation in terms of the compressed sparse column approach mentioned at the
end of the previous section.

Example 6. We compare the memory consumption of full characteristic matrices
with the memory consumption of the matrices represented in the CSC structure
for the three subdomain hierarchies in Figure 9 (rectangular, linear, and curvi-
linear).

The experimental results in Figure 10 show that the memory needed by the
sparse matrix data structure is considerably smaller then the one related to
the full matrix representation. Moreover, the memory consumption grows only
linearly with the numbers of degrees of freedom (instead of exponentially with
the number of levels). This is the optimal result that one can expect, since a
coefficient for each active basis function needs to be stored anyway.

We observe a difference between the results related to the rectangular–shaped
refinement with respect to the linear and curvilinear case. The reason is the dif-
ferent nature of the refinement procedure. In the linear and curvilinear case, the
refined area is reduced at each new level and the coarser levels do not change (see
Figure 3). In the rectangular case, the refined area of the highest level is constant
and the size of lower level subdomains increases (see Figure 2). Thus, using the
sparse data structure does not decrease the order of memory consumption in
this case, since the number of degrees of freedom grows exponentially with the
number of levels.
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Fig. 11. The labels t1,. . . ,t20 on the horizontal axis represent uniform time intervals
between minimal (0.153 ms) and maximal (0.195 ms) time needed by the evaluation
algorithm. The vertical axis indicates the number of points whose evaluation time falls
into these intervals.

The next example analyzes the influence of using the sparse data structures
to the time needed to evaluate the multilevel spline functions using the algorithm
EVAL.

Example 7. Figure 11 visualizes the distribution of the computation times needed
to evaluate the multilevel spline function at 1000 points with (blue bars in the
plot) and without (red bars in the plot) the use of sparse data structures for the
linear refinement shown in Figure 9. Two facts can be observed:

– the evaluation time does not depend significantly on the location of the point
with respect to the subdomain hierarchy;

– using the sparse data structure increases the evaluation time only by a very
small amount.

Note that the evaluation times in this example vary between 0.153 and 0.195
milliseconds.

Finally we analyze the relation between evaluation time and the number of
levels in the hierarchy.

Example 8. We consider the curvilinear refinement shown on the right of Fig-
ure 9. Figure 12 compares the evaluation times for 10,000 parameters obtained
by using either the full or the sparse matrix representation. We may note that
the computational time grows linearly with the increasing level of refinement
for both representations, with a small overhead caused by using the sparse data
structure. The values do not include the time necessary for creating the corre-
sponding data structures, only the evaluation algorithm EVAL is considered.

6 Conclusion

We proposed an efficient implementation of data structures and related algo-
rithms for the evaluation and manipulation of truncated hierarchical B–splines.
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Fig. 12. Computational time needed to evaluate the multilevel spline function at 10,000
points for curvilinear refinement with various numbers of levels with (green) and with-
out (blue) using the sparse data structure.

Several examples show the advantageous behavior of the data structures and
algorithms in terms of memory overheads and computational costs. Indeed, the
memory consumption grows only linearly with the number of degrees of freedom,
but there is no significant increase of the time needed to evaluate the multilevel
spline function.

The generalization of the proposed algorithms to handle the non–uniform
case and multiple knots can be addressed by considering the subdomain hierarchy
in index space rather than in the physical one. Interesting subjects for future
research include the extension to multivariate splines and the identification of
the refinement algorithm for THB–splines.
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A. and Rabut, C. and Schumaker, L. L. (Eds.), Surface Fitting and Multiresolution
Methods, Vanderbilt University Press, Nashville, 209–218 (1997).

12. Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwen-
dungen, PhD Thesis, Universität Stuttgart (1998).

13. Lee, S., Wolberg, G., and Shin, S. Y.: Scattered data interpolation with multilevel
B–splines, IEEE Trans. on Visualization and Computer Graphics 3, 228–244 (1997)
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