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Abstract

In standard inverse problems, the task is to solve an operator equa-
tion from given noisy data. However, sometimes also the operator is
not known exactly. Therefore we propose a method that allows errors
both in the operator and the data. In particular, we consider operator
equations where the operator can be characterized by a function. For
the stable reconstruction we propose the use of a Tikhonov-type func-
tional with a generalized misfit term and an additional penalty term
which promotes sparsity. Using an appropriate parameter choice rule
for the two regularization parameters, we prove convergence and con-
vergence rates for the method, and provide a first numerical example.

1 Introduction

In this paper, we consider the inversion of a linear operator A0 : V → H

defined between Hilbert spaces, i.e., we want to solve the equation

A0f = g0 . (1)

Additionally we will assume that only noisy data gδ with

‖g0 − gδ‖H ≤ δ

is available. If the problem of solving (1) is ill-posed, i.e., the solution of the
equation depends not continuously on the data [12], then even small noise
in the data can create large deviations in the reconstructions. In this case,
regularization methods have to be used for a stable inversion. In standard
Inverse Problems theory it is assumed that the operator A0 is known ex-
actly. This, however, is not always the case, as in some applications only

†ismael.bleyer@dk-compmath.jku.at
‡ronny.ramlau@jku.at
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an approximation Aε of the exact operator is known. A typical example
from imaging is a deconvolution problem with approximately known or un-
known convolution kernel, as, e.g., it was the case for early Hubble images
[3, 14, 4, 1]. Another example is connected to Inverse Scattering, where the
Linear Sampling Method involves the solution of an integral equation with
approximately known kernel, see [5] and references therein.

Over the last decades, several approaches have been proposed that con-
sider the inversion of an equation with both noise in the data and in the
operator. Most of the papers published in journals focus on the finite di-
mensional setup. However, an entire chapter in the book [24] is devoted
to solving the problem in Hilbert spaces. Unfortunately the book is only
available in Russian and thus is not easily accessible.

In 1980, Golub and Van Loan [11] investigated a fitting technique based
on the least squares problem for solving a matrix equation with incorrect
matrix and data vector, the so-called total least squares (TLS) method, for
more details see [25, 19]. Later, Tikhonov regularization was recast as a TLS
formulation resulting in the regularized total least squares method (R-TLS),
see [11, 13, 10].

In a finite dimensional setting1, the R-TLS method can be formulated
as constrained minimization problem:

minimize
∥∥A−Aε∥∥2

F
+
∥∥g − gδ∥∥2

2

subject to

{
Af = g∥∥Lf∥∥2

2
≤M .

The optimal pair (A, g) minimizes the residual in the operator and in the
data, measured by Frobenius and Euclidian norm, respectively. Moreover,
the solution pair is connected via the equation Af = g, where the element
f belongs to a ball in V of radius M . The “size” of the ball is measured
by a linear and invertible operator L (often the identity). Any element f
satisfying these constraints defines a R-TLS solution.

The accuracy of the R-TLS depends heavily on the right choice of M ,
which is usually difficult to obtain. An alternative is the dual regularized
total least square (D-RTLS) method, where the approximation f to the
solution of the equation (1) is given as the minimizer of the following problem

minimize
∥∥Lf∥∥2

2

subject to


Af = g∥∥g − gδ∥∥2

2
≤ δ∥∥A−Aε∥∥2

F
≤ ε ,

where ‖·‖F denotes again the Frobenius norm. Please note that most of the

1we keep the same notation as in the infinite dimensional setup.
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available results on this method do again require a finite dimensional setup,
see, e.g., [17, 18, 23].

In our approach, we would like to restrict our attention to linear op-
erators that can be mainly characterized by a function, as it is, e.g., the
case for linear integral operators, where the kernel function determines the
behavior of the operator. Moreover, we will assume that the noise in the
operator is due to an incorrect characterizing function. This approach will
allow us to treat the problem of finding a solution of (1) from incorrect data
and operator in the framework of Tikhonov regularization rather than as a
constraint minimization problem.

The further contents of the paper is organized as follows: in Section
2 we formulate the underlying problem and we include few examples as
motivation. In Section 3 we introduce the proposed method as well as its
mathematical setting. We analyze its regularization properties: existence,
stability and convergence in Section 4. Additionally we study source condi-
tion and derive convergence rates with respect to Bregman distance. Finally,
in Section 5, we shortly comment computational issues through a numerical
illustration.

2 Problem formulation and examples

As mentioned above, we aim at the inversion of linear operator equation
A0f = g0 from noisy data gδ and incorrect operator Aε. Additionally we
assume that the operators A0, Aε : V → H, V,H Hilbert spaces, can be
characterized by functions k0, kε ∈ U. To be more specific, we consider
operators

Ak : V −→ H

v 7−→ B(k, v) ,

i.e., Akv = B(k, v), where B is a bilinear operator

B : U× V→ H

fulfilling, for some C > 0,∥∥B(k, f)
∥∥
H
≤ C

∥∥k∥∥
U

∥∥f∥∥
V
. (2)

From (2) follows immediately∥∥B(k, ·)
∥∥
V→H

≤ C
∥∥k∥∥

U
. (3)

Associated with the bilinear operator B, we also define the linear operator

Cf : U −→ H

u 7−→ B(u, f) ,
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i.e., Cfu = B(u, f).
From now on, let us identify A0 with Ak0 and Aε with Akε . From (3) we
deduce immediately

‖A0 −Aε‖ ≤ C‖k0 − kε‖ , (4)

i.e., the operator error norm is controlled by the error norm of the charac-
terizing functions. Now we can formulate our problem as follows:

Solve A0f = g0 (5a)

from noisy data gδ with ‖g0 − gδ‖ ≤ δ (5b)

and noisy function kε with ‖k0 − kε‖ ≤ ε . (5c)

Please note that the problem with explicitly known k0 (or the operator A0)
is often ill-posed and needs regularization for a stable inversion. Therefore
we will also propose a regularizing scheme for the problem (5a)-(5c). Now
let us give some examples.

Example 1. Consider a linear integral operator A0 defined through

(A0f) (s) :=

∫
Ω
k0(s, t)f(t)dt = B(k0, f)

with V = H = L2(Ω) and let k0 be a function in U = L2(Ω2). Then the
bilinear operator B yields

‖B(k0, f)‖ ≤ ‖k0‖U ‖f‖V.

The considered class of operators also contains deconvolution problems,
which are important in imaging, as well as blind deconvolution problems
[15, 3, 14], where it is assumed that also the exact convolution kernel is
unknown.

Example 2. In medical imaging, the data of Single Photon Emission Com-
puted Tomography (SPECT) is described by the attenuated Radon transform
[20, 7, 21]:

Af(s, ω) =

∫
R

f(sω⊥ + tω) · e
−

∞∫
t
µ(sω⊥+τω) dτ

dt .

The function µ is the density distribution of the body. In general, the
density distribution is also unknown. Modern scanner, however, perform a
CT scan in parallel. Due to measurement errors, the reconstructed density
distribution is also incorrect. Setting

kε(s, t, ω) = e
−

∞∫
t
µε(sω⊥+τω) dτ

,
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we have
Aεf = B(kε, f) ,

and similar estimates as in (2) can be obtained.

3 Double Regularized Total Least Squares (dbl-
RTLS)

Due to our assumptions on the structure of the operator A0, the inverse
problem of identifying the function f true from noisy measurements gδ and
inexact operator Aε can now be rewritten as the task of solving the inverse
problem

B(k0, f) = g0 (6)

from noisy measurements (kε, gδ) fulfilling∥∥g0 − gδ
∥∥
H
≤ δ, (7a)

and ∥∥k0 − kε
∥∥
U
≤ ε. (7b)

In most applications, the “inversion” of B will be ill-posed (e.g., if B is
defined via a Fredholm integral operator), and a regularization strategy is
needed for a stable solution of the problem (6).

The structure of our problem allows to reformulate (5a)-(5c) as an un-
constrained Tikhonov-type problem:

minimize
(k,f)

Jδ,εα,β
(
k, f

)
:=

1

2
T δ,ε (k, f) +Rα,β (k, f) , (8a)

where
T δ,ε (k, f) =

∥∥B(k, f)− gδ
∥∥2

+ γ
∥∥k − kε∥∥2

(8b)

and
Rα,β (k, f) =

α

2

∥∥Lf∥∥2
+ βR(k). (8c)

Here, α and β are the regularization parameters which have to be cho-
sen properly, γ is a scaling parameter, L is a bounded linear and continu-
ously invertible operator and R : X ⊂ U → [0,+∞] is proper, convex and
weakly lower semi-continuous functional . We wish to note that most of the
available papers assume that L is a densely defined, unbounded self-adjoint
and strictly positive operator, see, e.g. [17, 16]. For our analysis, however,
boundedness is needed and it is an open question whether the analysis could
be extended to cover unbounded operators, too.

We call this scheme the double regularized total least squares method
(dbl-RTLS). Please note that the method is closely related to the total least

squares method, as the term
∥∥k−kε∥∥2

controls the error in the operator. The
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functional Jδ,εα,β is composed as the sum of two terms: one which measures
the discrepancy of data and operator, and one which promotes stability. The
functional T δ,ε is a data-fidelity term based on the TLS technique, whereas
the functional Rα,β acts as a penalty term which stabilizes the inversion with
respect to the pair (k, f). As a consequence, we have two regularization
parameters, which also occurs in double regularization, see, e.g., [26].

The domain of the functional Jδ,εα,β :
(
U∩X

)
×V −→ R can be extended

over U × V by setting R(k) = +∞ whenever k ∈ U \X. Then R is proper,
convex and weak lower semi-continuous functional in U.

4 Well-posedness and convergence rates

In this Section we shall analyze some analytical properties of the proposed
dbl-RTLS method. In particular, we prove its well-posedness as a regulariza-
tion method, i.e., the minimizers of the regularization functional Jδ,εα,β exist
for every α, β > 0, depend continuously on both gδ and kε, and converge to
a solution of B(k0, f) = g0 as both noise level approaches zero, provided the
regularization parameters α and β are chosen appropriately.

For the pair (k, f) ∈ U× V we use the canonical inner product

〈(k1, f1), (k2, f2)〉U×V := 〈k1, k2〉U + 〈f1, f2〉V ,

i.e., convergence is defined componentwise. For the upcoming results, we
need the following assumption on the operator B:

Assumption A.

(A1) B is strongly continuous, i.e., if (kn, fn) ⇀ (k̄, f̄) then B(kn, fn) →
B(k̄, f̄).

Proposition 4.1. Let Jδ,εα,β be the functional defined in (8). Assume that
L is a bounded linear and continuously invertible operator and B fulfills
Assumption A1. Then Jδ,εα,β is a positive, weakly lower semi-continuous and
coercive functional.

Proof. By the definition of T δ,ε, R and Assumption A1, Jδ,εα,β is posi-
tive and w-lsc. As the operator L is continuously invertible, there exists a
constant c > 0 such that

c
∥∥f∥∥ ≤ ∥∥Lf∥∥

for all f ∈ D(L). We get

Jδ,εα,β
(
k, f

)
≥ γ‖k − kε‖2 +

αc

2
‖f‖2 →∞

as
∥∥(k, f)

∥∥2
:=
∥∥k∥∥2

+
∥∥f∥∥2 →∞ and therefore Jδ,εα,β is coercive.
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We point out here that the problem (6) may not even have a solution
for any given noisy measurements (kε, gδ) whereas the regularized problem
(8) does, as stated below:

Theorem 4.2 (Existence). Let the assumptions of Proposition 4.1 hold.

Then the functional Jδ,εα,β
(
k, f

)
has a global minimizer.

Proof. By Proposition 4.1, Jδ,εα,β
(
k, f

)
is positive, proper and coercive,

i.e., there exists (k, f) ∈ D(Jδ,εα,β) such that Jδ,εα,β
(
k, f

)
<∞.

Let ν = inf{ Jδ,εα,β
(
k, f

)
| (k, f) ∈ dom Jδ,εα,β}. Then, there exists M > 0

and a sequence (kj , f j) ∈ dom Jδ,εα,β such that J(kj , f j)→ ν and

Jδ,εα,β
(
kj , f j

)
≤M ∀j.

In particular we have

1

2
α
∥∥Lf j∥∥2 ≤M and

1

2
γ
∥∥kj − kε∥∥2 ≤M.

Using ∥∥kj∥∥− ∥∥kε∥∥ ≤ ∥∥kj − kε∥∥ ≤ (2M

γ

)1/2

it follows ∥∥kj∥∥ ≤ (2M

γ

)1/2

+
∥∥kε∥∥ and

∥∥f j∥∥ ≤ (2M

αc2

)1/2

,

i.e., the sequences (kj) and (f j) are bounded. Thus there exist subsequences
of (kj), (f j) (for simplicity, again denoted by (kj) and (f j)) s.t.

kj ⇀ k̄ and f j ⇀ f̄,

and thus
(kj , f j) ⇀ (k̄, f̄) ∈ (U ∩X)× V.

By the w-lsc of the functional Jδ,εα,β we obtain

ν ≤ Jδ,εα,β
(
k̄, f̄

)
≤ lim inf Jδ,εα,β

(
kj , f j

)
= limJδ,εα,β

(
kj , f j

)
= ν

Hence ν = Jδ,εα,β
(
k̄, f̄

)
is the minimum of the functional and (k̄, f̄) is a

global minimizer,

(k̄, f̄) = arg min{ Jδ,εα,β
(
k, f

)
| (k, f) ∈ D(Jδ,εα,β)}.

The stability property of the standard Tikhonov regularization strategy
for problems with noisy right hand side is well known. We next investigate
this property for the Tikhonov-type regularization scheme (8) for perturba-
tions on both (kε, gδ).
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Theorem 4.3 (Stability). Let α, β > 0 be fixed the regularization param-
eters, L a bounded and continuously invertible operator and (gδj )j, (kεj )j
sequences with gδj → gδ and kεj → kε. If (kj , f j) denote minimizers of

J
δj ,εj
α,β with data gδj and characterizing function kεj , then there exists a con-

vergent subsequence of (kj , f j)j. The limit of every convergent subsequence

is a minimizer of the functional Jδ,εα,β.

Proof. By the definition of (kj , f j) as minimizers of J
δj ,εj
α,β we have

J
δj ,εj
α,β

(
kj , f j

)
≤ Jδj ,εjα,β

(
k, f

)
∀(k, f) ∈ D(Jδ,εα,β), (9)

With (k̃, f̃) := (kδ,εα,β, f
δ,ε
α,β) we get J

δj ,εj
α,β

(
k̃, f̃

)
→ Jδ,εα,β

(
k̃, f̃

)
. Hence, there

exists a c̃ > 0 so that J
δj ,εj
α,β

(
k̃, f̃

)
≤ c̃ for j sufficiently large. In particular,

we observe with (9) that
(∥∥kj − kεj∥∥)j as well as

(∥∥Lf j∥∥)
j

are uniformly
bounded.

Analogous to the proof of Theorem 4.2 we conclude that the sequence
(kj , f j)j is uniformly bounded. Hence there exists a subsequence (for sim-
plicity also denoted by(kj , f j)j) such that

kj ⇀ k̄ and f j ⇀ f̄.

By the weak lower semicontinuity (w-lsc) of the norm and continuity of
B we have ∥∥B(k̄, f̄)− gδ

∥∥ ≤ lim inf
j

∥∥B(kj , f j)− gδj
∥∥

and ∥∥k̄ − kε∥∥ ≤ lim inf
j

∥∥kj − kεj∥∥ .
Moreover, (9) implies

Jδ,εα,β
(
k̄, f̄

)
≤ lim inf

j
J
δj ,εj
α,β

(
kj , f j

)
≤ lim sup

j
J
δj ,εj
α,β

(
k, f

)
= lim

j
J
δj ,εj
α,β

(
k, f

)
= Jδ,εα,β

(
k, f

)
for all (k, f) ∈ D(Jδ,εα,β). In particular, Jδ,εα,β

(
k̄, f̄

)
≤ Jδ,εα,β

(
k̃, f̃

)
. Since (k̃, f̃)

is by definition a minimizer of Jδ,εα,β, we conclude Jδ,εα,β
(
k̄, f̄

)
= Jδ,εα,β

(
k̃, f̃

)
and

thus
lim
j→∞

J
δj ,εj
α,β

(
kj , f j

)
= Jδ,εα,β

(
k̄, f̄

)
. (10)

It remains to show
kj → k̄ and f j → f̄ .
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As the sequences are weakly convergent, convergence of the sequences
holds if ∥∥kj∥∥→ ∥∥k̄∥∥ and

∥∥f j∥∥→ ∥∥f̄∥∥.
The norms on U and V are w-lsc, thus it is sufficient to show∥∥k̄∥∥ ≥ lim sup

∥∥kj∥∥ and
∥∥f̄∥∥ ≥ lim sup

∥∥f j∥∥.
The operator L is bounded and continuously invertible, therefore f j → f̄ if
and only if Lf j → Lf̄ . Therefore, we accomplish the prove for the sequence
(Lf j)j . Now suppose there exists τ1 as

τ1 := lim sup
∥∥Lf j∥∥ > ∥∥Lf̄∥∥

and there exists a subsequence (fn)n of (f j)j such that Lfn ⇀ Lf̄ and∥∥Lfn∥∥→ τ1.
From the first part of this proof (10), it holds

lim
j→∞

J
δj ,εj
α,β

(
kj , f j

)
= Jδ,εα,β

(
k̄, f̄

)
.

Using (8) we observe

lim
n→∞

(
1

2

∥∥B(kn, fn)− gδn
∥∥2

+
γ

2

∥∥kn − kεn∥∥2
+ βR(kn)

)
=

1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+
γ

2

∥∥k̄ − kε∥∥2
+ βR(k̄) +

α

2

(∥∥Lf̄∥∥2 − lim
n→∞

∥∥Lfn∥∥2
)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+
γ

2

∥∥k̄ − kε∥∥2
+ βR(k̄) +

α

2

(∥∥Lf̄∥∥2 − τ1
2
)

<
1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+
γ

2

∥∥k̄ − kε∥∥2
+ βR(k̄) ,

which is a contradiction to the w-lsc property of the involved norms and the
functional R. Thus Lf j → Lf̄ and

f j → f̄ .

The same idea can be used in order to prove convergence of the charac-
terizing functions. Suppose there exists τ2 s.t.

τ2 := lim sup
∥∥kj − kε∥∥ > ∥∥k̄ − kε∥∥

and there exists a subsequence (kn)n of (kj)j such that (kn− kε) ⇀ (k̄− kε)
and

∥∥kn − kε∥∥→ τ2.
By the triangle inequality we get∥∥kn − kε∥∥− ∥∥kεn − kε∥∥ ≤ ∥∥kn − kεn∥∥ ≤ ∥∥kn − kε∥∥+

∥∥kεn − kε∥∥ ,
9



and thus
lim
n→∞

∥∥kn − kεn∥∥ = lim
n→∞

∥∥kn − kε∥∥ .
Therefore

lim
n→∞

(
1

2

∥∥B(kn, fn)− gδn
∥∥2

+ βR(kn)

)
=

1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+
γ

2

(∥∥k̄ − kε∥∥2 − lim
n→∞

∥∥kn − kεn∥∥2
)

+ βR(k̄)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+
γ

2

(∥∥k̄ − kε∥∥2 − τ2
2
)

+ βR(k̄)

<
1

2

∥∥B(k̄, f̄)− gδ
∥∥2

+ βR(k̄) ,

which is again a contradiction to the w-lsc of the involved norms and func-
tionals.

4.1 Convergence

In the following, we investigate the regularization property of our approach,
i.e., we show, under an appropriate parameter choice rule, that the mini-
mizers (kδ,εα,β, f

δ,ε
α,β) of the functional (8) converge to an exact solution as the

noise level (δ, ε) goes to zero.

Let us first clarify our notion of a solution. In principle, the equa-
tion B(k, f) = g might have different pairs (k, f) as solution. However, as
kε → k0 as ε → 0, we get k0 for free in the limit, that is, we are interested
in reconstructing solutions of the equation B(k0, f) = g. In particular, we
want to reconstruct a solution with minimal value of ‖Lf‖, and therefore
define:

Definition 4.4. We call f † a minimum-norm solution if

f † = arg min
f

{‖Lf‖ | B(k0, f) = g0} .

The definition above is the standard minimum-norm solution for the
classical Tikhonov regularization (see for instance [9]).

Furthermore, we have to introduce a regularization parameter choice
which depends on both noise level, defined through (11) in the upcoming
theorem.

Theorem 4.5 (convergence). Let the sequences of data gδj and kεj with∥∥gδj − g0

∥∥ ≤ δj and
∥∥kεj − k0

∥∥ ≤ εj be given with εj → 0 and δj → 0.
Assume that the regularization parameters αj = α(εj , δj) and βj = β(εj , δj)
fulfill αj → 0, βj → 0, as well as

lim
j→∞

δ2
j + γε2j
αj

= 0 and lim
j→∞

βj
αj

= η (11)

10



for some 0 < η <∞.
Let the sequence

(kj , f j)j :=
(
k
δj ,εj
αj ,βj

, f
δj ,εj
αj ,βj

)
j

be the minimizer of (8), obtained from the noisy data gδj and kεj , regular-
ization parameters αj and βj and scaling parameter γ.

Then there exists a convergent subsequence of (kj , f j)j with kj → k0

and the limit of every convergent subsequence of (f j)j is a minimum-norm
solution of (6).

Proof. The minimizing property of (kj , f j) guarantees

J
δj ,εj
αj ,βj

(kj , f j) ≤ Jδj ,εjαj ,βj
(k, f), ∀(k, f) ∈ D(Jδ,εα,β).

In particular,

0 ≤ Jδj ,εjαj ,βj
(kj , f j) ≤ Jδj ,εjαj ,βj

(k0, f
†) ≤

δ2
j + γε2j

2
+
αj
2

∥∥Lf †∥∥2
+ βjR(k0), (12)

where f † denotes a minimum-norm solution of the equation B(k0, f) = g0,
see Definition 4.4.

Combining this estimate with the assumptions on the regularization pa-
rameters, we conclude that the sequences∥∥B(kj , f j)− gδj

∥∥2
,
∥∥kj − kεj∥∥2

,
∥∥Lf j∥∥2

,R(kj)

are uniformly bounded and by the invertibility of L, the sequence (kj , f j)j
is uniformly bounded.

Therefore it exists a weakly convergent subsequence (km, fm)m := (kjm , f jm)jm
of (kj , f j)j with

(km, fm) ⇀ (k̄, f̄) .

In the following we will prove that for the weak limit (k̄, f̄) holds k̄ = k0

and f̄ is a minimum-norm solution.
By the weak lower semi-continuity of the norm we have

0 ≤ 1

2

∥∥B(k̄, f̄)− g0

∥∥2
+
γ

2

∥∥k̄ − k0

∥∥2

≤ lim inf
m→∞

{1

2

∥∥B(km, fm)− gδm
∥∥2

+
γ

2

∥∥km − kεm∥∥2
}

(12)

≤ lim inf
m→∞

{δ2
m + γε2m

2
+
αm
2

∥∥Lf †∥∥2
+ βmR(k0)

}
= 0,

where the last equality follows from the parameter choice rule.
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In particular, we have

k̄ = k0 and B(k̄, f̄) = g0.

From (12) follows

1

2

∥∥Lfm∥∥2
+
βm
αm

R(km) ≤ δ2
m + γε2m

2αm
+

1

2

∥∥Lf †∥∥2
+
βm
αm

R(k0) .

Again, weak lower semi-continuity of the norm and the functional R

result in

1

2

∥∥Lf̄∥∥2
+ ηR(k̄) ≤ lim inf

m→∞

{1

2

∥∥Lfm∥∥2
+ ηR(km)

}
= lim inf

m→∞

{1

2

∥∥Lfm∥∥2
+
βm
αm

R(km)
}

≤ lim inf
m→∞

{δ2
m + γε2m

2αm
+

1

2

∥∥Lf †∥∥2
+
βm
αm

R(k0)
}

(11)
=

1

2

∥∥Lf †∥∥2
+ ηR(k0) .

As k̄ = k0 we conclude that f̄ is a minimum-norm solution and

1

2

∥∥Lf̄∥∥2
+ ηR(k̄) = lim

m→∞

{
1

2

∥∥Lfm∥∥2
+
βm
αm

R(km)

}
(13)

=
1

2

∥∥Lf †∥∥2
+ ηR(k0).

So far we showed the existence of a subsequence (km, fm)m which con-
verges weakly to (k0, f̄), where f̄ is a minimizing solution. It remains to
show that the sequence also converges in the strong topology of U× V.

In order to show fm → f̄ in V, we prove Lfm → Lf̄ . Since is Lfm ⇀ Lf̄
it is sufficient to show ∥∥Lfm∥∥→ ∥∥Lf̄∥∥,
or, as the norm is w.-l.s.c.,

lim sup
m→∞

∥∥Lfm∥∥ ≤ ∥∥Lf̄∥∥.
Assume that the above inequality does not hold. Then there exists a

constant τ1 such that

τ1 := lim sup
m→∞

∥∥Lfm∥∥2
>
∥∥Lf̄∥∥2

and there exists a subsequence of (Lfm)m denoted by (Lfn)n := (Lfmn)mn
such that

Lfn ⇀ Lf̄ and
∥∥Lfn∥∥2 → τ1.

12



From (13) and the hypothesis stated above

lim sup
n→∞

βn
αn

R(kn) = ηR(k0) +
1

2

(∥∥Lf̄∥∥2 − lim sup
n→∞

∥∥Lfn∥∥2
)

< ηR(k0),

which is a contradiction to the w.-l.s.c. of R. Thus

lim sup
m→∞

∥∥Lfm∥∥ ≤ ∥∥Lf̄∥∥,
i.e., fm → f̄ in V.

The convergence of the sequence (km)m in the topology of U follows
straightforward by∥∥km − k0

∥∥ ≤
∥∥km − kεm∥∥+

∥∥kεm − k0

∥∥
≤

∥∥km − kεm∥∥+ εm
(12)−→ 0 as m→∞.

Moreover, if f † is unique, the assertion about the convergence of the whole
sequence (kj , f j)j follows from the fact that then every subsequence of the
sequence converges towards the same limit (k0, f

†).

Remark 4.6. Note that the easiest parameter choice rule fulfilling condition
(11) is given by

β = ηα, η > 0.

For this specific choice, we only have one regularization parameter left, and
the problem (8) reduces to

minimize
(k,f)

Jα
(
k, f

)
:=

1

2
T δ,ε (k, f) + αΦ(k, f) , (14)

where T δ,ε is defined in (8b) and

Φ(k, f) :=
1

2

∥∥Lf∥∥2
+ ηR(k). (15)

4.2 Convergence rates

It is well known that, under the general assumptions of the previous section,
the rate of convergence of (kj , f j)j → (k0, f

†) for (δj , εj)→ 0 will be in gen-
eral arbitrarily slow. For linear and nonlinear inverse problems convergence
rates were obtained if source conditions are satisfied [8, 9, 2, 22].

For our analysis, we will use the following source condition:

R(B′(k0, f
†)∗) ∩ ∂Φ

(
k0, f

†) 6= ∅,

13



where ∂Φ denotes the subdifferential of the functional Φ defined in (15).
This condition says there exists a subgradient (ξk0 , ξf†) of Φ s.t. (ξk0 , ξf†) =

B′(k0, f
†)∗ω, ω ∈ H.

Convergence rates are often given with respect to the Bregman distance
generated by the regularization functional Φ. In our setting, the distance is
defined by

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
= Φ(u, v)− Φ(ū, v̄)−

〈
(ξū, ξv̄) , (u, v)− (ū, v̄)

〉
(16)

for (ξū, ξv̄) ∈ ∂Φ
(
ū, v̄
)
.

Lemma 4.7. Let Φ be the functional defined in (15) with L = I. Then the
Bregman distance is given by

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
=

1

2

∥∥v − v̄∥∥2
+ ηDζ

R

(
u, ū

)
, (17)

with ζ ∈ ∂R
(
ū
)
.

Proof. By definition of Bregman distance we have

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
=

(
1

2
‖v‖2 + ηR(u)

)
−
(

1

2
‖v̄‖2 + ηR(ū)

)
−
〈
(ξū, ξv̄) , (u− ū, v − v̄)

〉
=

1

2
‖v‖2 − 1

2
‖v̄‖2 −

〈
ξv̄ , v − v̄

〉
+ηR(u)− ηR(ū)−

〈
ξū , u− ū

〉
=

1

2
‖v − v̄‖2 + ηDζ

R

(
u, ū

)
with ζ = 1

η ξū. Note that the functional Φ is composed as a sum of a
differentiable and a convex functional. Therefore, the subgradient of the
first functional is an unitary set and it holds (see, e.g.,[6])

∂Φ
(
ū, v̄
)

= ∂
(
‖v̄‖2 + ηR(ū)

)
=

{
(ξū, ξv̄) ∈ U∗ × V∗ | ξv̄ ∈ ∂‖v̄‖2 and ξū ∈ η∂R

(
ū
)}

For the convergence rate analysis, we need the following result:

Lemma 4.8. Let B : U × V → H be a bilinear operator with ‖B(k, f)‖ ≤
C ‖k‖ ‖f‖. Then its Fréchet derivative at point (k, f) is given by

B′(k, f)(u, v) = B(u, f) +B(k, v),
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(u, v) ∈ U × V. Moreover, the remainder of the Taylor expansion can be
estimated by∥∥B(k + u, f + v)−B(k, f)−B′(k, f)(u, v)

∥∥ ≤ C

2

∥∥(u, v)
∥∥2

. (18)

Proof. The proof is straightforward and follows from the bilinearity of
the operator and its boundedness.

The following theorem gives an error estimate within an infinite dimen-
sional setting, similar to the results found in [17, 23]. Please note that we
have not only an error estimate for the solution f , but also for the character-
izing function k, i.e., we are able to derive convergence rate for the operator
via (4).

Theorem 4.9 (Convergence rates). Let gδ ∈ H with
∥∥g0−gδ

∥∥ ≤ δ, kε ∈ U

with
∥∥k0 − kε

∥∥ ≤ ε and let f † be a minimum norm solution. For the regu-
larization parameter 0 < α < ∞, let (kα, fα) denote the minimizer of (14)
with L = I. Moreover, assume that the following conditions hold:

(i) There exists ω ∈ H satisfying

(ξk0 , ξf†) = B′(k0, f
†)∗ω,

with (ξk0 , ξf†) ∈ ∂Φ
(
k0, f

†).
(ii) C

∥∥ω∥∥
H
< min

{
1, γ2α

}
, where C is the constant in (18).

Then, for the parameter choice α ∼ (δ + ε) holds∥∥B(kα, fα)−B(k0, f
†)
∥∥
H

= O (δ + ε)

and
Dξ

Φ

(
(kα, fα), (k0, f

†)
)

= O (δ + ε) .

Proof. Since (kα, fα) is a minimizer of Jα, defined in (14), it follows

Jα
(
kα, fα

)
≤ Jα

(
k, f

)
∀(k, f) ∈ U× V.

In particular,

Jα
(
kα, fα

)
≤ Jα

(
k0, f

†)
≤ δ2

2
+
γε2

2
+ αΦ(k0, f

†). (19)

Using the definition of the Bregman distance (at the subgradient (ξk0 , ξf†) ∈
∂Φ
(
k0, f

†)), we rewrite (19) as

1

2

∥∥B(kα, fα)− gδ
∥∥2

+
γ

2

∥∥kα − kε∥∥2
(20)

≤ δ2 + γε2

2
+ α

(
Φ(k0, f

†)− Φ(kα, fα)
)

=
δ2 + γε2

2
− α

[
Dξ†

Φ

(
(kα, fα), (k0, f

†)
)

+
〈
(ξk0 , ξf†) , (kα, fα)− (k0, f

†)
〉]
.
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Using

1

2

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 ≤

∥∥B(kα, fα)− gδ
∥∥2

+
∥∥gδ − g0

∥∥2

≤
∥∥B(kα, fα)− gδ

∥∥2
+ δ2

and

γ

2

∥∥kα − k0

∥∥2 ≤ γ
∥∥kα − kε∥∥2

+ γ
∥∥kε − k0

∥∥2

≤ γ
∥∥kα − kε∥∥2

+ γε2,

we get

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2

+
γ

4

∥∥kα − k0

∥∥2

≤ 1

2

∥∥B(kα, fα)− gδ
∥∥2

+
γ

2

∥∥kα − kε∥∥2
+

(
δ2 + γε2

2

)
(20)

≤
(
δ2 + γε2

)
− α

[
Dξ†

Φ

(
(kα, fα), (k0, f

†)
)

+
〈
(ξk0 , ξf†) , (kα, fα)− (k0, f

†)
〉]
.

Denoting r := B(kα, fα)−B(k0, f
†)−B′(k0, f

†)((kα, fα)− (k0, f
†)) and

using the source condition (i), the last term in the above inequality can be
estimated as

−
〈
(ξk0 , ξf†) , (kα, fα)− (k0, f

†)
〉

= −
〈
B′(k0, f

†)∗ω , (kα, fα)− (k0, f
†)
〉

=
〈
ω , −B′(k0, f

†)
(
(kα, fα)− (k0, f

†)
)〉

=
〈
ω , B(k0, f

†)−B(kα, fα) + r
〉

≤ ‖ω‖
∥∥B(kα, fα)−B(k0, f

†)
∥∥+ ‖ω‖ ‖r‖

(18)

≤ ‖ω‖
∥∥B(kα, fα)−B(k0, f

†)
∥∥+

C

2
‖ω‖

∥∥(kα, fα)− (k0, f
†)
∥∥2
.

Thus, we obtain

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2

+
γ

4

∥∥kα − k0

∥∥2
+ αDξ†

Φ

(
(kα, fα), (k0, f

†)
)

(21)

≤
(
δ2 + γε2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥+ α

C

2
‖ω‖

∥∥(kα, fα)− (k0, f
†)
∥∥2
.

Using (17) and the definition of the norm on U×V, (21) can be rewritten
as

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2

+
α

2
(1− C ‖ω‖)

∥∥fα − f †∥∥2
+ αηDζ

R

(
kα, k0

)
≤

(
δ2 + γε2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥+

1

2

(
αC ‖ω‖ − γ

2

)∥∥kα − k0

∥∥2

≤
(
δ2 + γε2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥, (22)
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as
(
C ‖ω‖ − γ

2α

)
≤ 0 according to (ii). As (1− C ‖ω‖) as well as the Breg-

man distance are non-negative, we derive

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2−α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥−(δ2 + γε2

)
≤ 0,

which only holds for∥∥B(kα, fα)−B(k0, f
†)
∥∥ ≤ 2α ‖ω‖+ 2

√
α2 ‖ω‖2 + (δ2 + γε2).

Using the above inequality to estimate the right-hand side of (22) yields

∥∥fα−f †∥∥2 ≤ 2

1− C ‖ω‖

(
δ2 + γε2

α
+ 2α ‖ω‖2 + 2 ‖ω‖

√
α2 ‖ω‖2 + (δ2 + γε2)

)
and

Dζ
R

(
kα, k0

)
≤ δ2 + γε2

ηα
+

2 ‖ω‖
η

(
α ‖ω‖+

√
α2 ‖ω‖2 + (δ2 + γε2)

)
,

and for the parameter choice α ∼ (δ + ε) follows the convergence rate
O (δ + ε).

Remark 4.10. The assumptions of Theorem 4.9 include the condition

C
∥∥ω∥∥

H
< min

{
1,

γ

2α

}
.

Note that γ
(2α) < 1 for α small enough (i.e., for small noise level δ and

ε), and thus (ii) reduces to the standard smallness assumption common for
convergence rates for nonlinear ill-posed problems, see [9].

5 A numerical example

In order to illustrate our analytical results we present first reconstructions
from a convolution operator. That is, the kernel function is defined by
k0(s, t) := k0(s − t) over Ω = [0, 1], see also 1 in Section 2, and we want to
solve the integral equation∫

Ω
k0(s− t)f(t)dt = g0(s)

from given measurements kε and gδ satisfying (7). For our test, we defined
k0 and f as

k0 =

{
1 x ∈ [0.1, 0.4]

0 otherwise
and f =

{
1− 5|t− 0.3| t ∈ [0.1, 0.5]

0 otherwise
,
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Figure 1: Simulated measurements for k0 (left) and g0 (right), both with
10% relative error.

respectively, the characteristic and the hat function. An example of noisy
measurements kε and gδ is displayed in Figure 1.

The functions k and f were expanded in a wavelet basis, as for example,

k =
∑
l∈Z

〈
k , φ0,l

〉
φ0,l +

∞∑
j=0

∑
l∈Z

〈
k , ψj,l

〉
ψj,l ,

where {φλ}λ and {ψλ}λ are the pair of scaling and wavelet function asso-
ciated to Haar wavelet basis. The convolution operator was implemented
in terms of the wavelet basis as well. For our numerical tests, we used the
Haar wavelet. The integration interval Ω = [0, 1] was discretized into N = 28

points, the maximum level considered by the Haar wavelet is J = 6. The
functional R was defined as

R(k) := ‖k‖`1 =
∑
λ∈Λ

|
〈
k , ψλ

〉
|,

where Λ =
{
{l} ∪ (j, l) | j ∈ N0, l ≤ 2j − 1

}
.

In order to find the optimal set of coefficients minimizing (8) we used
Matlab’s internal function fminsearch.

Figure 2 displays the numerical solutions for three different (relative)
error levels: 10%, 5% and 1%. The scaling parameter was set to γ = 1
and the regularization parameters are chosen according to the noise level,
i.e., α = 0.01(δ + ε) and β = 0.2(δ + ε), (η = 20) was chosen. Our nu-
merical results confirm our analysis. In particular it is observed that the
reconstruction quality increases with decreasing noise level, see also Table
1.

Please note that the optimization with the fminsearch routine is by no
means efficient. Currently we are working on a fast iterative optimization
routine for the minimization of (8).
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∥∥krec − k0

∥∥
1

∥∥f rec − f true
∥∥

1

∥∥krec − k0

∥∥
2

∥∥f rec − f true
∥∥

2
10% 6.7543e-02 1.8733e-01 8.1216e-03 1.7436e-02
5% 4.0605e-02 1.7173e-01 6.9089e-03 1.5719e-02
1% 2.0139e-02 1.1345e-01 6.5219e-03 8.0168e-03

Table 1: Relative error measured by the L1- and L2-norm.
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