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In this report we present a procedure for solving first order autonomous
algebraic ordinary differential equations by means of algebraic curves and
parametrizations. In particular we look at solutions expressible by radicals
and show the connection to existing theory on rational solutions.

1 Introduction

Consider the field of rational functions Kpxq for a field K and let d
dx

be the usual deriva-
tive. Then Kpxq is a differential field. We call Kpxqtyu the ring of differential poly-
nomials. Its elements are polynomials in y and the derivatives of y, i. e. Kpxqtyu �
Kpxqry, y1, y2, . . .s. An algebraic ordinary differential equation (AODE) is one of the
form F px, y, y1, . . . , ypnqq � 0 where F P Kpxqtyu and F is also a polynomial in x. The
AODE is called autonomous if F P Ktyu, i. e. if the coefficients of F do not depend
on the variable of differentiation x. For a given AODE we are interested in deciding
whether it has rational or radical solutions and, in the affirmative case, determining all
of them.

In order to define the notion of a general solution we go a little more into detail. Let Σ
be a prime differential ideal in Kpxqtyu. Then we call η a generic zero of Σ if for any
differential polynomial P we have P pηq � 0 ô P P Σ. Such an η exists in a suitable
extension field.

Let F be an irreducible differential polynomial of order n. Then tF u, the radical differ-
ential ideal generated by F , can be decomposed into two parts. There is one component
where the separant BF

Bypnq also vanishes. This part represents the singular solutions. The
component we are interested in is the one where the separant does not vanish. It is a
prime differential ideal ΣF :� tF u : x BF

Bypnq y and represents the general component (see

�The research was supported by the Austrian Science Fund (FWF): W1214-N15, project DK11

1



for instance Ritt [16]). A generic zero of ΣF is called general solution of F � 0. We say

it is a rational general solution if it is of the form y � akx
k�...�a1x�a0

bmxm�...�b1x�b0 , where the ai and
bi are algebraic over K.

Here we consider only first order AODEs. For solving differential equations Gpx, y, y1q �
0 or F py, y1q � 0 we will look at the corresponding surface Gpx, y, zq � 0 or curve
F py, zq � 0 respectively where we replace the derivative of y by a transcendental variable
z.

An algebraic curve C is a one-dimensional algebraic variety, i. e. a zero set of a square-
free bivariate polynomial f P Krx, ys, C � tpa, bq P A2 | fpa, bq � 0u. We call the
polynomial f the defining polynomial. An important aspect of algebraic curves is their
parametrizability. Consider an irreducible plane algebraic curve defined by an irreducible
polynomial f . A tuple of rational functions Pptq � prptq, sptqq is called a rational
parametrization of the curve if fprptq, sptqq � 0 and not both rptq and sptq are constant.
A parametrization can be considered as a map Pptq : A Ñ C. By abuse of notation we
also call this map a parametrization. Later we will see other kinds of parametrizations.
We call a parametrization Pptq proper if it is a birational map or in other words if for
almost every point px, yq on the curve we find exactly one t such that Pptq � px, yq.
Parametrizations of higher dimensional algebraic varieties are defined in a similar way.

In this report we use parametrizations of curves for solving AODEs. Hubert [8] already
studies solutions of AODEs of the form F px, y, y1q � 0. She gives a method for finding a
basis of the general solution of the equation by computing a Gröbner basis of the prime
differential ideal of the general component. The solutions, however, are given implicitly.
Later Feng and Gao [2, 3] start using parametrizations for solving first order autonomous
AODEs, i. e. F py, y1q � 0. They provide an algorithm to actually solve such AODEs with
coefficients in Q by using rational parametrizations of the algebraic curve F px, yq � 0.
The key fact they are proving is that any rational solution of the AODE gives a proper
parametrization of the corresponding algebraic curve. For this they use a degree bound
derived in Sendra and Winkler [21]. On the other hand, if a proper parametrization
of the algebraic curve fulfills some requirements Feng and Gao can generate a rational
solution of the AODE. From the rational solution it is then possible to create a rational
general solution by shifting the variable by a constant. Finally Feng and Gao derive an
algorithm to compute a rational solution of an AODE, if it exists.

By using this approach we can take advantage of the well known theory of algebraic
curves and rational parametrizations (see for instance [22, 23]).

Recently Ngô and Winkler [12, 14, 13] worked on generalizations of what Feng and Gao
started. They considered non-autonomous AODEs F px, y, y1q � 0. Instead of algebraic
curves as in the autonomous case, algebraic surfaces play a role there. For an algorithm
to find rational parametrizations of surfaces see [17]. Using a rational parametrization
of the surface Ngô and Winkler derive a special kind of system of differential equations.
For these so called associated systems solution methods exist. From a rational solution
of such a system they find a rational general solution of the original differential equation.
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Aroca, Cano, Feng and Gao give in [1] a necessary and sufficient condition for an au-
tonomous AODE to have an algebraic solution. They also provide a polynomial time
algorithm to find such a solution if it exists. This solution, however, is implicit whereas
we are interested in explicit solutions.

Furthermore Huang, Ngô and Winkler continue their work in considering higher order
equations. A first result can be found in [7]. A generalization of Ngô and Winkler [14]
to trivariate systems of ODEs can be found in [5, 6]. Ngô, Sendra and Winkler [11, 10]
also considered classification of AODEs, i. e. they look for transformations of AODEs
which keep the associated system invariant.

In this work we stick to the case of first order autonomous AODES but try to extend
the results to radical solutions using radical parametrizations (see Section 2.2). We do
so by investigating a procedure which has the rational solutions as a special case (see
Section 2.1). As shown in [1, 2] it is enough to look for a single non-trivial solution,
for if ypxq is a solution, so is ypx � cq for a constant c and the latter is also a general
solution. In Section 2.3 we give examples of non-radical solutions that can be found by
the given procedure. Finally in Section 2.4 we look for advantages of the procedure and
compare it to existing algorithms.

2 A procedure for solving first order autonomous AODEs

Let F py, y1q � 0 be an autonomous algebraic ordinary differential equation (AODE).
We consider the corresponding algebraic curve F py, zq � 0. Then obviously Py :�
pyptq, y1ptqq (for a solution y of the AODE) is a parametrization of F .

Now we take an arbitrary parametrization P ptq � prptq, sptqq, i. e. functions r and s not

both constant such that F prptq, sptqq � 0. We define AP ptq :� sptq
r1ptq . If it is clear which

parametrization is considered, we write A. Suppose we are given any parametrization of
F and we want to find a solution of the AODE. We assume the parametrization is of the
form Pgptq � prptq, sptqq � pypgptqq, y1pgptqqq where g and y are unknown. In the rational
case we know that each parametrization can be obtained by any other by application of
a rational function. If we can find g and especially its inverse function we also find y.
For our given Pg we can compute APg and furthermore we have

APgptq �
y1pgptqq
d
dt
pypgptqqq �

y1pgptqq
g1ptqy1pgptqq �

1

g1ptq .

Hence, by reformulation we get an expression for the unknown g1:

g1ptq � 1

APgptq
.
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Using integration and inverse functions the procedure continues as follows

gptq �
»
g1ptqdt �

»
1

APgptq
dt,

ypxq � rpg�1pxqq.
Kamke [9] already mentions this procedure where he restricts to continuously differential
functions r and s which satisfy F prptq, sptqq � 0. However, he does not mention where
to get these functions from.

In general g is not a bijective function. Hence, when we talk about an inverse function
we actually mean one branch of a multivalued inverse. Each branch inverse will give us
a solution to the differential equation.

We might add any constant c to the solution of the indefinite integral. Assume gptq is
a solution of the integral and g�1 its inverse. Then ḡptq � gptq � c is as well a solution
and ḡ�1ptq � g�1pt� cq. We know that if ypxq is a solution of the AODE, so is ypx� cq.
Hence, we may postpone the introduction of c to the end of the procedure.

The procedure finds a solution if we can compute the integral and the inverse function.
On the other hand it does not give us any clue on the existence of a solution in case
either part does not work. Neither do we know whether we found all solutions.

2.1 Rational solutions

Feng and Gao [2] found an algorithm for computing all rational general solutions of an
autonomous first order AODE. They use the fact that pypxq, y1pxqq is a proper rational
parametrization. The main part of their algorithm says that there is a rational general
solution if and only if for any proper rational parametrization P ptq � prptq, sptqq we
have that AP ptq � q P Q or AP ptq � apt� bq2 with a, b P Q. The solutions therefore are
rpqpx� cqq or rpb� 1

apx�cqq respectively.

We will show now that the algorithm accords with our procedure. Assume we are
given an AODE with a proper parametrization P � prptq, sptqq. Assume further that
AP ptq � q P Q or AP ptq � apt� bq2. Then we get from the procedure

AP ptq � q, AP ptq � apt� bq2,
g1ptq � 1

q
, g1ptq � 1

apt� bq2 ,

gptq � t

q
� c, gptq � � 1

apt� bq � c,

g�1ptq � qpt� cq, g�1ptq � �1 � abpt� cq
apt� cq .

We see that rpg�1ptqq is exactly what Feng and Gao found aside from the sign of c.
As mentioned above, our procedure does not give an answer to whether the AODE has
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a rational solution in case A is not of this special form. It might, however, find non
rational solutions for some AODEs. Nevertheless, Feng and Gao [2] already proved that
there is a rational general solution if and only if A is of the special form mentioned above
and all rational general solution can be found by the algorithm.

2.2 Radical solutions

Now we extend our set of possible parametrizations and also the set, in which we are
looking for solutions, to the functions including radical expressions.

The research area of radical parametrizations is rather new. Sendra and Sevilla [19]
recently published a paper on parametrizations of curves using radical expressions. In
this paper Sendra and Sevilla define the notion of radical parametrization and they
provide algorithms to find such parametrizations in certain cases which include but are
not restricted to curves of genus less or equal 4. Every rational parametrization will be
a radical one but obviously not the other way round. Further considerations of radical
parametrizations can be found in Schicho and Sevilla [18] and Harrison [4]. There is also
a paper on radical parametrization of surfaces by Sendra and Sevilla [20]. Nevertheless,
for the beginning we will restrict to the case of first order autonomous equations and
hence to algebraic curves.

Definition 2.1.
Let K be an algebraically closed field of characteristic zero. A field extension K � L
is called a radical field extension iff L is the splitting field of a polynomial of the form
xk�a P Krxs, where k is a positive integer and a � 0. A tower of radical field extensions
of K is a finite sequence of fields

K � K0 � K1 � K2 � . . . � Km

such that for all i P t1, . . . ,mu, the extension Ki�1 � Ki is radical.
A field E is a radical extension field of K iff there is a tower of radical field extensions
of K with E as its last element.
A polynomial hpxq P Krxs is solvable by radicals over K iff there is a radical extension
field of K containing the splitting field of h.

Let now C be an affine plane curve over K defined by an irreducible polynomial fpx, yq.
According to [19], C is parametrizable by radicals iff there is a radical extension field
E of Kptq and a pair prptq, sptqq P E2zK2 such that fprptq, sptqq � 0. Then the pair
prptq, sptqq is called a radical parametrization of the curve C.

We call a function fpxq over K a radical function if there is a radical extension field
of Kpxq containing fpxq. Hence, a radical solution of an AODE is a solution that is a
radical function. A radical general solution is a general solution which is radical.

Computing radical parametrizations as in [19] goes back to solving algebraic equations
of degree less or equal four. Depending on the degree we might therefore get more than
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one solution to such an equation. Each solution yields one branch of a parametrization.
Therefore, we use the notation a

1
n for any n-th root of a.

We will now see that the procedure mentioned above yields information about solvability
in some cases.

Theorem 2.2.
Let P ptq � prptq, sptqq be a radical parametrization of the curve F py, zq � 0. Assume
AP ptq � apb� tqn for some n P Qzt1u.
Then rphptqq, with hptq � �b�p�pn� 1qapt� cqq 1

1�n , is a general radical solution of the
AODE F py, y1q � 0.

Proof. From the procedure we get

g1ptq � 1

AP ptq �
1

apb� tqn ,

gptq �
»
g1ptqdt � pb� tq1�n

ap1 � nq ,

g�1ptq � �b� p�pn� 1qatq 1
1�n .

Then ypxq � rpg�1pxqq is a solution of F . Let hpxq � g�1px � cq for some constant c.
Then rphpxqq is a general solution of F .

The algorithm of Feng and Gao is therefore a special case of this one with n � 0 or
n � 2 and a rational parametrization. In exactly these two cases g�1 is a rational
function. Furthermore, Feng and Gao [2] showed that all rational solutions can be
found like this, assuming the usage of a rational parametrization. The existence of a
rational parametrization is of course necessary to find a rational solution. However, in
the procedure we might use a radical parametrization of the same curve which is not
rational and we can still find a rational solution.

In Theorem 2.2 n � 1 is excluded because in this case the function g contains a logarithm
and its inverse an exponential term.

Example 2.3.
The equation y5 � y12 � 0 gives rise to the radical parametrization

�
1
t
,� 1

t5{2

�
with cor-

responding Aptq � 1?
t
. We can compute gptq � 2t3{2

3
and g�1ptq � �

3
2

�2{3
t2{3. Hence,

p 2
3q2{3

px�cq2{3 is a solution of the AODE.

As a corollary of Theorem 2.2 we get the following statement for AODEs where the
parametrization yields another form of Aptq.
Corollary 2.4.
Assume we have a radical parametrization P ptq � prptq, sptqq of an autonomous curve

F py, zq � 0 and assume Aptq � apb�tkqn
ktk�1 with k P Q. Then the AODE has a radical

solution.
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Proof. By transforming the parametrization by fptq � t1{k to the radical parametrization
P̄ ptq � prpfptqq, spfptqqq we compute

AP̄ ptq �
spfptqq

B
Btprpfptqqq

� Apfptqq
f 1ptq � apb� fptqkqn

kfptqk�1f 1ptq �
apb� t

k
k qn

kt
k�1
k

1
k
t
1�k
k

� apb� tqn,

which can be solved by Theorem 2.2.

In contrast to the rational case there are more possible forms for A now. In the following
we will see another rather simple form of A which might occur. Here we do not know
immediately whether or not the procedure will lead to a solution.

Theorem 2.5.
Let P ptq � prptq, sptqq be a radical parametrization of the curve F py, zq � 0. Assume
Aptq � atn

b�tm for some a, b P Q and m,n P Q with m � n�1 and n � 1. Then the AODE
F py, y1q � 0 has a radical solution if the equation

bpm� n� 1qhptq1�n � pn� 1qhptqm�n�1 � pn� 1qpm� n� 1qat � 0 (1)

has a non-zero radical solution for h � hptq. A general solution of the AODE is then
rphpx� cqq.

Proof. The procedure yields

g1ptq � 1

AP ptq �
b� tm

atn
,

gptq �
»
g1ptqdt � 1

a
t1�n

�
b

1 � n
� tm

1 �m� n



.

The inverse of g is only computable if the equation

1

a
hptq1�n

�
b

1 � n
� hptqm

1 �m� n



� t

can be solved for hptq. By a reformulation and the assumptions for m and n this is
equivalent to (1).

In case we have n � 1 or m � n � 1 the integral is a function containing a logarithm
and the inverse function yields an expression containing the Lambert W-Function.

Example 2.6.
The equation �y5 � y1 � y8y1 � 0 gives rise to the radical parametrization P ptq ��

1
t
, t3

1�t8
	

with corresponding Aptq � t5

�1�t8 . Then equation (1) has a solution, e. g.

� �2t�?�1 � 4t2
�1{4

. Hence, �
�

2px� cq �ap�1 � 4px� cq2
	�1{4

is a solution of

the AODE.
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It remains to show when equation (1) is solvable (i. e. when gptq in the proof of Theo-
rem 2.5 has an inverse which is expressible by radicals). The following theorem due to
Ritt [15] will help us to do so.

Theorem 2.7.
A polynomial g has an inverse expressible by radicals if and only if it can be decomposed
in

• linear polynomials,

• power polynomials xn for n P N,

• Chebyshev polynomials and

• degree 4 polynomials.

Certainly also polynomials of degree 2 and 3 are invertible by radicals but it can be
shown, that Theorem 2.7 applies. We will show now that a certain polynomial is not
decomposable into non-linear factors.

Theorem 2.8.
Let gptq � C1t

α � C2t
β P Krts where K is a field of characteristic zero, C1, C2 P Kzt0u,

α, β P N, gcdpα, βq � 1 and β ¡ α ¡ 0 and β ¡ 4. Then g cannot be decomposed into
two polynomials fphpxqq each of degree higher than one.

Proof. Assume gptq � fphptqq with f � °n
i�0 aix

i and h � °m
k�0 bkx

k and an � 0,
bm � 0, m,n ¡ 1. In case b0 � 0 it follows that gptq � f̄ph̄ptqq where f̄ptq � fpb0 � tq
and h̄ptq � hptq � b0. Hence, without loss of generality we can assume that b0 � 0 and
therefore also a0 � 0.

Let now τ P t1, . . . ,mu such that bτ � 0 and bl � 0 for all l P t1, . . . , τ � 1u. Similarly
let π P t1, . . . , nu such that aπ � 0 and al � 0 for all l P t1, . . . , π � 1u.
This implies that coef lpgq � 0 for all l P t1, . . . , τπ � 1u and coefτπpgq � aπb

π
τ � 0.

Hence, α � τπ. Furthermore, we know that

0 � coefmpn�1q�lpgq � cn�1anb
n�1
m bl �

n�2̧

k�0

ckanb
k
mBk

for all l P tτ, . . . ,m� 1u, where ck are non-zero constants and

Bk �
¸

εl�1�...�εm�1�n�k
pl�1qεl�1�...�pm�1qεm�1�mpn�1q�l�km

b
εl�1

l�1 � . . . � bεm�1

m�1 .

This yields, that 0 � coefmn�1pgq � cn�1anb
n�1
m bm�1, hence, bm�1 � 0. By induction it

follows that bl � 0 for all l P tτ, . . . ,m� 1u which contradicts bτ � 0.

Therefore, τ � m which makes tτ, . . . ,m�1u empty. But then we have m | α and m | β
which contradicts gcdpα, βq � 1 since m � 1.
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Let us now consider the function

gptq � 1

a
t1�n

�
b

1 � n
� tm

1 �m� n




from the proof of Theorem 2.5. Assume that 1 � n � z1
d1

and m � n � 1 � z2
d2

with
z1, z2 P Z, d1, d2 P N such that gcdpz1, d1q � gcdpz2, d2q � 1. Then gptq � ḡphptqq where

hptq � t
d

d1d2 and

ḡptq � 1

a
tn̄
�

b

1 � n
� tm̄�n̄

1 �m� n



(2)

with n̄ � p1�nqd1d2
d

, m̄ � pm�n�1qd1d2
d

and d � gcdpz1d2, z2d1q. Hence, m̄, n̄ P Z with
gcdpm̄, n̄q � 1. The function h has an inverse expressible by radicals. If now g has an
inverse expressible by radicals than so does ḡ, i. e. ḡ�1 � h � g�1. If ḡ has an inverse
expressible by radicals, so does g. In case m � n � 1, 1 � n P N also m̄, n̄ P N. On the
other hand if n�m� 1, n� 1 P N we get a polynomial by a decomposition with a factor
fptq � t�1.

If not both n̄ and m̄ are positive and not both are negative but |m̄|� |n̄| ¤ 4, computing
the inverse function of ḡ is the same as solving an equation of degree less or equal 4,
which can be done by radicals.

The above discussion and Theorem 2.7 and 2.8 imply

Corollary 2.9.
The function gptq � 1

a
t1�n

�
b

1�n � tm

1�m�n
�

from the proof of Theorem 2.5 has an inverse
expressible by radicals if (using the notation from above)

• b � 0 or

• m̄, n̄ P N and maxp|m̄|, |n̄|q ¤ 4.

• �m̄,�n̄ P N and maxp|m̄|, |n̄|q ¤ 4.

• �m̄, n̄ P N and |m̄| � |n̄| ¤ 4.

• m̄,�n̄ P N and |m̄| � |n̄| ¤ 4.

It has no inverse expressible by radicals in the cases

• m̄, n̄ P N and maxpm̄, n̄q ¡ 4,

• �m̄,�n̄ P N and maxp|m̄|, |n̄|q ¡ 4.

Hence, in some cases we are able to decide the solvability of an AODE with properties
as in Theorem 2.5. Nevertheless, the procedure is not complete, since even Corollary 2.9
does not cover all possible cases for m and n.
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2.3 Non-Radical solutions

The procedure is not restricted to the radical case but might also solve some AODEs
with non-radical solutions.

Example 2.10.
Consider the equation y3�y2�y12 � 0. The corresponding curve has the parametrization
P ptq � p�1 � t2, tp�1 � t2qq. We get Aptq � 1

2
p1 � t2q and hence, gptq � ³

1
Aptqdt �

2 arctanptq. The inverse function is g�1ptq � tanp t
2
q and hence, ypxq � �1 � tanpx�c

2
q2

is a solution.

Beside trigonometric solutions we might also find exponential solutions.

Example 2.11.
Consider the AODE y2 � y12 � 2yy1 � y � 0. We get the rational parametrization
p� 1

p1�tq2 ,� t
p1�tq2 q. With Aptq � �1

2
tp1 � tq we compute gptq � �2 logptq � 2 logp1 � tq

and hence g�1ptq � 1
�1�et{2

, which leads to the solution �e�px�cqp�1 � epx�cq{2q2.

We see that it is not even necessary to use radical parametrizations in order to find
non-radical solutions.

2.4 Comparison

In many books on differential equations we can find a method for transforming an
autonomous ODE of any order F py, y1, . . . , ypnqq � 0 to an equation of lower order by
substituting upyq � y1 (see for instance [24, 9]). For the case of first order ODEs this
method yields a solution. It turns out that this method is somehow related to our
procedure. The method does the following.

• Substitute upyq � y1.

• Solve F py, upyqq � 0 for upyq.
• Solve

³
1

upyqdy � x for y.

This can be interpreted in terms of parametrizations and our general procedure as follows

• Compute a parametrization of the form P � pt, sptqq,
• g1ptq � 1

AP ptq � 1
sptq ,

• gptq � ³ 1
sptqdt.

• Compute the inverse h of g, i. e. gphptqq � t,

• yptq � hptq.
We will now give some arguments concerning the possibilities and benefits of the general
procedure. Since in the procedure any radical parametrization can be used we might
take advantage of picking a good one as we will see in the following example.
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Example 2.12.
We consider the AODE y16 � 49yy12 � 7 and find a parametrization of the form pt, sptqq:�

�t,
b�

756 � 84
?

28812t3 � 81
�2{3 � 588t

?
6
�
756 � 84

?
28812t3 � 81

�1{6

�

.

Neither Mathematica 8 nor Maple 16 can solve the corresponding integral explicitly and
hence, the procedure stops. Neither of them is capable of solving the differential equation
in explicit form by the built in functions for solving ODEs. Nevertheless, we can try our
procedure using other parametrizations. An obvious one to try next is

prptq, sptqq �
�
��7 � t6

49t2
, t



.

It turns out that here we get gptq � 2
21t3

� 4t3

147
. Its inverse can be computed g�1ptq �

1
2

��147t�?
7
?

32 � 3087t2
�1{3

. Applying g�1px� cq to rptq we get the solution

ypxq � �
4

�
�7 � 1

64

�
�147pc� xq � ?

7
a

32 � 3087pc� xq2
	2



49
�
�147pc� xq � ?

7
a

32 � 3087pc� xq2
	2{3 .

The procedure might find a radical solution of an AODE by using a rational parametriza-
tion as we have seen in Example 2.6 and 2.12. As long as we are looking for rational
solutions only, the corresponding curve has to have genus zero. Now we can also solve
some examples where the genus of the corresponding curve is higher than zero and hence
there is no rational parametrization. The AODE in Example 2.13 below corresponds to
a curve with genus 1.

Example 2.13.
Consider the AODE �y3 � 4y5 � 4y7 � 2y1 � 8y2y1 � 8y4y1 � 8yy12 � 0. We compute a
parametrization and get�

1

t
,

�4 � 4t2 � t4

t
�
4t2 � 4t4 � t6 �?�16t4 � 16t8 � 8t10 � t12

�
�

as one of the branches. The procedure yields

Aptq � � t p�4 � 4t2 � t4q
4t2 � 4t4 � t6 �?�16t4 � 16t8 � 8t10 � t12

,

gptq �
2t4 � t6 �

b
t4 p2 � t2q2 p�4 � 4t2 � t4q

4t2 � 2t4
,

g�1ptq � �
?

1 � t2?
1 � t

,

ypxq � �
?

1 � c� xa
1 � pc� xq2 .
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Again Mathematica 8 cannot compute a solution in reasonable time and Maple 16 only
computes constant and implicit ones.

3 Conclusion

We have introduced a procedure for solving autonomous first order ordinary differential
equations. The procedure works in a given class of expressions if we can compute a
certain integral and an inverse function in this class. In case of looking for rational
solutions it does exactly what was known before. Furthermore, we have found some
cases in which we find radical solutions. However, these cases are not yet complete and
hence, this part is subject to further investigation. In case the procedure works, we have
one or more solutions of the AODE. So far we do not know, whether we have all. Neither
do we know anything about solvability of the AODE if the procedure does not work. We
have seen that the choice of parametrization makes a difference. The influence of the
choice of parametrization on the solvability of the integration and inversion problem is
also a topic for further investigation.
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[12] L. X. C. Ngô and F. Winkler. Rational general solutions of first order non-
autonomous parametrizable ODEs. Journal of Symbolic Computation, 45(12):1426–
1441, 2010.
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