
A stochastic convergence analysis for

Tikhonov regularization with sparsity

constraints

Daniel Gerth Ronny Ramlau

DK-Report No. 2013-08 October 2013

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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A Stochastic Convergence Analysis for
Tikhonov Regularization with Sparsity

Constraints

Daniel Gerth and Ronny Ramlau

Abstract

In this paper we investigate convergence properties of Tikhonov
regularization for linear ill-posed problems under a stochastic error
model. Namely, we assume that we are given a finite amount of mea-
surements, each contaminated by Gaussian noise with zero mean and
known finite variance. Using Besov-space penalty terms to promote
sparse solutions with respect to a preassigned wavelet basis, the Ky-
Fan metric allows us to lift deterministic convergence results into the
stochastic setting. In particular, we formulate a general convergence
theorem and propose a formula to directly calculate a suitable reg-
ularization parameter. This immediately leads to convergence rates.
Numerical examples are presented to verify the theoretical results.

1 Introduction

We study the solution of the linear ill-posed problem

Ax = y (1)

with A ∈ L(X ,Y) where X and Y are (in general infinite dimensional)
Hilbert spaces. In practice y is only available via a finite amount of mea-
surements which are additionally corrupted by measurement noise. Since
computers can handle only finite dimensional quantities, (1) has to be ap-
proximated by an equation

Ax+ ε = yδ (2)
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where A ∈ L(Rn,Rm), x ∈ Rn, yδ ∈ Rm and ε denotes the measurement
error. Here m ∈ N and m ∈ N denote the level of discretization of measure-
ments y and unknown x. Due to the ill-posedness of the problem, already
small errors in the data may lead to computed solutions far off the correct
one, rendering straight-forward approaches to solve (2) useless. To deal with
this phenomenon, regularization methods have to be applied to ensure sta-
bility of the solutions x with respect to the data yδ. In order to design these
methods appropriately, it is crucial to use available information about the
noise ε. A deterministic assumption is the worst case estimate between the
true and measured data ||y − yδ|| = ||ε|| ≤ δ, δ > 0. Problems of type
(1) and (2) under this error bound have been studied intensively in liter-
ature, see for example [9], [13] or [18]. It is also possible to use a more
explicit model for ε, e.g. assuming a certain random distribution of ε. For
an overview on this stochastic setting we refer to [14]. When dealing with
stochastic noise, we will always denote the perturbed data by yσ instead
of yδ. In recent years, sparse regularization emerged as a powerful tool to
find a solution of (2). In this framework, it is assumed that the unknown
x can be approximated well with only few coefficients of its expansion with
respect to a preassigned basis or frame in X . Pushed by the seminal paper
[6], where the authors studied the so-called iterative soft-shrinking algorithm
to calculate the minimizer of a special Tikhonov-functional under the deter-
ministic error assumption, sparsity has become a widely used regularization
strategy with generalizations to, for example, Banach spaces [3] or nonlinear
operators [22]. Sparse regularization also gained attention in the stochastic
setting, c.f. [15, 16, 23]. However, research in the two fields seems to develop
rather independently. In this paper we seek to bridge this gap and connect
deterministic and stochastic results in the linear Hilbert space setting. For
classical Tikhonov regularization this has been done before in [20], where
the authors considered a Gaussian error model. The paper is organized as
follows. A more precise statement of the problem (1) and the discrete model
(2) is given in Section 2. There we build up the connection between the
maximum a-priori solution for stochastic, so called Bayesian, inversion with
Besov space priors and the deterministic Tikhonov-type regularization with
a Besov space penalty. These Besov spaces priors, which stabilize the re-
constructions, are discussed in more detail in Section 3. The Ky Fan metric
which we use to measure convergence of the random variables is introduced
in Section 4. A general convergence theorem is then given in Section 5. Con-
vergence rates connected with a particular parameter choice rule are given in
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Section 6. Numerical examples are presented in Section 7 to exemplify the
theory.

2 Statement of the problem

We start again with equation (1) and introduce a linear orthogonal projection
operator Pm : Y → Rm, modelling the mapping of the (possibly infinite
dimensional) object y on an m-dimensional vector y. The projection depends
on the actual measurement device. One might for example think of measured
function values or coefficients with respect to certain basis functions in Y .
As before ε ∈ Rm denotes the typically unavoidable measurement noise. We
thus have the practical measurement model

Pmy = PmAx + ε.

Throughout this paper we assume that each component of the error is nor-
mally distributed with zero mean and variance σ2, εi ∼ N (0, σ2) for i =
1 . . .m, σ > 0. This especially means that arbitrarily large errors will be
allowed, but with low probability. Let {ψλ : λ ∈ Λ} be an orthonormal ba-
sis in X , where Λ is an appropriate index set. In order to characterize the
unknown x by its coefficients with respect to {ψλ : λ ∈ Λ}, we introduce a
second operator

T : X → `2 via x 7→ {〈x, ψλ〉}λ∈Λ. (3)

T and its adjoint T ∗,

T ∗ : `2 → X via g 7→
∑
λ∈Λ

gλψλ (4)

allow us to switch between function x and the coefficients xλ := 〈x, ψλ〉. Here
〈·, ·〉 denotes the L2-inner product. Computations on a computer require a
finite dimensional representation of x. Therefore we restrict the index set
Λ to a finite set Λn, where n ∈ N is the number of basis functions used for
the discretization. The truncated projectors with respect to Λn are defined
analogously to (3) and (4), respectively. We have

Tn : X → `2, x 7→ {〈x, ψλ〉}λ∈Λn ,

T ∗n : `2 → X , g 7→
∑
λ∈Λn

gλψλ. (5)
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Although our theory can be expanded to frames instead of a basis in X ,
we restrict ourselves to the latter case for simplicity. Thus we arrive at the
computational model

Pmy = PmAT ∗nTnx + ε. (6)

Due to the stochastic noise assumption we chose a Bayesian approach for the
solution of (6). For a detailed introduction to Bayesian inversion theory see
for example [14]. In this framework, all occurring quantities are treated as
random variables, even if some of them might be deterministic. To simplify
the notation we denote y := Pmy, yσ := y + ε, x := Tnx, A := PmAT ∗n and
obtain the linear model

yσ = Ax+ ε (7)

where the variables x, yσ and ε are realizations of the corresponding random
variables in the equation

Y σ = AX + E . (8)

Here X(x, ω), Y (y, ω) and E(y, ω) are random functions from a complete
probability space (Ω,F ,P) to Rn and Rm, respectively and ω ∈ Ω. In this
notation, the sample space Ω is a set of outcomes of the stochastic process, F
the corresponding σ-algebra and P a probability measure, P : (Ω,F)→ [0, 1].
In the Bayesian framework the solution of the inverse problem is given as a
distribution of the random variable of interest, the posterior distribution πpost,
determined by Bayes formula

πpost(x|yσ) =
πpr(x)πε(y

σ|x)

πyσ(yσ)
. (9)

However, for practical reasons one is usually more interested in finding a
single representation as solution instead of the distribution itself. Popular
choices are the conditional expectation E(πpost(x|yσ)) =

∫
xπpost(x|yσ)dx and

the maximum a-posteriori (MAP) solution

xMAP = argmax
x∈Rn

πpost(x|yσ), (10)

i.e. the most likely value for x. Both methods have certain advantages and
disadvantages, see for example [14, 15, 16]. In this paper we will only con-
sider the maximum a-posteriori approach because it essentially leads to a
Tikhonov-type minimization problem. Since neither πyσ nor the normaliza-
tion constants of the distributions influence the position of the maximum in
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(10) they can be neglected further on. The likelihood function πε(y
σ|x) in (9)

represents the model for the measurement noise. Because of the normally
distributed error we simply have

πε ∝ exp

{
− 1

2σ2
||Ax− yσ||2

}
.

Available a priori information about the unknown solution is expressed via
the prior distribution πpr. In classical Bayesian inversion theory (cf. [12, 14,
20]) a Gaussian prior distribution is assumed, leading to an explicit repre-
sentation of the posterior distribution (see for example [14, Theorem 3.7]).
However, we want to use a prior promoting solutions which are sparse with
respect to the basis {ψλ : λ ∈ Λ}. In the deterministic case, where usually
Tikhonov-type functionals

||Ax− yδ||2Y + α̂Φw,p(x) (11)

are minimized, it is known that penalties of the form

Φw,p(x) =
∑
λ∈Λ

wλ|〈x, ψλ〉|p, 1 ≤ p < 2,

w = {wλ}λ∈Λ with wλ ≥ c > 0 ∀λ ∈ Λ, indeed lead to sparse reconstructions,
i.e. the amount of nonzero coefficients 〈x, ψλ〉, λ ∈ Λ, is small [6, 21]. A par-
ticular choice for Φw,p are Besov space norms which have already been used
as sparsity constraints in (11), see for example [6] or [21]. Additionally it has
been shown in [15, 16] that Besov priors are discretization invariant, i.e. the
representation of a priori knowledge remains the same for all discretization
parameters n. As a counterexample, it has been shown in [17] that discrete
(non-Gaussian) total variaton priors converge to a smooth Gaussian prior
the more the level of discretization is refined. We recall that the Besov space
Bs
p,q(Rd) is a function space on Rd consisting of, roughly spoken, functions

which have s derivatives in Lp(Rd), where q provides some additional fine-
tuning. For example, Bs

2,2 coincides with the Sobolev spaces Hs. In this
paper, we will consider the case p = q only and write Bs

p(Rd) instead of
Bs
p,p(Rd). We refer to Section 3 for a more detailed characterization of Besov

spaces and their representation via wavelet expansions, and to [5, 19] for
deeper analysis. In the discrete setting (7) we may formally define the prior
distribution

πpr(x) ∝ exp
(
−α

2
||T ∗nx||

p
Bsp(Rd)

)
, (12)
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where α is an additional tuning or regularization parameter. Bayes’ formula
(9) now yields

πpost(x|yσ) ∝ exp

(
− 1

2σ2
||Ax− yσ||2

)
exp

(
−α

2
||T ∗nx||

p
Bsp(Rd)

)
.

The maximum a posteriori solution is given by

xMAP = argmax
x∈Rn

exp

(
− 1

2σ2
||Ax− yσ||2 − α

2
||T ∗nx||

p
Bsp(Rd)

)
,

or equivalently

xMAP = argmin
x∈Rn

1

2σ2
||Ax− yσ||2 +

α

2
||T ∗nx||

p
Bsp(Rd)

.

Setting α̂ = ασ2 we arrive at

xMAP
α̂ = argmin

x∈Rn
||Ax− yσ||2 + α̂||T ∗nx||

p
Bsp(Rd)

, (13)

which is exactly a discretized version of the Tikhonov functional (11) known
from the deterministic setting. Consequently, the same techniques can be
used to calculate the minimizer. However, since the deterministic theory is
based on error bounds ||Ax − yδ|| ≤ δ, convergence results do not immedi-
ately apply to our situation. To overcome this issue we will use a specific
metric which essentially allows to combine deterministic results with the
stochastic background. It will be important to carefully distinguish between
the parameter α originating from the prior distribution (12) and the actual
regularization parameter α̂ = ασ2 in the Tikhonov functional (11).

3 Besov Spaces and Random Variables

3.1 Wavelet representation of Besov spaces

In Section 2 we formally introduced the Besov space prior

πpr(x) ∝ exp(−α
2
||T ∗nx||

p
Bsp(Rd)

)

where 1 ≤ p ≤ 2 is an integrability parameter and s ∈ R describes the esti-
mated smoothness of the solution. In order to characterize Besov spaces by
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the coefficients of the wavelet expansion of its functions, we follow Daubechies
et. al [6] to construct a sufficiently smooth wavelet basis for Bs

p(R). Let φ be a
scaling function and ψ a compactly supported wavelet suitable for multi reso-
lution analysis of smoothness s̃ > s in L2(R), i.e. φ ∈ C s̃(R) and ψ ∈ C s̃(R).
Define

φj,k(t) = 2
j
2φ(2jt− k), ψj,k(t) = 2

j
2ψ(2jt− k), j, k ∈ Z.

The functions φ and ψ are assumed to be chosen suitably, fulfilling

Span{φj,k : k ∈ Z} ⊕ Span{ψj,k : k ∈ Z} = Span{φj+1,k : k ∈ Z} (14)

for all j ∈ Z and

Span{φ0,k : k ∈ Z} ⊕
⊕
j≥0

Span{ψj,k : k ∈ Z} = L2(R). (15)

Following Meyer [19] we expand this to a wavelet basis in Rd. Let E denote
the set of all 2d − 1 sequences ν = (ν1, ν2, . . . , νd) with νj ∈ {0, 1} for all
j = 1, . . . , d and

∑
j νj > 0. For ν ∈ E and j ∈ Z we define the tensor-

wavelets
ψνj,k(t) := 2dj/2ψν1(2jt1 − k1) . . . ψνd(2jtd − kd)

with the convention that ψ0 = φ, ψ1 = ψ and vectors k = (k1, k2, . . . , kd) ∈
Zd. The ψνj,k constitute an orthonormal basis for Rd. Let

φdj,k(t) := 2dj/2φ(2jt1 − k1) . . . φ(2jtd − kd).

Then, analogously to (14) and (15),

Span{φdj,k : k ∈ Z} ⊕ Span{ψνj,k : k ∈ Z} = Span{φdj+1,k : k ∈ Z} ∀j ∈ Z,

Span{φd0,k : k ∈ Z} ⊕
⊕
j≥0

Span{ψνj,k : k ∈ Z, ν ∈ E} = L2(Rd).(16)

With this the function x has the form

x =
∑
k∈Z

〈x, φd0,k〉φd0,k +
∞∑
j=0

∑
k∈Z

〈x, ψνj,k〉ψνj,k. (17)

To simplify the notation we again follow [6] and denote the set of all functions
φd0,k and ψνj,k, j = 1, 2, . . . , k ∈ Z, ν ∈ E, in (17) by Ψλ. The Ψλ = {ψλ : λ ∈
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Λ} are not only an orthonormal basis in L2(Rd) but also a (Riesz) basis for

other function spaces including the Besov spaces. Let ς = s+ d
(

1
2
− 1

p

)
≥ 0

to ensure Bs
p(Rd) is a subset of L2(Rd). Using the convention |λ| = j to

denote the scale of the wavelets, the norm

||x||Bsp(Rd) =

(∑
λ∈Λ

2ςp|λ||〈x,Ψλ〉|p
) 1

p

(18)

is equivalent the traditional Besov space norm [6]. However, in our framework
we have to restrict the index set Λ such that on each scale we have only
finitely many wavelets. This is guaranteed by the following assumptions on
the wavelet expansion of x:

• ∃k−φ , k
+
φ ∈ Z, k−φ < k+

φ : 〈x, φd0,k〉 = 0 for all k < k−φ and k > k+
φ . Define

`φ := k+
φ − k

−
φ + 1.

• On each scale j ≥ 0, ∃kj−ψ , kj+ψ ∈ Z, kj−ψ ≤ kj+ψ : 〈x, φd0,k〉 = 0 for all

k < kj−ψ and k > kj+ψ . Define `jψ := kj+ψ − k
j−
ψ + 1.

• There exists `ψ ∈ N such that `jψ ≤ 2jd`ψ for all j ≥ 0.

These assumptions are for example satisfied for compactly supported func-
tions or functions which are truly sparse, i.e. the number of nonzero inner
products in (17) is finite. Thus (17) reads

x =
∑

k−φ ≤k≤k
+
φ

〈x, φd0,k〉φd0,k +
∞∑
j=0

∑
kj−ψ ≤k≤k

j+
ψ

〈x, ψνj,k〉ψνj,k. (19)

We denote the corresponding index set by Λf . Hence x =
∑

λ∈Λf
〈x, ψλ〉ψλ.

3.2 Random variables in Besov spaces

The wavelet basis Ψλ allows the following definition of random variables in
Besov spaces, adapted from [16].

Definition 3.1. Consider functions on Rd, d ∈ N. Let 1 ≤ p < ∞ and Λf

as above. Take s ∈ R such that ς := s+ d(1
2
− 1

p
) > 0. Let (Xα

λ )λ∈Λf be inde-
pendent identically distributed real-valued random variables with probability
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density function

πXα
λ
(τ) = cαp exp(−α|τ |

p

2
), τ ∈ R, cαp =

(α
2

) 1
p p

2Γ(1
p
)
. (20)

Let X be the random function

X(t) =
∑
λ∈Λf

2−ς|λ|Xα
λψλ(t), t ∈ Rd.

Then we say X is distributed according to a Bs
p-prior.

The following Lemma characterizes the random variables |Xα
λ |p on which

the stochastic properties of ||X|| essentially depend.

Lemma 3.2. Let Xα
λ be defined as in Definition 3.1. Then the random

variables |Xα
λ |p, 1 ≤ p ≤ 2, are distributed according to the probability density

function

π|Xα
λ |p(η) =

(α
2

) 1
p η

1
p
−1

Γ(1
p
)

exp(−αη
2

), η ≥ 0 (21)

and satisfy

E (|Xα
λ |p) =

2

αp
. (22)

Proof. Let Xα
λ be defined as in (20). We are interested in the probability

density of Y := |Xα
λ |p. Denote FXα

λ
(τ) and FY (η) the cumulative distribution

functions of Xα
λ and Y , respectively. Since Y ≥ 0, also η ≥ 0. Hence

FY (η) = P(Y ≤ η) = P(|Xα
λ |p ≤ η) = P(− p

√
η ≤ Xα

λ ≤ p
√
η)

= FXα
λ
( p
√
η)− FXα

λ
(− p
√
η)

and since p
√
· is continuously differentiable on [0,∞) for all 1 ≤ p ≤ 2,

πY (η) = d
dη
FY (η) = d

dη

(
FXα

λ
( p
√
η)− FXα

λ
(− p
√
η)
)

= πXα
λ
( p
√
η) ·

(
1
p
η1− 1

p

)
− πXα

λ
(− p
√
η) ·

(
−1
p
η1− 1

p

)
=
(
α
2

) 1
p η

1
p−1

Γ( 1
p

)
exp

(
−αη

2

)
, η > 0.

9



Since Λf contains infinitely many basis functions, a realization of such a
Besov space random variable is an element of the space of definition with
probability zero. To guarantee finiteness of the norm, the functions have to
be defined in a Besov space which is smoother than the one where the realiza-
tions are measured. The following Lemma was adopted from [16, Lemma 2],
but there the authors considered functions on a d-dimensional torus instead
of Rd.

Lemma 3.3. Let X be defined in Br
p(Rd) as in Definition 3.1 for some r > 0

and 2 < α <∞. Then the following three conditions are equivalent:

(i) ||X||Bsp(Rd) <∞ almost surely,

(ii) E exp
(
||X||p

Bsp(Rd)

)
<∞,

(iii) s < r − d
p
.

Proof. Let (Xα
λ )λ∈Λf be as in Definition 3.1. First consider the expectation

of ||X||p
Bsp(Rd)

. Because of (22) we have

E||X||p
Bsp(Rd)

= E
∑

λ∈Λf
2(s+d( 1

2
− 1
p))p|λ|

∣∣∣2−(r+d( 1
2
− 1
p))|λ|Xα

λ

∣∣∣p
= E

∑
λ∈Λf

2−(r−s)p|λ||Xα
λ |p =

∑
λ∈Λf

2−(r−s)p|λ|E|Xα
λ |p

= 2
αp

∑
λ∈Λf

2−(r−s)p|λ|. (23)

Because of the construction of Λf there are `φ scaling functions and `ψ
wavelets on the coarsest scale. Additionally, on scale j > 0 we have at most
2jd`ψ wavelets. Hence, the summation in (23), which is actually a double
some over all wavelets and scales, reduces to a simple sum and

E||X||p
Bsp(Rd)

= 2
αp

(
`φ +

∑∞
j=0 2−(r−s)pj · 2jd`ψ

)
= 2

αp

(
`φ + `ψ

∑∞
j=0 2−j((r−s)p−d)

)
(24)

The sum converges if and only if (r − s)p − d > 0. Since finiteness of the
expectation of a positive random variable implies almost sure finiteness of
the random variable itself, ||X||p

Bsp(Rd)
<∞ a.s. and also ||X||Bsp(Rd) <∞ a.s.,
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hence (i)⇔ (iii). Now we turn to condition (ii). It is

E exp
(
||X||p

Bsp(Rd)

)
= E exp

(∑
λ∈Λf

2−(r−s)p|λ||Xα
λ |p
)

=
∏

λ∈Λf
E exp

(
2−(r−s)p|λ||Xα

λ |p
)

=
∏

λ∈Λf

(
1− 2−(r−s)p|λ|+1

α

)−1/p

=
(
1− 2

α

)− `φ
p ·
(∏∞

j=0

(
1− 2−(r−s)p|λ|+1

α

)2jd`ψ
)− 1

p

(25)

where we used that the Xα
λ are independent and E exp(c|Xα

λ |p) = (1− 2c
α

)−1/p

if α > 2c (which is why we have to require α > 2). Since
∏∞

l=0(1 + al) con-

verges if and only if
∑∞

l=0 log(1+al) converges we find that E exp
(
||X||p

Bsp(Rd)

)
<

∞ if
∞∑
j=0

2jd`ψ log

(
1− 2−(r−s)p|λ|+1

α

)
<∞. (26)

The root test yields

lim
j→∞

(
2jd`ψ log

(
1− 2−(r−s)p|λ|+1

α

)) 1
j

= 2−(r−s)p+d. (27)

Hence the sum and by that (25) converges if (iii) holds. Since (ii) obviously
implies (i) the proof is complete.

The Lemma shows that, although we define the random variable in the
Besov space Br

p(Rd) , its realizations will only be elements of the less smooth
space Bs

p(Rd). If such a combination is used for spaces of definition and
measurement of the random variables, finiteness of the norms in the latter
space is ensured if condition (iii) is fulfilled. We will refer to this as the
infinite model (MI). A second possibility is to consider a finite dimensional
model: Let Tn, T

∗
n be defined as in (5). Then for a function x ∈ L2(Rd)

and arbitrary, but fixed n ∈ N, T ∗nTnx =
∑

λ∈Λn
xλψλ is an element of

Bs
p(Rd) with probability one if the wavelet is smooth enough. This allows in

particular to measure the realizations of random variables in the same norm
as was used in the definition of the random function. This will be referred
to as the finite model (MII). In order to derive convergence rates we need to
calculate P(||X||Bsp(Rd) ≥ %) for given % > 0. The following Corollary shows
how this can be done for model (MI) using Lemma 3.3.
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Corollary 3.4. Consider model (MI). Let X be defined in Br
p(Rd) according

to Definition 3.1 with 2 < α <∞. Let s < r − d
p

and % > 0. Then

P(||X||Bsp(Rd) > %) ≤ 1

%

(
2

αp

(
`φ + `ψ

∞∑
j=0

2−j((r−s)p−d)

)) 1
p

(28)

Proof. According to Chebyshev’s inequality, for any nonnegative random
variable ξ with Eξ < ∞, P(ξ > %) ≤ 1

%
Eξ. Since the mapping z 7→ zp is

bijective for z ≥ 0 and 1 ≤ p ≤ 2, we have for given % > 0

P(||X||Bsp(Rd) > %) = P(||X||p
Bsp(Rd)

> %p) ≤ 1

%p
E||X||p

Bsp(Rd)
.

The expectation of ||X||p
Bsp(Rd)

is given by (24).

Using the finite model, we get the following result.

Lemma 3.5. Consider model (MII). Let X be defined as Bs
p(Rd) random

function according to Definition 3.1, Tn as in (5) and take % > 0. Denote
Xn := T ∗nTnX. Then

P(||Xn||Bsp(Rd) > %) =
Γ(n

p
, α%

p

2
)

Γ(n
p
)

(29)

with the Gamma functions

Γ(a) =

∫ ∞
0

ta−1e−tdt, Γ(a, z) =

∫ ∞
z

ta−1e−tdt.

Proof. Let X be as in Definition 3.1. Then Xn =
∑

λ∈Λn
2−ς|λ|Xα

λψλ and
||Xn||pBsp(Rd)

=
∑

λ∈Λn
|Xα

λ |p reduces to a sum of n i.i.d. random variables

with density (21). The resulting density can be calculated using the mo-
ment generating function (c.f., e.g. [2]) of the Xα

λ which is just the Laplace
transform L(·) of the probability density function. The moment generating
function of a sum of random variables is given by the product of the single
moment generating functions [2]. With π|Xα

λ |p from (21) we get

L[π|Xα
λ |p ](s) =

(
1 +

2s

α

)−1/p

12



and obtain the probability density function of π∑
λ∈Λn

|Xα
λ |p(ξ), ξ ≥ 0, via the

inverse Laplace transform L−1,

π∑
λ∈Λn

|Xα
λ |p(ξ) = L−1

[(
1 +

2s

α

)−n/p]
(ξ) =

ξ
n
p
−1

Γ(n
p
)

(α
2

)n
p
e−

α
2
ξ. (30)

Because
∑

λ∈Λn
|Xα

λ |p is non-negative, P(||Xn||Bsp(Rd) > %) = P(||Xn||pBsp(Rd)
>

%p). The claim follows by integrating (30) over ξ from %p to infinity.

Remark 3.6. Similar to the infinite dimensional setting, Chebyshev’s in-
equality allows to estimate

P(||Xn||Bsp(Rd) > %) ≤ 1

%
p

√
2n

αp
. (31)

This is indeed an upper bound for (29).

Remark 3.7. The relation between the two models is best seen by compar-
ing (28) and (31). Both probabilities solely differ in a term describing the
wavelet structure. In model (MI) the term `φ + `ψ

∑∞
j=0 2−j((r−s)p−d) ensures

that E(||X||) is bounded independently of n, whereas in the finite model the
expectation E(||Xn||) grows unbounded. If % is an a-priori estimate of ||X||
or ||Xn||, respectively, it will have to be chosen differently for the two mod-
els, taking into account the different asymptotic behaviour of the respective
random variables.

4 The Ky Fan metric

In order to establish a convergence analysis for Inverse Problems in a stochas-
tic setting, an appropriate metric for random variables is required. In this
paper we consider the Ky Fan metric (cf. [10]) which is defined as follows.

Definition 4.1. Let x1 and x2 be random variables in a probability space
(Ω,F ,P) with values in a metric space (χ, dχ). The distance between x1 and
x2 in the Ky Fan metric is defined as

ρK(x1, x2) := inf
ε>0
{P({ω ∈ Ω : dχ(x1(ω), x2(ω)) > ε}) < ε}. (32)

13



This metric essentially allows to lift results from a metric space to the
space of random variables. In particular, if ρK(x1, x2) ≤ ε for some 0 < ε ≤ 1,
dχ(x1, x2) ≤ ε with probability 1 − ε. An immediate consequence of (32) is
that ρK(x1, x2) = 0 if and only if x1 = x2 almost surely. Convergence in the
Ky Fan metric is equivalent to convergence in probability, i.e. for a sequence
{xk}k∈N ∈ X and x ∈ X ,

ρK(xk, x)
k→∞−→ 0 ⇔ ∀ε > 0 P(||xk − x||X > ε)

k→∞−→ 0.

Hence convergence in the Ky Fan metric also leads to pointwise (almost sure)
convergence of certain subsequences in the metric dχ (cf. [7]), as formulated
in the following Proposition.

Proposition 4.2 ([11], Proposition 1.10). Let {xk}k∈N be a sequence of ran-
dom variables that converges to x in the Ky Fan metric. Then for any η > 0
and ε > 0 there exist Ωε ⊂ Ω, P(Ωε) ≥ 1− ε, and a subsequence xkj with

||xkj(ω)− x(ω)|| ≤ (1 + η)ρK(xkj , x) ∀ω ∈ Ωε.

Furthermore there exists a subsequence that converges to x almost surely.

The following estimate for the Ky Fan distance of a Gaussian random
variable to its mean is a special case of Proposition 2.5 in [20].

Proposition 4.3. Let ξ be a random variable with values in Rm. Assume
that the distribution of ξ is N (0, σ2I) with σ > 0. Then it holds in (Rm, || · ||)
that

ρK(ξ, 0) ≤ min

{
1,
√

2σ

√
m− ln−

(
σ22πm2

(e
2

)m)}
, (33)

where f−(h) := min{0, f(h)}.
The smallest m for which the ln−-term vanishes is at the zero of

ln−
(
σ22πm2

(
e
2

)m)
. It is given by

mmin = ceil

(
2

1− ln 2
W

(
1− ln 2

2
√

2π

1

σ

))
,

where W is the Lambert W-function defined by W (z)eW (z) = z (cf. [4]),
and ceil(·) the function which maps a real number to the smallest follow-
ing integer. In practice m > mmin typically is fulfilled. Then ρK(ξ, 0) ≤
min

{
1,
√

2σ
√
m
}

= O(E(||ξ||)), in other words the Ky-Fan distance is of
the same order as the expectation of the error. Nevertheless we will give the
main results for the complete error estimate.
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5 Convergence of maximum a posteriori so-

lutions with Besov priors

Before we analyse convergence properties of the Tikhonov regularization in
the stochastic setting, i.e. of the maximum a posteriori solution (13), we
want to review facts for the deterministic case proved in [6].

Remark 5.1. In this paper we assume that for p = 1 the operator A is in-
jective in order to guarantee existence of a unique minimizer of the Tikhonov
functional (13). This assumption is not needed if p > 1 since the functional
is strictly convex in that case.

Theorem 5.2 ([6], Theorem 4.1). Assume that A is a bounded operator from
X to Y with ||A|| < 1, that 1 ≤ p ≤ 2, and that c < minλwλ, {wλ}λ∈Λ = w
for some constant c > 0. Assume that either p > 1 or N(A) = {0}. Let x∗α̂
be the minimizer of (11) for given data yδ with ||y − yδ|| ≤ δ and α̂ > 0. If
α̂ = α̂(δ) satisfies the requirements

lim
δ→0

α̂(δ)→ 0 and lim
δ→0

δ2

α̂(δ)
= 0,

then we have, for any x0 ∈ X ,

lim
δ→0

[
sup

||y−yδ||≤δ
||x∗α̂ − x†||

]
= 0,

i.e. the regularized solutions converge to x†, where x† is the solution of the
equation Ax = y with minimal value of Φ(·).

Remark 5.3. The requirement ||A|| < 1 was imposed to ensure convergence
of the iterative algorithm for the computation of the minimizer. It is not
necessary for the minimizer itself since the equation can always be scaled
appropriately.

Remark 5.4. In both models (MI) and (MII) for the Besov random function
the weights are given by wλ = 2ςp|λ| > 0, ς = s+ d(1

2
− 1

p
) ≥ 0.

In order to carry Theorem 5.2 over to the stochastic case we need the
following Lemma by Egoroff.
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Lemma 5.5. ([8], see also [7]) Let (Ω,F , µ) be a finite measure space. Let
xk and x be measurable functions from Ω into a metric space χ with metric

dχ. Suppose xk(ω)
dχ→ x(ω) for µ-almost all ω ∈ Ω.Then for any ε > 0 there

is a set Ωε with µ(Ω\Ωε) < ε such that xk
dχ→ x(ω) uniformly on Ωε, that is

lim
k→∞

sup{dχ(xk(ω), x(ω)) : ω ∈ Ωε} = 0.

In Theorem 4.1 of his PhD thesis [11], Hofinger proved how by means of
the Ky Fan metric deterministic results can be lifted to the space of random
variables. The same techniques can be used in our situation as well.

Theorem 5.6. Let y = y(ω) be the exact right hand side in (7) and {yσ̂k(ω)}k∈N
be a sequence of noisy realizations of y(ω) + ε(ω) such that ρK(y, yσ̂k) ≤ σ̂k,
σ̂k → 0 as k →∞. Let α̂(σ̂k) be a parameter choice rule such that α̂(σ̂k)→ 0
and σ̂2/α̂(σ̂k) → 0 as σ̂k → 0. Furthermore let the minimum norm solution
x† be unique, i.e. 1 < p ≤ 2 or N(A) = {0}. Denote with x∗α̂(σ̂) the minimizer

of (11). Then
lim
σ̂→0

ρK(x†, x∗α̂(σ̂)) = 0.

Proof. The proof is an adaption of a proof given by Hofinger in [11, Theorem
4.1]. Define η := lim supk→∞ ρK(x†, x∗α̂(σ̂k)). (Note that 0 ≤ η ≤ 1 due to the

properties of the Ky Fan metric.) We show in the following that for arbi-
trary ε > 0 we have η/2 ≤ ε and consequently lim supk→∞ ρK(x†, x∗α̂(σ̂k)) =

limk→∞ ρK(x†, x∗α̂(σ̂k)) = 0.

As a first step we pick a “worst case” subsequence {yσ̂kj } of {yσ̂k}, a sub-
sequence for which the corresponding solutions satisfy ρK(x†, x∗α̂(σ̂

kj
)) ≥ η/2.

We now show that even from this “worst case” sequence we can pick a sub-

sequence {y
σ̂
k
j
l } for which we have lim sup ρK(x†, x∗α̂(σ̂

k
j
l

)) ≤ ε for arbitrary

ε > 0.

Let ε > 0. According to Proposition 4.2 we can pick a subsequence {y
σ̂
k
j
l }

and a set Ωε with P(Ωε) ≥ 1 − ε
2

as well as ||y(ω) − y
σ̂
k
j
l (ω)|| ≤ 2σ̂kjl

on Ωε.

For all ω ∈ Ωε, the noise tends to zero, we can therefore use the deterministic
result and deduce via Theorem 5.2 that x∗α̂(σ̂

k
j
l

)(ω) converges to the unique

solution x†(ω) for σ̂kjl
→ 0, ω ∈ Ωε if α̂(σ̂) → 0 and σ̂2/α̂(σ̂) → 0 as σ̂ → 0.

This convergence is not uniform in ω; nevertheless, pointwise convergence
implies uniform convergence except on sets of small measure according to
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Lemma 5.5. Therefore there exist Ω′ε ⊂ Ωε, P(Ω′ε) <
ε
2

and j0 ∈ N such that
||x∗α̂(σ̂

k
j
l

)(ω)− x†(ω)|| < ε ∀ω ∈ Ωε\Ω′ε and j ≥ j0. We thus have

P
({

ω ∈ Ωε : ||x∗α̂(σ̂
k
j
l

)(ω)− x†(ω)|| > ε

})
≤ P(Ω′ε) ≤ ε/2.

Since we split Ω = Ω\Ωε∪Ωε\Ω′ε∪Ω′ε with P(Ω\Ωε) <
ε
2
, P(Ω\Ωε)+P(Ω′ε) ≤ ε

we have shown existence of a subsequence σ̂kjl
such that

P
({

ω ∈ Ω : ||x∗α̂(σ̂
k
j
l

)(ω)− x†(ω)|| > ε

})
≤ ε

for σ̂kjl
sufficiently small. This ε is by definition of the Ky Fan metric an

upper bound for the distance between x∗α̂(σ̂
k
j
l

) and x†. Therefore we have

lim supl→∞ ρK(x∗α̂(σ̂
k
j
l

), x
†) ≤ ε. On the other hand, the original sequence

satisfied lim infj→∞ ρK(x†, x∗α̂(σ̂
kj

)) ≥ η/2. Since lim infj→∞ ρK(x†, x∗α̂(σ̂k)) ≤
lim supl→∞ ρK(x∗α̂(σ̂

k
j
l

), x
†) it follows η/2 ≤ ε. Because ε > 0 was arbitrary,

this implies η = 0, which concludes the proof.

Corollary 5.7. Let α, σ > 0, 1 ≤ p ≤ 2 and N(A) = 0 for p = 1. Let
xMAP
α̂ = xMAP

α,σ be the solution of (13). If α = α(σ) is chosen such that

ασ2 → 0 and | log σ|
α
→ 0 as σ → 0, then

lim
σ→0

ρK(xMAP
α̂ , x†) = 0.

Proof. From (33) we have

ρK(y, yσ) ≤
√

2σ

√
m− ln−

(
σ22πm2

(e
2

)m)
=: σ̂.

Recall the definition of α̂ = ασ2 and that the maximum a posteriori solution
(13) coincides with the minimizer of the Tikhonov functional (11). Theorem
5.6 ensures convergence of xMAP

α̂ to x† with respect to the Ky Fan metric
if α̂ = ασ2 → 0 and σ̂2/α̂(σ̂) → 0. From the definitions of σ̂ and α̂ the
condition (√

2σ
√
m− ln−

(
σ22πm2

(
e
2

)m))2

ασ2

σ→0−→ 0

follows. This is fulfilled if α grows faster than | lnσ| as σ → 0.
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Remark 5.8. As long as the logarithm is inactive, it suffices to require
ασ2 → 0 and α → ∞. The parameter α may grow with arbitrarily slow
speed.

From a stochastic point of view, α can be interpreted as a measure for
the variance of the prior. If α → ∞, the variance goes to zero. In other
words, with high probability the coefficients |Xα

λ |p are very close to zero
which emphasizes the sparsity background. However, the actual regulariza-
tion parameter is α̂ = σ2α and goes to zero as σ → 0.

Remark 5.9. Corollary 5.7 also shows the necessity of introducing the extra
tuning parameter α in the prior distribution (12). If α = 1 independent of
σ we can not expect convergence of the algorithm with respect to the Ky Fan
metric.

6 Convergence rates

6.1 Deterministic results

Although we proved that the maximum a posteriori solutions converge to
the true solution, it is well-known from deterministic theory (cf. [9]) that
in general the convergence can be arbitrarily slow. In order to guarantee a
certain decrease of the reconstruction error with respect to the noise param-
eter, i.e. to derive convergence rates, it is necessary to impose additional
conditions on either the true solution, the operator, or both. We will require
a smoothing property of the operator A and an a priori bound of the norm
of the solution. Since we are only interested in convergence with respect to
the noise, we will consider the discretization levels m and n fixed.

Let us first summarize some well known deterministic results. For details,
we refer to [6, Section 4.2]. Assume N(A) = {0} for p = 1 and suppose that
we know a priori a bound on the sparsity penalty of the exact solution, i.e.
||x∗||Bsp(Rd) ≤ % for some % > 0. If we also know that y lies within a distance
ε of Ax∗ in Y , then the exact solution can be localized within the set

F(ε, %) := {x ∈ X : ||Ax− y|| ≤ ε, ||x||Bsp(Rd) ≤ %}.

The diameter of this set is a measure of the uncertainty of the solution for a
given a priori constant % and noise level ε. The maximum diameter of F is
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bounded by 2M(ε, %) where M(ε, %), defined by

M(ε, %) := sup{||h|| : ||Ah|| ≤ ε, ||h||Bsp(Rd) ≤ %}, (34)

is called the modulus of continuity of A−1 under the a priori constraint. It
can also be interpreted as the worst case error. An upper bound on the
reconstruction error is given by the modulus of convergence

Mα̂(ε, %) := sup{||x∗α̂ − x|| : x ∈ X ,y ∈ Y , ||Ax− y|| ≤ ε, ||x||Bsp(Rd) ≤ %}
(35)

where x∗α̂ denotes the minimizer of the Tikhonov functional (11). The decay
of this modulus of convergence as ε → 0 is governed by the decay of the
modulus of continuity, as shown in the following proposition:

Proposition 6.1 ([6], Prop. 4.5). The modulus of convergence (35) satisfies

M(ε, %) ≤Mα̂(ε, %) ≤M(ε+ ε′, %+ %′), (36)

where
ε′ = (ε2 + α̂%p)

1
2 , %′ = (%p + ε2α̂−1)

1
p (37)

and M(ε, %) is defined in (34).

Thus it suffices to investigate the convergence behaviour of the modulus
of continuity. As in [6], let us additionally assume that the operator A is
of smoothing order β, that is, we assume that for some β > 0 there exist
constants Al and Au such that for all h ∈ L2(Rd)

A2
l

∑
λ∈Λ

2−2|λ|β|〈h, ψλ〉|2 ≤ ||Ah||2 ≤ A2
u

∑
λ∈Λ

2−2|λ|β|〈h, ψλ〉|2. (38)

The decay of the modulus of continuity is then characterized as follows.

Proposition 6.2 ([6], Proposition 4.7). If the operator A satisfies the smooth-
ing property (38), then the modulus of continuity M(ε, %) satisfies

c

(
ε

Au

) ς
ς+β

%
β
β+ς ≤M(ε, %) ≤ C

(
ε

Al

) ς
ς+β

%
β
β+ς ,

where ς = s+ d(1
2
− 1

p
) ≥ 0 and c and C are constants depending on ς and β

only.
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6.2 Lifting the deterministics result into the stochastic
setting

In this Section, the Ky Fan metric will be used to lift the deterministic results
into the stochastic setting.

Lemma 6.3. Let e = (ε1, ε2, . . . , εm)T ∈ Rm where εi, i = 1, . . . ,m, are
independent identically distributed Gaussian random variables with zero mean
and variance σ2. Then for any c > 0

P(||e|| > c) =
Γ(m

2
, c2

2σ2 )

Γ(m
2

)
. (39)

Proof. We have

P(||e|| > c) = P

√√√√ m∑
i=1

ε2i > c

 = P

(
m∑
i=1

ε2i > c2

)
. (40)

Define Z :=
∑m

i=1 ε
2
i . Then Z is the sum of the squares of m Gaussian

random variables with zero mean and variance σ2. Z is χ2-distributed (see
for example [2]) and obeys the probability density function

fZ(τ) =
1

2
m
2
σmΓ(m

2
)
τ
m
2
−1e−

τ
2σ2 . (41)

Hence

P

(
m∑
i=1

ε2i > c2

)
=

∫ ∞
c2

fZ(τ)dτ =
Γ(m

2
, c2

2σ2 )

Γ(m
2

)
. (42)

Now we are ready for the main theorems in which we will prove conver-
gence rates using first the finite model, then the infinite model. To simplify
the notation we denote Lm(σ) := ln−

(
σ22πm2

(
e
2

)m)
from Proposition 4.3

and E(σ,m, α) :=
√

2σ
√
m− Lm(σ) +

√
2σ
√
m− Lm(σ) + α%p

2
.

Theorem 6.4. Let Xn = T ∗nTnX be defined as Bs
p(Rd)-random variable ac-

cording to Definition 3.1 for 1 ≤ p ≤ 2 and take s ∈ R such that ς =
s + d(1

2
− 1

p
) ≥ 0. Let xMAP

α̂ be the maximum a-posteriori estimate (13) for
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the solution of (7) in the Bayesian framework with a Bs
p-Besov space prior

(12) according to model (MII). Assume we are given noisy data yσ ∈ Rm

such that the error in each component of yσ is normally distributed with zero
mean and variance σ2. Assume additionally that the operator A fulfils (38)
with β > 0, Al > 0, and in case p = 1, N(A) = {0}. If the solution is
smooth enough, i.e. there is an a-priori estimate ||x†||Bsp(Rd) ≤ % for some

% > 0, then as σ → 0 the maximum a-posteriori solution xMAP
α̂ converges

to the solution with minimal norm || · ||Bsp(Rd) provided that the parameter
α = α(σ, %, β, ς, p) is chosen such that

min

((√
2

Al
E(σ,m, α)

) ς
β+ς

(
%+

(
%p + 2m−Lm(σ)

α

) 1
p

) β
β+ς

, 1

)

=
Γ(m

2
,m−ln−(σ′(m)))

Γ(m
2

)
+

Γ(n
p
,α%

p

2
)

Γ(n
p

)
(43)

is fulfilled. Additionally, we have the error estimate

ρK (xMAP
α̂ , x†) = O

((
σ
√

1 + | ln(σ)|+ α%p

2

) ς
β+ς

%
β
β+ς

)
.

Proof. To improve readability we define η := ς
β+ς

, η′ := β
β+ς

and

ε :=
√

2σ
√
m− Lm(σ). Then according to Proposition 4.3, ρK(y, yσ) ≤ ε

holds. From (36) and Proposition 6.2 we know

sup{||xMAP
α̂ − x|| : x ∈ X , y ∈ Y , ||Ax− y|| ≤ ε, ||T ∗x||Bsp(Rd) ≤ %}

= Mα̂(ε, %) < CA−ηl (ε+ ε′)η (%+ %′)η
′
.

Mα̂ is a deterministic quantity. In particular ||xMAP
α̂ −x†|| ≤ CA−ηl (ε+ε′)η(%+

%′)η
′

whenever ||Ax† − yσ|| ≤ ε and ||T ∗x†||Bsp(Rd) ≤ %. On the other hand,

||xMAP
α̂ − x†|| may be larger than CA−ηl (ε+ ε′)η(%+ %′)η

′
if at least one of the

conditions above is violated. Hence

P( {ω ∈ Ω : ||xMAP
α̂ (ω)− x†(ω)|| > CA−ηl (ε+ ε′)η(%+ %′)η

′})
≤ P({ω : ||Ax†(ω)− yσ(ω)|| > ε ∨ ||T ∗x†(ω)||Bsp(Rd) ≥ %})

≤ P({ω : ||Ax†(ω)− yσ(ω)|| > ε}) + P({ω : ||T ∗x†(ω)||Bsp(Rd) ≥ %})(44)

because for A,B ⊂ Ω : P(A∪B) ≤ P(A)+P(B). Note that P({ω : ||Ax†(ω)−
yσ(ω)|| > ε}) corresponds to P(Ω\Ωε) with Ωε from Theorem 5.6, i.e. the
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subset of Ω for which we do not have a worst-case error bound ||y(ω) −
yσ̂(ω)|| ≤ σ̂. For the probability P({ω : ||T ∗nx†(ω)||Bsp(Rd) ≥ %}), % > 0 we
derived in Lemma 3.5

P(||T ∗nx†(ω)||Bsp(Rd) ≥ %) =
Γ(n

p
, α%

p

2
)

Γ(n
p
)

. (45)

The probability P(||Ax† − y|| ≥ ε) is given in Lemma 6.3 with c = ε and
e = Ax† − y,

P(||Ax† − y|| ≥ ε) =
Γ(m

2
, ε

2

2σ2 )

Γ(m
2

)
=

Γ(m
2
,m−Lm(σ))

Γ(m
2

)
. (46)

Inserting (45) and (46) into (44) we arrive at

P({ω ∈ Ω : ||xMAP
α̂ (ω)− x†(ω)|| > CA−ηl (ε+ ε′)η(%+ %′)η

′})

≤ Γ(m
2
, ε

2

2σ2 )

Γ(m
2

)
+

Γ(n
p
,α%

p

2
)

Γ(n
p

)
. (47)

Comparing this with the definition of the Ky Fan metric (32), we get an
upper bound for ρK(xMAP

α̂ , x†) if we choose α such that

CA−ηl (ε+ ε′)η(%+ %′)η
′
=

Γ(m
2
, ε2

2σ2 )

Γ(m
2

)
+

Γ(n
p
, α%

p

2
)

Γ(n
p
)

. (48)

Before we can solve (48) we have to calculate ε+ε′ and %+%′. Resubstituting
the error ε and α̂ = σ2α into (37) we get

ε′ =
√

2σ

√
m− Lm(σ) +

α%p

2

and

ε+ ε′ =
√

2σ
√
m− Lm(σ) +

√
2σ
√
m− Lm(σ) + α%p

2
=: E(σ,m, α).

Analogously we find

%+ %′ = %+

(
%p +

2m− Lm(σ)

α

)1/p
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and (48) reads

C
(√

2
Al
E(σ,m, α)

)η (
%+

(
%p + 2m−Lm(σ)

α

)1/p
)η′

=
Γ(m

2
,m−Lm(σ))

Γ(m
2

)
+

Γ(n
p
,α%

p

2
)

Γ(n
p

)
. (49)

The only unknown quantity in (49) is the constant C. Since we have no
information about it, we neglect it and set it to one. Solving (49) for α
immediately gives an upper bound for ρK(xMAP

α̂ , x†) by definition of the Ky
Fan metric. Although (49) does not have an analytical solution, the nonlinear
equation can still be solved numerically. By construction the convergence rate
is given by both the left hand side and the right hand side of (49).

We obtain a similar result for the infinite dimensional model. To this
end, we only have to replace the probability P(||T ∗nx†||·,p ≥ %) from Lemma
3.5 by the one from Corollary 3.4. We obtain the following Corollary. As

before, E(σ,m, α) :=
√

2σ
√
m− Lm(σ) +

√
2σ
√
m− Lm(σ) + α%p

2
.

Corollary 6.5. Let xMAP
α̂ be the maximum a-posteriori estimate (13) for the

solution of (7) in the Bayesian framework with a Bs
p-Besov space prior (12)

with s ∈ R fulfilling ς = s + d(1
2
− 1

p
) ≥ 0. Let X be defined in Br

p(Rd)

according to model (MI) whit s < r − d
p
. Assume we are given noisy data

yσ ∈ Rm such that the error in each component of yσ is normally distributed
with zero mean and variance σ2. Assume additionally that the operator A
fulfils (38) with β > 0, Al > 0, and in case p = 1 N(A) = {0}. If the solution
is smooth enough, i.e. there is an a-priori estimate ||x†||Bsp(Rd) ≤ % for some

% > 0, then as σ → 0 the maximum a-posteriori solution xMAP
α̂ converges

to the solution with minimal norm || · ||Bsp(Rd) provided that the parameter
α = α(σ, %, β, ς, p) is chosen such that

min

((√
2

Au
E(σ,m, α)

) ς
β+ς

(
%+

(
%p + 2m−Lm(σ)

α

) 1
p

) β
β+ς

, 1

)

=
Γ(m

2
,m−Lm(σ))

Γ(m
2

)
+ 1

%

(
2
αp

(
`φ + `ψ

∑∞
j=0 2−j((s−r)p−d)

)) 1
p

(50)

is fulfilled. Additionally, we have the error estimate

ρK (xMAP
α̂ , x†) = O

((
σ
√

1 + | ln(σ)|+ α%p

2

) ς
β+ς

%
β
β+ς

)
. (51)
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7 Numerical examples for p = 1

In this section we want to illustrate our theoretical results with a specific
example for the case p = 1, as it is well known that this choice produces
sparse solutions. We will consider a deconvolution problem with a given
kernel function. Convolution operators appear in many fields, e.g., in signal
processing, where the output of a linear time-invariant system is given by the
convolution of the input signal with the impulse response, a fixed function
depending on the system. In image processing, blurring effects can often be
modelled as convolution of an image with a smoothing kernel. Mathemati-
cally, we have an operator equation Ax = y where A : L2(Rd) → L2(Rd) is
defined by

[Ax](s) = [k ∗ x](s) =

∫
Rd

k(s− t)x(t)dt, s ∈ Rd (52)

for some kernel function k ∈ L2(Rd). In order to use our theory, we have
to require that A fulfils (38) for some β > 0. Since the properties of A are
determined by its kernel k, we just have to choose k appropriately. Addition-
ally, we have to require ||A|| < 1 for the computation of the solutions (see
below). Inequality (38) describes the equivalence of ||Ah||L2 with a norm of
h in a Sobolev space of negative order H−β. Using Fourier analysis we have

||h||H−β =

∫
Rd

(1 + |ξ|2)−β|ĥ(ξ)|2dξ, (53)

where ĥ denotes the Fourier transform of h. Because of the Fourier-convolution
theorem

||Ah||L2 = ||k̂ · ĥ||L2 =

∫
Rd
|k̂(ξ) · ĥ(ξ)|2dξ. (54)

Comparing (53) and (54) we may define k̂(ξ) := (1 + |ξ|2)−β/2 and obtain
equality in (38) with Au = Al = 1. To control the width of the convolution
filter we introduce an additional constant κ > 0 and define

k̂(ξ) =
cκ,β

(1 + κ|ξ|2)β/2
, ξ ∈ Rd with cκ,β suchthat ||k̂||L2(Rd) < 1. (55)

Now (38) holds with Al = c2
κ,β and Au =

c2κ,β
κ

for κ ≤ 1 and vice versa
for κ > 1. The maximum a-posteriori solution, i.e. the minimizer of the
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Figure 1: Plot of the left-hand side and right-hand side of (43) (MI, left) and
(50) (MII, right) for σ = 0.01, m = 2500, ς = 0.5, β = 1, % = 2.16. The
optimal α is the one for which the intersection occurs.

Tikhonov functional (13) was calculated with the iterative soft-shrinking al-
gorithm proposed in [6]. Starting from an initial guess x0, the iterates are
given by

xk+1 = St,p (xk + A∗(y − Axk)) , k = 1, 2, . . . (56)

where the tresholding operator St,p(h) :=
∑

λ∈Λ Sτλ,p(〈h, ψλ〉)ψλ is defined
componentwise. For p = 1 we have

Sτλ,1(x) :=


x− τ

2
x ≥ τ

2

0 |x| < τ
2

x+ τ
2

x ≤ − τ
2

.

The tresholding parameter τ depends on the regularization parameter α̂ and
the weights 2ςp|λ from the definition of the Besov-space norm ||·||Bsp(Rd) in (18).

Written in full dependence of all parameters, τ = ασ22s+d( 1
2
− 1
p

)p|λ| where |λ|
is the scale of the wavelet. Since ||A|| < 1, the algorithm converges to xMAP

α̂ .
Because the kernel is symmetric we have A∗ = A and (56) can easily be
implemented using Fourier transformation and the convolution theorem. In
order to calculate the regularization parameter α̂ = ασ2, we have to solve
(43) or (50), respectively, for α. This can be done with Newton’s method
after obtaining a good initial guess, for example with the bisection method.
A typical situation is shown in figure 1.

Each of the two definitions of the Besov space random variable allows
for a slightly different implementation of the parameter choice rule. To il-
lustrate the behaviour of both variants, we consider an academic example of
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Figure 2: Signal, noisy measurements and regularized solution for σ = 0.01,
obtained with our parameter choice rule for the finite dimensional model
(MII). We used the exact % and chose s = 1 such that ς = 0.5. Resulting
from α = 45.85 as solution of (49) we obtained the effective regularization
parameter α̂ = α · σ2 = 0.0045.

a one dimensional signal x that is sparse with respect to the Haar basis in
L2(R) and its convolution with a kernel of type (55). A sample of signal,
measurements and corresponding regularized solution is shown in figure 2,
where m = n = 2500 and β = 1. Next we want to compare the predicted
convergence properties to the numerical results. The behaviour of our pa-
rameter choice rules (43) and (50) with respect to σ is demonstrated in figure
3. Both models (MI) and (MII) lead to parameters α and α̂ fulfilling the the-
oretical conditions. The numerically obtained errors follow the theoretically
predicted convergence rates.
So far we did not address the question of convergence of the solutions if m
and n are not fixed anymore but increasing. Although theoretical results are
missing at this point, figure 4 shows a comparison of the parameter choice
rules for the models (MI) and (MII). In contrary to the convergence with
respect to decreasing variance σ, the two models show a distinct convergence
behaviour with respect to m. It is future work to give detailed analysis on
this.

Until now we only considered the one dimensional case. However, figure
5 shows that also for two dimensional problems our parameter choice rule
works and leads to reasonable reconstructions. figure 6 shows that in the
2-dimensional case the regularization parameter α̂ = ασ2 with α chosen ac-
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Figure 3: Numerical comparison of the two parameter choice rules (50) and
(43), respectively, for the one dimensional deconvolution problem. The values
for α·σ2, plotted against σ, are shown in the first row. For sufficiently small σ,
α starts to grow, following the theory developed in Corollary 5.7. However,
α · σ2 still goes to zero. The number of recovered non-zero coefficients in
the solution is shown in the second row. Since n = 2500 we end up with a
sparse solution for all σ used in the simulations. In the last row we plotted
the obtained reconstruction error ||xMAP − x∗|| and compare it with the

convergence rates O
(

(σ
√
m)

ς
ς+β

)
predicted in Theorem 6.4 and Corollary

6.5, respectively.
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Figure 4: Comparison of the two implementations of the parameter choice
rule with respect to varying level of discretization n. The variance σ = 0.01
was held constant. As estimate for % we used the exact value calculated
from the true solution scaled according to the respective models. While the
finite model leads to growing α for increasing n, the infinite model keeps the
regularization parameter constant. The number of non-zero coefficients in
the recovered solution behaves conversely. To plot the reconstruction errors
we used the same scaling for both models. While in the finite model the error
stays the same, it decreases for growing n in the infinite model.
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Figure 5: 2D example, left: signal x with 68 non-zero coefficients, middle:
measurements Ax+ε, σ = 0.1, β = 1, right: solution with α = 130.5, exactly
the 68 true coefficients were recovered.

cording to (50) for the infinite dimensional model (MI) keeps the number of
recovered non-zero coefficients nearly constant as σ → 0.

8 Conclusions

We have investigated convergence properties of Tikhonov regularization in
a stochastic setting. Aiming for the maximum a posteriori solution, the
Tikhonov-type functional (13) was derived from a Bayesian approach. We
proved convergence of the regularized solution to the true solution in the
Ky Fan metric. The special properties of this metric allowed us to establish
non-standard parameter choice rules (43) and (50), respectively, leading to
convergence rates.
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