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Abstract

We consider isogeometric functions and their derivatives. Given a geometry mapping as an n-

dimensional NURBS patch in R
d, an isogeometric function is obtained by composing the inverse

of the geometry mapping with a NURBS function in the parameter domain. Hence an isogeometric

function can be represented by a NURBS patch parametrizing its graph.

Using this approach, we develop a closed form representation of the graph of a partial deriva-

tive of an isogeometric function. The derivative can be interpreted as an isogeometric function

on the same piecewise rational geometry mapping, hence the space of isogeometric functions is

closed under differentiation. All computations are described compactly using homogeneous coor-

dinates. We distinguish the two cases n = d and n < d, with a focus on n = d − 1 in the latter

one.

We use the previously developed representation of the derivatives to derive conditions which

guarantee C 1 and C 2 smoothness for isogeometric functions on two types of singularly para-

metrized planar domains as well as on a part of a spherical cap. It is interesting to note that the

presented conditions depend heavily on the representation of the interior of the given geometry

mapping.

Keywords: isogeometric analysis, isogeometric function, derivative, NURBS, singular patch,

smoothness, embedded manifold, spherical cap

1. Introduction

This work is motivated by isogeometric analysis (IgA), introduced by Hughes et al. (2005).

IgA directly uses the NURBS based representation of a CAD model to construct a test/trial func-

tion space for numerical simulations. An isogeometric function is the composition of a NURBS

function with the inverse of the geometry mapping. In this paper we study the derivatives of such

isogeometric functions in more detail.

∗corresponding author: thomas.takacs@jku.at



In IgA, the space of isogeometric functions is used to discretize a partial differential equation

on the physical domain. One approach is to use the isogeometric functions as test/trial functions

for a Galerkin discretization of the variational formulation (see e.g. Hughes et al., 2005; Gomez

et al., 2008; Cottrell et al., 2009). Another possibility is to use them as a basis for collocation

(see Auricchio et al., 2010; Schillinger et al., 2013). Consequently, it is necessary to approximate

the derivatives of the test functions or to evaluate them point-wise. Fast and stable algorithms

to compute the derivatives are of vital interest. If one is interested in the smoothness or in the

regularity of an isogeometric functions, it is necessary to have a representation of its derivatives.

As the main contribution of our paper, we provide a simple closed-form representation for the

derivatives of the isogeometric functions as parametric patches. We deal with domains represented

by n-dimensional patches in R
d, for both n = d and n < d, where we especially focus on n = d − 1

(like e.g. a surface patch in R
3). The present paper is an extension of the work by Takacs and

Jüttler (2013), where we were dealing with planar domains only.

An isogeometric function on a physical domain, defined by a NURBS patch, can be represented

as a NURBS patch parametrizing its graph. If the domain is a d-dimensional patch in R
d, then the

graph of an isogeometric function is a d-dimensional patch (a hyper-surface) in R
d+1. The patch

is given in homogeneous coordinates to simplify the notation. Using this approach, we develop

a closed form representation of the graphs of the partial derivatives of an isogeometric function.

The derivatives can again be interpreted as isogeometric functions on the same piecewise rational

geometry mapping. Therefore the space of isogeometric functions on a given domain patch is

closed under differentiation.

Using the presented method to compute the derivatives of isogeometric functions we derive

conditions that guarantee smoothness when dealing with patches with singular parametrizations.

Related results concerning the smoothness of singular rational Bézier patches were achieved by

Bohl and Reif (1997); Sederberg et al. (2011). However, our method provides a systematic

approach to derive conditions which characterize smoothness of arbitrary order for singular n-

dimensional patches in R
d. We present results for two parametrizations of planar domains as well

as for a part of a spherical cap to demonstrate the capabilities of the proposed method of smooth-

ness analysis. Patches such as the spherical shell are of importance for applications such as shell

analysis (see e.g. Kiendl et al., 2009; Benson et al., 2010). The results concerning the smoothness

of isogeometric functions are related to the results by Takacs and Jüttler (2011, 2012) about H1

and H2 regularity properties on singular patches.

We consider singularly parametrized domains, since they are particularly useful for the mod-

eling of physical domains of general shape. Higher dimensional NURBS possess a tensor-product

structure, hence regular mappings can only describe domains that have a box-structure. When

dealing with singularities, the smoothness of the isogeometric functions might be reduced. This
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may also affect the stability and convergence properties of the numerical schemes applied. Con-

tributions to the theoretical background of IgA include the numerical analysis concerning consis-

tency and stability of the method (Bazilevs et al., 2006; Cottrell et al., 2007; Hughes et al., 2010;

Echter and Bischoff, 2010). However, singularly parametrized domains are not covered by these

general results and have to be treated separately.

After this short introduction and motivation we given an overview of the remainder of this

paper. In Section 2 we introduce the notation of isogeometric functions on rational patches. We

first introduce the homogeneous coordinate representation of rational n-dimensional patches in R
d

in Subsection 2.1. In the following Subsection 2.2 we introduce isogeometric function on such

patches. We conclude the section with a short introduction to isogeometric analysis. In Section

3 we treat the case of derivatives on patches with n = d. We then discuss C 1(Ω̄) and C 2(Ω̄)

smoothness properties of isogeometric functions on planar domains Ω in Subsection 3.2. We

denote by C k(Ω̄) the space of functions where the k-th derivatives are continuous in the interior of

the domainΩ and can be extended continuously to the boundary ∂Ω. In Section 4 we are extending

the results to n-dimensional patches in R
d with n < d. We especially focus on surfaces in R

3 in

Subsection 4.2, where we consider as a model case a part of a spherical cap. We conclude the

paper with some final remarks in Section 5.

2. Isogeometric functions on rational patches

In the following we introduce rational n-dimensional patches which are embedded into the

Euclidean space of dimension d. The patches are given in homogeneous coordinates, which we

present in Subsection 2.1. Then we define isogeometric functions on these patches in Subsection

2.2. The motivation of this representation comes from isogeometric analysis, which we briefly

recall at the end of this section.

2.1. Rational n-dimensional patches in R
d

Throughout this section we deal with (piecewise) rational parametrizations of patches in R
d.

Since we are considering (piecewise) rational functions we can take advantage of the concept of

homogeneous coordinates. This is a common approach when dealing with rational functions or

NURBS (see e.g. Farin, 1999).

Any Cartesian coordinate vector r = [r1, . . . , rd]T in R
d can be represented in homogeneous

coordinates by

r̃ = (r̃0, r̃1, . . . , r̃d)T ∈ R\{0} × Rd,

where ri = r̃i/r̃0 for i ∈ {1, . . . , d}. Hence any two points r and s are identical if and only if

the homogeneous coordinate vectors r̃ and s̃ are linearly dependent. More precisely, a point with
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the Cartesian coordinates r corresponds to the equivalence class r̃R of points in homogeneous

coordinates. Note that homogeneous coordinates are always written with a tilde (r̃) and Cartesian

coordinates without a tilde (r).

A piecewise rational patch in Cartesian coordinates

r(u) =

(

r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)

)T

for u ∈ B ⊂ R
n

can be represented by a piecewise polynomial patch in homogeneous coordinates, with

r̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u))T for u ∈ B.

The parameter domain B of the patch is an n-dimensional open box. Note that r̃0, r̃1, . . . , r̃d+1 ∈ Sp,

where Sp is a space of tensor-product B-splines of degree p = (p1, . . . , pn) with respect to the

parameters u. For details on NURBS and B-splines and their applications in computer aided

geometric design we refer to Farin (1999); Prautzsch et al. (2002); Hoschek and Lasser (1993).

We recall the tensor-product B-spline representation of r̃ with respect to the basis {Bi}i∈I of Sp,

r̃ : u 7→ (r̃0(u), . . . , r̃d(u))T =
∑

i∈I
c̃iBi(u), (1)

with homogeneous control points c̃i ∈ Rd+1. In Cartesian coordinates this transforms to

r : u 7→ (r1(u), . . . , rd(u))T =
∑

i∈I
ciRi(u), (2)

with Cartesian control points ci = (c̃i,1/c̃i,0, . . . , c̃i,d/c̃i,0)T ∈ Rd, weights c̃i,0 and piecewise rational

basis functions

Ri(u) =
c̃i,0Bi(u)

r̃0(u)
, with r̃0(u) =

∑

j∈I
c̃j,0Bj(u). (3)

The (physical) domainΩ ⊂ R
d is given as the image of the geometry mapping r, i.e. Ω = r(B).

In the following subsection we define isogeometric functions on the domain Ω.

2.2. Isogeometric functions on rational patches

The notion of isogeometric functions as well as the results presented in this paper are motivated

by isogeometric analysis, which we recall at the end of this section.

Definition 1. Let B ⊂ R
n be an open box. Given an invertible NURBS patch r : B → Ω ⊂ R

d as

in (2) with r̃ as in (1) such that r̃ j ∈ Sp, for 0 ≤ j ≤ d. Considering another B-spline r̃d+1 ∈ Sp, the

function f : Ω = r(B)→ R defined via

f (r(u)) =
r̃d+1(u)

r̃0(u)
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is called an isogeometric function on Ω.

By Vp(Ω) we denote the space of isogeometric functions corresponding to Sp. By V(Ω) we

denote the space of isogeometric functions with r̃d+1 ∈ P(B), where P(B) is the space of piecewise

polynomials on B.

Figure 1 gives a schematic overview of the functions r, f and f ◦ r.

B
Ω

r =
∑

i ciRi

f ◦ r f
R

Figure 1: Bivariate geometry mapping r with parameter domain B, physical domain Ω, isogeometric function f and

pullback f ◦ r

From Definition 1 we get that any isogeometric function f ∈ Vp has a representation in the

basis Ri ◦ r−1 with coefficients f̃i/c̃i,0 where Ri is given as in (3), i.e.

f =

(

r̃d+1

r̃0

)

◦ r−1 =















∑

i∈I

f̃i

c̃i,0

Ri















◦ r−1.

The graph of the function f ∈ Vp can be represented by the parametric surface f̃ in homoge-

neous coordinates with

f̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u), r̃d+1(u))T , (4)

having the B-spline representation

f̃(u) =
∑

i∈I



















c̃i

f̃i



















Bi(u),

with homogeneous control points (c̃i,0, . . . , c̃i,d, f̃i)
T ∈ Rd+2 for i ∈ I.

We present two simple examples to give a geometric interpretation of isogeometric functions.

The left part of Figure 2 depicts a bivariate geometry mapping r of a planar domainΩ and the graph

surface f of an isogeometric function f defined on Ω. The right part visualizes an isogeometric

function f defined over a planar curve given by r.
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r̃(u1, u2) =
∑(2,2)

i=(0,0)
c̃iBi(u1, u2)

f̃(u1, u2) =
∑(2,2)

i=(0,0)



















c̃i

f̃i



















Bi(u1, u2)

r̃(u) =
∑3

i=0 c̃iBi(u)

f̃(u) =
∑3

i=0



















c̃i

fi



















Bi(u)

Figure 2: Planar patch r (left), planar curve r (right) and corresponding graph surfaces f with their respective repre-

sentations in homogeneous coordinates

2.3. Motivation: Isogeometric analysis

The focus of this paper lies in the study of derivatives of isogeometric functions f ∈ V.

Isogeometric analysis, introduced by Hughes et al. (2005), is based on isogeometric functions of

NURBS. In that case the geometry mapping as well as the pull back of f are NURBS.

Isogeometric analysis is a numerical solution method for partial differential equations on do-

mains derived from CAD geometries. In isogeometric analysis the finite-dimensional space of

test functions Vp is used to serve as a solution space for the discretized physical problem on the

domain Ω ⊂ R
d.

In many applications one is interested either in point-wise evaluation or in the exact computa-

tion of derivatives of isogeometric functions. In the following we give a closed form representation

of the derivatives of isogeometric functions.

Although isogeometric analysis is based on NURBS, we will restrict ourselves to rational

tensor-product Bézier patches for all the examples presented in this paper, especially in Subsec-

tions 3.2 and 4.2. This is not a restriction since any NURBS patch (i.e. piecewise rational) can be

represented as a collection of rational patches (see e.g. Borden et al., 2011). Hence we consider

Sp = Πp, where Πp is the space of polynomials of degree p. The Bernstein polynomials

Bi(u) =

n
∏

j=1

(

p j

i j

)

(1 − u j)
p j−i ju j

i j

for u = (u1, . . . , un) and

i ∈ I = {(i1, . . . , in) : 0 ≤ i j ≤ p j ∀ 1 ≤ j ≤ n}

form a basis of the space Πp.
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3. Derivatives of isogeometric functions for n = d

In this section we assume that the geometry mapping takes the form r : B ⊂ R
d → Ω ⊂ R

d. We

derive a representation of the partial derivatives of an isogeometric function f ∈ Vp with respect

to the coordinates in physical space xi for i ∈ {1, . . . , d}. More precisely, we define an operator Di,

such that Dir̃ represents the graph of ∂i f , similar to the representation in (4).

3.1. Derivative formula for n = d

Note that the graph f of an isogeometric function f is a hyper-surface in R
d+1. In the following

lemma we recall the homogeneous representation of the tangent space to a parametrized hyper-

surface f at a point f(u).

Lemma 1. Let f be a d-dimensional patch in R
d+1 and f̃ be its representation in homogeneous

coordinates,

f̃(u) = (r̃0(u), r̃1(u), . . . , r̃d+1(u))T .

Then

Tu =
{

x̃ ∈ Rd+2 : det(x̃, f̃(u), ∂1f̃(u), . . . , ∂df̃(u)) = 0
}

is the homogeneous representation of the hyperplane tangent to the manifold at the point f(u). We

can denote the equation of the hyperplane in short by

g̃(u)T x̃ = 0,

where g̃(u) is a vector with entries

g̃ j(u) = det(ẽ j, f̃(u), ∂1f̃(u), . . . , ∂df̃(u)), (5)

for 0 ≤ j ≤ d + 1. Here ẽ j is the j-th homogeneous unit vector, ẽ0 = (1, 0, . . . , 0)T , ẽ1 =

(0, 1, 0, . . . , 0)T , etc. Note that

∂if̃(u) =
∂f̃

∂ui

(u)

is the partial derivative with respect to the i-th parameter ui.

We use this well-known result from projective geometry to derive a representation of the

derivatives of isogeometric functions as rational hyper-surface patches.

Theorem 2. Given a function f ∈ V whose graph is represented by

f̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u), r̃d+1(u))T .
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Then the graph of the partial derivative ∂i f =
∂ f

∂xi
is represented by the parametric hyper-surface

Dif̃ = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)
T
,

where

g̃ j = det(ẽ j, f̃, ∂1f̃, . . . , ∂d f̃),

as in (5) in Lemma 1.

Proof. Fix the parameter value to be u. Lemma 1 states that the tangent hyperplane of the hyper-

surface f̃ at u is given by

Tu =
{

x̃ ∈ Rd+2 : det(x̃, f̃(u), ∂1f̃(u), . . . , ∂df̃(u)) = 0
}

.

Let T1 f (x) be the first order Taylor approximation of f at r(u). Inserting (1, x1, . . . , xd, T1 f (x))T

into the equation of the tangent plane leads to

g̃0(u) +

d
∑

j=1

g̃ j(u)x j + g̃d+1(u)T1 f (x) = 0,

with g̃ j as in (5). Resolving for T1 f (x) leads to

T1 f (x) = − g̃0(u)

g̃d+1(u)
−

d
∑

j=1

g̃ j(u)

g̃d+1(u)
x j

hence
∂T1 f

∂xi

(x) = − g̃i(u)

g̃d+1(u)
.

Since T1 f (x) is the first order Taylor approximation of f at the point x = r(u),

∂ f

∂xi

(r(u)) =
∂T1 f

∂xi

(x) = − g̃i(u)

g̃d+1(u)
.

Therefore the graph of the derivative in Cartesian coordinates fulfills

(

r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)
,
∂ f

∂xi

(r(u))

)T

=

(

r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)
,− g̃i(u)

g̃d+1(u)

)T

which directly leads to the desired representation in homogeneous coordinates.

Considering the graph of an isogeometric function f as a d-dimensional patch in R
d+1, this the-

orem gives a direct representation of the graph of a partial derivative of f , again as a d-dimensional

patch in R
d+1.
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Let Sp,s be a tensor-product spline space of degree p = (p1, . . . , pd) and smoothness s =

(s1, . . . , sd) in u. The smoothness s denotes the continuity along consecutive elements. Given

an isogeometric function f ∈ Vp,s(Ω) corresponding to the spline space Sp,s. Assume that r

is a regular mapping, then the derivative ∂i f is again an isogeometric function, which fulfills

∂i f ∈ Vp̂,ŝ(Ω), with p̂ = (d + 2)p− 1 and ŝ = s− 1. The spaceVp̂,ŝ(Ω) is the space of isogeometric

functions corresponding to Sp̂,ŝ. Since Sp̂,ŝ ⊂ P(B), we can directly conclude that the spaceV(Ω)

of all isogeometric functions on Ω is closed under differentiation.

The bounds on the degree and smoothness are derived from the representation of Theorem 2

and are stated for generic functions on generic geometries. For certain choices of the function f or

of the geometry mapping r, the degree of the derivatives may be decreased and/or the smoothness

may be increased. In the following we use the representation of the partial derivatives from Theo-

rem 2 to analyze the smoothness properties of isogeometric functions defined on singular patches.

Note that the smoothness may be decreased when singularities are present.

3.2. Isogeometric functions on singular patches for n = d

In this section we use the results from Theorem 2 to analyze the order of smoothness of iso-

geometric functions defined on patches containing singularities. In the following we assume to

have given a homogeneous representation of a rational patch in Bernstein-Bézier form. Since any

NURBS patch can be split into a collection of rational patches, we restrict ourselves to rational

patches. The set D0 ⊂ B̄ denotes the set of singular points of the geometry mapping r. Here B̄ is

the closure of B. Let det∇ur(u) ≥ 0 for all u ∈ B̄ and det∇ur(u) = 0 if and only if u ∈ D0. Note

that the Jacobian determinant det∇ur(u) is a rational function of the form

det∇ur(u) = (−1)d+1 g̃d+1(u)

(r̃0(u))d+1
,

where the numerator g̃d+1(u) is the function defined in (5). We assume that r̃0(u) > 0 for all u ∈ B̄.

Consequently, the set D0 is the zero set of the multivariate polynomial g̃d+1(u). In the following

we present two types of model cases of singular planar patches. We will derive C 1(Ω̄) and C 2(Ω̄)

smoothness conditions for isogeometric functions defined on these model patches. Note that we

consider the non-standard notion of C k(Ω̄) smoothness on a closed domain Ω̄.

Definition 3. Let Ω ⊂ R
d be an open set. We say that f ∈ C k(Ω̄) if and only if f ∈ Ck(Ω) and

the derivatives of f up to order k can be extended continuously to the boundary ∂Ω of the domain

Ω. We call such a function f a C k smooth function. Here the space Ck(Ω) denotes the standard

definition of Ck continuity on an open domain Ω.

In Model Case A we deal with singularities caused by collapsing control points. In Model Case

B we are considering singularities caused by parallel tangents at a corner of the parameter domain.
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In both cases we compare bilinear parametrizations with parametrizations that are perturbed in the

interior.

Model Case A: Collapsing edge

In the following we are studying a model patch, where one edge of the parameter domain is

projected onto one point in the physical domain. As a model case we consider a bi-quadratic patch,

which is a degree-elevated bilinear patch. Moreover, we consider a perturbation of this patch and

compare the smoothness properties of the isogeometric functions defined on these patches.

Given an isogeometric function f ∈ V(2,2) represented by its graph surface

f̃(u) =

2
∑

i1=0

2
∑

i2=0

f̃(i1 ,i2)Bi1,i2(u1, u2)

with control points

f̃(i1 ,i2) i2 = 0 i2 = 1 i2 = 2

i1 = 0 (1, 0, 0, f(0,0))
T (1, 0, 0, f(0,1))

T (1, 0, 0, f(0,2))
T

i1 = 1 (1, 2, 0, f(1,0))
T (1, 1, 1, f(1,1))

T (1, 0, 2, f(1,2))
T

i1 = 2 (1, 4, 0, f(2,0))
T (1, 2, 2, f(2,1))

T (1, 0, 4, f(2,2))
T

and tensor-product Bernstein polynomials Bi1,i2(u1, u2) of degree (2, 2), i.e.

Bi1,i2(u1, u2) =

(

2

i1

) (

2

i2

)

(1 − u1)2−i1u
i1
1

(1 − u2)2−i2u
i2
2
.

We call such a patch f̃ a patch with a collapsing edge. Moreover, we consider a function f δ on a

perturbed patch f̃δ with

f̃δ
(1,1)

= f̃(1,1) + (0, δ1, δ2, 0)T and

f̃δ
i
= f̃i otherwise.

Figure 3 contains two examples of a patch with a collapsing edge. The triangle on the left

depicts the control point grid for the unperturbed patch, the triangle on the right depicts one pos-

sibility of a perturbed patch.

Using the representation from Theorem 2, we conclude that f ∈ C
1(Ω̄) if and only if

f(0,0) = f(0,1) = f(0,2)

2 f(1,1) − f(1,2) − f(1,0) = 0. (6)
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Figure 3: Model case A - geometry mapping of an unperturbed (left) and perturbed patch (right)

This relation can be proven be analyzing the derivative patches Dif̃ for i = 1, . . . , d. In order to get

a C 1 smooth function, all the surfaces Dif̃ must be continuous, when projected back to Cartesian

coordinates. When considering C 2 smoothness, we get the same result, i.e. f ∈ C 2(Ω̄) if and

only if equation (6) is fulfilled. Note that, when dealing with singular patches, the control point

representation of the derivative Dif̃ might contain points at infinity or basepoints. A homogeneous

coordinate vector f̃ corresponds to a point at infinity, iff f̃0 = 0 and
∥

∥

∥f̃
∥

∥

∥ , 0. A basepoint is a point

with f̃ = (0, . . . , 0)T . Hence, if r contains singularities, the derivative patch does not necessarily

fulfill Dif̃ : B → R\{0} × R
d+1 but may be extended to Dif̃ : B → R

d+2. If one of the partial

derivatives of f contains a point at infinity in its graph representation, the function f is not in

C 1. However, if basepoints occur, this is not necessarily the case. For smooth patches containing

basepoints we refer to Krasauskas (2002) on toric surface patches. The singular patch presented

here is also related to the work by Reif (1995) on TURBS.

Let us now analyze the perturbed patch f̃δ. Considering C 1 smoothness, the result is similar.

We conclude that f δ ∈ C 1(Ω̄) if and only if

f(0,0) = f(0,1) = f(0,2) (7)

δ1( f(0,0) − f(1,0)) + δ2( f(0,0) − f(1,2)) + 2 f(1,1) − f(1,2) − f(1,0) = 0. (8)

The second equation is equivalent to

det

















































1 0 0 f(0,0)

1 2 0 f(1,0)

1 1 + δ1 1 + δ2 f(1,1)

1 0 2 f(1,2)

















































= 0.

This is exactly the same condition as in the non-perturbed case (δ = (0, 0)). The geometric inter-

pretation of this condition is, that the Cartesian control points f(0,0), f(0,1), f(0,2), f(1,0), f(1,1) and f(1,2)
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must be coplanar. However, when analyzing higher order smoothness, the situation is different.

From Theorem 2 we conclude that f δ ∈ C 2(Ω̄) if and only if equations (7), (8) and

δ1( f(1,0) − f(2,0)) + δ2( f(1,0) − f(2,1)) + 2 f(1,1) − f(1,2) − f(1,0) = 0 (9)

δ1( f(0,0) − f(1,0) + f(1,2) − f(2,1)) + δ2( f(0,0) − f(2,2)) + 4 f(1,1) − 2 f(1,2) − 2 f(1,0) = 0 (10)

are valid. One can observe that equations (8), (9) and (10) are equivalent if (δ1, δ2) = (0, 0), where

the system simplifies to (6).

Model case B: Parallel tangents

In the following we study a model patch, where the images of two edges in the parameter

domain have parallel tangents in one point of the physical domain. As a model case we again

consider a bi-quadratic patch, as a degree-elevated bilinear patch. Similar to Model Case A we

also consider a perturbed patch and compare it to the unperturbed patch.

Given an isogeometric function f ∈ V(2,2) represented by its graph surface

f̃(u1, u2) =

2
∑

i1=0

2
∑

i2=0

f̃(i1 ,i2)Bi1,i2(u1, u2)

with control points

f̃(i1 ,i2) i2 = 0 i2 = 1 i2 = 2

i1 = 0 (1, 2, 2, f(0,0))
T (1, 3, 1, f(0,1))

T (1, 4, 0, f(0,2))
T

i1 = 1 (1, 1, 3, f(1,0))
T (1, 3

2
, 3

2
, f(1,1))

T (1, 2, 0, f(1,2))
T

i1 = 2 (1, 0, 4, f(2,0))
T (1, 0, 2, f(2,1))

T (1, 0, 0, f(2,2))
T

and tensor-product Bernstein polynomials Bi1,i2(u1, u2) of degree (2, 2). In this case the patch f̃ is

called a patch with parallel tangents. As in Model Case A we again consider a function f δ on a

perturbed patch f̃δ with

f̃δ
(1,1)

= f̃(1,1) + (0, δ1, δ2, 0)T and

f̃δ
i
= f̃i otherwise.

Similar to the previous case, Figure 4 depicts an unperturbed patch with parallel tangents on

the left and a perturbed patch on the right.

Similar to the analysis of patches with an collapsing edge, we use the representation from

Theorem 2 to conclude that f ∈ C 1(Ω̄) if and only if

2 f(0,0) = f(0,1) + f(1,0)

f(2,0) − f(0,2) = 2 f(1,0) − 2 f(0,1). (11)

12



Figure 4: Model case B - geometry mapping of an unperturbed (left) and perturbed patch (right)

Moreover, f ∈ C 2(Ω̄) if and only if equations (11) and

4 f(0,1) − 2 f(0,2) = 4 f(1,1) − f(2,1) − f(1,2) (12)

are fulfilled. When considering the perturbed patch, the C 1 smoothness condition is the same as

in the unperturbed case, i.e. f δ ∈ C 1(Ω̄) if and only if (11) is fulfilled. However, when considering

C 2 we get that f δ ∈ C 2(Ω̄) if and only if (11) and

4δ2 f(0,0) + (4 + 2δ1 − 2δ2) f(0,1) − 2 f(0,2) = 4 f(1,1) − (1 − δ1 − δ2) f(2,1) − (1 − δ1 − δ2) f(1,2) (13)

( f(0,2) + f(2,0))(δ1 − δ2) = (4δ1 − 6δ2) f(0,1) + 2δ1 f(1,0) + (δ1 + δ2)( f(1,2) − f(2,1))(14)

are satisfied. Again, if (δ1, δ2) = (0, 0) then equation (13) simplifies to equation (12) and equation

(14) is satisfied since both sides vanish.

As we have seen in both examples, the additional conditions restricting the smoothness only

vanish for a specific positioning of the inner control point. Hence, the smoothness properties are

very sensitive with respect to the exact choice of the parametrization. In any application where the

parametrization is given as some free-form-object, the possible additional smoothness is very hard

to attain.

4. Isogeometric functions on patches with n < d

In this section we are extending the result from Section 3 to functions on n-manifolds embed-

ded into R
d, where n < d. We derive a representation of the intrinsic gradient of an isogeometric

function f ∈ V in Subsection 4.1. In Subsection 4.2 we focus on the case n = 2 and d = 3. We

apply the derivative formula to a function which is defined on a part of a spherical cap and derive

smoothness conditions in that case.
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4.1. Intrinsic gradient of an isogeometric function for the case n < d

We consider an n-dimensional patch r(u) with homogeneous representation

r̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u))T

embedded into R
d, with n < d, and an isogeometric function f defined on r. Let x0 ∈ R

d be a

point on the patch r. Let F be an extension of f to an open neighborhood Nx0
⊂ R

d of x0. The

intrinsic gradient ∇r f of f is given by

∇r f (x0) = Πr (∇xF(x0)) ,

where ∇xF is the gradient of F with respect to x inNx0
. The operator Πr yields the projection of a

vector onto the tangent space of the patch r in x0. When considering a surface in space (i.e. n = 2,

d = 3), this projection can be described by

Πr (∇xF) = ∇xF −
(

(∇xF)T n
)

n,

where n is the unit normal vector of r in x0. One can show that the projection of the gradient onto

the tangent space does not depend on the extension F of the function f , but only on the values of

F on the patch (i.e. ∇r f only depends on f ). Therefore the intrinsic gradient is well-defined. Here

we are following the notion from Šı́r et al. (2008). For further details on the presented objects

from differential geometry we refer to Kreyszig (1991).

We now construct an extension F of f such that the intrinsic gradient is simple to compute. In

a first step the n-dimensional patch r̃(u), with u ∈ Rn, is extended to a d-dimensional patch in R
d.

We assume to have given a basis nn+1(u), . . . , nd(u) of the normal space at u, i.e. (∂kr)T n j = 0 for

all k = 1, . . . , n and j = n + 1, . . . , d, where r is the Cartesian representation of r̃. Moreover let

N = (nn+1, . . . , nd). We denote by

F(u, u+) =



















r(u)

rd+1(u)



















+



















u+N(u)

0



















the extended graph of f , where u+ = (un+1, . . . , ud). Here u+N(u) denotes the sum
∑d

j=n+1 u jn
j(u).

It is not always clear how to choose a suitable basis for the normal space. Usually the goal

is to have a representation of low degree. For the case d = 3 and n = 2 the normal space may

be given by the standard (Cartesian) normal vector ∂1r × ∂2r. However, in general the choice of

normal vectors is not unique. In the following we sketch an approach to generate the homogeneous

representation of the normal space directly.
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Transforming the extension F to homogeneous coordinates leads to

F̃(u, u+) =



















r̃(u)

r̃d+1(u)



















+ u+Ñ(u), (15)

where Ñ = (ñn+1, . . . , ñd).

One way to get a set Ñ of normal vectors ñk, n + 1 ≤ k ≤ d, of low degree is to compute the

exterior product (generalized cross product)

r̃ ∧ ∂1r̃ ∧ . . . ∧ ∂nr̃ ∧ q̃n+1 ∧ . . . ∧ q̃d−1,

of r̃ and the partial derivatives of r̃ with arbitrary points q̃n+1, . . . , q̃d−1. We refer to Frankel (1997)

for a detailed description of this operation. This product describes a hyperplane that contains the

tangential space of the patch r̃. Hence the normal vector to this hyperplane is a possible choice for

the vectors ñk, with n + 1 ≤ k ≤ d. Applying this procedure (d − n) times leads to a set of (d − n)

normal vectors of degree pn ≤ (n + 1)p − 1.

From the equation of the extension (15) it follows that, F̃(u, 0) = (r̃0(u), . . . , r̃d+1(u))T = f̃(u)

represents the graph of the isogeometric function defined on the patch r̃.

Theorem 4. Given a function f ∈ Vp whose extended graph is represented by F̃(u, u+) as in

(15), where (u, u+) ∈ B ⊂ R
d. Let ∇r f be the intrinsic gradient of f . Then the graph of the i-th

component ∇r,i f of the intrinsic gradient is represented by the parametric surface

Dif̃ = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)
T ,

where

g̃ j = det(ẽ j, f̃, ∂1f̃, . . . , ∂nf̃, ñn+1, . . . , ñd).

Proof. Applying Theorem 2 to the extended graph F̃, we get

DiF̃ =
(

F̃0q̃d+1, F̃1q̃d+1, . . . , F̃dq̃d+1,−F̃0q̃i

)T
,

with

q̃ j = det(ẽ j, F̃, ∂1F̃, . . . , ∂dF̃).

The hyper-surface DiF̃ represents the i-th component of the gradient ∇xF. Restricting the gradient

∇xF to the patch r is equivalent to restricting the parameter value to (u, u+) = (u, 0). Hence,

DiF̃ |{u+=0} = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)
T
,

with

g̃ j = q̃ j |{u+=0} = det(ẽ j, f̃, ∂1f̃, . . . , ∂nf̃, ñn+1, . . . , ñd).
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We can split the gradient ∇xF into two parts, i.e.

∇xF = Πr (∇xF) + Πn (∇xF) ,

where Πr is the projection onto the tangent space and Πn is the projection onto the normal space.

However, due to the construction of F, the normal component Πn (∇xF) vanishes everywhere.

Hence,

∇xF = Πr (∇xF) = ∇r f

which concludes the proof.

Assuming we can represent the homogeneous normal vectors ñ j as polynomials of degree pn,

the degree of the derivative patch is bounded by (d − n)pn + (n + 2)p − 1.

Higher order derivatives of f can be computed recursively. The Hessian of f , as a tensor in

R
d×d can be computed by applying the gradient operator ∇r again to each component of ∇r f , i.e.

if ∇r,i f is the i-th component of the intrinsic gradient, then

Hess( f ) =

































| | |
∇r(∇r,1 f ) ∇r(∇r,2 f ) ∇r(∇r,3 f )

| | |

































(16)

is the Hessian of f . We refer to Šı́r et al. (2008) for further details.

In the following subsections we consider the case of a surface in R
3 (d = 3 and n = 2), more

precisely we consider a spherical cap.

4.2. Singularly parametrized surface in R
3

When considering a surface in R
3, the normal space in u is spanned by the normal vector

n(u) = ∂1r(u) × ∂2r(u). In homogeneous coordinates this leads to

ñ = −

















































0

det(ẽ1, r̃, ∂1r̃, ∂2r̃)

det(ẽ2, r̃, ∂1r̃, ∂2r̃)

det(ẽ3, r̃, ∂1r̃, ∂2r̃)

















































.

Hence the degree of the normal vector is bounded by pn = 3p− 1, leading to pn + 4p− 1 = 7p− 2

as a bound on the degree of the gradient patches. Using this representation and Theorem 4 with

g̃ j = det(ẽ j, f̃, ∂1f̃, ∂2f̃, ñ)

we can conclude smoothness results for surfaces embedded in R
3.
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Model Case: Spherical cap

The final example presented in this paper is a part of a spherical cap. We consider a bi-quadratic

rational patch. The patch represents a function defined on one eighth of the unit sphere, with a

singularity at the pole.

Given an isogeometric function f represented by its graph surface

f̃(u1, u2) =

2
∑

i1=0

2
∑

i2=0

f̃(i1 ,i2)Bi1,i2(u1, u2)

with control points

f̃(i1 ,i2) i2 = 0 i2 = 1 i2 = 2

i1 = 0 (1, 0, 0, 1, f(0,0))
T 1√

2
(1, 0, 0, 1, f(0,1))

T (1, 0, 0, 1, f(0,2))
T

i1 = 1 1√
2
(1, 1, 0, 1, f(1,0))

T 1
2
(1, 1, 1, 1, f(1,1))

T 1√
2
(1, 0, 1, 1, f(1,2))

T

i1 = 2 (1, 1, 0, 0, f(2,0))
T 1√

2
(1, 1, 1, 0, f(2,1))

T (1, 0, 1, 0, f(2,2))
T

and tensor-product Bernstein polynomials Bi1,i2(u1, u2) of degree (2, 2).

Figure 5: Spherical cap - patch and control point grid

Figure 5 depicts the spherical cap and its control point grid.

Using the representation from Theorem 2, we conclude that f ∈ C 1(Ω̄) if and only if

f(0,0) = f(0,1) = f(0,2)

f(1,2) − f(1,1) + f(1,0) − f(0,0) = 0. (17)

Similar to the results for Model Case A, equation (17) is equivalent to the points f(0,0), f(0,1), f(0,2),

f(1,0), f(1,1) and f(1,2) lying in a 2-plane in R
4. By that we mean that the corresponding Cartesian
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points lie on the same two-dimensional subspace of R4. When considering C
2 smoothness, we get

a more restrictive result.

If we apply Theorem 2 to each component of the gradient, we get C 2 smoothness results. By

C 2 smoothness we mean, that the Hessian, as defined in (16), is smooth on the closed domain.

Hence we conclude that f ∈ C 2(Ω̄) if and only if equation (17) and

f(2,1) − f(1,1) + f(2,0) − f(1,0) = 0

f(2,2) − f(2,0) + f(1,0) − f(1,2) = 0 (18)

are valid. In total we have given 9 variables and 5 equations, which gives 4 remaining degrees

of freedom. To get a C 2 smooth isogeometric function, one could for instance prescribe function

values at r̃(ui) for u1 = (0, 0), u2 = (1, 0), u3 = (1, 1/2) and u4 = (1, 1).

5. Conclusion

We developed a homogeneous closed form representation of the derivatives of an isogeometric

function. We took advantage of the fact that the graph of an isogeometric function defined on an n-

dimensional NURBS patch in R
d can be interpreted as an n-dimensional patch in R

d+1. The graphs

of the partial derivatives of an isogeometric function are then again given as NURBS patches on

the same NURBS geometry mapping. Hence the space of isogeometric functions is closed with

respect to differentiation.

We applied the presented representation of the derivatives to derive smoothness conditions for

isogeometric functions on patches containing singularities. The method provides a systematic ap-

proach to derive smoothness conditions of arbitrary order. The study of two model cases indicates

that the smoothness conditions depend heavily on perturbations of the geometry mapping. The

results developed here are strongly related to the H1 and H2 regularity results from Takacs and

Jüttler (2011, 2012).

One possibility for future work is to extend the results to isogeometric vector fields. Consider

a vector field that is defined on a surface r in space, i.e. n = 2 and d = 3, and assume that the

vector field is tangential to the surface. Hence the vector field is orthogonal to the surface normal

nr. To represent such a vector field one may define a general vector valued isogeometric function

V ∈ R3 on the surface patch and enforce the orthogonality condition weakly via ‖VT nr‖ ≈ 0. This

ansatz can then be used to compute a vector field fulfilling certain properties, such as interpolating

given data. In that case a regularization of the vector field may be necessary. Using the approach

proposed in this paper, a regularization functional based on the covariant derivatives of the vector

field can be constructed. We refer to Kirisits et al. (2013), where a similar approach was employed

to approximate the optical flow of an image on a moving surface.
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Another issue related to the presented approach is the resulting degree of the derivative patches.

One may be interested in reducing the degree directly or in approximating the derivative patch of

high degree by a patch of lower degree.
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