Doctoral Program

Computational Mathematics

Numerical Analysis and Symbolic Computation

On the Soundness of the Translation of
MiniMaple to Why3ML

Muhammad Taimoor Khan

DK-Report No. 2014-03 02 2014

A-4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by
Austrian Science Fund (FWF) Upper Austria

LLIF -
Der Wissenschaftsfonds.

Editorial Board:

Managing Editor:

Communicated by:

DK sponsors:

e Johannes Kepler University Linz (JKU)

Bruno Buchberger
Bert Juttler
Ulrich Langer
Manuel Kauers
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Silviu Radu

Wolfgang Schreiner
Franz Winkler

e Austrian Science Fund (FWF)

e Upper Austria

On the Soundness of the Translation of
MiniMaple to Why3ML*

Muhammad Taimoor Khan
Doktoratskolleg Computational Mathematics
and
Research Institute for Symbolic Computation
Johannes Kepler University
Linz, Austria
Muhammad.Taimoor.Khan@risc. jku.at

February 3, 2014

Abstract

In this paper, we first introduce the soundness statements for the var-
ious constructs of MiniMaple and then give the corresponding proofs for
the soundness of the most interesting syntactic domains of MiniMaple,
i.e. command sequences, assignment statements, conditionals and while-
loops.

*The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.

Contents
1 Introduction

2 Overview of the Soundness

2.1 Semantic Domains
2.1.1 For Why3
2.1.2 For MiniMaple,
2.2 Auxiliary Functions and Predicates
2.3 Soundness Statements L.
2.4 Proof of Soundness
2.4.1 Command Sequence
2.4.2 Conditional and Assignment
2.4.3 While-loop oo
25 Lemmas
2.6 Definitions
2.7 Why3 Semantics oo
2.8 Derivations
3 Conclusions and Future Work
4 References
Appendices
A Semantic Algebras
A1l For MiniMaple
A1l Truth Values
A.1.2 Numeral Values
A.1.3 Environment Values
A.1.4 State Values
A.1.5 Semantic Values
A.1.6 Information Values
A17 ListValues
A.1.8 Unordered Values
A19 TupleValues
A.1.10 Procedure Values
A.1.11 Lifted Valuedomain
A2 For Why3.
A.2.1 Variable Values
A22 StateValues
A.2.3 Environment Values
A.24 Semantic Values
A.2.5 Exception Values,
A.2.6 Function Values
A27 Constant Values
A.2.8 Declaration Values.
A29 Theory Values
A2.10 Why3 Types o oo v i

B Auxiliary Functions and Predicates

29

30

30
30
30
30
30
30
31
32
32
32
32
32
32
32
32
32
33
33
33
33
33
33
33
33

34

C

H

Soundness Statements

C.1 For Command Sequence
C.2 For Command
C.3 For Expression
C.4 ForIdentifier
Ch5 Goal. e

Proof

D.1 Case G1: Soundness of Command Sequence.

D.2 Case G2: Soundness of Command
D.2.1 Case 1: C:=if E then Cseql else Cseq2 end if
D22 Case2: C:=1Iseq:=E,Eseq
D.2.3 Case 3: C:= while Edo Cseqend

Lemmas

E.1 For Command_Sequence
E.2 For Command
E.3 For Expression o
E.4 Auxiliary Lemmas

Definitions
Why3 Semantics

Derivations

39
39
39
40
40
40

41
41
93
93
68
79

95
95
96
100
101

103

105

107

1 Introduction

In order to show that the verification of the translated Why3ML program implies
the correctness of the original MiniMaple program , we have to prove that the
translation preserves the semantics of the program. In detail, we have to prove
the equivalence of the denotational semantics of MiniMaple programs [4, 3, 2]
and the operational semantics of Why3ML programs [1]. We have defined the
denotational semantics of MiniMaple as a relationship between a pre and a
post-state, e.g. the formal semantics of a MiniMaple command is defined as:

[CT(e)(s; ")

such that semantically, in a given type environment e, the execution of a com-
mand C' in a pre-state s yields a post-state s’. In [1] a big-step operational
semantics of Why3 is defined as a transition:

<s,e>— <5, v>

which says that in a pre-state s, the execution of a Why3 expression e yields a
post-state s’ and a value v. Based on these semantics, we have formulated and
proved the soundness statements as discussed later in this document.

The rest of the paper is organized as follows: in Section 2, we discuss the
overview of soundness of various MiniMaple constructs. Section 3 presents con-
clusions and future work. Appendix A introduces the semantic domains of
MiniMaple and Why3 and Appendix B sketches the auxiliary functions and
predicates that are later used in the proof of the soundness. Appendix C for-
mulates the corresponding soundness statements while Appendix D gives the
actual proof of the soundness statements for the selected constructs. The proof
requires some additional lemmas and definitions which are defined in Appen-
dices E and F respectively. The semantics of Why3 is defined in Appendix G
while the derivations for the proof of the soundness of while-loop are discussed
in Appendix H.

2 Overview of the Soundness

In this section, we describe the guidelines to read the different Appendices A,
B, C and D with the help of some examples. Each of the following subsections
presents the corresponding aforementioned appendix respectively.

2.1 Semantic Domains

This section gives the definition of various semantic domains of MiniMaple and
Why3. We needed to extend some of the semantic domains for MiniMaple;
while the definition of the corresponding semantic domains of Why3 are deduced
from the operational semantics of Why3 as discussed in [1]. In the following,
we introduce some critical (w.r.t. proof) semantic domains of MiniMaple and
Why3, e.g. state and value. For the complete definition of all the semantic
domains of Why3 and MiniMaple, please see Appendix A.

2.1.1 For Why3

The state values of Why3 are defined as a mapping of variables to their corre-
sponding Why3 semantic values.

State,, := Variable — Value,,

where the semantic values is a disjoint domain consists of

Value,, = ¢ + Ezxception,, + Function,, + Void

Why3 constants ¢, an exception object Exception,,, a function value Function,,
and Void. Here the constant ¢ models all the other values, e.g. booleans,
integers, reals, tuples and lists.

2.1.2 For MiniMaple

The state values of MiniMaple are defined as a tuple of store and data values:
State := Store x Data

where the corresponding store and data values are:

Store := Variable — Value
Data := Flag X Fxception x Return

The domain of semantic values of MiniMaple is also a disjoint domain as:
Value = Procedure + List + Tuple + Boolean + Integer + ... 4+ Symbol

In order to make the various proof steps handy, based on the above defini-
tions we have introduced a new semantic domain

InfoData = Value + Data + Void

which corresponds to the values domain Value,, of Why3.

2.2 Auxiliary Functions and Predicates

This section gives the declaration and (partial) definitions of various critical
auxiliary predicates which are very important w.r.t. the proof.

e equals C State x Statey,: returns true only if the given MiniMaple state
equals the given Why3 state as defined:

equals(s, t) < Vi : Identifier, v, € Value : i € dom(s) A <i, vy,> € store(s)
= Fu,, € Valuey, : <i, vy,> € t A equals(Vp,, Vy)

e equals C Value x Valuey,: returns true only if the given MiniMaple
value equals the given Why3 value as defined:

equals(vp,, vy) <
cases v,, of
[| isInteger(int,,) —
cases v,, of
isIntegerw(int,) — valueOf (inty,) = valueOf (inv,)

[| - — false
end
[] is Boolean(b.,) —
cases v,, of
isBooleanw(by,) — valueOf (by,) = valueOf (by)
[| - — false
end
f...—...
end

e equals C InfoData x Valuew: returns true only if the given state in-
formation of MiniMaple equals the given Why3 value. This predicate is
defined to make our proof handy and easier.

equals(d, vy,) &
cases d of
[is Value(vy,) — equals(Vp, vy)
[isData(dp,) —
IF exceptions(d,,) THEN
cases vy, of
is Exceptionw(e,) —
equals(getld(dy,), getld(ey)) A equals(get Value(dy,), get Value(ey))
[- — false
end
ELSE ... END
[is Void(mv) —
cases vw of
1sVoid(wv) — true
[- — false
end
end

¢ extendsEnv C Environment,, x Expression,, x Environment,,: re-
turns true if the former environment extends the latter environment with
the identifiers appearing in the given expression.

extendsEnv(ey,c,e3) &

VI : Identifier,v € Value, Iseq € Identifier_Sequence, vseq € Value_Sequence :
<I,v> € ey A Iseq = extractldentifiers(c) A vseq = getValues(Iseq, c)
= <I,v> € e; AN e; = eg UIVSeqtoSet(Iseq, vseq)

The definitions of the corresponding predicates extendsDecl and extendsT heory
are the same as of extends Env defined above. For the definitions of the complete
list of functions and predicates, please see Appendix B.

2.3 Soundness Statements

In this section, we discuss the formulation of the soundness statements for the
translation of MiniMaple to Why3. The general goal here is proof:

VCseq € Command_Sequence, C € Command, E € FExpression :
Soundness_cseq(Cseq) N Soundness_c(C) A Soundness_e(E)

where

¢ Soundness_cseq C Command_Sequence: defines the soundness state-
ment for a MiniMaple command sequence as below:

Soundness_cseq(Cseq) <
Y em € Environment,cw € Exprression,, ew,ew’ € Environment,,
dw,dw’ € Decly,, tw,tw’ € Theory,, :
wellTyped(em, Cseq) A consistent(em, ew, dw, tw)A
<cw, ew’, dw', tw'> =T[Cseq](em, ew, dw, tw)
=
well Typed (cw, ew’, dw’, tw’) A extendsEnv(ew’, cw, ew)A
extendsDecl(dw’, cw, dw) A extendsTheory(tw’, cw, tw)A
Vi, t' € State,,vw € Valuey, : <t', cw> — <t', vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](e)(s,s")A
Vs, s € Statey,, dm € InfoData : equals(s, t)A
[Cseql(e)(s,s’) A dm = infoData(s")
= equals(s’,t") A equals(dm, vw)

In detail, the soundness statement for the command sequence C'seq states
that

— if a command sequence C'seq translates to Why3 expression cw such
that various predicates holds for Cseq, e.g. well-typeness then,

— various predicates also hold for the corresponding translated expres-
sion cw, e.g. extension of the declarations extendsDecl and theory
extendsTheory and

— if for arbitrary Why3 states ¢ and t/, execution of the translated
expression cw in state ¢ yields to a post-state ¢’ and a value vw then,

— there are corresponding MiniMaple states s and s’ such that states
s and t are equal and execution of a command sequence C'seq in this
state s yields to a state s’ and

— if for arbitrary MiniMaple states s and s’, corresponding states s and
t are equal; moreover, with a given environment e execution of C'seq
in a pre-state s yields a post-state s’ and dm is the state information
of s’ then,

— the corresponding post-states s’ and ¢’ are equals and also the corre-
sponding values dm and vw are equal.

e Soundness_c C Command: defines the soundness statement for a Mini-
Maple command as below:

Soundness_c(C) <

Y em € Environment,cw € Exprression,, ew,ew’ € Environment,,
dw, dw’ € Decly,, tw, tw’ € Theory,, :
well Typed (em, C) A consistent(em, ew, dw, tw)A

<cw, ew’, dw', tw'> =T[C](em, ew, dw, tw)
=
well Typed (cw, ew’, dw', tw") A extendsEnv(ew’, cw, ew)A
extendsDecl(dw’, cw, dw) A extendsTheory(tw’, cw, tw)A
Vi, t' € State,, vw € Value,,: <t', cw> — <t', vw>
=
ds, s’ € State,, :equals(s, t)A [C](e)(s, s)A
Vs, s' € State,,, dm € InfoData : equals(s, t)A
[Cl(e)(s,s") A dm = infoData(s")
= equals(s’,t") A equals(dm, vw)

The formulation of the soundness statement for a command C' is very
similar to the soundness of command sequence C'seq as stated above.

e Soundness_e C Expression: defines the soundness statement for a Mini-
Maple expression as below:

Soundness_e(E) <
VY em € Environment, expw € Exprression,,, ew,ew’ € Environment,,,
dw, dw' € Decl,,, tw, tw’ € Theory,, :
wellTyped(em, E) A consistent(em, ew, dw, tw)A
<expw,ew’,dw’ tw'> =T[E](em, ew, dw, tw)
=
well Typed (expw, ew’, dw’, tw’) A extendsEnv(ew’, expw, ew)A
extendsDecl(dw’, expw, dw) N extendsTheory(tw’, expw, tw)A
Vi, t' € State,, vw € Valuey,: <t', cw> — <t’', vw>
=
ds, s’ € State,,, vm € Value :equals(s, t)A [E](e)(s, s’, vm)A
Vs, s’ € Statey,, vm € Value : equals(s, t)A [E](e)(s, s, vm)
= equals(s',t') A equals(dm, vw)

In detail, the soundness statement for the expression E states that

— if an expression E translates to Why3 expression expw such that
various predicates holds for F, e.g. well-typeness then,

— various predicates also hold for the corresponding translated expres-
sion expw, e.g. extension of the declarations extendsDecl and theory
extendsTheory and

— if for arbitrary Why3 states ¢ and ¢’, execution of the translated
expression expw in state t yields to a post-state ¢’ and a value vw
then,

— there are corresponding MiniMaple states (s and s’) and a value vm
such that the states s and t are equal and evaluation of the expression
E in this state s yields to a state s’ and a value vm and

— if for arbitrary MiniMaple states (s and s’) and value vm, corre-
sponding states s and ¢ are equal; and with a given environment e
evaluation of F in a pre-state s yields a post-state s’ and a value vm
then,

— the corresponding post-states s’ and ¢’ are equals and also the corre-
sponding values vm and vw are equal.

For further technical details and definitions of other predicates used in the
soundness statements, please see Appendix B.

2.4 Proof of Soundness

In this section, we sketch the structure and strategy for the proof of the sound-
ness of the selected MiniMaple constructs, i.e. command sequence and condi-
tional, assignment and while-loop commands. In order to carry the proof, we
have slightly modified the grammar for MiniMaple as shown below:

Cseq := C | C;Cseq // originally was EMPTY | C;Cseq

C:= ... |if E then Cseq else Cseq end if | while E do Cseq end do | ...
E:=..|EandE|EorE|E=E|E<E|E<E|E>E|E>E|notE]|...
Eseq := E | E;Eseq // originally was EMPTY | E;Eseq

We prove the goal (as formulated in Section 2.3) by structural induction on
Cseq, C and E whose formal grammar rules are defined. Also the rules for the
questioned semantics of Why3 are defined by “. — _” notation as introduced
in Section 1 and in [1]. Hence, the goal splits into the following subgoals:

1. Soundness_cseq(Cseq)
2. Soundness_c(C)
3. Soundness_e(E)

In the following subsection, we give the sketch of the proof of some of the
structural cases of C'seq and C. Based on our proof strategy, the corresponding
proof for the rest of the constructs is an easy exercise to rehearse.

2.4.1 Command Sequence

As per the grammar for command sequence Cseq above, there are two cases. In
this section, we discuss the proof of the complex case, i.e. when C'seq is C; C'seq.
In order to prove, first we expand the definition of the goal Soundness_cseq(C'seq),
where C'seq = C'; C'seq and get

Y em € Environment, cw € Exprression,,, ew, ew’ € Environment,,,
dw,dw’ € Decly, tw,tw’ € Theory,, :
well Typed(em, C; Cseq) A consistent(em, ew, dw, tw)A
<cw, ew', dw’, tw'> =T[C; Cseq](em, ew, dw, tw)
=
wellTyped (cw, ew’, dw’, tw’) A extendsEnv(ew’, cw, ew)A
extendsDecl(dw’, cw, dw) A extendsTheory(tw', cw, tw)A
Vt, t' € State,, vw € Value,, : <t', cw> — <t’', vw>
=
Js, s’ € State,, :equals(s, t)A [C; Cseq](e)(
Vs, s’ € Statey,, dm € InfoData : equals(s, t
[C; Cseq](e)(s,s") A dm = infoData(s")
= equals(s’, t') A equals(dm, vw)

A

) ?

Let em, cw, em, ew’, dw, dw’, tw, tw’, be arbitrary but fixed.

We assume:
wellTyped(em, C; Cseq) (2.4.1.1)
consistent(em, ew, dw, tw) (2.4.1.2)
<cw,ew’,dw’, tw'> = T[C; Cseq|(em, ew, dw, tw) (2.4.1.3)
We show:
o wellTyped(cw, ew’, dw', tw”) (a)
o extendsEnv(ew’, cw, ew) (b)
e extendsDecl(dw’, cw, dw) (c)
o extendsTheory(tw’, cw, tw) (d)

o Vi, t' € State,,vw € Value,, : <t', cw> — <t', vw>
=

ds, s’ € State,, :equals(s, t)A [C;Cseq](e)(s, s")A
Vs, s’ € Staten,, dm € InfoData : equals(s,t)
[C; Cseq](e)(s,s") A dm = infoData(s")

= equals(s’, t') A equals(dm, vw) (e)

In the following, we prove each of the above five goals.

Goal (a)

We instantiate lemma (L — ¢seql) with
cseq as C; Cseq, em as em, e as cw, ew as ew, ew’ as ew’, dw as dw, dw' as
dw', tw as tw, tw’ as tw’ and get

wellTyped(em, C; Cseq) A <cw, ew’, dw’, tw'> =T[C; Cseq](em, ew, dw, tw)
= wellTyped(cw, ew', dw’, tw")

This goal follows from assumptions (2.4.1.1) and (2.4.1.3).

Goal (b)

By the definition of the translation function (D2) of T[C;Cseq], there are
el,e2,ew”, dw”, tw" for which

<cw, ew’,dw’, tw'> = T[C; Cseq|(em, ew, dw, tw) (2.4.1.4)
where
cw = el;e2 (2.4.1.5)
<el,ew”, dw"” tw"> = T[C](em, ew, dw, tw) (2.4.1.6)
em’ = Env(em, C) (2.4.1.7)
<e2,ew, dw’ tw'> = T[Cseq](em’, ew” , dw"” tw") (2.4.1.8)
Here el;e2 is a syntactic sugar for the Why3 semantic construct let - = el in
e2.

10

We instantiate lemma (L — cseq3) with
em as em, em’ as em’/, C' as C and Cseq as C'seq
from which the following holds

wellTyped(em, C) (2.4.1.9)
em’ = Env(em, C) (2.4.1.10)
wellTyped(em’, C'seq) (2.4.1.11)

We instantiate the soundness statement for C' with
em as em, cw as el, ew as ew, ew’ as ew”, dw as dw, dw’ as dw”, tw as tw,
tw’ as tw” to get

wellTyped(em, C') A consistent(em, ew, dw, tw)A
<el,ew”, dw” tw"> =T[C](em, ew, dw, tw)
=
wellTyped(el, ew”, dw" tw”) A extendsEnv(ew”, el, ew)A
extendsDecl(dw”, el, dw) A extendsTheory(tw"”, el , tw)A
Vt, t' € State,, vw € Value,,: <t',el> — <t', vw>
=
Js, s’ € Staten, :equals(s, t)A [C](e)(s, s)A
Vs, s" € Staten,, dm € InfoData : equals(s, t)A
[Cl(e)(s,s") A dm = infoData(s")
= equals(s’,t") A equals(dm, vw) (A)

From (A) and assumptions (2.4.1.9), (2.4.1.2) and (2.4.1.6), it follows that

extendsEnv(ew”, el, ew) (2.4.1.12)

We instantiate lemma (L — cseq4) with

em as em, em’ as em’, C as C, Cseq as Cseq, ew as ew, ew’ as ew’, el as
el, e2 as €2, dw as dw, dw' as dw’, tw as tw, tw’ as tw’', ew” as ew”, dw” as
dw”, tw" as tw" to get

<el,ew”, dw” tw'"> = T[C](em, ew, dw, tw) A em’ = Env(em, C)A
<e2,ew’,dw’ tw'> = T[Cseq](em/, ew” , dw” ,tw") A consistent(em, ew, dw, tw)
= consistent(em’, dw” , dw” tw") (B)

From (B) with assumptions (2.4.1.6), (2.4.1.6), (2.4.1.8) and (2.4.1.2), it
follows that

consistent(em’, ew” dw" tw") (2.4.1.13)

We instantiate the induction assumption for C'seq with
em as em’, cw as €2, ew as ew”, ew’ as ew’, dw as dw”, dw’ as dw’, tw as
tw”, tw’ as tw’ to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”, tw")\
<e2,ew’,dw’ tw'> =T[Cseq](em’, ew”, dw" tw")
=
wellTyped(e2, ew’, dw’, tw") A extendsEnv(ew’, e2, ew)\
extendsDecl(dw’, e2, dw") N extendsTheory(tw’, e2, tw')\

11

Vt,t' € State,, vw € Value,,,: <t',e2> — <t',vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](e)(s, s")A
Vs, s' € State,, dm € InfoData : equals(s, t)A
[Cseq](e)(s,s’) A dm = infoData(s")
= equals(s’, t') A equals(dm, vw) (C)

From (C) with assumptions (2.4.1.11), (2.4.1.13) and (2.4.1.8), it follows that

extendsEnv(ew’,e2, ew’) (2.4.1.14)

From (2.4.1.5), we can re-write the goal (b) as
extendsEnv(ew’, el; e2, ew)

In order to prove this goal, we instantiate lemma (L — cseq2) with

em as em, C as C, Cseq as Cseq, ew as ew, ew' as ew’, ew” as ew”, el as
el, e2 as €2, dw as dw, dw’ as dw', dw” as dw”, tw as tw, tw’ as tw’, tw” as
tw” to get

wellTyped(em, C; Cseq) A <el;e2,ew’, dw’, tw'> = T[C; Cseq](em, ew, dw, tw)
=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, e2, ew”) = extendsEnv(ew’, el; €2, ew)] A
[extendsDecl(dw"”, el, dw) A extendsDecl(dw', e2,dw’) = extendsDecl(dw’, el; e2, dw)] A
extendsTheory(tw”, el, tw)AextendsTheory(tw’, €2, tw") =
extendsTheory(tw’, el; €2, tw)] (D)

The goal (b) follows from (D) and assumptions (2.4.1.1), (2.4.1.4), (2.4.1.5),
(2.4.1.12) and (2.4.1.14). Hence proved.
Goals (c) and (d)

The goals (¢) and (d) are very similar to goal (b) and thus can be easily rehearsed
based on the proof of goal (b).

Goal (e)

Let ¢,t’, cw, vw be arbitrary but fixed.
We assume:

<t,cw> — <t',ow> (2.4.1.15)

From (2.4.1.5), and Why3 semantics, we know

cw = el;e2 ~ let_ = eline2 (2.4.1.16)

From Why3 semantics (com — s), we get

<t,let_ = eline2> — <t', vw> (2.4.1.17)
<t,el> — <t" vw'> (2.4.1.18)

for some t”, where vw’ is not an exception

<t e2> — <t’ vw> (2.4.1.19)

12

for some t".
We show:

Js, s’ € State : equals(s,t)A [C; Cseq](em)(s, s") (e.a)

Vs, s’ € State,dm € InfoData : equals(s,t)A [C; Cseq](em)(s,s") Adm = infoData(s")
= equals(s’,t') A equals(dm, vw) (e.b)

In the following, we prove these two sub-goals (e.a) and (e.b) of goal (e).

Sub-Goal (e.a)

To prove this goal, we define

s := constructs(t) (2.4.1.20)

We split the original goal (e.a) and show the following sub-goals:
equals(s,t) (e.a.l)
[C; Cseq](em)(s, s") (e.a.2)

Now, we prove the following two further sub-goals (e.a.1) and (e.a.2) in order
to prove the goal (e.a).

Sub-Goal (e.a.l)

We instantiate lemma (L — cseq5) with s as s and ¢ as ¢ to get
s = construct(t) = equals(s,t) (E)

The sub-goal (e.a.l) follows from (E) with assumption (2.4.1.20). Hence
proved.

Sub-Goal (e.a.2)

We instantiate the soundness statement for C' with
em as em, cw as el, ew as ew, ew’ as ew”, dw as dw, dw’ as dw”, tw as tw,
tw’ as tw” to get

wellTyped(em, C') A consistent(em, ew, dw, tw)A
<el,ew”, dw” tw"> =T[C](em, ew, dw, tw)
=
wellTyped(el, ew”, dw"” tw”) A extendsEnv(ew”, el, ew)A
extendsDecl(dw”, el, dw) A extendsTheory(tw"”, el , tw)A
Vt, t' € State,, vw € Value,,: <t',el> — <t',vw>
=
Js, s’ € Staten, :equals(s, t)A [C](e)(s, ')A
Vs, s’ € Staten,, dm € InfoData : equals(s, t)A
[C](e)(s,s") A dm = infoData(s")
= equals(s',t") A equals(dm, vw) (F)

From (F) with assumptions (2.4.1.9), (2.4.1.2), (2.4.1.6), we get

13

Vi, t' € State,,vw € Value, : <t',el> — <t', vw>
=
Js, s’ € State,, :equals(s, t)A [C](e)(s, s")A
Vs, s € Statey,, dm € InfoData : equals(s, t)A
[Cl(e)(s,s") A dm = infoData(s")
= equals(s’,t") A equals(dm, vw) (F.1)

We instantiate the above formula (F.1) with
tastandt ast”, vw as vw’ to get

Vi, t"” € State,, vw’ € Value,, : <t’', el> — <t vw’'>
=
Js, s’ € Staten, :equals(s, t)A [C](e)(s, s)A
Vs, s’ € State,,, dm € InfoData : equals(s, t)A
[Cl(e)(s,s") A dm = infoData(s")
= equals(s’,t") N\ equals(dm, vw’) (F.2)

From (F.2) with assumption (2.4.1.18), we know

ds, s’ € State : equals(s,t)A [C](em)(s, s") (F.3)
By instantiating (F.3) with s as s, s as s”, we know that
there is s, s s.t.

[C](em)(s,s") (2.4.1.21)

We instantiate the induction assumption for C'seq with
em as em’, cw as €2, ew as ew”, ew’ as ew’, dw as dw”, dw’ as dw’, tw as
tw”, tw’ as tw’ to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw"” , tw”)\
<e2,ew’, dw', tw'> =T[Cseq](em’, ew”, dw", tw")
=
wellTyped(e2, ew’, dw’, tw') A extendsEnv(ew’, e2, ew”)\
extendsDecl(dw', e2, dw") A extendsTheory(tw’, e2, tw")A
Vi, t' € State,, vw € Value,,: <t',e2> — <t',vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](em’)(s, s")A
Vs, s’ € State,,, dm € InfoData : equals(s, t)A
[Cseq](em’)(s,s") A dm = infoData(s")
= equals(s’',t') A equals(dm, vw) (G)

From (G) with assumptions (2.4.1.11), (2.4.1.13) and (2.4.1.8), it follows
that

Vi, t' € State,, vw € Value,, : <t,e2> — <t', vw>
=
ds, s’ € State, :equals(s, t)A [Cseq](em’)(s, s")A
Vs, s' € State,,, dm € InfoData : equals(s, t)A
[Cseq](em’)(s,s") A dm = infoData(s")
= equals(s’,t") N\ equals(dm, vw’) (G.1)

We instantiate the formula (G.1) with ¢ as t”, ¢ as t/, vw as vw to get

14

Vi, t' € Statey, vw € Value, : <t”,e2> — <t', vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](em’)(s, s")A
Vs, s € Statey,, dm € InfoData : equals(s, t”)A
[Cl(em”)(s,s") A dm = infoData(s")
= equals(s’, t') A equals(dm, vw’) (G.2)

From (G.2) and assumption (2.4.1.19), we get

Js, s € State : equals(s,t")A [Cseq](em’)(s,s") (G.3)
By instantiating (G.3) with s as s”, s’ as s’, we know that

there is s”, s’ s.t.

[Cseq](em/)(s”,s) (2.4.1.22)

This sub-goal (e.a.2), which is a definition of the semantics of the com-
mand sequence C; Cseq follows from the assumptions (2.4.1.21), (2.4.1.22) and
(2.4.1.7).

Hence sub-goals (e.a.1) and (e.a.2) are proved thus the sub-goal (e.a) is
proved.

Sub-Goal (e.b)
Let s, s’,dm be arbitrary but fixed.

We assume:
equals(s,t) (2.4.1.23)
[C; Cseq|(em)(s, s") (2.4.1.24)
dm = infoData(s') (2.4.1.25)
We define:
s’ := constructs(t') (2.4.1.26)
vw := constructs(dm) (2.4.1.27)

To prove this goal, we split the original goal (e.b) and show the following
sub-goals:

equals(s’,t") (e.b.1)
equals(dm, vw) (e.b.2)

In the following, we prove the sub-goals (e.b.1) and (e.b.2) in order to prove
the original goal (e.b).

Sub-Goal (e.b.1)

We instantiate lemma (L — ¢seq5) with
s as s’ and t as t’ to get

s' = constructs(t') = equals(s’,t") ()

This sub-goal follows from (I) with assumption (2.4.1.26).

15

Sub-Goal (e.b.2)

We instantiate lemma (L — cseq6) with v as vw, v’ as dm to get
vw = constructs(dm) = equals(dm, vw) J)

This sub-goal follows from (J) with assumption (2.4.1.27).

Consequently, the goal (e.b) follows from (e.b.1) and (e.b.2); also the goal
(e) follows from goals (e.a) and (e.b).

Thus the soundness statement for command sequence follows from sub-goals

(a), (b), (c), (d) and (e).

2.4.2 Conditional and Assignment

The proof structure respective strategy for the soundness of a conditional com-
mand is the same as shown above for the command sequence. However, the
proof of a conditional command later splits into two cases, when the conditional
expression F evaluates to true or false. The soundness proof for the assignment
command is also similar to the soundness proof for a command sequence thus
can be easily rehearsed. The complete proof for the conditional and assignment
command is shown in the Appendix D.

2.4.3 While-loop

The goal for the soundness of command can be re-stated for the while-loop
command as:

Y em € Environment,el,e2 € Exprression,,, ew,ew’ € Environment,,,
dw,dw’ € Decl,,, tw,tw’ € Theory,, :
well Typed(em, while E do Cseq end) mathitAconsistent(em, ew, dw, tw)A
< while el do €2, ew’, dw’, tw’>= T[while el do e2](em, ew, dw, tw)
=
wellTyped (while el do e2, ew’, dw’, tw’) A extendsEnv(ew’, while el do e2, ew)A
extendsDecl(dw’, while el do e2, dw) A extendsTheory(tw’, while el do e2, tw)A
Vt, t' € State,,vw € Value,,: <t, while el do e2> — <t', vw>
=
Js, s’ € State,, :equals(s, t)A [while E do Cseq end](em)(s, s")A
Vs, s’ € Staten,, dm € InfoData : equals(s, t)A
[while E do Cseq end](em)(s,s’) A dm = infoData(s’)
= equals(s’,t') A equals(dm, vw)

Let em,el, €2, ew, ew’, dw, dw’, tw, tw’, dm and vw be arbitrary but fixed.

We assume:
wellTyped(em, while E do Cseq end) (2.4.3.1)
consistent(em, ew, dw, tw) (2.4.3.2)
<while el do €2, ew’, dw’, tw'> = T[while E do Cseq end](em, ew, dw, tw)

(2.4.3.3)

By expanding the definition of (2.4.3.3), we know
<el,ew”, dw” tw"> = T[E](em, ew, dw, tw) (2.4.3.4)
em’ = Env(em, E) (2.4.3.5)

16

<e2,ew’,dw’ tw'> = T[Cseq|(em’, ew”, dw” , tw") (2.4.3.6)
We show:

o wellTyped(while el do e2, ew’, dw’, tw’) (a)
e extendsEnv(ew’, while el do e2, ew) (b)
e extendsDecl(dw’, while el do e2, dw) (c)
o extendsTheory(tw’, while el do e2, tw) (d)

o Vi, t' € State,,vw € Value, : <t',while el do e2> — <t', vw>
=
ds, s’ € State,, :equals(s, t)A [while E do Csegend](em)(s, s")A
Vs, s' € Staten,, dm € InfoData : equals(s, t)A
[while E do Cseq end](e)(s,s’) A dm = infoData(s")
= equals(s’,t") A equals(dm, vw) (e)

In the following, we prove each of the above five goals.

Goal (a)

We instantiate lemma (L — 1) with
c as while E do Cseq end, em as em, e as cw, ew as ew, ew’ as ew’, dw as
dw, dw' as dw’, tw as tw, tw’ as tw’ and get

wellTyped(em, while E do Cseq end)A
<cw, ew’, dw’,tw'> =T[while E do Cseq end](em, ew, dw, tw)
= wellTyped(while el do €2, ew’, dw’, tw’)

This goal follows from assumptions (2.4.3.1) and (2.4.3.3).

Goal (b)

We instantiate lemma (L — ¢9) with
em as em, em’ as em’, F as F, Cseq as Cseq to get

wellTyped(em, while E do Cseq end) =
wellTyped(em, E) A em’ = Env(em, E) AN wellTyped(em’, Cseq)

From the above formula with assumptions (2.4.3.1), we know

wellTyped(em, E) (2.4.3.7)
em’ = Env(em, E) (2.4.3.8)
wellTyped(em’, Cseq) (2.4.3.9)

We instantiate lemma (L — ¢10) with
em as em, em’ as em’, E as E, Cseq as Cseq, ew as ew, ew’ as ew’, ew’ as
ew”, dw as dw, dw' as dw’, dw’” as dw”, tw as tw, tw’ as tw’, tw” as tw” to get

<el,ew”,dw” tw"> = T[E](em, ew, dw, tw) A em’ = Env(em, E)A

<e2,ew’, dw’ tw'> = T[Cseq](em/, ew”, dw"” tw") A consistent(em, ew, dw, tw)
= consistent(em’, dw” , dw” tw")

17

From the above formula with assumptions (2.4.3.4), (2.4.3.5), (2.4.3.6), (2.4.3.2),
we know

consistent(em’, ew” , dw" tw") (2.4.3.10)

We instantiate the soundness statement for £ with

em as em, expw as el, ew as ew, ew’ as ew”, dw as dw, dw' as dw”, tw as
tw, tw' as tw” to get

wellTyped(em, E) A consistent(em, ew, dw, tw)A
<el,ew”,dw” tw"> =T[E](em, ew, dw, tw)
=
wellTyped(el, ew”, dw” tw") A extendsEnv(ew”, el, ew)A
extendsDecl(dw”, el, dw) A extendsTheory(tw”, el tw)A
Vi, t' € Statey, vw € Valuey,: <t',el> — <t', vw>
=
Js, s’ € State,,, vm € Value :equals(s, t)A [E](em)(s, s’, vm)A
Vs, s’ € Staten,,vm € Value : equals(s, t)A
[E]l(em)(s, s, wm)
= equals(s',t") A equals(vm, vw) (A)

From (A) and assumptions (2.4.3.9), (2.4.3.2) and (2.4.3.6), it follows that

extendsEnv(ew” el ew) (2.4.3.11)

We instantiate the soundness statement for C'seq with

em as em’, cw as €2, ew as ew”, ew’ as ew’, dw as dw”, dw’ as dw’, tw as
tw”, tw’ as tw’ to get

well Typed(em’, Cseq) A consistent(em’, ew” , dw”, tw")A
<e2,ew’, dw’ tw'> =T[Cseq](em’, ew”, dw" tw")
=
wellTyped(e2, ew’, dw’, tw") A extendsEnv(ew’, e2, ew)\
extendsDecl(dw', e2, dw") A extendsTheory(tw’, e2, tw")A
Vt,t' € State,, vw € Value,,,: <t,e2> — <t',vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](em)(s, s")A
Vs, s' € State,, dm € InfoData : equals(s, t)A
[Cseq](em)(s,s") A dm = infoData(s")
= equals(s’, t') A equals(dm, vw) (B)

From (B) and assumptions (2.4.3.9), (2.4.3.2) and (2.4.3.6), it follows that

extendsEnv(ew’, e2, ew) (2.4.3.12)

We instantiate lemma (L — ¢11) with

em as em, FE as E, Cseq as Cseq, el as el, €2 as €2, ew as ew, ew’ as
ew,ew” as ew”, dw as dw, dw’ as dw’, dw” as dw”, tw as tw, tw’ as tw’, tw"”
as tw” to get

wellTyped(em, while E do Cseq end)A
<while el do €2, ew’, dw', tw'> = T[while F do Cseq end](em, ew, dw, tw)A

18

<el,ew” dw” tw'"> = T[E](em, ew, dw, tw)A
em’ = Env(em, E)A
<e2,ew’, dw' tw'> = T[Cseq](em’, ew” , dw” , tw")
=
[extendsEnv(ew”, el, ew)AextendsEnv(ew’, e2, ew”)
= extendsEnv(ew’, while el do e2, ew)|A
[extendsDecl(dw”, el, dw) A extendsDecl(dw', e2, dw")
= extendsDecl(dw’, while el do e2, dw)|A
[extendsT heory(tw”, el, tw) A extendsTheory(tw’, €2, tw")
= extendsTheory(tw’, while el do €2, tw)]

From (C) with assumptions (2.4.3.1), (2.4.3.3), (2.4.3.4), (2.4.3.5), (2.4.3.6),
(2.4.3.11) and (2.4.3.12) , we know

extendsEnv(ew’, whileeldoe2, ew) (2.4.3.13)

which is goal (b). Hence proved.

Goals (c) and (d)

The goals (c) and (d) are very similar to goal (b) above and thus can be easily
rehearsed based on the proof of goal (b).

Goal (e)
Let t,t’, cw,vw be arbitrary but fixed s.t.
We assume:
<t,while el do e2> — <t',vw> (2.4.3.14)
We show:
Jds, s’ € State : equals(s,t)A [while E do Cseq end](em)(s, s) (e.a)

Vs, s' € State,dm € InfoData : equals(s,t)A
[while E do Cseq end](em)(s,s") A dm = infoData(s")
= equals(s’,t') A equals(dm,vw) (e.b)

The semantics of the classical Why3 while-loop is defined by a complex
exception-handling mechanism. Based on the aforementioned semantics, a proof
of this goal gets more complicated, thus to avoid this complication, we have
derived (in the Appendix H- Derivations) two rules conforming the definition
of while-loop semantics which do not involve exceptions anymore. These two
derivations are as follows:

<t,el> — <t', false>

. , (2.4.3.15)
<t,while el do e2> — <t/ void>
<t,el> — <t true>
<t e2> — <t woid>

m (2.4.3.16)

<t"” while el do e2> — <t',void>

<t,while el do e2> — <t/ void>

19

We prove this goal (e) by rule induction [5] on the operational semantics
of while-loop which is defined above by the two derivation rules (2.4.3.15) and
(2.4.3.16). By the strategy of principle of rule induction for while-loop, the goal
(e) can be re-formulated as:

Vt,t' € Statew,vw € Valuew : <t, while el do e2> — <t/, vw>
= P(t,t',vw) (e")

where

P(t,t',vw) &

[Ts, s’ € State : equals(s,t)A [while E do Cseq end](em)(s, s')]A
[Vs,s' € State,dm € InfoData :

equals(s’',t")A [while E do Cseq end](em)(s,s’) Adm = infoData(s")
= equals(s',t') A equals(dm, vw)] (D-p)

where E, Cseq and em are fixed as defined above.
To show goal (e’), based on the principle of rule induction it suffices to show
the followings for while-loop for the corresponding derivation rules respectively:

Vt,t' € Statew, vw € Valuew, el € Expressionw :
<t,el> — <t/, false> = P(t,t',vw) (e.a)

Vi, ¢’ t" " € Statew,vw € Valuew,el,e2 € Expressionw :
<t,el> — <t” true> A <t”,e2> — <t"” void>A

<t" while el do e2> — <t',void> A P(¢"',t', void)

= P(t,t',vw) (e.b)

In the following, we prove these two sub-goals (e.a) and (e.b) in order to
prove the goal (e).

Sub-Goal (e.a)

We assume:

<t,el>— <t', false> (2.4.3.17)

We show:
P(t, ', vw)
By expanding the definition of P(¢,t',vw), we get
[s, s’ € State : equals(s,t)A [while E do Cseq end](em)(s, s')] (e.a.1)
[Vs,s' € State,dm € InfoData :
equals(s’',t')A [while E do Cseq end](em)(s,s’) A dm = infoData(s")
= equals(s’,t') A equals(dm, vw)] (e.a.2)

In the following, we show the sub-goals (e.a.1) and (e.a.2).

20

Sub-Goal (e.a.l)
We split this goal to show:

equals(s,t) (e.a.1.1)
[while E do Cseq end](em)(s,s’) (e.a.1.2)
We define:
s := constructs(t) (2.4.3.18)
s’ := constructs(t') (2.4.3.19)
inValue(False) := constructs(false) (2.4.3.20)

In the following, we prove the sub-goals (e.a.1.1) and (e.a.1.2).

Sub-Goal (e.a.1.1)

We instantiate lemma (L — cseq5) with s as s and ¢ as ¢ to get
s = construct(t) = equals(s,t) (D)

The sub-goal (e.a.1.1) follows from (D) with assumption (2.4.3.18). Hence
proved.

Sub-Goal (e.a.1.2)

We instantiate the soundness statement for E with
em as em, expw as el, ew as ew, ew’ as ew”, dw as dw, dw’ as dw”, tw as
tw, tw’ as tw” to get

well Typed(em, E) A consistent(em, ew, dw, tw)A
<el,ew”,dw” tw"> =T[E](em, ew, dw, tw)
=
wellTyped (el , ew” | dw” , tw") A extendsEnv(ew”, el, ew)A
extendsDecl(dw"”, el, dw) A extendsTheory(tw”, el , tw)A
Vt, t' € State,,, vw € Value,,,: <t,el> — <t',vw>
=
Js, s’ € State,,, vm € Value :equals(s, t)A [E](em)(s, s’, vm)A
Vs, s’ € State,,, vm € Value : equals(s, t)A
[E)(em)(s, o', wm)
= equals(s’, t') A equals(vm, vw) (E)

From (E) and assumptions (2.4.3.9), (2.4.3.2) and (2.4.3.6), it follows that

Vi, t' € State,, vw € Value,,: <t,el> — <t',vw>
=
Js, s’ € State,,, vm € Value :equals(s, t)A [E](em)(s, s’, vm)A
Vs, s’ € Staten,, vm € Value : equals(s, t)A
[E](em)(s, s, wm)
= equals(s’,t") A equals(vm, vw) (E.1)

21

We instantiate above formula (E.1) with
tast, t' ast', vw as false to get

<t,el>— <t', false>
=
ds, s’ € State,,, vm € Value :equals(s, t)\ [E](em)(s, s’, vm)A
Vs, s' € State,,, vm € Value : equals(s, t)A
[E](em)(s, s, wm)
= equals(s’,t") A\ equals(vm, vw) (E.2)

From (E.2) with assumption (2.4.3.17), we get
Js, s’ € State,vm € Value : equals(s,t)A [E](em)(s,s’, vm) (E.3)

Taking s as s, s' as s, vm as inValue(False) with (E.3), we know from
assumptions (2.4.3.18), (2.4.3.19), (2.4.3.20) and (2.4.3.4) that
there is s, ', inValue(False) and E for which

[E](em)(s, s, inValue(False)) (2.4.3.21)

We instantiate lemma (L — ¢12) with
em as em, E as E, Cseq as Cseq, s as s and s’ as s’ to get

[E]l(em)(s, s',inValue(False)) = [while E do Cseq end](em)(s, s’)

The sub-goal (e.a.1.2) follows from (E.4) with assumption (2.4.3.21).
Consequently, the goal (e.a.l) follows from (e.a.1.1) and (e.a.1.2).

Sub-Goal (e.a.2)
Let s,s’,dm,t be arbitrary but fixed.

We assume:
equals(s,t) (2.4.3.22)
[whileEdoC'segend](em)(s, s") (2.4.3.23)
dm = infoData(s") (2.4.3.24)
We define:
vw := constructs(dm) (2.4.3.25)

We split the original goal (e.a.2) and show the following sub-goals:
equals(s’, t’) (e.a.2.1)
equals(dm, vw) (e.a.2.2)

Now, we prove the following two further sub-goals (e.a.2.1) and (e.a.2.2) in
order to prove the goal (e.a.2).

22

Sub-Goal (e.a.2.1)
We instantiate lemma (L — cseqb) with s as s and ¢ as ¢ to get
s = construct(t) = equals(s,t) (F)

The sub-goal (e.a.2.1) follows from (F) with assumption (2.4.3.22). Hence
proved.

Sub-Goal (e.a.2.2)
We instantiate lemma (L — cseq6) with v as vm and v’ as dm to get
vw = construct(dm) = equals(dm, vw) (G)

The sub-goal (e.a.2.2) follows from (G) with assumption (2.4.3.25). Hence
proved.

Consequently, the goal (e.a.2) follows from (e.a.2.1) and (e.a.2.2). Finally,
the goal (e.a) follows from goals (e.a.1) and (e.a.2).

Sub-Goal (e.b)

We assume:
<t,el>— <t’ true> (2.4.3.26)
<t", e2> — <t void> (2.4.3.27)
<t"',while el do €2> — <t',void> (2.4.3.28)
P(t" ', void) (2.4.3.29)
We show:
P(t, ', vw)

By expanding the definition of P(¢,t’',vw), we get
[s, s’ € State : equals(s,t)A [while E do Cseq end](em)(s, s')]

[Vs,s' € State,dm € InfoData :
equals(s’',t')A [while E do Cseq end](em)(s,s’) A dm = infoData(s")

= equals(s’,t') A equals(dm, vw)] (e.b.2)
We define:
s := constructs(t) (2.4.3.30)
s := constructs(t") (2.4.3.31)
s"" = constructs(t'") (2.4.3.32)
inValue(True) := constructs(true) (2.4.3.33)
inValue(Void) := constructs(void) (2.4.3.34)

In the following, we prove the sub-goals (e.b.1) and (e.b.2) in order to prove
(e.b).

23

Sub-Goal (e.b.1)

We show:
equals(s,t) (e.b.1.1)
[while E do Cseq end](em)(s,s’) (e.b.1.2)

In the following, we show the sub-goals (e.b.1.1) and (e.b.1.2) to show the
goal (e.b.1).

Sub-Goal (e.b.1.1)

We instantiate lemma (L — cseq5) with s as s and ¢ as ¢ to get
s = construct(t) = equals(s,t) (G)

The sub-goal (e.b.1.1) follows from (G) with assumption (2.4.3.30). Hence
proved.

Sub-Goal (e.b.1.2)

We instantiate the soundness statement for E with
em as em, expw as el, ew as ew, ew’ as ew”, dw as dw, dw’ as dw”, tw as
tw, tw’ as tw” to get

well Typed(em, E) A consistent(em, ew, dw, tw)A
<el,ew”,dw” tw"> =T[E](em, ew, dw, tw)
=
wellTyped(el, ew” , dw” , tw") A extendsEnv(ew”, el, ew)A
extendsDecl(dw"” el, dw) A extendsTheory(tw”, el , tw)A
Vi, t' € Statey, vw € Valuey,,: <t,el> — <t', vw>
=
Js, s’ € State,,, vm € Value :equals(s, t)A [E](em)(s, s’, vm)A
Vs, s’ € State,,,vm € Value : equals(s, t)A
[E)(em)(s, o', wm)
= equals(s’, t') A equals(vm, vw) (H)

From (H) and assumptions (2.4.3.9), (2.4.3.2) and (2.4.3.6), it follows that

Vi, t' € State,, vw € Value,,: <t,el> — <t',vw>
=
Js, s’ € State,,, vm € Value :equals(s, t)A [E](em)(s, s’, vm)A
Vs, s’ € Staten,, vm € Value : equals(s, t)A
[E](em)(s, s, wm)
= equals(s’,t") A equals(vm, vw) (H.1)

We instantiate above formula (H.1) with
tast, t' ast”, vw as true to get

24

<t,el>— <t” true>
=
ds, s’ € State,,, vm € Value :equals(s, t)\ [E](em)(s, s, vm)A
Vs, s € Statey,, vm € Value : equals(s, t)A
[E](em)(s, s, wm)
= equals(s’, t") A equals(vm, vw) (H.2)

From (H.2) with assumption (2.4.3.26), we get
ds, s’ € State,vm € Value : equals(s,t)A [E](em)(s, s’, vm) (H.3)

Taking s as s, s’ as s”, vm as inValue(True) with (H.3), we know from
assumptions (2.4.3.30), (2.4.3.31), (2.4.3.33) and (2.4.3.4) that
there is s, s”, inValue(True) and E for which

[E](em)(s,s”,inV alue(True)) (2.4.3.35)

We instantiate the soundness statement for C'seq with
em as em’, cw as €2, ew as ew”, ew’ as ew’, dw as dw”, dw’ as dw’, tw as
tw”, tw’ as tw’ to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”, tw")\
<e2,ew’,dw’ tw'> =T[Cseq](em’, ew”, dw" tw")
=
wellTyped(e2, ew’, dw’, tw") A extendsEnv(ew’, e2, ew)\
extendsDecl(dw’, e2, dw") N extendsTheory(tw’, e2, tw')\
Vi, t' € Statey, vw € Valuey,,: <t,e2> — <t', vw>
=
Js, s’ € State,, equals(s, t)A [Cseq](em)(s, s")A
Vs, s' € State,, dm € InfoData : equals(s, t)A
[Cseq](em)(s, s") A dm = infoData(s")
= equals(s’, t') A equals(dm, vw) (I)

From (I) and assumptions (2.4.3.9), (2.4.3.2) and (2.4.3.6), it follows that

Vi, t' € State,,vw € Value,,,: <t,e2> — <t',vw>
=
Js, s’ € State,, :equals(s, t)A [Cseq](em)(s, s")A
Vs, s’ € State,,, dm € InfoData : equals(s, t)A
[Cseq](em)(s,s") A dm = infoData(dm)
= equals(s’, t") A equals(dm, vw) (I.1)

We instantiate above formula (I.1) with
tast’, t' ast'", vw as void to get

<t",e2> — <t" void>
=
ds, s’ € State,, :equals(s, t)A [Cseq](em)(s, s’)A
Vs, s’ € State,,, dm € InfoData : equals(s, t)A
[Cseq](em)(s,s") A dm = infoData(s’)
= equals(s’, t"") A equals(dm, void) (1.2)

25

From (1.2) with assumption (2.4.3.27), we get

Jds, s’ € State : equals(s,t)A [Cseq](em)(s,s’) (L.3)
Taking s as s”, s” as s”’
and (3.b) that

Taking s as s”, s’ as s’ with (I.3), we know from assumptions (2.4.3.31),
(2.4.3.32), (2.4.3.8) and (2.4.3.6) that

there is s”, s, em’ and Cseq for which

in the above formula, we know from (9.b), (9.c), (1.a")

[Cseq](em/)(s",s"") (2.4.3.36)
By expanding assumption (2.4.3.29), we get

[Ts,s" € State : equals(s,t”")A [while E do Cseq end](em)(s, s')]

[Vs,s" € State,dm € InfoData :
equals(s’',t')A [while E do Cseq end](em)(s,s’) A dm = infoData(s")
= equals(s’,t') A equals(dm, void)] (J.2)

From (J.1), we know there is s, s’ for which

equals(s,t") (2.4.3.37)
[whileEdoC'seqend](em)(s, s') (2.4.3.38)

We instantiate lemma (L — csegb) with
sas s, tast” toget

s = constructs(t”') < equals(s,t'") (K)

From (K) and assumption (2.4.3.29), we get

s = constructs(t"") (2.4.3.39)

From assumptions (2.4.3.29) and (2.4.3.31), we can rewrite (2.4.3.37) and
(2.4.3.38) as

equals(s" t") (2.4.3.40)

[whileEdoC'segend](em)(s", s") (2.4.3.41)

We instantiate lemma (L — ¢13) with
em as em, em’ as em’, E as I, Cseq as Cseq, s as s, s’ as s’, s as s”, s
as s"” to get

n

[El(em)(s, s”,inValue(True)) A em’ = Env(em, E)A [Cseq](em/)(s”,s")
[while E do Cseq end](em)(s",s")
=[while E do Cseq end](em)(s, s’) (L)

The goal (e.b.1.2) follows from (L) with assumptions (2.4.3.35), (2.4.3.8),
(2.4.3.36) and (2.4.3.41). Consequently (e.b.1) follows from the proofs of (e.b.1.1)
and (e.b.1.2).

26

Sub-Goal (e.b.2)
Let s,s’,dm,t be arbitrary but fixed.

We assume:
equals(s,t) (2.4.3.42)
[whileEdoC'seqend](em)(s, s') (2.4.3.43)
dm = infoData(s") (2.4.3.44)
We show:
equals(s',t") (e.b.2.1)
equals(dm, vw) (e.b.2.1)
We define:
s’ := constructs(t') (2.4.3.45)
vw := constructs(dm) (2.4.3.46)

In the following, we prove the sub-goals (e.b.2.1) and (e.b.2.2) in order to
show the original goal (e.b.2).

Sub-Goal (e.b.2.1)
We instantiate lemma (L — cseq5) with s as s’ and t as t' to get
s' = construct(t') = equals(s',t") (M)

The sub-goal (e.b.2.1) follows from (M) with assumption (2.4.3.45).

Sub-Goal (e.b.2.2)

We instantiate lemma (L — cseq6) with v as vw, v’ as dm to get
vw = constructs(dm) = equals(dm, vw) (N)

This sub-goal (e.b.2.2) follows from (N) with assumption (2.4.3.46).
Consequently,

e the goal (e.b.2) follows from (e.b.2.1) and (e.b.2.2);
e the goal (e.b) follows from (e.b.1) and (e.b.2);
e the goal (e) follows from (e.a) and (e.b).

Finally, the soundness of the while-loop command follows from the proofs of
goals (a), (b), (c), (d) and (e).

27

2.5 Lemmas

In Appendix E, we discuss the lemmas for the proof of the soundness state-
ments of command sequence, command and expression. Also some auxiliary
lemmas are defined. For the complete definition of the lemmas, please see the
corresponding sections of the Appendix E. The lemmas say the absence of in-
ternal inconsistencies and are essentially about the well-typing, consistency of
environments and the extensions of the corresponding intermediate theory and
module declarations.

2.6 Definitions

Appendix F includes various definitions required for the proof, e.g. definitions
of the translation functions.

2.7 Why3 Semantics

Appendix G defines the corresponding big-step operational semantics of Why3ML
as introduced in [1].

2.8 Derivations

In Appendix H, we give the derivation of the rules for the while-loop command.
As mentioned earlier that the semantics of a Why3 while-loop is defined by
a complex exception handling mechanism. Therefore, the goal here was to
introduce two new rules for the while-loop (i.e. (d.a) and (d.b)), which operate
directly on the level of while-loop (without expansion). We also showed that
these rules follows from the basic rule calculus, i.e. adding these rules does not
change the loop semantics.

3 Conclusions and Future Work

In this paper we have sketched the structure and strategy for the soundness
statements of the selected constructs of MiniMaple, e.g. command sequences,
conditional commands, assignment commands and while-loops. The proof was
essentially based on structural induction along-with various auxiliary lemmas.
However, the proof for the soundness of while-loop required some additional
derivations and was proved by rule induction. A proof for some selected cases
of expressions is planned as a future goal.

Acknowledgment

The author cordially thanks Wolfgang Schreiner for his valuable and construc-
tive comments and suggestions throughout this work.

28

4
1]

[5]

References

Filliatre, Jean-Christophe. Why: an Intermediate Language
for Program Verification. TYPES Summer School 2007
http://typessummerschool07.cs.unibo.it/, 2007.

Muhammad Taimoor Khan. Formal Semantics of a Specification Language
for MiniMaple. DK Technical Report 2012-06, Research Institute for Sym-
bolic Computation, University of Linz, April 2012.

Muhammad Taimoor Khan. Formal Semantics of MiniMaple. DK Technical
Report 2012-01, Research Institute for Symbolic Computation, University
of Linz, January 2012.

Muhammad Taimoor Khan. On the Formal Semantics of MiniMaple and its
Specification Language. In Proceedings of Frontiers of Information Technol-
ogy, pages 169-174. IEEE Computer Society, 2012.

Winskel, Glynn. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, Cambridge, MA, USA, 1993.

29

Appendices

A Semantic Algebras

A.1 For MiniMaple

All the syntactic and semantic domains of MiniMaple are included. Here we
give the definitions of those domains, which are used.

A.l.1 Truth Values

Domain Boolean = {True, False}

A.1.2 Numeral Values
Domain Nat’ = N\{0}, Nat = N, Integer = Z, Float = R

A.1.3 Environment Values

Domains
Environment = Context x Space
Context = Identifier — EnvValue
EnvValue = Value + Type-Tag
Space = P(Variable)
Variable := n, n € N // represents location

A.1.4 State Values

Domains
State = Store x Data
Store = Variable — Value
Data = Flag x Exception x Return
Flag = {execute, exception, return, leave}
Exception = Identifier x ValueU
Return = ValueU

Operations
state : Store x Data — State

state(s,d) = <s,d>

exception : Identifier x ValueU — Exception
exception(i,v) = <i,v>

ide : Exception — Identifier
ide(i,v) — i

30

valuee : Exception — ValueU
valuee(i,v) — v

data : State — Data
data(s,d) = d

store : State — Store
store(s,d) — s

flag : Data — Flag
flag(fe,r) = £

exception : Data — Exception
exception(f,e,r) = e

return : Data — Return
return(fe,r) =r

data : Flag x Exception x Return — Data
data(f,e,r) = <f,e,r>

execute : State — State
execute(s) = LET d = data(s) IN state(store(s), data(execute, exception(d),
return(d))

exception : State x String x ValueU — State
exception(s,st,v) = LET d = data(s) IN state(store(s), data(exception, (st,v),
return(d))

return : State x ValueU — State
return(s,v) = LET d = data(s) IN state(store(s), data(return, exception(d),

v))

executes C Data
executes(d) < flag(d) = execute

exceptions C Data
exceptions(d) < flag(d) = exception

returns C Data
returns(d) < flag(d) = return

A.l.5 Semantic Values

Domain
Value = Procedure + Module + List + Set + Tuple 4+ Boolean + Integer
+ String + Rational + Float
+ Symbol

31

A.1.6 Information Values

Domain
InfoData = Value + Data + Void

A.1.7 List Values

Domain List = Value*

A.1.8 TUnordered Values

Domain Set = List

A.1.9 Tuple Values

Domain Tuple= List

A.1.10 Procedure Values

Domain Procedure = P(Value* x State x StateU x ValueU)

A.1.11 Lifted Value domain

Domains ValueU = Value + Undefined, Undefined = Unit, StateU = State
+ Error, Error = Unit

A.2 For Why3

All the syntactic domains of Why3 are included. Here we give the definitions of
those semantic domains, which are used. The syntactic domains of Why3 are
also suffixed with “w”.

A.2.1 Variable Values

Domains
Variable := n, n € N // represents location

A.2.2 State Values

Domains
Statew = Variable — Valuew

32

A.2.3 Environment Values

Domains
Environmentw // is a mapping from identifiers to type and represents Why3
type environment.

A.2.4 Semantic Values

Domain
Valuew = ¢ 4+ Exceptionw + Functionw + Void

A.2.5 Exception Values

Domain Exceptionw = Identifier x ¢

A.2.6 Function Values

Domain Functionw =recfx =c¢

A.2.7 Constant Values

Domain ¢ = Integerw + Booleanw + Listw + Setw + Tuplew + ...

// this domain hides all other corresponding Why3 domains of values. All
suffixed “w” domains
// represent the corresponding built-in domains.

A.2.8 Declaration Values

Domain Declw

A.2.9 Theory Values

Domain Theoryw

A.2.10 Why3 Types

Domain Typew = int + real + tuple + list(Typew) + set(Typew) + ...
// also includes other built in and extended (abstract) types of Why3

33

B Auxiliary Functions and Predicates

equals C State x Statew

This predicate is true, if all the pairs of identifier and value in the former
state have a pair of the same identifier and a corresponding value in the latter
state.

equals(s, t) < V i: Identifier: i € dom(s) — 3 v € Value, vw € Valuew:
(i,ym) € s A (i,vw) € t A equals(vm, vw)

equals C Value x Valuew
This predicate returns true, if the former value is a semantic equivalent to
the latter value.
equals(vm, vw) <
cases vin of
[JisInteger(intm) — cases vw of
isIntegerw(intw) — valueOf(intm) = valueOf(invw)
[| - — false
end
[lisBoolean(bm) — cases vw of
isBooleanw (bw) — valueOf(bm) = valueOf(bw)
[| - — false
end
J..— ..
end

equals C InfoData x Valuew
This predicate returns true, if the corresponding element of the InfoData is
semantically equivalent to the given value.
equals(d, vw) <
cases d of
[lisValue(vm) — equals(vm, vw)
[JisData(dm) — IF exceptions(dm) THEN
cases vw of
isExceptionw(ew) —
equals(getId(dm), getld(ew)) A
equals(getValue(dm), getValue(ew))
[| -— false
end
ELSE

END
[JisVoid(mv) — cases vw of
isVoid(wv) — true
[| - — false
end
end

wellTyped C Environment x Syntactic Domain_of_MiniMaple

34

The predicate returns true, if all the identifiers appearing in the given syn-
tactic domain has a corresponding value in the given environment.
wellTyped(em, D) <
cases D of
inCommand_Sequence(Cseq) —
cases Cseq of
isCseqC(C) — wellTyped(em, C)
isCseqCseq(C;Cseq) — wellTyped(em, C) A
LET em’ = Env(e, C) IN wellTyped(em’, Cseq)
end
inCommand(C) —
cases C of
isCCond(if E then Cseql else Cseq2) —
wellTyped(em, E) A
LET em’ = Env(em, E) IN
wellTyped(em’, Cseql)
A LET em” = Env(em’, Cseql) IN
wellTyped(em”’, Cseq2)
0... =
end
inExpression(E) —
cases E of
isEldentifier(I) — isDefined(I, em)
isEBoolean(B) — V I : Identifier: I € extractIdentifiers(B)
— isDefined(I, em)
end
inExpression_Sequence(Eseq) — . ..
end

wellTyped C Expressionw x Environmentw x Declw x Theoryw
The predicate returns true, if all the identifiers appearing in the given syn-
tactic Why3 expression has a corresponding value in the given environment or
declaration or theory.
wellTyped(cw, ew, dw, tw) < consistent(ew, dw, tw) A wellFormed(cw) A
V i: Identifier: i € extractIdentifiers(cw) — isDefined(i, ew, dw, tw)

isDefined C Identifier x Environmentw x Declw x Theoryw
The predicate returns true only if identifier has a corresponding definition
in any of the given Why3 environment, declarations or theory.

isDefined C Identifier x Environment
The predicate returns true only if identifier has a corresponding value in the
given environment.

consistent C Environment x Environmentw x Declw x Theoryw

This predicate returns true, if the given MiniMaple environment is consistent
with the definitions as provided in the given Why3 environment, declaration and
theory.

consistent C Environmentw x Declw x Theoryw

35

This predicate returns true, if the given Why3 environment has the defini-
tions accessible in the given Why3 declaration and theory.

wellFormed C Expressionw
This predicate returns true, if the given Why3 expression is syntactically
correct.

infoData : State — InfoData
The function returns the information data or value extracted from the given
command and state. This depends on the syntax of the given command and
the control data of the given state.
infoData(s) = inlnfoData(data(s)) , if exception(data(s)) is true
inInfoData(Void) , if exception(data(s))

extractIdentifiers : Syntactic. Domain_of _MiniMaple — Identifier_Sequence
The function extracts the identifiers appearing in the given MiniMaple syn-
tactic domain.

extractIdentifiers : Expressionw — Identifier_Sequence
The function extracts the identifiers appearing in the given Why3 expression.

extractDeclarations : Expressionw — Declw
The function extracts the module declaration sequence appearing in the
given Why3 expression.

extractTheoryDeclarations : Expressionw — Theoryw
The function extracts the theory declarations appearing in the given Why3
expression.

combines : Declw x Declw — Declw
This function combines the given declaration and declaration sequence, it
removes the duplicate declarations.

combines : Theoryw x Theoryw — Theoryw
This function combines the given theory and theory declaration sequence, it
removes the duplicate theory declarations.

extendsEnv C Environmentw x Expressionw x Environmentw

This predicate returns true, if the former Why3 environment extends the
latter.

extendsEnv(el, ¢, €2) <

V I: Identifier, v € Value, Iseq € Identifier_Sequence, vseq € Value_Sequence:

[(Lv) €e2= (I,v) €el]

A [Iseq = extractIdentifiers(c) A vseq getValues(Iseq,c) = el = €2 U IVSe-
qtoSet(Iseq, vseq) |

extendsDecl C Environmentw x Expressionw x Environmentw

This predicate returns true, if the former sequence of Why3 declaration
extends the latter.

36

extendsDecl(dl, c, d2) <

V d, dseq € Declw: [d € decltoSet(d2) = d € decltoSet(el)]

A [dseq = extractDeclarations(c) = length(d2) + length(dseq) = length(d1)
A d1 = combine(d2,dseq)]

extendsTheory C Environmentw x Environmentw

This predicate returns true, if the former sequence of Why3 theory extends
the latter.

extendsTheory(t1, ¢, t2) <

Y t, tseq € Theoryw: [t € theorytoSet(t2) = t € theorytoSet(t1)]

A [tseq = extractTheoryDeclarations(c) = length(t2) + length(tseq) =
length(t1) A t1 = combine(t2, tseq)]

extendsEnv C Environmentw x Expressionw x Environmentw
This predicate returns true, if the latter Why3 environment extends the
former environment with the identifiers appearing in the given Why3 expression.
extendsEnv(el, ¢, €2) < LET iseq = extractldentifiers(c), vseq = getVal-
ues(iseq, ¢) IN
el U IVSeqtoSet(iseq, vseq) = €2

extendsDecl C Declw x Expressionw x Declw
This predicate returns true, if the latter Why3 declaration extends the former
declaration with the declarations appearing in the given Why3 expression.
extendsDecl(d1, ¢, d2) <& LET dseq = extractDeclarations(c) IN
combine(dl, dseq) = d2

extendsTheory C Theoryw x Expressionw x Theoryw
This function returns a Why3 theory declaration sequence, which extends
the given theory declaration sequence with the theory declarations appearing in
the given Why3 expression.
extendsTheory(t1, ¢, t2) < LET tseq = extractTheoryDeclarations(c) IN
combine(t1, tseq) = t2

getld : Exceptionw — Identifier
This function returns the identifier of the given Why3 exception.
getld(ew) = LET ew = (id, val) IN id

getld : Date — Identifier
This function returns the identifier of the exception in the given Data.
getld(d) = LET id = ide(exception(d)) IN id

getld : Exceptionw — Valuew

This function returns the value of the given Why3 exception.
getld(ew) = LET ew = (id, val) IN val

getld : Data — Value

This function returns the value of the exception in the given Data.

getld(d) = LET val = valuee(exception(d)) IN val

ValueOf : Valuew — Valuew

37

This function returns the value of the Why3 semantic domain of value.

ValueOf : Value — Value
This function returns the value of the MiniMaple semantic domain of value.

—C (Statew x Expressionw) x (Statew x Valuew)
This predicate holds for the big step semantics of Why3. The <t, ¢> —
<t’, vw> is a syntactic sugar for this predicate.

IdSeqtoSet : Identifier_Sequence — Set
This function coverts a given identifier sequence to a set.

Env : Environment x Syntactic. Domain_of_MiniMaple — Environment
This function, constructs an extends the given environment for the given
syntactic MiniMaple domain.

constructs : Statew — State

This function constructs a corresponding MiniMaple state for a given Why3
state.

38

C Soundness Statements

Let’s define the soundness statements for the translation of a MiniMaple
command sequence (Cseq), command (C) and an expression (E) by the corre-
sponding predicates as follows.

C.1 For Command Sequence

Soundness_cseq C Command_Sequence

Soundness_cseq(Cseq) <

V em € Environment, cw € Expressionw, ew, ew’ € Environmentw, dw, dw’
€ Declw, tw, tw’ € Theoryw:

wellTyped(em, Cseq) A consistent(em, ew, dw, tw) A
<cw, ew’, dw’, tw'> = T[Cseq](em, ew, dw, tw)
= [wellTyped(cw, ew’, dw’, tw’) A extendsEnv(ew’, cw, ew) A extends-
Decl(dw’, cw, dw)
A extendsTheory(tw’, cw, tw) A
[V t, t" € Statew, vw € Valuew: <t, cw> — <t’, vw>
= [3s, s’ € State: equals(s, t) A [Cseq](em)(s, 8)]
VAN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

C.2 For Command

Soundness_c C Command

Soundness_¢(C) <

V em € Environment, cw € Expressionw, ew, ew’ € Environmentw, dw, dw’
€ Declw, tw, tw’ € Theoryw:

wellTyped(em, C) A consistent(em, ew, dw, tw) A
<cw, ew’, dw’, tw'> = T[C](em, ew, dw, tw)
= [wellTyped(cw, ew’, dw’, tw’) A extendsEnv(ew’, cw, ew) A extends-
Decl(dw’, cw, dw)
A extendsTheory(tw’, cw, tw) A
[V t, t" € Statew, vw € Valuew: <t, cw> — <t’, vw>
= [I, s’ € State: equals(s, t) A [C](em)(s, §")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [C](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)

]

39

]
C.3 For Expression

Soundness_e C Expression
Soundness_e(E) <

V em € Environment, expw, € Exprw, ew, ew’ € Environmentw, dw, dw’ €
Declw, tw, tw’ € Theoryw:

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<expw, ew’, dw’, tw'> = T[E](em, ew, dw, tw)
= [wellTyped(expw, ew’, dw’, tw’) A extendsEnv(ew’, expw, ew) A ex-
tendsDecl(dw’, expw, dw)
A extendsTheory(tw’, expw, tw) A
[V t, t’ € Statew, vw € Valuew: <t, expw> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

C.4 For Identifier

Soundness_e C Identifier
Soundness_e(I) <

V em € Environment, i € Constantw, ew, ew’ € Environmentw, dw, dw’ €
Declw, tw € Theoryw:

wellTyped(em, I) A consistent(em, ew, dw, tw) A
<i, ew’, dw’, tw> = T[I](em, ew, dw, tw)
= [wellTyped(i, ew’, dw’, tw’) A extendsEnv(ew’, i, ew) A extends-
Decl(dw’, i, dw) A
[Vt € Statew: <t, i> — <t, i>
= [3 v € Variable: [IJ(em)(v)]
A
[V v € Variable: [I](em)(v) = equals(v, I)]
]
]

C.5 Goal

We need to prove the following goal:

V Cseq € Command, C € Command, E € Expression, I € Identifier:
Soundness_cseq(Cseq) A Soundness_c(C) A Soundness_e(E)

40

D Proof

In the following we give definition of some constructs of related syntactic
domains of MiniMaple.

Cseq := C | C;Cseq // originally was EMPTY | C;Cseq

C:= ... | if E then Cseq else Cseq end if | while E do Cseq end do |
E:=... |[EandE|EorE|E=E|E<E|E<=E|E>E|E >=
E|not E|...

Eseq := E | E;Eseq // originally was EMPTY | E;Eseq
I := is a MiniMaple identifier

We have modified the syntactic domain of command sequence, because no
corresponding Why3 semantics is defined for skip command, which is a corre-
sponding translation of an empty command sequence.

Our goal is formulated as follows:

Goal:

V Cseq € Command_Sequence, C € Command, E € Expression:

Soundness_cseq(Cseq) A Soundness_c(C) A Soundness_e(E) -------memeem
~ (@)

Proof:

We prove the goal by structural induction on Cseq, C and E whose formal
grammar rules are defined. Also the rules for the questioned semantics are

defined in Why3 by ” - — _” notation.

By splitting G, we have following three sub-goals:

Soundness_cseq(Cseq) -——-mn--mmmmm--e- (G1)
Soundness_¢(C) —mmmmmmmmemmemm (G2)
Soundness_e(E) -------mmmmreeee- (G3)

In the following, we prove the above sub-goals respectively.
D.1 Case G1: Soundness of Command Sequence

Case 1: Cseq := C

From induction assumption, we know that
Soundness_¢(C) —---mmmmmmmemmm- (1)

Also from the definitions of semantics, we know that the semantics of C and
Cseq are equivalent, s.t.

41

[Csed](e)(s,8") ~ [Cl(e)(5,8") =mmrmmmmmmemmamv (2)

and also the corresponding translation functions are equal, s.t.

T[Cseq](em)(ew, dw, tw) ~ T[C](em)(ew, dw, tw) -------------- (3)
The goal (G1) follows from (1), (2) and (3). Hence proved.

Case 2: Cseq := C;Cseq
Let em, cw, em, ew’, dw, dw’, tw, tw’, be arbitrary but fixed.
We assume:

wellTyped(em,C;Cseq) ~ ——-——mmmmomemm (1)
consistent(em, ew, dw, tw) —eeeemeeeeeee (2)

We show:

wellTyped(cw, ew’, dw’, tw’) ——emmmmeeee (a)
extendsEnv(ew’, cw, ew) —mememeeees (b)
extendsDecl(dw’, cw, dw) ~ ——emeemeees (c)
extendsTheory(tw’, cw, tw) ~ ——mmemmeme- (d)
[V t, t” € Statew, vw € Valuew: <t, cw> — <t’, vw>
= [3s, s’ € State: equals(s, t) A [C;Cseq](em)(s, ') |
N
[V's, s’ € State, dm € InfoData: equals(s, t)
A [C;Cseq](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
I (e)

Sub-Goal (a)

We instantiate lemma (L-cseql) with

cseq as C;Cseq, em as em, e as cw, ew as ew, ew’ as ew’, dw as dw, dw’ as
dw’, tw as tw, tw’ as tw’

and get

wellTyped(em, C;Cseq) A (cw, ew’, dw’, tw’) = T[C;Cseq](em, ew, dw, tw)
= wellTyped(cw, ew’, dw’, tw’)

This goal follows from assumptions (1) and (3).
Sub-Goal (b)

By definition of translation function (D2) of T[C;Cseq], there are el, e2,
ew”’, dw”’, tw”’ for which

(cw, ew’, dw’, tw’) = T[C;Cseq](em, ew, dw, tw) -—-----mmmmemv (3)

42

where

cw =el;e2 0 e (3.a)

(el, ew”, dw”, tw”) = T[C](em, ew, dw, tw) -———-mmmmmmmmemmmm (3.b)
em’ = Env(em, C) e (3.b)

(€2, ew’, dw’, tw’) = T[Cseq](em’, ew”, dw”, tw’’) -—mmmmmmmmmmmmmmmmn (3.0)
and el;e2 is a syntactic sugar for let - = el in e2

We instantiate lemma (L-cseq3) with
em as em, em’ as em’, C as C and Cseq as Cseq

from which following holds

wellTyped(em, C) —oeeeeemeee e (1.a)
em’ = Env(em, C) s (1.b)
wellTyped(em’, Cseq) ~ ——memmmmmeemeemee (1.c)

We instantiate the soundness statement for C with
em as em, cw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as tw,
tw’ as tw”’

to get

wellTyped(em, C) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”> = T[C](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”’) A extendsEnv(ew”, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [C](em)(s, ") |
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [C](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.a), (2) and (3.b), it follows that

extendsEnv(ew”; el, ew) (3.d)

We instantiate lemma (L-cseq4) with

em as em, em’, C as C, Cseq as Cseq, ew as ew, ew’ as ew’, el as el, e2 as
e2, dw as dw, dw’ as dw’, tw as tw, tw’ as tw’, ew” as ew”, dw”’ as dw”’, tw”’
as tw”’

to get

<el, ew”, dw”, tw”’> = T[C](em, ew, dw, tw) A em’ = Env(em, C) A

43

<e2; ew’, dw’, tw'> = T[Cseq](em’, ew”, dw”, tw’’) A consistent(em, ew,
dw, tw)
= consistent(em’, dw”, dw”’, tw”)

From assumptions (3.b), (3.b”), (3.c) and (2), it follows that

consistent(em’, ew”, dw”’, tw”’) (3.e)

We instantiate the induction assumption for Cseq with
em as em’, cw as €2, ew as ew’’, ew’ as ew’, dw as dw”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”’)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”’)
A extendsTheory(tw’, €2, tw”’) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]
N
[V's, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t") A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e) and (3.c), it follows that

extendsEnv(ew’, €2, ew”) (3.)

From (3.a), we can re-write the goal (b) as

extendsEnv(ew’, el;e2, ew) —-mmmemmmmemmeeeme (b)

We instantiate lemma (L-cseq2) with

em as em, C as C, Cseq as Cseq, ew as ew, ew’ as ew’, ew”” as ew’’, el as el,
e2 as e2, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw”’ as tw’’

to get

wellTyped(em, C;Cseq) A <el;e2, ew’, dw’, tw’> = T[C;Cseq](em, ew, dw,
tw)

=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’) = extendsEnv(ew’,
el;e2, ew) | A

[extendsDecl(dw”, el, dw) A extendsDecl(dw’, €2, dw”) = extends-
Decl(dw’, el;e2, dw) | A

44

[extendsTheory(tw”’, el, tw) A extendsTheory(tw’, €2, tw”’) = extends-
Theory(tw’, el;e2, tw) |

The goal (b) follows from assumptions (1), (3), (3.a), (3.d) and (3.f). Hence
proved.

Sub-Goal (c)

We instantiate the soundness statement for C with
em as em, cw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as tw,
tw’ as tw’”’

to get

wellTyped(em, C) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[C](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”’) A extendsEnv(ew”’, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory (tw”’, el, tw) A
[V t, t" € Statew, vw € Valuew: <t, el> — <t’; vw>
= [I, s’ € State: equals(s, t) A [C](em)(s, §")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [C](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.a), (2) and (3.b), it follows that

extendsDecl(dw”’, el, dw) (3.2)

We instantiate the induction assumption for Cseq with
em as em’, cw as €2, ew as ew’’, ew’ as ew’, dw as dw’”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”’)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”’)
A extendsTheory(tw’, €2, tw”’) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]
A
[V's, s’ € State, dm € InfoData: equals(s, t)

45

A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e) and (3.c), it follows that

extendsDecl(dw’, €2, dw”’) (3.h)

From (3.a), we can re-write the goal (c) as

extendsDecl(dw’, el;e2, dw) — -——--memmmemmemmmmv (b)

We instantiate lemma (L-cseq2) with

em as em, C as C, Cseq as Cseq, ew as ew, ew’ as ew’, ew”” as ew’’, el as el,
e2 as €2, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw”’

to get

wellTyped(em, C;Cseq) A <el;e2, ew’, dw’, tw’> = T[C;Cseq](em, ew, dw,
tw)

=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’) = extendsEnv(ew’,
el;e2, ew) | A

[extendsDecl(dw”, el, dw) A extendsDecl(dw’, €2, dw”) = extends-
Decl(dw’, el;e2, dw) | A

[extendsTheory(tw”’, el, tw) A extendsTheory(tw’, €2, tw”’) = extends-
Theory(tw’, el;e2, tw) |

The goal (¢) follows from assumptions (1), (3), (3.a), (3.g) and (3.h). Hence
proved.

Sub-Goal (d)

We instantiate the soundness statement for C with
em as em, cw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as tw,
tw’ as tw”’

to get

wellTyped(em, C) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[C](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”) A extendsEnv(ew”’, el, ew) A extends-
Decl(dw”, el, dw)
A extendsTheory (tw”’, el, tw) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [C](em)(s, s°) |
A
[V's, s’ € State, dm € InfoData: equals(s, t)

46

A [C](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.a), (2) and (3.b), it follows that

extendsTheory(tw”, el, tw) (3.1)

We instantiate the induction assumption for Cseq with
em as em’, cw as €2, ew as ew’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw”, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”, dw”, tw”)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”")
A extendsTheory (tw’, €2, tw’’) A
[V t, t" € Statew, vw € Valuew: <t, el> — <t’; vw>
= [I, s’ € State: equals(s, t) A [Cseq](em’)(s, s")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e) and (3.c), it follows that

extendsTheory(tw’, e2, tw”") (3.9)

From (3.a), we can re-write the goal (d) as

extendsTheory(tw’, el;e2, tw) — -————-mmmmmmmemmm (b)

We instantiate lemma (L-cseq2) with

em as em, C as C, Cseq as Cseq, ew as ew, ew’ as ew’, ew” as ew’’, el as el,
e2 as €2, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw’’

to get

wellTyped(em, C;Cseq) A <el;e2, ew’, dw’, tw’> = T[C;Cseq](em, ew, dw,
tw)

=

[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’) = extendsEnv(ew’,
el;e2, ew) | A

47

[extendsDecl(dw”’, el, dw) A extendsDecl(dw’, €2, dw”’) = extends-
Decl(dw’, el;e2, dw) | A

[extendsTheory(tw”, el, tw) A extendsTheory(tw’, €2, tw”") = extends-
Theory(tw’, el;e2, tw) |

The goal (c) follows from assumptions (1), (3), (3.a), (3.1) and (3.j). Hence
proved.

Sub-Goal (e)

Let t, t’, cw, vw be arbitrary but fixed.
We assume:

<t, cw> — <t’, VW> —mmmmememm- (4)

From (3.a), we know

cw = el;e2 which is a syntactic sugar for let - = el in e2.
From (com-s), we get

<t,let _=eline2> — <t’, VW> ——mmommmmemem o 4)

----- 5)

<t”, e2> — <t’, vw> for some t"’ ——-m-memememmem (6)

We show:

J's, s’ € State: equals(s, t) A [C;Cseq](em)(s, 87) =---------mmmmmmmv (e.a)

Vs, s’ € State, dm € InfoData: equals(s, t) A [C;Cseq](em)(s, 8’) A dm =
infoData(s’)

= equals(s’, t’) A equals(dm, vw) -------mmmememmv (e.b)

Sub-Goal (e.a)

We define:

s := constructs(t) -----------m--mm- (4.a)

We show:

equals(s, t) = ——-—mmmmmemme - (e.a.1)
[C:Cse] (em) (s,) | ~orermrerorrrer (c0.2)

Sub-Goal (e.a.l)

We instantiate lemma (L-cseq5) with s as s and t as t
to get

48

s = construct(t) = equals(s,t)

From (4.a) and lemma (L-cseq5) we know
equals(s,t)

which is the goal (e.a.1). Hence proved.
Sub-Goal (e.a.2)

We instantiate the soundness statement for C with
em as em, cw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as tw,
tw’ as tw’”’

to get

wellTyped(em, C) A consistent(em, ew, dw, tw) A
<el, ew”, dw”’, tw”> = T[C](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”) A extendsEnv(ew”’, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory (tw”’, el, tw) A
[V t, t" € Statew, vw’ € Valuew: <t, el> — <t”, vw'>
= [3 s, 87 € State: equals(s, t) A [C](em)(s, s”)]
AN
[Vs, s” € State, dm € InfoData: equals(s, t)
A [C](em)(s, s””) A dm = infoData(s”)
= equals(s”, t”) A equals(dm, vw)
]
]
]

From assumptions (1.a), (2), (3.b) and soundness statement of C, we know

[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [s, 8’ € State: equals(s, t) A [C](em)(s, ") |
A\
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [C](em)(s, s’) A dm = infoData(s’)
= equals(s’, t’') A equals(dm, vw)

}

]

We instantiate the above formula with
tastand t’ ast”, vw as vw’ to get

[Vt, t7 € Statew, vw’ € Valuew: <t, el> — <t”, vw'>
= [Is, 8’ € State: equals(s, t) A [C](em)(s, s’) |
A\
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [C](em)(s, 8’) A dm = infoData(s’)

49

= equals(s’, t’) A equals(dm, vw’)

]

From assumption (1.d), we know
[Is, s’ € State: equals(s, t) A [C](em)(s, ')]
By instantiating above with s as s, s” as s”’, we know that

there is s, s’ s.t.

We instantiate the induction assumption for Cseq with
em as em’, cw as €2, ew as ew’’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw”, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”, dw”, tw”)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”")
A extendsTheory(tw’, €2, tw”’) A
[V t, t" € Statew, vw € Valuew: <t, e2> — <t’; vw>
= [I, s’ € State: equals(s, t) A [Cseq]](em’)(s, s")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e), (3.c) and induction assumption of Cseq, we
know

[V t, t’ € Statew, vw € Valuew: <t, e2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]
A\
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)

]

]

We instantiate the above formula with t as t”’, t” as t’, vw as vw to get

50

[V 17, " € Statew, vw € Valuew: <t”, e2> — <t’, vw>
= [3, s’ € State: equals(s, t) A [Cseq](em’)(s, s")]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’') A equals(dm, vw)

]

]

From assumption (6) and above formula we get

[Is, s’ € State: equals(s, t) A [Cseq](em’)(s, s”)]

By instantiating the above formula with s as s”, s’ as s’, we know that
there is 87, s’ s.t.

[Cseq](em’)(s”,s’) ——-----m-m-mmm- (e.a.2.2)

From (e.a.2.1) and (e.a.2.2) the definition of semantics of command sequence
follows, which is the goal (e.b.2). Hence proved.

From goals (e.b.1) and (e.b.2), the goal (e.b) follows. Hence (e.b) is proved.
Sub-Goal (e.b)

Let s, s’, dm be arbitrary but fixed.

We assume:

equals(s,t) —rmmmmeemmeee- (7)
[C;Cseq](em)(s,87) =-mmmrmmmrmmmeemmeev (8)

dm = infoData(s’) ——mm-mmmmeemeeeev (9)

We define:

s’ := constructs(t’) = —mmmmmmmmeemee (9.a)
vw := constructs(dm) = -————--mmmeem e (9.b)
We show:

equals(s’, t’) - (e.b.1)
equals(dm, vw) ——-mmmmeeeee - (e.b.2)

Sub-Sub-Goal (e.b.1)
We instantiate lemma (L-cseq5) with
sass’and t as t’

to get

s’ = constructs(t’) = equals(s’, t’)

o1

From (9.a) and (L-cseqb), we know
equals(s’, t')
which is the goal (e.b.1). Hence proved.

Sub-Sub-Goal (e.b.2)

We instantiate lemma (L-cseq6) with
v as vw, v’ as dm

to get

vw = constructs(dm) = equals(dm, vw)
From (9.b) and (L-cseq6), we know

equals(dm, vw)
which is the goal (e.b.2). Hence proved.

Consequently, the goal (e.b) follows from (e.b.1) and (e.b.2). Hence (e.b) is
proved.

Finally, the goal (e) follows from goals (e.a) and (e.b).
Also the goal (G1) follows from goals (a), (b), (c), (d) and (e).

Hence (G1) proved.

52

D.2 Case G2: Soundness of Command

We prove it by structural induction on C for some selected cases.

D.2.1 Case 1: C := if E then Cseql else Cseq2 end if

The goal (G2) can be re-stated as follows:

V em € Environment, el,e2,e3 € Expressionw, ew, ew’ € Environmentw, dw,
dw’ € Declw, tw, tw’ € Theoryw:

wellTyped(em, if E then Cseql else Cseq2 end if) A consistent(em, ew,
dw, tw) A
<if el then e2 else €3, ew’, dw’, tw’) = T[if E then Cseql else Cseq2 end
if](em, ew, dw, tw)
= [wellTyped(if el then e2 else €3, ew’, dw’, tw’) A extendsEnv(ew’, if el
then e2 else e3, ew)
A extendsDecl(dw’, if el then e2 else e3 , dw)
A extendsTheory(tw’, if el then e2 else €3 , tw) A
[V t, t € Statew, vw € Valuew: <t, if el then e2 else e3> — <t’, vw>
= [3s, s’ € State: equals(s, t)
A [if E then Cseql else Cseq2 end if](em)(s, s”)]
N
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [if E then Cseql else Cseq2 end if](em)(s, s’)
A dm = infoData(C, s’)
= equals(s’, t') A equals(dm, vw)

Let em, el,e2,e3, ew, ew’, dw, dw’, tw, tw’, dm and vw be arbitrary but
fixed.

We assume:

wellTyped(em,if E then Cseql else Cseq2 end if) -——-rmr (1)

consistent(em, ew, dw, tw) = —mmeememmeees (2)

<if el then e2 else e3, ew’, dw’, tw’> = T[if E then Cseql else Cseq2 end
if](em, ew, dw, tw) e (3)

By expanding the definition of (3), we know

<el, ew”, dw’”, tw'”> = T[E](em, ew, dw, tw) -------m-meememv (3.a)

em’ = Env(em, E) e (3.27)

<e2, ew”, dw”, tw’> = T[Cseql](em’, ew’”, dw’”’, tw’”’) -—-mommememeem
(3.b)
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”, dw”, tw”’) ------mmmmememmm (3.c)

We show:

53

wellTyped(if el then e2 else €3, ew’, dw’, tw’) ————mmoereem (a)

extendsEnv(ew’, if el then e2 else e3, ew) ~ ——--moemeeemm (b)
extendsDecl(dw’, if el then e2 else e3 , dw) ~ -———mmemem- (c)
extendsTheory(tw’, if el then e2 else €3 |, tw) =~ ———-mememmmm (d)

[V t, t" € Statew, vw € Valuew: <t, if el then e2 else e3> — <t’, vw>
= [3 s, s’ € State: equals(s, t) A [if E then Cseql else Cseq2 end
if](em)(s, &) |
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [if E then Cseql else Cseq2 end if](em)(s, s”)
A dm = infoData(if E then Cseql else Cseq2 end if, s)
= equals(s’, t’) A equals(dm, vw)
]
I (e)

Sub-Goal (a)

We instantiate lemma (L-c1) with

c as if E then Cseql else Cseq2 end, em as em, e as if el then e2 else e3, ew
as ew, ew’ as ew’, dw as dw, dw’ as dw’, tw as tw, tw’ as tw’

and get

wellTyped(em, if E then Cseql else Cseq2 end)
A (if el then e2 else €3, ew’, dw’, tw’) = T[if E then Cseql else Cseq2
end](em, ew, dw, tw)
= wellTyped(if el then e2 else e3, ew’, dw’, tw’)

From assumptions (1), (3) and (L-c1), we know

wellTyped(if el then e2 else e3, ew’, dw’, tw’)

which is the goal (a). Hence (a) proved.

Sub-Goal (b)

We instantiate lemma (L-c3) with

em as em, em’ as em’, E as E, Cseql as Cseql, Cseq2 as Cseq?2

to get

wellTyped(em, if E then Cseql else Cseq2 end) =

wellTyped(em, E) A em’ = Env(em, E) A wellTyped(em’, Cseql) A well-

Typed(em’, Cseq2)

From (1) and (L-¢3), we know

wellTyped(em, E) ——-—--mmeemeemee - (1.a)

em’ = Env(em, E) ——momommme - (1.a7)
wellTyped(em’, Cseql) -----------m-m-nmm-- (1.b)
wellTyped(em’, Cseq2) -------------------- (1.c)

54

We instantiate lemma (L-c4) with

em as em, em’ as em’, E as E, Cseql as Cseql, Cseq2 as Cseq2, ew as ew,
ew’ ew’, ew’’ as ew’’, ew’’” as ew’”’, dw as dw, dw’ as dw’, dw’” as dw”’, dw’"’ as
dw’”’, tw as tw, tw’ as tw’, tw”’ as tw”’, tw’”’ as tw’”’

to get

<el, ew”, dw’”, tw’”’> = T[E](em, ew, dw, tw) A em’ = Env(em, E) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”’, dw”, tw’’) A consistent(em, ew,
dw, tw)
= consistent(em’, ew’”, dw’”, tw’”’) A consistent(em’, ew”, dw”’, tw”’)

From assumptions (3.a), (3.a”), (3.b), (3.c), (2) and (L-c4), we know

consistent(em’, ew””’, dw’”’, tw’”) (2.a)
consistent(em’, ew”, dw”’, tw”’) (2.b)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’”’, dw as dw, dw’ as dw’”’, tw as
tw, tw’ as tw’”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw’”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”’, dw’”’, tw’”) A extendsEnv(ew’”’, el, ew) A ex-
tendsDecl(dw’”, el, dw)
A extendsTheory (tw’”’, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsEnv(ew’”, el, ew) (b.1)

We instantiate the soundness statement of Cseq for Cseql with
em as em’ cw as e2, ew as ew’”’, ew’ as ew”’, dw as dw’”’, dw’ as dw’’, tw as
tw’”’, tw’ as tw”’

to get

wellTyped(em’, Cseql) A consistent(em’, ew’”, dw’”, tw’”) A
<e2, ew”, dw”, tw’> = T[Cseql](em’, ew’” dw’”, tw’”’)

55

= [wellTyped(e2, ew”, dw”, tw”) A extendsEnv(ew”, €2, ew’”) A ex-
tendsDecl(dw”, e2, dw’”’)
A extendsTheory(tw”’, 2, tw’”) A
[V t, t’ € Statew, vw € Valuew: <t’, e2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseql](em’)(s, s’)]
A
[V's, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t") A equals(dm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

extendsEnv(ew”, €2, ew’”) (b.2)

We instantiate the soundness statement of Cseq for Cseq2 with
em as em’ cw as e3, ew as ew”’, ew’ as ew’, dw as dw”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq2) A consistent(em’, ew””, dw”, tw’’) A
<e3, ew’, dw’, tw’> = T[Cseq2](em’, ew”, dw”, tw”)
= [wellTyped(e3, ew’, dw’, tw’) A extendsEnv(ew’, €3, ew’’) A extends-
Decl(dw’, €3, dw”’)
A extendsTheory(tw’, e3, tw”’) A
[V t, t € Statew, vw € Valuew: <t’, e3> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq2](em’)(s, s’)]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq2](em’)(s, 8’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (2.b), (3.c) and soundness statement of Cseq, we
know

extendsEnv(ew’, €3, ew”) (b.3)

We instantiate lemma (L-¢2) with

em as em, E as E, Cseql as Cseql, Cseq2 as Cseq2, el as el, e2 as e2, €3 as
e3, ew as ew, ew’, ew’’, ew’’, ew’’’ as ew’”’, dw as dw, dw’ as dw’, dw’’” as dw”’,
dw’” as dw’”’, tw as tw, tw’ as tw’, tw’’ as tw”’, tw’” as tw’”’

to get

56

wellTyped(em, if E then Cseql else Cseq2 end) A
<if el then e2 else €3, ew’, dw’, tw'> = T[if E then Cseql else Cseq2
end](em, ew, dw, tw) A
<el, ew”, dw’”, tw’’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”) A
<e3, ew’, dw’, tw’> = T[Cseq2] (em’, ew”, dw”, tw”") A
=
[extendsEnv(ew
sEnv(ew’, 3, ew”’)
= extendsEnv(ew’, if el then e2 else €3, ew) | A
[extendsDecl(dw’, el, dw) A extendsDecl(dw”’, €2, dw’”) A extends-
Decl(dw’, €3, dw”’)
= extendsDecl(dw’, if el then e2 else e3, dw) | A
[extendsTheory(tw’”’, el, tw) A extendsTheory(tw”’, €2, tw’”’) A extend-
sTheory(tw’, €3, tw”)
= extendsTheory(tw’, if el then e2 else €3, tw)]

99

, el, ew) A extendsEnv(ew”, €2, ew’”) A extend-

From assumptions (1), (3), (3.a), (3.27), (3.b), (3.¢), (b.1), (b.2), (b.3) and
lemma (L-c2), we know

extendsEnv(ew’, if el then e2 else e3, ew)
which is the goal. Hence (b) proved.
Sub-Goal (c)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’”’, dw as dw, dw’ as dw’”’, tw as
tw, tw’ as tw’”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw’”, tw’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”’, dw””’, tw’”) A extendsEnv(ew’”’, el, ew) A ex-
tendsDecl(dw’”; el, dw)
A extendsTheory (tw’”, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, 8’, vin)]
N
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

57

extendsDecl(dw’”; el, dw) (b.4)

We instantiate the soundness statement of Cseq for Cseql with
em as em’ cw as e2, ew as ew’”’, ew’ as ew’’, dw as dw’”’, dw’ as dw”’, tw as
tw’”’, tw’ as tw”’

to get

wellTyped(em’, Cseql) A consistent(em’, ew’”, dw’”, tw”’) A
<e2, ew”, dw”’, tw”> = T[Cseql](em’, ew”’, dw’”’, tw’”’)
= [wellTyped(e2, ew”, dw”’, tw”) A extendsEnv(ew”, €2, ew’”) A ex-
tendsDecl(dw”’, €2, dw’”)
A extendsTheory(tw”’, €2, tw’”’) A
[V t, t’ € Statew, vw € Valuew: <t’, e2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseql](em’)(s, s’)]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

extendsDecl(dw”’, €2, dw’”’) (b.5)

We instantiate the soundness statement of Cseq for Cseq2 with
em as em’ cw as e3, ew as ew”’, ew’ as ew’, dw as dw”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq2) A consistent(em’, ew””, dw’’, tw’”) A
<e3, ew’, dw’, tw’> = T[Cseq2](em’, ew”, dw”, tw”")
= [wellTyped(e3, ew’, dw’, tw’) A extendsEnv(ew’, €3, ew”) A extends-
Decl(dw’, €3, dw”’)
A extendsTheory(tw’, e3, tw”’) A
[V t, t € Statew, vw € Valuew: <t’, e3> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq2](em’)(s, s’)]
A
[V's, s’ € State, dm € InfoData: equals(s, t)
A [Cseq2](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (2.b), (3.c) and soundness statement of Cseq, we
know

58

extendsDecl(dw’, €3, dw”’) (b.6)

We instantiate lemma (L-c2) with

em as em, E as E, Cseql as Cseql, Cseq2 as Cseq2, el as el, e2 as €2, e3 as
e3, ew as ew, ew’, ew”’, ew’’, ew’’ as ew’”’, dw as dw, dw’ as dw’, dw’’ as dw”’,
dw’” as dw’”’, tw as tw, tw’ as tw’, tw’’ as tw”’, tw’” as tw’”’

to get

wellTyped(em, if E then Cseql else Cseq2 end) A
<if el then e2 else €3, ew’, dw’, tw’> = T[if E then Cseql else Cseq2
end](em, ew, dw, tw) A
<el, ew”, dw’”’, tw’’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”, dw”, tw”’) A
=
[extendsEnv(ew’
sEnv(ew’, €3, ew”)
= extendsEnv(ew’, if el then e2 else e3, ew) | A
[extendsDecl(dw’”’, el, dw) A extendsDecl(dw”’, €2, dw’”) A extends-
Decl(dw’, €3, dw”’)
= extendsDecl(dw’, if el then e2 else €3, dw) | A
[extendsTheory(tw””’, el, tw) A extendsTheory(tw”, €2, tw”’) A extend-
sTheory(tw’, e3, tw”)
= extendsTheory(tw’, if el then e2 else €3, tw)]

29

, el, ew) A extendsEnv(ew”, €2, ew’”) A extend-

From assumptions (1), (3), (3.a), (3.a”), (3.b), (3.c), (b.4), (b.5), (b.6) and
lemma (L-c2), we know

extendsDecl(dw’, if el then e2 else e3, dw)
which is the goal. Hence (c) proved.
Sub-Goal (d)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw’”’, tw as
tw, tw’ as tw’”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew’”, dw’”, tw’’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew””, dw’”, tw”’) A extendsEnv(ew’’, el, ew) A ex-
tendsDecl(dw’”, el, dw)
A extendsTheory (tw’”; el, tw) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)

59

= equals(s’, t’) A equals(vm, vw)
]

]
J

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsTheory(tw””’, el, tw) (b.7)

We instantiate the soundness statement of Cseq for Cseql with
em as em’ cw as e2, ew as ew’”’, ew’ as ew’’, dw as dw’”’, dw’ as dw”’, tw as
tw’”’, tw’ as tw”’

to get

wellTyped(em’, Cseql) A consistent(em’, ew’”, dw’”, tw’”) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”)
= [wellTyped(e2, ew”, dw”’, tw”) A extendsEnv(ew”, €2, ew’”) A ex-
tendsDecl(dw”’; €2, dw’”)
A extendsTheory(tw”’; €2, tw’”) A
[V t, t" € Statew, vw € Valuew: <t’, 2> — <t’, vw>
= [I, s’ € State: equals(s, t) A [Cseql](em’)(s, s")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

extendsTheory (tw”, e2, tw’”’) (b.8)

We instantiate the soundness statement of Cseq for Cseq2 with
em as em’ cw as e3, ew as ew’’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw”, tw’ as tw’

to get

wellTyped(em’, Cseq2) A consistent(em’, ew”’, dw”, tw’’) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”, dw”, tw”")
= [wellTyped(e3, ew’, dw’, tw’) A extendsEnv(ew’, €3, ew”) A extends-
Decl(dw’, 3, dw”’)
A extendsTheory (tw’, €3, tw’’) A
[V t, t" € Statew, vw € Valuew: <t’, e3> — <t’, vw>
= [3Is, 8’ € State: equals(s, t) A [Cseq2](em’)(s, s’) |
A

60

[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq2](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (2.b), (3.c) and soundness statement of Cseq, we
know

extendsTheory(tw’, e3, tw’’) (b.9)

We instantiate lemma (L-c2) with

em as em, E as E, Cseql as Cseql, Cseq2 as Cseq2, el as el, e2 as €2, €3 as
e3, ew as ew, ew’, ew’’, ew’’, ew’’’ as ew’”’, dw as dw, dw’ as dw’, dw’’ as dw”’,
dw’” as dw’”’, tw as tw, tw’ as tw’, tw’’ as tw”’, tw’” as tw’”’

to get

wellTyped(em, if E then Cseql else Cseq2 end) A
<if el then e2 else €3, ew’, dw’, tw'> = T[if E then Cseql else Cseq2
end](em, ew, dw, tw) A
<el, ew’”, dw’”, tw’’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”, dw”, tw”’) A
=
[extendsEnv(ew’
sEnv(ew’, 3, ew”’)
= extendsEnv(ew’, if el then e2 else 3, ew) | A
[extendsDecl(dw’”’; el, dw) A extendsDecl(dw”’, €2, dw’”) A extends-
Decl(dw’, €3, dw”")
= extendsDecl(dw’, if el then e2 else €3, dw) | A
[extendsTheory(tw””’, el, tw) A extendsTheory(tw”, €2, tw”’) A extend-
sTheory(tw’, e3, tw”)
= extendsTheory(tw’, if el then e2 else €3, tw)]

by

, el, ew) A extendsEnv(ew”, €2, ew’”) A extend-

From assumptions (1), (3), (3.a), (3.a’), (3.b), (3.c), (b.7), (b.8), (b.9) and
lemma (L-c2), we know

extendsTheory(tw’, if el then e2 else €3, tw)
which is the goal. Hence (d) proved.
Sub-Goal (e)

Let t, t’, cw, vw be arbitrary but fixed.
We assume:

<t, cw> — <t’, VW> —mmmmemememeee e (4)

61

From (3), we know
<t, if el then e2 else e3> — <t’, VW> —--mmmmmmemmeeee o (4
From rule (cond-t), we assume

<t, el> — <t”’, true> for some t”7 ------m-mmmmemmmm (5)
<t”, e2> — <t’, vw> for some t"’ ——-mememememe (6)

From rule (cond-f), we assume

<t, el> — <t”, false> for some t" ---------mmrmmm (7)
<t”, e3> — <t’, vw> for some t’’ -----m-mmmmmmmmm- (8)
We define:

s := constructs(t) ------------m--m- (4.2)

s := constructs(t”) = —-m-mmmmmmmeeee- (4.b)

8’ := constructs(t’) = ----------m-mmmm- (4.0)

We show:

s, 8’ € State: equals(s, t) A [if E then Cseql else Cseq2 end](em)(s, s’)

—————————————————— (e.a)
Vs, s’ € State, dm € InfoData: equals(s, t) A [if E then Cseql else Cseq2](em)(s,
s’)
A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw) ------mmmmmmmemv (e.b)

Sub-Goal (e.a)

We show:
equals(s, t) —emmemmeeeeeee- (e.a.1)
[if E then Cseql else Cseq2 end](em)(s, 8’) | --------=--m--m--mnm- (e.a.2)

Sub-Goal (e.a.l)

We instantiate lemma (L-cseq5) with
sass,tast

to get

s = constructs(t) = equals(s,t)

From assumption (4.a) and (L-cseq5), we know

equals(s,t)

which is the goal (e.a.1). Hence (e.a.l) is proved.

62

Sub-Goal (e.a.2)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’”’, dw as dw, dw’ as dw’”’, tw as
tw, tw’ as tw’”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw’”, tw’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew’”, dw”’, tw’”’) A extendsEnv(ew
tendsDecl(dw’”; el, dw)
A extendsTheory(tw’”, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)

]

299

,el, ew) A ex-

]
J

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’,) A equals(vim, vw)
]
] (T)

We have two cases here for (T)
Case 1: When vw = True

We instantiate (T) with
tast,t’ ast’”’, vw as true to get

<t, el> — <t”’, true>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)

]

From assumption (5), we know

ds, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vmn)

63

By instantiating above formula with s as s, s’ as s”’; vin as inValue(True),
we know

there is s, 8”, inValue(True)
[E](em)(s,s”,inValue(True)) ----------m-mmmmmemmv (e.a.2.1)

We instantiate the soundness statement of Cseq for Cseql with
em as em’, cw as €2, ew as ew’”’, ew’ as ew’’, dw as dw’”’, dw’ as dw”’, tw as
tw’”’, tw’ as tw”’

to get

wellTyped(em’, Cseql) A consistent(em’, ew’”, dw’”, tw’”’) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”’)
= [wellTyped(e2, ew”, dw”, tw”’) A extendsEnv(ew”, €2, ew””’) A ex-
tendsDecl(dw”’; €2, dw’”’)
A extendsTheory(tw”’, 2, tw’”) A
[V t, t’ € Statew, vw € Valuew: <t, e2> — <t’, vw>
= [s, 8’ € State: equals(s, t) A [Cseql](em’)(s, s’)]
A
[Vs, s € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, 8’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e), (3.c) and soundness statement of Cseq, we
know

[V t, t’ € Statew, vw € Valuew: <t, e2> — <t’, vw>
= [3, s’ € State: equals(s, t) A [Cseql](em’)(s, s")]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]

We instantiate the above formula with t as t”’, t” as t’, vw as vw to get

[V 17, t' € Statew, vw € Valuew: <t”, e2> — <t’, vw>
= [3, s’ € State: equals(s, t) A [Cseql](em’)(s, s")]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)

]

64

From assumption (6) and above formula we get

[Is, s’ € State: equals(s, t) A [Cseql](em’)(s, s”)]

By instantiating the above formula with s as s”, s’ as s’, we know that
there is s8”’, 8’ s.t.

[Cseql](em’)(s”,8") ——=—-mm-mm-mmmm- (e.a.2.2)

From (e.a.2.1), (e.a.2.2) and the definition of semantics of conditional com-
mand (when E evaluates to True) follows, which proves Case 1 of the goal
(e.a.2).

Case 2: When vw = False

We instantiate above (T) with
tast, t’ ast”’, vw as false to get

<t,el> — <t”, false>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’,) A equals(vm, vw)

]

From assumption (7), we know
s, 8’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vm)

By instantiating above formula with s as s, 8’ as s”’, vin as inValue(False),
we know

there is s, 8", inValue(False)
[E] (em)(s,s”,inValue(False)) — -------m-mmmmmeememv (e.a.2.3)

We instantiate the soundness statement of Cseq for Cseq2 with
em as em’, cw as e3, ew as ew’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw”, tw’ as tw”’

to get

wellTyped(em’, Cseq2) A consistent(em’, ew”’, dw”’, tw’’) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”’, dw”’, tw”")
= [wellTyped(e3, ew’, dw’, tw’) A extendsEnv(ew’, 3, ew”) A extends-
Decl(dw’, €3, dw”")
A extendsTheory (tw’, €3, tw’’) A
[V t, t" € Statew, vw € Valuew: <t, e3> — <t’; vw>
= [3, s’ € State: equals(s, t) A [Cseq2](em’)(s, s")]

65

A
[V's, s’ € State, dm € InfoData: equals(s, t)
A [Cseq2](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t") A equals(dm, vw)
]
]
]

From assumptions (1.c), (3.e), (3.c) and soundness statement of Cseq, we
know

[V t, t’ € Statew, vw € Valuew: <t, e3> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq2](em’)(s, 8’)]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq2](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]

We instantiate the above formula with t as t”’, t’ as t’, vw as vw to get

[V 17, " € Statew, vw € Valuew: <t”, e3> — <t’, vw>
= [s, 8’ € State: equals(s, t) A [Cseq2](em’)(s, 8’)]
A\
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseql](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’') A equals(dm, vw)

]

]

From assumption (8) and above formula we get

[3s, s’ € State: equals(s, t) A [Cseq2](em’)(s, s’)]

By instantiating the above formula with s as s, s’ as s’, we know that
there is 87, s’ s.t.

[Cseq2](em’)(8”,8") ——=m-mm-mm-mmmm- (e.a.2.4)

From (e.a.2.3), (e.a.2.4) and the definition of semantics of conditional com-
mand (when E evaluates to False) follows, which proves Case 2 of the goal
(e.a.2).

The full definition of (e.a) follows from (e.a.2.1), (e.a.2.2), (e.a.2.3), (e.a.2.4)
and (3.a’). Hence (e.a) is proved.

Sub-Goal (e.b)

66

Let s, s’, dm, t be arbitrary but fixed.

We assume:

equals(s,t) —meemmmmeeemeeee (7)

[if E then Cseql else Cseq2 end](em)(s,s’) ——-mmmmmmmmmmmmmenmmv (8)
dm = infoData(s’) = ——mmmmmemmemeeee 9)

We define:

s’ := constructs(t’) = - (9.a)
vw := constructs(dm) = --—-mmmmmeeme e (9.b)

We show:

equals(s’, t') - (e.b.1)
equals(dm, vw) = ——--mmmmeme - (e.b.2)

Sub-Sub-Goal (e.b.1)

We instantiate lemma (L-cseq5) with
sass and t as t’
to get

s’ = constructs(t’) = equals(s’, t’)
From (9.a) and (L-cseqb), we know

equals(s’, t”)
which is the goal (e.b.1). Hence proved.

Sub-Sub-Goal (e.b.2)
We instantiate lemma (L-cseq6) with
v as vw, v’ as dm

to get

vw = constructs(dm) = equals(dm, vw)
From (9.b) and (L-cseq6), we know

equals(dm, vw)
which is the goal (e.b.2). Hence proved.

Consequently, the goal (e.b) follows from (e.b.1) and (e.b.2). Hence (e.b) is
proved.

Finally, the goal (e) follows from goals (e.a) and (e.b).
Also the goal (G21) follows from goals (a), (b), (c), (d) and (e).

Hence (G21) proved.

67

D.2.2 Case 2: C :=1, Iseq := E, Eseq

Based on the available semantics definition of corresponding Why3 con-
structs (Iseq), we limit the proof here as explain next; we have many sub-cases
depending on the grammar of Iseq and Eseq; however, we prove the usual case
(when Iseq and Eseq are EMPTY) and the rests are left as an exercise.

As the behavior respectively translation of an assignment command is de-
pends on whether it has occurred in the “global” and “local” context. We
consider only the “local” context, when the variables are already declared.

Also, we assume the case, when an expression E evaluates to some value
other than a module or a procedure because of the missing semantics definition
of corresponding Why3 constructs.

The goal (G2) can be re-stated as follows:

V em € Environment, x, e € Expressionw, ew, ew’ € Environmentw, dw, dw’
€ Declw, tw, tw’ € Theoryw:

wellTyped(em, I := E) A consistent(em, ew, dw, tw) A
<x:=e, ew’, dw’, tw’) = T[I := E](em, ew, dw, tw)
= [wellTyped(x:=e, ew’, dw’, tw’) A extendsEnv(ew’, x:=e, ew)
A extendsDecl(dw’, x:=e, dw)
A extendsTheory(tw’, x:=e , tw) A
[V t, t" € Statew, void € Valuew: <t, x:=e> — <t’, void>
= [3s, s’ € State: equals(s, t)
A I := E](em)(s, s’)]
N
[Vs, s’ € State, dm € InfoData: equals(s, t)
A I := E](em)(s, ")
A dm = infoData(I:=E, s’)
= equals(s’, t’) A equals(dm, void)

Let em, x, e, ew, ew’, dw, dw’, tw, tw’, dm be arbitrary but fixed.

We assume:

wellTyped(em,:=E) ——emeemmev (1)

consistent(em, ew, dw, tw) — —-mmmemmeeee- (2)

<x:=e, ew’, dw’, tw’> = T[L:=E](em, ew, dw, tw) ------------—- (3)

By expanding the definition of (3), we know

<e, ew”, dw”, tw’> = T[E](em, ew, dw, tw) -———----mmmrev (3.a)
em’ = Env(em, E) e (3.27)
<x, ew’, dw’, tw’> = T[IJ(em’, ew”, dw”’, tw”) ——--mmmmmmmmemv (3.b)

68

tw

We show:

wellTyped(x:=e, ew’, dw’, tw’) = ——eemmeeeemmme (a)
extendsEnv(ew’, xi=e, ew) = --mmemeeeeen (b)
extendsDecl(dw’, x:=e, dw) - (c)
extendsTheory(tw’, x:=e , tw) = ———-mommeemmmm (d)

[V t, t” € Statew, void € Valuew: <t, xi=e> — <t’, void>
= [3s, s € State: equals(s, t) A [I:=E](em)(s, 8’)]
A
[Vs, 8’ € State, dm € InfoData: equals(s, t)
A [L:=E](em)(s, s’)
A dm = infoData(I:=E, s’)
= equals(s’, t’) A equals(dm, void)
]
s (e)

Sub-Goal (a)

We instantiate lemma (L-c1) with

c as :=E, em as em, e as x:=e, ew as ew, ew’ as ew’, dw as dw, dw’ as dw’,

as tw, tw’ as tw’

and get

wellTyped(em, I:=E)

A (x:=e, ew’, dw’, tw’) = T[L:=E](em, ew, dw, tw)
= wellTyped(x:=e, ew’, dw’, tw’)

From assumptions (1), (3) and (L-c1), we know

wellTyped(x:=e, ew’, dw’, tw’)

which is the goal (a). Hence (a) proved.

Sub-Goal (b)

We instantiate lemma (L-c5) with

em as em, em’ asem’, [as [, E as E

to get

wellTyped(em, .=E) =
wellTyped(em, E) A em’ = Env(em, E) A wellTyped(em’, I)

From (1) and (L-c5), we know

wellTyped(em, E) ---—--oemmmeeee - (1.a)
em’ = Env(em, E) ——oemmmmmeee e (1.2)
wellTyped(em’, I) ——---emmmmeemeeeeev (1.b)

We instantiate lemma (L-c6) with

69

em as em, em’ asem’, [as I, E as E, x as x, e as e, ew as ew, ew’ ew’, ew”’
as ew’’, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw”’ as tw’”’
to get

<e, ew”, dw”, tw”’> = T[E](em, ew, dw, tw) A em’ = Env(em, E) A
<x, ew’, dw’, tw’> = T[I](em’, ew”, dw”, tw’’) A consistent(em, ew, dw,
tw)
= consistent(em’, ew”, dw”’, tw”’)

From assumptions (3.a), (3.2°), (3.b), (2) and (L-c6), we know

consistent(em’, ew”, dw”’, tw”’) (2.a)

We instantiate soundness statement of E with

em as em, eXpw as e, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw’’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(e, ew”, dw”, tw’’) A extendsEnv(ew”, e, ew) A extends-
Decl(dw”, e, dw)
A extendsTheory(tw”’, e, tw) A
[V t, t’ € Statew, vw € Valuew: <t, e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
N
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsEnv(ew”, e, ew) (b.1)

We instantiate soundness statement of E for identifier expression with

em as em’, expw as X, ew as ew’’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw”, tw’ as tw’

and get

wellTyped(em’, I) A consistent(em’, ew”, dw”’, tw’’) A
<x, ew’, dw’, tw'> = T[IJ(em’, ew”, dw”, tw”’)
= [wellTyped(x, ew’, dw’, tw’) A extendsEnv(ew’, x, ew”) A extends-
Decl(dw’, x, dw”’)
A extendsTheory(tw’, x, tw”) A
[V t, t" € Statew, vw € Valuew: <t, x> — <t’, vw>
= [3Is, 8’ € State, vin € Value: equals(s, t) A [I](em)(s, s’, vin) |
A

70

[V s, s’ € State, vin € Value: equals(s, t) A [I](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of E, we know

extendsEnv(ew’, x, ew”’) (b.2)

We instantiate lemma (L-c7) with

em as em, em’ asem’, [as I, E as E, x as x, e as e, ew as ew, ew’ as ew’, ew’’
as ew’’, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw”’ as tw’”’

to get

wellTyped(em, E) A
<x:=e, ew’, dw’, tw’> = T[I:=E](em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<x, ew’, dw’, tw'> = T[IJ(em’, ew”, dw”’, tw”’) A
=
[extendsEnv(ew”, e, ew) A extendsEnv(ew’, x, ew”’) = extendsEnv(ew’,
x:=e, ew) | A
[extendsDecl(dw”, e, dw) A extendsDecl(dw’, x, dw”) = extends-
Decl(dw’, x:=e, dw) | A
[extendsTheory(tw”, e, tw) A extendsTheory(tw’, x, tw”’) = extends-
Theory(tw’, x:=e, tw) |

From assumptions (1), (3), (3.a), (3.a’), (3.b), (b.1), (b.2) and lemma (L-c7),
we know

extendsEnv(ew’, x:=e, ew)
which is the goal. Hence (b) proved.
Sub-Goal (c)

We instantiate soundness statement of E with

em as em, eXpw as e, ew as ew, ew’ as ew”’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw’”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(e, ew”, dw”, tw”’) A extendsEnv(ew”, e, ew) A extends-
Decl(dw”, e, dw)
A extendsTheory(tw”’; e, tw) A
[V t, t" € Statew, vw € Valuew: <t, e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A

71

[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsDecl(dw”, e, dw) (b.3)

We instantiate soundness statement of E for identifier expression with

em as em’, eXpw as X, ew as ew’’, ew’ as ew’, dw as dw’’, dw’ as dw’, tw as
tw’’, tw’ as tw’

and get

wellTyped(em’, I) A consistent(em’, ew”, dw”’, tw’’) A
<x, ew’, dw’, tw’> = T[IJ(em’, ew”, dw”’, tw”’)
= [wellTyped(x, ew’, dw’, tw’) A extendsEnv(ew’, x, ew”) A extends-
Decl(dw’, x, dw”)
A extendsTheory(tw’, x, tw”’) A
[V t, t" € Statew, vw € Valuew: <t, x> — <t’, vw>
= [I, s’ € State, vin € Value: equals(s, t) A [IJ(em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [I](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of E, we know

extendsDecl(dw’, x, dw”’) (b.4)

We instantiate lemma (L-c7) with

em as em, em’ asem’, [as I, E as E, x as x, e as e, ew as ew, ew’ as ew’, ew’’
as ew”’, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw”’

to get

wellTyped(em, E) A
<x:=e, ew’, dw’, tw’> = T[l:=E](em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<x, ew’, dw’, tw'> = T[IJ(em’, ew”, dw”, tw”’) A
=
[extendsEnv(ew”, x, ew) A extendsEnv(ew’, e, ew”’) = extendsEnv(ew’,
xi=e, ew) | A
[extendsDecl(dw”, x, dw) A extendsDecl(dw’, e, dw”) = extends-
Decl(dw’, x:=e, dw) | A

72

[extendsTheory(tw”, x, tw) A extendsTheory(tw’, e, tw”’) = extends-
Theory(tw’, x:=e, tw) |

From assumptions (1), (3), (3.a), (3.a’), (3.b), (b.3), (b.4) and lemma (L-c7),

we know
extendsDecl(dw’, x:=e, dw)
which is the goal. Hence (c¢) proved.
Sub-Goal (d)

We instantiate soundness statement of E with

em as em, expw as e, ew as ew, ew’ as ew”’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(e, ew”, dw”, tw”’) A extendsEnv(ew”, e, ew) A extends-
Decl(dw”’, e, dw)
A extendsTheory(tw”’, e, tw) A
[V t, t’ € Statew, vw € Valuew: <t, e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsTheory(tw”, e, tw) (b.5)

We instantiate soundness statement of E for identifier expression with

em as em’, expw as X, ew as ew’’, ew’ as ew’, dw as dw’”’, dw’ as dw’, tw as
tw”, tw’ as tw’

and get

wellTyped(em’, I) A consistent(em’, ew”, dw”, tw”) A
<x, ew’, dw’, tw’> = T[I](em’, ew”, dw”, tw”)
= [wellTyped(x, ew’, dw’, tw’) A extendsEnv(ew’, x, ew”) A extends-
Decl(dw’, x, dw”’)
A extendsTheory(tw’, x, tw”’) A
[V t, t € Statew, vw € Valuew: <t, x> — <t’, vw>
= [Is, 8’ € State, vin € Value: equals(s, t) A [I](em)(s, s’, vin) |
A
[V s, s’ € State, vin € Value: equals(s, t) A [I](em)(s, s’, vmn)

73

= equals(s’, t’) A equals(vm, vw)
]

]
J

From assumptions (1.b), (2.a), (3.b) and soundness statement of E, we know

extendsTheory (tw’, x, tw”) (b.6)

We instantiate lemma (L-c7) with
em as em, em’ asem’, [as I, E as E, x as x, e as e, ew as ew, ew’ as ew’, ew’’
as ew’”, dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw”’
to get
wellTyped(em, E) A
<x:=e, ew’, dw’, tw’> = T[:=E](em, ew, dw, tw) A
<e, ew”, dw”, tw”’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<x, ew’, dw’, tw'> = T[IJ(em’, ew”, dw”’, tw”’) A
=
[extendsEnv(ew”, x, ew) A extendsEnv(ew’, e, ew’’) = extendsEnv(ew’,
xi=e, ew) | A
[extendsDecl(dw”, x, dw) A extendsDecl(dw’, e, dw”’) = extends-
Decl(dw’, x:=e, dw) | A
[extendsTheory(tw”, x, tw) A extendsTheory(tw’, e, tw”’) = extends-
Theory(tw’, x:=e, tw) |

From assumptions (1), (3), (3.a), (3.a’), (3.b), (b.5), (b.6) and lemma (L-c7),

we know
extendsTheory(tw’, x:=e, tw)
which is the goal. Hence (d) proved.
Sub-Goal (e)

Let t, t’, cw, vw be arbitrary but fixed.
We assume:

<t, xt=e> — <t’, void> --------ommemm - (4)

From (3), we know

<t,e> — <t7, VW> ormmmeemeeeee (5)

From (4) and definition of corresponding Why3 semantics, we know
t =t [x]->VW] e (6)

We define:

74

s := constructs(t) ------------m--m- (4.2)

s := constructs(t”) = —-m--mmmmmmmeeeev (4.b)

s’ := constructs(t’) = ——-—mmm-memmeeev (4.c)

We show:

ds, 87 € State: equals(s, t) A [L=E](em)(s, 8") --m--mmm-mmmmemmmm (e.a)

Vs, 87 € State, dm € InfoData: equals(s, t) A [L:=E](em)(s, s’)
A dm = infoData(s’)
= equals(s’, t’) A equals(dm, void) — -——-------mmmmm (e.b)

Sub-Goal (e.a)

We show:
equals(s, t) = —emmememmeemeeeee (e.a.l)
[L=E](em)(s, 8’)] ———mmmmmmmmmems (e.a.2)

Sub-Goal (e.a.1)

We instantiate lemma (L-cseq5) with
sass,tast
to get

s = constructs(t) = equals(s,t)

From assumption (4.a) and (L-cseqb), we know
equals(s,t)

which is the goal (e.a.1). Hence (e.a.l) is proved.
Sub-Goal (e.a.2)

We instantiate soundness statement of E with

em as em, eXpw as e, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw’’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(e, ew”, dw”, tw”’) A extendsEnv(ew”, e, ew) A extends-
Decl(dw”’, e, dw)
A extendsTheory(tw”, e, tw) A
[V t, t € Statew, vw € Valuew: <t, e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)

75

]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

[V t, t’ € Statew, vw € Valuew: <t, e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]

We instantiate the above formula with
tast,t ast”, vw as vw
to get

<t,e> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)

= equals(s’, t) A equals(vm, vw)

]

From assumption (5) and above formula, we know
s, 8’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vm)
By instantiating above formula with s as s, s’ as s”’, vim as vm, we know

there is s, s”, vin

[E](em)(s,8”7,vm) =—m--mmmmmmmmmmmemm (e.a.2.1)
We define:
vw = constructs(vin) = -------m--m-memmeeeem (e.a.2.2)

We instantiate lemma (L-c8) with
xasx,ease, s ass’, s ass’, t' ast’, t”’ ast”’, vw as vw, vim as vin
to get

s’ = constructs(t’) A 8” = constructs(t”’) A t’ = t”+[x|->vw] A vin = con-
structs(vw)

= ¢’ = update(x, v, s”)

From (4.b), (4.c), (6), (e.a.2.2) and (L-c8), we know

76

s’ = update(x, vin, 8”) ——---mmmmemmm- (e.a.2.3)

The definition of semantics of an assignment command (when Iseq and Eseq
are EMPTY) follows from (e.a.2.1) and (e.a.2.3).

Hence (e.a) is proved.

Sub-Goal (e.b)

Let s, s, dm, t be arbitrary but fixed.

We assume:

equals(s,t) smmemmemmeeeee (7)
[I:=E](em)(s,s’) =———mmmmmmmmmmmen (8)
dm = infoData(s’) - (9)
We define:

8’ := constructs(t’) = ——mmmmmemmemeeee- (9.a)

vw := constructs(dm) = -————mmemee e (9.b)
We show:

equals(s’, t') —memmemmmmeme - (e.b.1)
equals(dm, void) = --————mmmmmmmm (e.b.2)

Sub-Sub-Goal (e.b.1)

We instantiate lemma (L-cseq5) with
sass’and t as t’

to get

s’ = constructs(t’) = equals(s’, t’)

From (9.a) and (L-cseq5), we know

equals(s’, t”)
which is the goal (e.b.1). Hence proved.

Sub-Sub-Goal (e.b.2)
We instantiate lemma (L-cseq6) with
v as void, v’ as dm

to get

void = constructs(dm) = equals(dm, void)
From (9.b) and (L-cseq6), we know

equals(dm, void)

7

which is the goal (e.b.2). Hence proved.

Consequently, the goal (e.b) follows from (e.b.1) and (e.b.2). Hence (e.b) is
proved.

Finally, the goal (e) follows from goals (e.a) and (e.b).
Also the goal (G22) follows from goals (a), (b), (c), (d) and (e).

Hence (G22) proved.

78

D.2.3 Case 3: C := while E do Cseq end

The goal (G2) can be re-stated as follows:

V em € Environment, el, e2 € Expressionw, ew, ew’ € Environmentw, dw,
dw’ € Declw, tw, tw’ € Theoryw:

wellTyped(em, while E do Cseq end) A consistent(em, ew, dw, tw) A
<while el do e2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw,
tw)
= [wellTyped(while el do €2, ew’, dw’, tw’)
A extendsEnv(ew’, while el do e2, ew)
A extendsDecl(dw’, while el do e2, dw)
A extendsTheory (tw’, while el do €2, tw) A
[V t, t’ € Statew, vw € Valuew: <t, while el do e2> — <t’, vw>
= [3s, s’ € State: equals(s, t)
A [while E do Cseq end](em)(s, s) |
N
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [while E do Cseq end](em)(s, s)
A dm = infoData(while E do Cseq end, s’)
= equals(s’, t’) A equals(dm, vw)

Let em, el,e2, ew, ew’, dw, dw’, tw, tw’, dm and vw be arbitrary but fixed.

We assume:

wellTyped(em,while E do Cseq end) ~ —-—oeeemev (1)

consistent(em, ew, dw, tw) ceemeeemeeeee (2)

<while el do e2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw,
tw) e (3)

By expanding the definition of (3), we know

<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw) -—----m-meemmm (3.a)

em’ = Env(em, E) e (3.2%)

<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”, dw”, tw’’) = -—-mmmmommeemmm (3.b)

We show:

wellTyped(while el do €2, ew’, dw’, tw’) -———---m-mmv (a)
extendsEnv(ew’, while el do €2, ew) -—--------mn- (b)
extendsDecl(dw’, while el do €2, dw) — ----------——- (c)
extendsTheory(tw’, while el do €2, tw) — ———-----mm-mm- (d)
V t, t' € Statew, vw € Valuew: <t, while el do e2> — <t’, vw>
= [3s, s’ € State: equals(s, t)
A [while E do Cseq end](em)(s, s) |

79

A
[V s, s’ € State, dm € InfoData: equals(s, t)
A [while E do Cseq end](em)(s, s)
A dm = infoData(while E do Cseq end, s’)
= equals(s’, t’) A equals(dm, vw)

| —— (e)
Sub-Goal (a)
We instantiate lemma (L-c1) with
c as while E do Cseq end, em as em, e as while el do e2, ew as ew, ew’ as

ew’, dw as dw, dw’ as dw’, tw as tw, tw’ as tw’
and get

wellTyped(em, while E do Cseq end)

A (while el do e2, ew’, dw’, tw’) = T[while E do Cseq end](em, ew, dw, tw)
= wellTyped(while el do €2, ew’, dw’, tw’)

From assumptions (1), (3) and (L-c1), we know

wellTyped(while el do €2, ew’, dw’, tw’)

which is the goal (a). Hence (a) proved.

Sub-Goal (b)

We instantiate lemma (L-c9) with

em as em, em’ as em’, E as E, Cseq as Cseq

to get

wellTyped(em, while E do Cseq end) =
wellTyped(em, E) A em’ = Env(em, E) A wellTyped(em’, Cseq)

From (1) and (L-c9), we know

wellTyped(em, E) e - (1.a)
em’ = Env(em, E) ———oemoeeme - (1.2)
wellTyped(em’, Cseq) — ———mm-mmmmmmmeemmm- (1.b)

We instantiate lemma (L-c10) with

em as em, em’ as em’, E as E, Cseq as Cseq, ew as ew, ew’ ew’, ew”” as ew’’,
dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw”’

to get

(el, ew”, dw”, tw”) = T[E](em, ew, dw, tw) A em’ = Env(em, E) A
(e2, ew’, dw’, tw’) = T[Cseq](em’, ew”, dw’’, tw”’) A consistent(em, ew, dw,

tw)
= consistent(em’, dw”’, dw”, tw”’)

From assumptions (3.a), (3.a7), (3.b), (2) and (L-c10), we know

80

consistent(em’, ew”, dw”’, tw’’) (2.a)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”’) A extendsEnv(ew”, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsEnv(ew”, el, ew) (b.1)

We instantiate the soundness statement of Cseq with
em as em’ cw as €2, ew as ew”’, ew’ as ew’, dw as dw’”’, dw’ as dw’, tw as

tw”’, tw’ as tw’
to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”’, dw”, tw”)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”")
A extendsTheory (tw’, €2, tw’’) A
[V t, t" € Statew, vw € Valuew: <t’, 2> — <t’, vw>
= [I, s’ € State: equals(s, t) A [Cseq](em’)(s, s")]
AN
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

81

extendsEnv(ew’; €2, ew”) (b.2)

We instantiate lemma (L-c11) with

em as em, E as E, Cseq as Cseq, el as el, e2 as €2, ew as ew, ew’, ew”, ew”’
dw as dw, dw’ as dw’, dw’’ as dw’’, tw as tw, tw’ as tw’, tw”’ as tw”’

to get

)

wellTyped(em, while E do Cseq end) A
<while el do e2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw, tw)

<el, ew”, dw”, tw”> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”’, dw”, tw”")
=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’)
= extendsEnv(ew’, while el do €2, ew) | A
[extendsDecl(dw”, el, dw) A extendsDecl(dw’, e2, dw”)
= extendsDecl(dw’, while el do €2, dw) | A
[extendsTheory(tw”, el, tw) A extendsTheory(tw’, €2, tw”’)
= extendsTheory(tw’, while el do €2, tw)]

From assumptions (1), (3), (3.a), (3.a”), (3.b), (b.1), (b.2) and lemma (L-
cl1), we know

extendsEnv(ew’, while el do €2, ew)
which is the goal. Hence (b) proved.
Sub-Goal (c)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”’) A extendsEnv(ew”’, el, ew) A extends-
Decl(dw”, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

82

extendsDecl(dw”, el, dw) (b.3)

We instantiate the soundness statement of Cseq with
em as em’ cw as €2, ew as ew”’, ew’ as ew’, dw as dw”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”’)
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew’’) A extends-
Decl(dw’, €2, dw”)
A extendsTheory(tw’, €2, tw”’) A
[V t, t € Statew, vw € Valuew: <t’, e2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, 8’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]
]
]

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

extendsDecl(dw’, €2, dw”) (b.4)

We instantiate lemma (L-c11) with

em as em, E as E, Cseq as Cseq, el as el, €2 as €2, ew as ew, ew’, ew”’, ew’’
dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw’’ as tw”’

to get

)

wellTyped(em, while E do Cseq end) A
<while el do e2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw, tw)

<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”, dw”, tw”)
=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’)
= extendsEnv(ew’, while el do €2, ew) | A
[extendsDecl(dw”, el, dw) A extendsDecl(dw’, €2, dw’’)
= extendsDecl(dw’, while el do €2, dw) | A
[extendsTheory(tw”’, el, tw) A extendsTheory(tw’, €2, tw”’)
= extendsTheory(tw’, while el do €2, tw)]

From assumptions (1), (3), (3.a), (3.a’), (3.b), (b.3), (b.4) and lemma (L-
cl1), we know

83

extendsDecl(dw’, while el do €2, dw)
which is the goal. Hence (c) proved.
Sub-Goal (d)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw’’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”) A extendsEnv(ew”, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [3, s’ € State, vin € Value: equals(s, t) A [E](em)(s, 8’, vmn)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

extendsTheory(tw”, el, tw) (b.5)

We instantiate the soundness statement of Cseq with
em as em’ cw as €2, ew as ew”’, ew’ as ew’, dw as dw”’, dw’ as dw’, tw as
tw’’, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”")
= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-
Decl(dw’, €2, dw”’)
A extendsTheory(tw’, €2, tw”’) A
[V t, t" € Statew, vw € Valuew: <t’, 2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]
A
[Vs, s’ € State, dm € InfoData: equals(s, t)
A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t") A equals(dm, vw)

]

84

From assumptions (1.b), (2.a), (3.b) and soundness statement of Cseq, we
know

extendsTheory(tw’, €2, tw’’) (b.6)

We instantiate lemma (L-c11) with

em as em, E as E, Cseq as Cseq, el as el, e2 as €2, ew as ew, ew’, ew”, ew”’
dw as dw, dw’ as dw’, dw’’ as dw”’, tw as tw, tw’ as tw’, tw”’ as tw”’

to get

)

wellTyped(em, while E do Cseq end) A
<while el do €2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw, tw)

<el, ew”, dw”, tw”> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”")
=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’)
= extendsEnv(ew’, while el do €2, ew) | A
[extendsDecl(dw”, el, dw) A extendsDecl(dw’, e2, dw’")
= extendsDecl(dw’, while el do €2, dw) | A
[extendsTheory(tw”, el, tw) A extendsTheory(tw’, e2, tw’’)
= extendsTheory(tw’, while el do €2, tw) |

From assumptions (1), (3), (3.a), (3.a’), (3.b), (b.5), (b.6) and lemma (L-
cl1), we know

extendsTheory(tw’, while el do e2, tw)
which is the goal. Hence (d) proved.
Sub-Goal (e)

Let t, t’, cw, vw be arbitrary but fixed s.t.
We assume:

<t, while el do e2> — <t’, VW> -—-mrmmmmmmem- (4)

We show:

[Is, s’ € State: equals(s, t) A [while E do Cseq end](em)(s, 8') | ------------

—————— (e.a)
[Vs, s’ € State, dm € InfoData: equals(s, t) A [while E do Cseq end](em)(s,

A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw) | = --——--mmmmmmem- (e.b)

The semantics of the classical Why3 while-loop is defined by a complex
exception-handling mechanism. Based on the aforementioned semantics, a proof

85

of this goal gets more complicated, thus to avoid this complication, we have
derived (in the Appendix - Derivations) two rules conforming the definition
of while-loop semantics which do not involve exceptions anymore. These two
derivations are as follows:

<t, el> — <t’, false>

(d.a)
<t, while el do e2> — <t’, void>
<t, el> — <t”, true>
<t”, e2> — <t’”, void>
<t’”’, while el do 2> — <t’, void>
(d.b)

<t, while el do e2> — <t’, void>

We prove this goal (e) by rule induction on the operational semantics of
while-loop which is defined above by the two derivation rules (d.a) and (d.b).
By the strategy of principle of rule induction for while-loop, the goal (e) can be
re-formulated as:

V t, t' € Statew, vw € Valuew: <t, while el do e2> — <t’, vw> =
P(t,t’,vw) ----- (G-e)

where
P(t, t’, vw) &
[Is, s’ € State: equals(s,t) A [while E do Cseq](em)(s,s’)]
A [Vs, s € State, dm € InfoData:
equals(s’,t’) A [while E do Cseq](em)(s,s’) A dm=infoData(s’)
= equals(s’,t’) A equals(dm, vw)]

where E, Cseq and em are fixed as defined above (D-p)

To show (G-e), based on the principle of rule induction it suffices to show
the followings for while-loop for the corresponding derivation rules respectively:

V t, t' € Statew, vw € Valuew, el € Expressionw:
<t, el> — <t’, false> = P(t,t",vw) - (G-e.1)

YV t, t',t7,t" € Statew, vw € Valuew, el, e2 € Expressionw:
<t, el> — <t true> A <t”’, e2> — <t’”’, void>
A <t”, while el do e2> — <t’, void> A P(t",t’,void) = P(t,t’,vw)
———————————— (G-¢e.2)
Goal (G-e.1):
We assume:

<t, el> — <t’, false> ——-—-omomememe (5)

We show:

86

P(t,t’,vw)
By expanding the definition of P(t,t’,vw), we get

[3 s, s’ € State: equals(s,t) A [while E do Cseq]](em)(s,s’) | ----------- (G-
e.l.a)
A [V's, s’ € State, dm € InfoData: equals(s’,t’) A [while E do Cseq](em)(s,s’)
A dm=infoData(s’)
= equals(s’,t’) A equals(dm, vw) | --------- (G-e.1.b)

Sub-Goal (G-e.1.a)
We show:

equals(s, t) —emmemmemeeeeee (G-e.l.a.1)
[while E do Cseq end](em)(s, s’) | = -—-———--mmmmmmmmmmm- (G-e.l.a.2)

We define:

s := constructs(t) = -——--mmmmmmm-mmm- (5.a)
s’ := constructs(t’) = - (5.b)
inValue(False) := constructs(false) -------------------- (5.¢)

Sub-Goal (G-e.l.a.1)

We instantiate lemma (L-cseq5) with
sass,tast
to get

s = constructs(t) = equals(s,t)

From assumption (5.a) and (L-cseqb), we know
equals(s,t)

which is the goal (G-e.1.a.1). Hence (G-e.l.a.1) is proved.
Sub-Goal (G-e.1.a.2)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw”’

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”) A extendsEnv(ew”, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>

87

= [3, s’ € State, vin € Value: equals(s, t) A [E](em)(s, 8’, vin)]
N
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]

We instantiate above formula with
tast, t’ as t’, vw as false to get

<t, el> — <t’, false>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, 8’, vin)]
A
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)

]

From assumption (5) and above formula,
s, 8’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vm)

Taking s as s, s’ as s’, vin as inValue(False) with above formula, we know
from (5.a), (5.b), (5.c) and (3.a) that

there is s, s’, inValue(False) and E for which
[E](em)(s,s’,inValue(False)) --------m-m-mm-mmmm (G-e.l.a.2.1)

We instantiate lemma (L-c12) with
em as em, E as E, Cseq as Cseq, s as s and s’ as s’ to get

[E] (em)(s,s’,inValue(False)) = [while E do Cseq end](em)(s,s’)

The goal (G-e.1.a.2) follows from assumption (G-e.1.a.2.1) and lemma (L-
cl2).

Consequently, the goal (G-e.l.a) follows from (G-e.l.a.1) and (G-e.l.a.2).
Hence (G-e.l.a) is proved.

88

Sub-Goal (G-e.1.b)

Let s, s’, dm, t be arbitrary but fixed.

We assume:

equals(s,t) cemmmmmeeemmeees (6)

[while E do Cseq end](em)(s,8’) =--mmmmmmmmmmmmmmeee (7)
dm = infoData(s’) = ——mmemmmemem- (8)

We show:

equals(s’, t') —mmmmmmmeemmee s (G-e.1.b.1)
equals(dm, vw) ——-mmmmmeeme - (G-e.1.b.2)

vw := constructs(dm) = - (7.a)
Sub-Goal (G-e.1.b.1)

We instantiate lemma (L-cseq5) with

sass and t as t’

to get

s’ = constructs(t’) = equals(s’, t’)

From (5.b) and (L-cseq5), we know

equals(s’, t’) which is the goal (G-e.1.b.1). Hence proved.
Sub-Goal (G-e.1.b.2)

We instantiate lemma (L-cseq6) with

v as vw, v’ as dm

to get

vw = constructs(dm) = equals(dm, vw)
From (7.a) and (L-cseq6), we know

equals(dm, vw)

which is the goal (G-e.1.b.2). Hence proved.

Consequently, the goal (G-e.1.b) follows from (G-e.1.b.1) and (G-e.1.b.2).
Hence (G-e.1.b) is proved.

Finally, the goal (G-e.1) follows from goals (G-e.1.a) and (G-e.1.b).

Goal (G-e.2):

We assume:

89

<t, el> — <t true> ——eemeemeeeeeee (8)

<t7, e2> — <t void> —meeeeeee 9)

<t””, while el do 2> — <t’, void> —---rmrmmemeeev (10)
P(t”,t",void) ~ meremmmmereeee (11)

We show:

P(t,t’,vw)

By expanding the definition of P(t,t’,vw), we get

[3 s, 8’ € State: equals(s,t) A [while E do Cseq]](em)(s,s’) | ----------- (G-
e.2.a)

A [Vs, s’ € State, dm € InfoData: equals(s’,t’) A [while E do Cseq](em)(s,s’)
A dm=infoData(s’)

= equals(s’,t’) A equals(dm, vw) | - (G-e.2.b)
We define:
s := constructs(t) -------m-mm-m-mmn (9.2)
s’ := constructs(t”’) = ——-----mm-mmmn (9.b)
87 = constructs(t’”’) = -—---m-mmmemm- (9.¢)
inValue(True) := constructs(true) ------------------——- (9.d)
inValue(Void) := constructs(void) ---------------n-m-—- (9.e)

Sub-Goal (G-e.2.a)
We show:

equals(s, t) —emmemmeeeeeee- (G-e.2.a.1)
[while E do Cseq end](em)(s, 8’) | = -—----mmmmmmmmeememn (G-e.2.a.2)

Sub-Goal (G-e.2.a.1)

We instantiate lemma (L-cseq5) with
sass,tast

to get

s = constructs(t) = equals(s,t)

From assumption (9.a) and (L-cseqb), we know

equals(s,t)

which is the goal (G-e.2.a.1). Hence (G-e.2.a.1) is proved.
Sub-Goal (G-e.2.a.2)

We instantiate soundness statement of E with

em as em, expw as el, ew as ew, ew’ as ew’’, dw as dw, dw’ as dw”’, tw as
tw, tw’ as tw’”’

90

and get

wellTyped(em, E) A consistent(em, ew, dw, tw) A
<el, ew”, dw”, tw”’> = T[E](em, ew, dw, tw)
= [wellTyped(el, ew”, dw”, tw”’) A extendsEnv(ew”, el, ew) A extends-
Decl(dw”’, el, dw)
A extendsTheory(tw”’, el, tw) A
[V t, t € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
N
[Vs, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]
]

From assumptions (1.a), (2), (3.a) and the soundness statement of E, we
know

[V t, t’ € Statew, vw € Valuew: <t, el> — <t’, vw>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, vw)
]
]

We instantiate above formula with
tast,t’ ast”, vw as true to get

<t, el> — <t”, true>
= [Is, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)]
A
[V s, s’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vin)
= equals(s’, t’) A equals(vm, true)

]

From assumption (8), we know
Js, 8’ € State, vin € Value: equals(s, t) A [E](em)(s, s’, vm)

Taking s as s, s’ as s, vin as inValue(True) with above formula, we know
from (9.a), (9.c), (9.d) and (3.a) that

there is s, 8”, inValue(True) and E, for which
[E](em)(s,s”,inValue(True)) --------mm-mm-mmmemmm (G-e.2.a.2.1)

We instantiate the soundness statement of Cseq with

91

em as em’, cw as e2, ew as ew’’, ew’ as ew’, dw as dw’”’, dw’ as dw’, tw as

tw”’, tw’ as tw’

to get

wellTyped(em’, Cseq) A consistent(em’, ew”, dw”’, tw”’) A
<e2, ew’, dw’, tw'> = T[Cseq](em’, ew”’, dw”, tw”)

= [wellTyped(e2, ew’, dw’, tw’) A extendsEnv(ew’, €2, ew”) A extends-

Decl(dw’, €2, dw”")
A extendsTheory(tw’, €2, tw”’) A
[V t, t" € Statew, vw € Valuew: <t, e2> — <t’, vw>

= [I, s’ € State: equals(s, t) A [Cseq](em’)(s, s")]

A\
[Vs, s’ € State, dm € InfoData: equals(s, t)

A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)
]

]
]

From assumptions (1.b), (2a), (3.b) and soundness statement of Cseq, we
know
[V t, t’ € Statew, vw € Valuew: <t, e2> — <t’, vw>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]

A\
[Vs, s’ € State, dm € InfoData: equals(s, t)

A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)

]
]

We instantiate the above formula with t as t”’, t” as t””’, vw as void to get

[V 17, t" € Statew, void € Valuew: <t”, 2> — <t’”, void>
= [Is, 8’ € State: equals(s, t) A [Cseq](em’)(s, s’)]

A\
[Vs, s’ € State, dm € InfoData: equals(s, t)

A [Cseq](em’)(s, s’) A dm = infoData(s’)
= equals(s’, t’) A equals(dm, vw)

]
]

From assumption (9) and above formula we get

[Is, s’ € State: equals(s, t) A [Cseq](em’)(s, s”)]
Taking s as s”, 8’ as 8’7 in the above formula, we know from (9.b), (9.c),

(1.a’) and (3.b) that

92

there is s, 8””, em’ and Cseq s.t.
[Cseq](em’)(s”,8"") =—mm-mmmmmmmmmmn (G-e.2.a.2.2)

By expanding (11), we get

[3,8’ € State: equals(s,t””’) A [while E do Cseq])(em)(s,s’) | ----------- (12)
N

[V s, s’ € State, dm € InfoData: equals(s’,t’) A [while E do Cseq](em)(s,s’)

A dm=infoData(s’) = equals(s’,t’) A equals(dm, void) | ----------- (13)

From (12), we know there is s, s’

equals(s,t’”) (12.a)
[while E do Cseq(em)(s,s’) -—-------mm-mm-mm-mm- (12.b)

We instantiate lemma (L-cseq5) with
sass,tast’”

to get

s = constructs(t’”’) <= equals(s,t’”)
From (12.a) and lemma (L-cseqb), we get

s = constructs(t’”’) --------mm-mm-mmeemem (12.¢)

From (12.c) and (9.b), we can rewrite (12.a) and (12.b) as

equals(s”’,t7) (12.27)
[while E do Cseq](em)(s’”,8") = ==—--mm-mmmmmmmmmmmmm (12.b")

We instantiate lemma (L-c13) with
em as em, em’ as em’, E as E, Cseq as Cseq, s as s, s” as s’, s’ as 8", 8”7”7 as

299

s’ to get
[E] (em)(s,s”,inValue(True)) A em’ = Env(em, E) A [Cseq](em’)(s”,s"”)
A [while E do Cseq end](em)(s’”,s’)
= [while E do Cseq end](em)(s,s’)
The goal (G-e.2.a.2) follows from assumptions (G-e.2.a.2.1), (1.a’), (G-e.2.a.2.2),

(12.b’) and lemma (L-c13).
Consequently (G-e.2.a) follows from the proofs of (G-e.2.a.1) and (G-e.2.a.2).

Sub-Goal (G-e.2.b)
Let s, s, dm, t be arbitrary but fixed.

We assume:

93

equals(s,t) —eemeeeeeeee- (13)

[while E do Cseq end](em)(s,s’) -—-mmmmmmmmmmmmmeemev (14)
dm = infoData(s’) = --—-mmmmmmmemeee (15)

We show:

equals(s’, t’) - (G-e.2.b.1)
equals(dm, vw) = ——-mmmmeeeeee - (G-e.2.b.2)

We define:

8’ := constructs(t’) = -——mmmmmemmeeee (14.a)

vw := constructs(dm) = --—-mmmmeemeeee (14.b)

Sub-Goal (G-e.2.b.1)

We instantiate lemma (L-cseq5) with

sass and t as t’

to get

s’ = constructs(t’) < equals(s’, t”)

From (14.a) and (L-cseqb), we know

equals(s’, t’) which is the goal (G-e.2.b.1). Hence proved.
Sub-Goal (G-¢.2.b.2)

We instantiate lemma (L-cseq6) with

v as vw, v’ as dm

to get

vw = constructs(dm) = equals(dm, vw)
From (12.b) and (L-cseq6), we know

equals(dm, vw)
which is the goal (G-e.2.b.2). Hence proved.

Consequently, the goal (G-e.2.b) follows from (G-e.2.b.1) and (G-e.2.b.2).
Finally, the goal (e) follows from the proofs of goals (G-e.a) and (G-e.b).

Also the goal (G23) follows from the proofs of goals (a), (b), (c), (d) and

().
Hence (G23) proved.

94

E Lemmas

E.1 For Command_Sequence

Lemma cseql:

V cseq € Command_Sequence, em € Environment, e € Expressionw, ew, ew’
€ Environmentw, dw, dw’ € Declw, tw, tw’ € Theoryw:

wellTyped(em, cseq) A (e, ew’, dw’, tw’) = T[cseq](em, ew, dw, tw)
= wellTyped(e, ew’, dw’, tw’) (L-cseql)

Lemma cseq2:

V¥ em € Environment, C € Command, Cseq € Command_Sequence,

ew, ew’, ew’’ € Environmentw, el, e2 € Expressionw, dw, dw’, dw’’ € Declw,
tw, tw’, tw”’ € Theoryw:

wellTyped(em, C;Cseq) A (el;e2, ew’, dw’, tw’) = T[C;Cseq](em, ew, dw,
tw)

=
[extendsEnv(ew”’, el, ew) A extendsEnv(ew’, €2, ew”’) = extendsEnv(ew’,
el;e2, ew) | A

[extendsDecl(dw”, el, dw) A extendsDecl(dw’, €2, dw”) = extends-
Decl(dw’, el;e2, dw) | A

[extendsTheory(tw”, el, tw) A extendsTheory(tw’, €2, tw”") = extends-
Theory(tw’, el;e2, tw) |

(L-cseq2)
Lemma cseq3:

V em, em’ € Environment, C € Command, Cseq € Command_Sequence:
wellTyped(em, C;Cseq) = wellTyped(em, C) A em’ = Env(em, C) A well-
Typed(em’, Cseq)
(L-cseq3)

Lemma cseq4:

V em, em’ € Environment, C € Command, Cseq € Command_Sequence,

ew, ew’, ew’’ € Environmentw, el, e2 € Expressionw, dw, dw’, dw’’ € Declw,
tw, tw’, tw”’ € Theoryw:

(el, ew”, dw”, tw”) = T[C](em, ew, dw, tw) A em’ = Env(em, C) A

(e2, ew’, dw’, tw’) = T[Cseq](em’, ew”, dw”’, tw’’) A consistent(em, ew, dw,
tw)

= consistent(em’, dw”’, dw”’, tw”) (L-cseqd)
Lemma cseq5:

V s € State, t € Statew: s = constructs(t) <= equals(s,t) -------------m-mnm-
---- (L-cseqb)

95

Lemma cseq6:

E.2 For Command

Lemma cl:

V ¢ € Command, em € Environment, e € Expressionw, ew, ew’ € Environ-
mentw, dw, dw’ € Declw, tw, tw’ € Theoryw:

wellTyped(em, ¢) A (e, ew’, dw’, tw’) = T[c](em, ew, dw, tw)
= wellTyped(e, ew’, dw’, tw’) (L-cl)

Lemma c2:

V em € Environment, C € Command, Cseq € Command_Sequence,
ew, ew’, ew”’, ew””’ € Environmentw, el, e2, e3 € Expressionw, dw, dw’,
dw”’, dw’”’ € Declw, tw, tw’, tw”’, tw’”’ € Theoryw:

wellTyped(em, if E then Cseql else Cseq2 end) A
<if el then e2 else €3, ew’, dw’, tw’> = T[if E then Cseql else Cseq2
end](em, ew, dw, tw) A
<el, ew”, dw’”, tw’’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew”, dw”, tw”’> = T[Cseql](em’, ew”’, dw’”’, tw’”) A
<e3, ew’, dw’, tw'> = T[Cseq2](em’, ew”, dw”, tw”’) A
=
[extendsEnv(ew
sEnv(ew’, €3, ew”)
= extendsEnv(ew’, if el then e2 else €3, ew) | A
[extendsDecl(dw’”, el, dw) A extendsDecl(dw”’, €2, dw’”’) A extends-
Decl(dw’, €3, dw”’)
= extendsDecl(dw’, if el then e2 else 3, dw) | A
[extendsTheory(tw””’, el, tw) A extendsTheory(tw”, €2, tw”’) A extend-
sTheory(tw’, €3, tw”)
= extendsTheory(tw’, if el then e2 else €3, tw)]
(L-¢c2)

999

, el, ew) A extendsEnv(ew”, €2, ew’”) A extend-

Lemma c3:

¥V em, em’ € Environment, E € Expression Cseql, Cseq2 € Command _Sequence:
wellTyped(em, if E then Cseql else Cseq2 end) = wellTyped(em, E) A em’
= Env(em, E) A wellTyped(em’, Cseql) A wellTyped(em, Cseq2)
(L-¢3)

Lemma c4:

96

ment ¢V em, em’ € Environment, E € Expression, Cseql, Cseq2 € Com-
mand_Sequence,

ew, ew’, ew”’, ew””’ € Environmentw, el, e2, e3 € Expressionw, dw, dw’,
dw”’, dw’”’ € Declw, tw, tw’, tw”’, tw’”’ € Theoryw:

(el, ew”, dw”, tw”) = T[E](em, ew, dw, tw) A em’ = Env(em, E) A

(€2, ew””, dw”’, tw’”") = T[Cseql](em’, ew”, dw”’, tw”’) A

(e3, ew’, dw’, tw’) = T[Cseq2](em, ew’”, dw’”’, tw’”) A consistent(em, ew,
dw, tw)

= consistent(em’, dw”’, dw”’, tw”’) A consistent(em, ew”’, dw’”’, tw’"’)

(L-c4)

97

Lemma c5:

V em, em’ € Environment, I € Identifier, E € Expression:

wellTyped(em, I:=E) = wellTyped(em, E) A em’ = Env(em, E) A well-
Typed(em’, T)
(L-c5)

Lemma c6:

V em, em’ € Environment, I € Identifer, E € Expression, ew, ew’, ew’’ €
Environmentw, x, e € Expressionw, dw, dw’, dw’’ € Declw, tw, tw’, tw” €
Theoryw:

(e, ew”, dw”, tw”) = T[E](em, ew, dw, tw) A em’ = Env(em, E) A

(x, ew’, dw’, tw’) = TI] (em’, ew”, dw”, tw”’) A consistent(em, ew, dw, tw)

= consistent(em’, dw”’, dw”’, tw”’)
(L-c6)

Lemma c7:

V em, em’ € Environment, I € Identifier, E € Expression, ew, ew’, ew’”’ €
Environmentw, x, e € Expressionw, dw, dw’, dw’’ € Declw, tw, tw’, tw” €
Theoryw:

wellTyped(em, I:=E) A
<x:=e, ew’, dw’, tw’> = T[l:=E](em, ew, dw, tw) A
<e, ew”, dw”’, tw”’> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<x, ew’, dw’, tw’> = T[I](em’, ew”, dw”, tw”)
=
[extendsEnv(ew”, e, ew) A extendsEnv(ew’, x, ew’’) = extendsEnv(ew’,
x:=e, ew) | A
[extendsDecl(dw”, e, dw) A extendsDecl(dw’, x, dw”) = extends-
Decl(dw’, x:=e, dw) | A
[extendsTheory(tw”, e, tw) A extendsTheory(tw’, x, tw”’) = extends-
Theory(tw’, x:=e, tw) |

(L-¢T)
Lemma c8:

V x € Identifier, s’, s’ € State, t’, t”” € Statew, vw € Valuew, vin € Value:

s’ = constructs(t’) A 8" = constructs(t”’) A t’ = t”+[x|]->vw] A vin = con-
structs(vw)
= s’ = update(x, v, s”) (L-c8)

Lemma c9:

V em, em’ € Environment, E € Expression Cseq € Command_Sequence:

wellTyped(em, while E do Cseq end)

= wellTyped(em, E) A em’ = Env(em, E) A wellTyped(em’, Cseq) ----------
——————————————— (L-¢9)

98

Lemma c10:

V em, em’ € Environment, E € Expression, Cseq € Command_Sequence,
ew, ew’, ew’’ € Environmentw, el, e2 € Expressionw, dw, dw’, dw’’ € Declw,
tw, tw’, tw”” € Theoryw:
(el, ew”, dw”, tw”) = T[E](em, ew, dw, tw) A em’ = Env(em, E) A
(2, ew””, dw””’, tw”’) = T[Cseq] (em’, ew”, dw”’, tw’’) A consistent(em, ew,
dw, tw)
= consistent(em’, dw”’, dw”’, tw”’) (L-¢c10)

Lemma c11:

V em € Environment, E € Expression, Cseq € Command_Sequence,
ew, ew’, ew’’ € Environmentw, el, e2 € Expressionw, dw, dw’, dw’’ € Declw,
tw, tw’, tw”’ € Theoryw:

wellTyped(em, while E do Cseq end) A
<while el do €2, ew’, dw’, tw’> = T[while E do Cseq end](em, ew, dw, tw)
N
<el, ew”, dw”, tw”> = T[E](em, ew, dw, tw) A
em’ = Env(em, E) A
<e2, ew’, dw’, tw’> = T[Cseq](em’, ew”, dw”, tw”’)
=
[extendsEnv(ew”, el, ew) A extendsEnv(ew’, €2, ew”’)
= extendsEnv(ew’, while el do €2, ew) | A
[extendsDecl(dw”, el, dw) A extendsDecl(dw’, e2, dw’")
= extendsDecl(dw’, while el do €2, dw) | A
[extendsTheory(tw”’, el, tw) A extendsTheory(tw’, €2, tw’")
= extendsTheory(tw’, while el do €2, tw)]
(L-c11)

Lemma c12:

V em € Environment, E € Expression, Cseq € Command_Sequence, s,s" €
State:

[E](em)(s,s’,inValue(False)) = [while E do Cseq end](em)(s,s’) -------------
____________ (L-c12)

Lemma c13:

V em, em’ € Environment, E € Expression, Cseq € Command_Sequence,

) 79 99

s,s’,8",8""" € State:

[E] (em)(s,s”,inValue(True)) A em’ = Env(em, E) A [Cseq](em’)(s”,s”)
A [while E do Cseq end](em)(s’”,s’)
= [while E do Cseq end](em)(s,s’) (L-c13)

99

E.3 For Expression

Lemma el:

V E € Expression, em € Environment, e € Expressionw, ew, ew’ € Environ-
mentw, dw, dw’ € Declw, tw, tw’ € Theoryw:

wellTyped(em, E) A (e, ew’, dw’, tw’) = T[E](em, ew, dw, tw)
= wellTyped(e, ew’, dw’, tw’) (L-el)

100

E.4 Auxiliary Lemmas

Lemma al:

Suppose,

there exists a derivation of

<t’”’, try loop if el then e2 else raise Exit with Exit - — void end> — <t’,
void> ---------- (a)

then there exists a derivation of

<t’”, loop if el then e2 else raise Exit> — <t’, Exit ¢> ---------m-m- (G)
Given (a), we can derive (G) only by one rule (try-1). ----------------- (L-al)
Proof:

As we have three rules that can be applied to (a), so we prove by case analysis
on these rules.

Case 1: rule (try-1)
From rule (try-1), we know that
(a) holds only if derivations of

<t’”’, loop if el then e2 else raise Exit> — <t’, Exit ¢>
<t’, void> — <t’, void>

holds. Thus (G) can directly be obtained as above.

Case 2: rule (try-2)

It can also not be used to derive (G). We prove here by induction on number
of iterations.

Suppose n € N is the number of loop iteration:

We start for 0 iteration, when n = 0

By the application of rule (try-2), we know that

(a) holds only if derivation of

<t””, loop if el then e2 else raise Exit> — <t’, void>
holds, which is not (G).

Now suppose, for iteration n = n-1th

we know that

, by the application of rule (try-2),

(a) holds only if derivation of

101

<t’”, loop if el then e2 else raise Exit> — <t_n-1, void> for some
tn-1

holds, which is again not the same as (G).

Now assume the rule application above for n = n-1, we prove it does not
hold for n = n. Now at nth iteration, by the application of rule (try-2), we
know that

(a) holds only if derivation of

<t’’, loop if el then e2 else raise Exit> — <t_n, void> for some tn

holds, which is different than (G).

As we saw by induction above that (G) cannot be derived by rule (try-2).
Hence rule (try-2) is also not applicable.

Case 3: rule (try-3)
(G) can clearly not be derived by rule (try-3) as this rule has conclusion,
whose derivation has the consequence with non-exception value, i.e. <t’, E’

¢>, while our assumption has non-exception value, i.e. <t’, void>.

Hence, we have proved that the only possible derivation of (G) from (1) is
by rule (try-1).

102

F Definitions

Definition 1:
(cw, ew’, dw’, tw’) = T[cseq](em, ew, dw, tw) — -——--—m-mmmmmemmm (D1)

where

ew’ = extends(ew, cw)
dw’ = extends(dw, cw)
tw’ = extends(tw, cw)

Definition 2:
(el;e2, ew’, dw’, tw’) = T[c;cseq](em, ew, dw, tw) — -—-----mmemmemmmmv (D2)
where
(el, ew”, dw”, tw”) = T[c](em, ew, dw, tw)
em’ = Env(em, C)
(e2, ew’, dw’, tw’) = T[cseq](em’, ew”, dw”’, tw”’)
and
ew’”’ = extends(ew, el)
ew’ = extends(ew”’, e2)
dw” = extends(dw, el)
dw’ = extends(dw”’, e2)
tw”’ = extends(tw, el)
tw’ = extends(tw”, e2)
and el;e2 is a syntactic sugar for let _ = el in e2

Definition 3:

<t,el> — <t”, vw’>, vw’ is not exception <t”, e2> — <t’, vw>

<t, el;e2> — <t’, vw>
——————————————————— (D3)

where el;e2 is a syntactic sugar for let _ = el in e2
Definition 4:

(if el then €2 else €3, ew’, dw’, tw’) = T[if E then Cseql else Cseq2
end](em, ew, dw, tw) e (D4)

where

(el, ew””, dw”’, tw’”’) = T[E](em, ew, dw, tw)

(€2, ew”, dw”, tw”) = T[Cseql](em, ew”’, dw’”’, tw’”’)
(e3, ew’, dw’, tw’) = T[Cseq2](em, ew”, dw”’, tw”’)

103

and

ew””’ = extends(ew, el)
ew” = extends(ew’”, e2)
ew’ = extends(ew”, e3)
dw””’ = extends(dw, el)
dw” = extends(dw’”’, e2)
dw’ = extends(dw’’, e3)
tw”” = extends(tw, el)
tw” = extends(tw’”’, e2)
tw’ = extends(tw”’, e3)

Definition 5:

[if E then Cseq Elif end if](e)(s,s’) <
Jv € ValueU, 87 € StateU: [E](e)(s,s”,v) AND
cases v of
isUndefined() — s’ = inError()
] isValue(v1)
— cases s”” of
isError() — s’ = inError()
[] isState(p)
—cases vl of
isBoolean(v2) — IF v2 THEN [Cseq](e)(p,s’)
ELSE 3 v’ € Tr, p’ € StateU: [Elif](e)(s,p’,v’) AND
cases p’ of
isError() — s’ = inError()
[] isState(p”’)— IF v’=inTr(True) THEN
s’ = inStateU(p”)
ELSE s’ =s
END
END
END
END
END
END (D5)

Definition 6:

<t, el> — <t”’, true> <t”, e2> — <t’, vw>

<t, if el then e2 else e3> — <t’, vw>
——————————————————— (D6)

Definition 7:

<t, el> — <t”, false> <t”, e3> — <t’, vw>

<t, if el then e2 else e3> — <t’, vw>
——————————————————— (D7)

104

Definition 8:
// while loop iterator ...
iterate C Nat x StateU* x StateU* x Environment x StateValueRelation x
StateRelation
iterate(i, t, u, e, E, C) &
cases t(i) of
isError() — false
] isState(m) — executes(data(m)) AND Jv € ValueU, s’ € StateU : E(e)(m,s’,v)
AND
cases s’ of
isError() — u(i+1)=inError() AND t(i+1)=u(i+1)
] isState(p) —
cases v of
isUndefined() — u(i+1)=inError() AND t(i+1)=u(i+1)
[| isValue(v’) — cases v’ of
isBoolean(b) — b AND LET e’=Env(e,E) IN
C(e’)(p,u(i+1)) AND t(i+1)=u(i+1)
[] ... = u(i+1)=inError() AND t(i+1)=u(i+1)
END //cases-v’
END //cases-v
END //cases-s’
END //cases-t(i)

Definition 9:

[while E do Cseq end do](e)(s,s’) <
Jk € Nat, t, u € StateU*:
t(0)=inStataU(s) AND u(0)=inStateU(s) AND
(V1ie Natk: iterate(i, t, u, e, [E], [Cseq]])) AND
((u(k)=inError() AND s’=u(k)) OR (returns(data(inState(u(k)))) AND
g'=t(k)) OR
(3 v € ValueU: [E](e)(inState(t(k)), u(k), v)
AND v <> inValue(inBoolean(True)) AND
IF v = inValue(inBoolean(False)) THEN
s'=u(k)
ELSE ¢’ = inError() END //if-v
)
)

G Why3 Semantics

<t,el> — <t”, vw’>, vw’ is not exception <t”, e2> — <t’, vw>

- (com-s)
<t, el;e2> — <t’, vw>

(const)

105

<t, c> — <t, c>

<t, el> — <t”, true> <t e2> — <t’, vw>

--- (cond-t)
<t, if el then e2 else e3> — <t’, vw>

<t, el> — <t”, false> <t”, e3> — <t’, vw>

- (cond-f)
<t, if el then e2 else e3> — <t’, vw>

<t, e> — <t”’, void> <t”, loop e> — <t’, vw>

- (loop-n)
<t, loop e> — <t’, vw>

<t,e> — <t’, E c>

(loop-e)
<t, loop e> — <t’, E c¢>
<t, e> — <t’, c>
(raise)
<t, raise (E e)> — <t’, E c>
<t, el> — <t”, E ¢> <7, e2[x<--c|> — <t’, vw>

—- (try-1)
<t, try el with E x — €2 end> — <t’, vw>

<t, el> — <t’, vw> vw is not exc.

—- (try-2)
<t, try el with E x — €2 end> — <t’, vw>

<t,el> — <t',E'c> E' <> E

-—- (try-3)
<t, try el with E x — €2 end> — <t’, E’ c>

106

H Derivations

From the semantics of Why3, we know that the while-loop “while el do e2”
is a syntactic sugar, which is semantically equivalent to as follows

while el doe2 ™ try
loop if el then e2 else raise Exit
with Exit - — void end =~ ——--mrmmm- (47
and

raise Exit ~ raise Exit _ (4

Now we introduce two new rules for while-loop (d.a) and (d.b), which op-
erates directly on the level of while-loop (without expansion). In the following,
we show that these rules follows from the basic rule calculus, i.e. adding these
rules does not change the semantics.

Derivation 1:

//applying (const)
<t’, > — <t’, ¢> , where c=_

//applying (raise)
<t, el> — <t’, false> <t’, raise Exit> — <t’, Exit c¢>

//ap-
plying (cond-f)
<t, if el then e2 else raise Exit> — <t’, Exit ¢>
/ /applying (loop-e)
<t, loop if el then e2 else raise Exit> — <t’, Exit ¢>

//applying (const)

<t’, void> — <t’, void>
/ /rewriting
<t’, void[- « ¢|> — <t’, void>

//ap-
plying (try-1)
<t, try loop if el then e2 else raise Exit with Exit _ — void end> — <t’,
void>

The above derivation is only possible if following holds:

<t, el> — <t’, false>

<t, try loop if el then e2 else raise Exit with Exit - — void end> —
<t’, void>

From (4”) and (d1), we get

<t, el> — <t’, false>

107

(d.a)
<t, while el do e2> — <t’, void>
Derivation 2:

<t, el> — <t”’, true> <t”, e2> — <t void>
//applying (cond-t)

<t, if el then e2 else raise Exit> — <t’”’, void>

<t’”’, loop if el then e2 else raise Exit .> — <t’, Exit c¢>

//ap-
plying (loop-n)
<t, loop if el then e2 else raise Exit> — <t’, Exit ¢>
//applying (const)
<t’, void> — <t’, void>
//rewriting
<t’, void[- - ¢]> — <t’, void>
//ap-

plying (try-1)
<t, try loop if el then e2 else raise Exit with Exit - — void end> — <t’,
void>

The above derivation is only possible when following holds:

<t,el> — <t”, true> <t”, e2> — <t’”’, void>
<t””, loop if el then e2 else raise Exit> — <t’, Exit ¢>

<t, try loop if el then e2 else raise Exit with Exit - — void end> —
<t’, void>

Based on derivation (d2), we need the following derivation to conform to the
rule based definition of while-loop semantics:

<t, el> — <t”, true> <t e2> — <t’”’, void>
<t’”, try loop if el then e2 else raise Exit with Exit - — void end>
— <t’, void>

<t, try loop if el then e2 else raise Exit with Exit - — void end> —
<t’, void>

From (47), (d3) can be rewritten as follows:

<t, el> — <t”, true> <t’, 2> — <t’”’, void> <t’”’, while el do
e2> — <t’, void>

108

In order to get rule (d3) from (d2), we need to show that if there exists a
derivation of

<t’”’, try loop if el then e2 else raise Exit with Exit _ — void end> — <t’,
void> —--mmeemee- (p.1)

then there also exists a corresponding derivation of

<t”’, loop if el then e2 else raise Exit> — <t’, Exit ¢> -——mv
(p-2)

Because, we want to write (d2) instead of (d3) because (d3) respectively
(d.b) is a direct definition of while-loop operational semantics.

Proof:

The goal (p.2) follows from (p.1) and lemma (L-al). Based on (d2) and
derivation of (p.2), we get (d3). Hence (d2) can be derived from (d3), where
(d3) can be rewritten to (d.b).

109

2014-01

2014-02

2014-03

2013-01

2013-02

2013-03

2013-04

2013-05

2013-06

2013-07

2013-08

2013-09

Technical Reports of the Doctoral Program

“Computational Mathematics”

2014

E. Pilgerstorfer, B. Jiittler: Bounding the Influence of Domain Parameterization and Knot
Spacing on Numerical Stability in Isogeometric Analysis February 2014. Eds.: B. Jiittler,
P. Paule

T. Takacs, B. Jiittler, O. Scherzer: Derivatives of Isogeometric Functions on Rational Patches
February 2014. Eds.: B. Jiittler, P. Paule

M.T. Khan: On the Soundness of the Translation of MiniMaple to Why3ML February 2014.
Eds.: W. Schreiner, F. Winkler

2013

U. Langer, M. Wolfmayr: Multiharmonic Finite Element Analysis of a Time-Periodic
Parabolic Optimal Control Problem January 2013. Eds.: W. Zulehner, R. Ramlau

M.T. Khan: Translation of MiniMaple to Why3ML February 2013. Eds.: W. Schreiner,
F. Winkler

J. Kraus, M. Wolfmayr: On the robustness and optimality of algebraic multilevel methods for
reaction-diffusion type problems March 2013. Eds.: U. Langer, V. Pillwein

H. Rahkooy, Z. Zafeirakopoulos: On Computing Elimination Ideals Using Resultants with
Applications to Grébner Bases May 2013. Eds.: B. Buchberger, M. Kauers

G. Grasegger: A procedure for solving autonomous AODEs June 2013. Eds.: F. Winkler,
M. Kauers

M.T. Khan On the Formal Verification of Maple Programs June 2013. Eds.: W. Schreiner,
F. Winkler

P. Gangl, U. Langer: Topology Optimization of Electric Machines based on Topological Sen-
sitivity Analysis August 2013. Eds.: R. Ramlau, V. Pillwein

D. Gerth, R. Ramlau: A stochastic convergence analysis for Tikhonov reqularization with
sparsity constraints October 2013. Eds.: U. Langer, W. Zulehner

W. Krendl, V. Simoncini, W. Zulehner: Efficient preconditioning for an optimal control
problem with the time-periodic Stokes equations November 2013. Eds.: U. Langer, V. Pillwein

The complete list since 2009 can be found at
https://www.dk-compmath. jku.at/publications/

Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jiittler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.

