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Abstract

The total least squares (TLS) method is a successful approach for linear
problems if both right-hand side and operator are contaminated by some noise.
For ill-posed problems a regularisation strategy has to be considered to sta-
bilise the computed solution. Recently a double regularised TLS method was
proposed within an infinite dimensional setup and reconstructs both function
and operator. Our main focuses are on the design and the implementation of
an algorithm with particular emphasis on alternating minimisation strategy,
for solving not only the dbl-RTLS problem, but a vast class of optimisation
problems: on the minimisation of a bilinear functional over two variables.
Keywords: ill-posed problems, noisy operator, noisy right-hand side, regu-
larised total least squares, alternating minimisation, wavelets, soft shrinkage,
sub-derivatives.

1 Introduction

In [1], the authors described a new two-parameter regularisation scheme for solving
an ill-posed operator equation. The task consists of the inversion of a linear operator
A0 : V→ H defined between Hilbert spaces

A0f = g0. (1)

In contrast to standard inverse problems, where the task is to solve (1) from given
noisy data, a more realistic setup is considered where both data and operator are
not known exactly. For the reconstruction, a cost functional with two penalisation
terms based on the TLS (total least squares) technique is used.

This approach presented in [1] focuses on linear operators that can be charac-
terised by a function, as it is, e.g., the case for linear integral operators, where the
kernel function determines the behaviour of the operator. Moreover, it is assumed
that the noise in the operator is due to an incorrect characterising function. A
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penalty term is not only used to stabilise the reconstruction of the unknown solu-
tion, as it is the case in [10, 11, 12], but also to stabilise the unknown operator.
As a drawback, the regularisation scheme becomes nonlinear even for linear equa-
tions. However, the potential advantage is that not only the unknown solution is
reconstructed, but also a suitable characterising function and thus the governing
operator describing the underlying data. Additionally, convergence rates for the
reconstruction of both solution and operator have been derived.

The dbl-RTLS (double Regularised Total Least Squares) approach allow us to
treat the problem in the framework of Tikhonov regularisation rather than as a con-
straint minimisation problem. More precisely, the regularised solution is obtained by
minimising a nonlinear, nonconvex and possibly non-differentiable functional over
two variables, which is computationally not always straightforward. Thus the goal
of this paper is the development of an efficient and convergent numerical scheme for
the minimisation of the Tikhonov-type functional for the dbl-RTLS approach.

The further contents of the paper is organised as follows: in Section 2 we for-
mulate the underlying problem and give a short summary of the dbl-RTLS method.
Section 3 is dedicated to the development of an algorithm based on an alternating
minimisation strategy, as well as its convergence properties. In Section 4, numerical
results for the proposed algorithm are provided and the efficiency of the method
is discussed. For convenience of the reader we display on Appendix A important
concepts and fundamental results used throughout this article.

2 Problem formulation and the dbl-RTLS method

As mentioned above, we aim at the inversion of the linear operator equation (1)
from noisy data gδ and an incorrect operator Aε. Additionally we assume that the
operators A0, Aε : V→ H, where V and H are Hilbert spaces, can be characterised
by functions k0, kε ∈ U, U also a Hilbert space. To be more specific, we consider
operators

Ak : V −→ H

v 7−→ B(k, v) ,

i.e., Akv := B(k, v), where B is a bilinear operator

B : U× V→ H

fulfilling, for some C > 0, the inequality∥∥B(k, f)
∥∥
H
≤ C

∥∥k∥∥
U

∥∥f∥∥
V
. (2)

From (2) follows immediately∥∥B(k, ·)
∥∥
V→H

≤ C
∥∥k∥∥

U
. (3)

Associated to the bilinear operator B, we also define the linear operator

Cf : U −→ H

u 7−→ B(u, f) ,
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i.e., Cfu := B(u, f).
From now on, let us identify A0 with Ak0 and Aε with Akε . From (3) we deduce
immediately

‖A0 −Aε‖ ≤ C‖k0 − kε‖ , (4)

i.e., the operator error norm is controlled by the error norm of the characterising
functions. Now we can formulate our problem as follows:

Solve A0f = g0 (5a)

from noisy data gδ with ‖g0 − gδ‖ ≤ δ (5b)

and noisy function kε with ‖k0 − kε‖ ≤ ε . (5c)

Please note that the problem with explicitly known k0 (or the operator A0) is often
ill-posed and needs regularisation for a stable inversion. Therefore we will also
propose a regularising scheme for the problem (5a)-(5c).

Due to our assumptions on the structure of the operator A0, the inverse problem
of identifying the function f true from noisy measurements gδ and an inexact operator
Aε can now be rewritten as the task of solving the inverse problem find f s.t.

B(k0, f) = g0 (6)

from noisy measurements (kε, gδ) fulfilling∥∥g0 − gδ
∥∥
H
≤ δ, (7a)

and ∥∥k0 − kε
∥∥
U
≤ ε. (7b)

In most applications, the “inversion” of B will be ill-posed (e.g., if B is defined
via a Fredholm integral operator), and a regularisation strategy is needed for a stable
solution of the problem (6).

For the solution of (6) from given data (kε, gδ) fulfilling (7), we use the dbl-RTLS
method proposed in [1], where the approximations to the solutions are computed as

arg min
(k,f)

Jδ,εα,β
(
k, f

)
:=

1

2
T δ,ε (k, f) +Rα,β (k, f) , (8a)

where
T δ,ε (k, f) =

∥∥B(k, f)− gδ
∥∥2

+ γ
∥∥k − kε∥∥2

(8b)

and
Rα,β (k, f) =

α

2

∥∥Lf∥∥2
+ βR(k). (8c)

Here, α and β are the regularisation parameters which have to be chosen prop-
erly, γ is a scaling parameter (arbitrary but fixed), L is a bounded linear and con-
tinuously invertible operator and R : X ⊂ U → [0,+∞] is proper, convex and

weakly lower semi-continuous functional . The functional Jδ,εα,β is composed as the
sum of two terms: one which measures the discrepancy of data and operator, and
one which promotes stability. The functional T δ,ε is a data-fidelity term based on
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the TLS technique, whereas the functional Rα,β acts as a penalty term which sta-
bilises the inversion with respect to the pair (k, f). As a consequence, we have two
regularisation parameters, which also occurs in double regularisation, see, e.g., [16].

The domain of the functional Jδ,εα,β :
(
U ∩ X

)
× V −→ R can be extended over

U × V by setting R(k) = +∞ whenever k ∈ U \X. Then R is proper, convex and
weak lower semi-continuous functional in U.

It has been shown that the sequence of the pair of solutions (kn, fn) of (8)
converges to a minimum-norm solution when (δ, ε)→ (0, 0), i.e., it is a regularisation
method (see [1, Thm 4.5]). However, the task of finding minimisers of (8) has not
been addressed properly, which will be done in the next Sections.

3 An algorithm for the minimisation of the dbl-RTLS
functional

Within this Section, we will formulate the first-order necessary condition for critical
points of the functional Jδ,εα,β, which requires in particular the derivative of the bilin-

ear operator B. The core of this section is to design an algorithm to minimise Jδ,εα,β,
which is not a trivial task, as the functional is most likely nonconvex and nonlinear.

3.1 Optimality condition

It is well known that the study of local behaviour of nonsmooth functions can be
achieved handled by the concept of sub-differentiality which replaces the classical
derivative at non-differentiable points.

The first-order necessary condition based on sub-differentiability is stated as the
following: if (k̄, f̄) minimises the functional Jδ,εα,β then

(0, 0) ∈ ∂Jδ,εα,β
(
k̄, f̄

)
. (9)

We denote the set of all sub-derivatives of the functional Jδ,εα,β at (k, f) by

∂Jδ,εα,β
(
k, f

)
and we name it the sub-differential of Jδ,εα,β at (k, f). For a quick re-

vision on sub-differentiability we refer to Appendix A.
The first result gives us the derivative of a bilinear operator B.

Lemma 3.1. Let B be a bilinear operator and assume that (2) holds. Then the
Fréchet derivative of B at (k, f) ∈ U× V is given by

B′
(
k, f

)
(u, v) = B(k, v) +B(u, f)

= Akv + Cfu.

Moreover, the derivative is Lipschitz continuous with constant
√

2C.

Proof. We have to show

B(k + u, f + v) = B(k, f) +B′
(
k, f

)
(u, v) + o (‖(u, v)‖) .
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Since B is bilinear, we have

B(k + u, f + v)−B(k, f) = B(k, v) +B(u, f) +B(u, v),

and we observe ‖B(u, v)‖ = o (‖(u, v)‖): As B fulfills (2), we have

‖B(u, v)‖
‖(u, v)‖

≤ C ‖u‖ ‖v‖
(‖u‖2 + ‖v‖2)1/2

≤ C√
2

(‖u‖ ‖u‖)1/2,

which converges to zero as (u, v)→ 0.
We further observe

B′
(
k, f

)
(u, v)−B′

(
k̃, f̃

)
(u, v) = B(k, v) +B(u, f)−

(
B(k̃, v) +B(u, f̃)

)
= B(u, f − f̃) +B(k − k̃, v)

which implies∥∥B′(k, f)(u, v)−B′
(
k̃, f̃

)
(u, v)

∥∥ =
∥∥B(u, f − f̃) +B(k − k̃, v)

∥∥
≤

∥∥B(u, f − f̃)
∥∥+

∥∥B(k − k̃, v)
∥∥

≤ C
∥∥u∥∥∥∥f − f̃∥∥+ C

∥∥k − k̃∥∥∥∥v∥∥
Using the inequality (a+ b)2 ≤ 2(a2 + b2) we get∥∥B′(k, f)(u, v)−B′

(
k̃, f̃

)
(u, v)

∥∥2 ≤ 2C2
(∥∥u∥∥2∥∥f − f̃∥∥2

+
∥∥k − k̃∥∥2∥∥v∥∥2

)
≤ 2C2

(∥∥u∥∥2
+
∥∥v∥∥2

)(∥∥k − k̃∥∥2
+
∥∥f − f̃∥∥2

)
= 2C2

∥∥(u, v)
∥∥2∥∥(k − k̃, f − f̃)

∥∥2

and thus∥∥B′(k, f)−B′(k̃, f̃)
∥∥ = sup

‖(u,v)‖=1

∥∥B′(k, f)(u, v)−B′
(
k̃, f̃

)
(u, v)

∥∥
≤
√

2C
∥∥(k − k̃, f − f̃)

∥∥.
Note that the adjoint operator (B′(k, f))∗ of the Frechét derivative B′(k, f) exists

and is a bounded linear operator whenever both H and U× V are Hilbert spaces.
In order to analyse the optimality condition (9) we shall compute the sub-

differential of a functional over two variables. As pointed out in [6, Proposition
2.3.15] for a general function h the set-valued mapping ∂h : U ⇒ U∗ the set
∂h(x1, x2) and the product set ∂1h(x1, x2) × ∂2h(x1, x2) are not necessarily con-
tained in each other. Here, ∂ih denotes the partial sub-gradient with respect to xi
for i = 1, 2. However this is not the case for the functional we are interested in as
will be shown in the following Theorem.
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Theorem 3.2. Let J : U× V→ R be a functional with the structure

J(u, v) = ϕ(u) +Q(u, v) + ψ(v), (10)

where Q is a (nonlinear) differentiable term and ϕ : U → R, ψ : V → R are proper
convex functions, u ∈ domϕ and v ∈ domψ . Then

∂J(u, v) = {∂ϕ
(
u
)

+Q′u(u, v)} × {∂ψ
(
v
)

+Q′v(u, v)}
= {∂uJ(u, v)} × {∂vJ(u, v)}.

Proof. In general the sub-differential of a sum of functions does not equal the
sum of its sub-differentials. However, if Q is differentiable, ϕ and ψ are convex
some inclusions and even equalities hold true (combining [6, Prop 2.3.3; Cor 3; Prop
2.3.6]), as for instance,

∂J(u, v) = ∂ (ϕ(u) + ψ(v)) + ∂Q(u, v).

Since Q is differentiable, calling the previous results, the (partial) sub-derivative
is unique [6, Prop 2.3.15] and therefore

∂Q(u, v) = ∂uQ(u, v)× ∂vQ(u, v)

=
(
Q′u(u, v), Q′v(u, v)

)
.

Note that for the special case where the functional ψ(u)+ϕ(v), the sub-derivative
of separable convex functions [17, Corollary 2.4.5] satisfies

∂ (ϕ(u) + ψ(v)) =
(
∂ϕ
(
u
)
, ∂ψ

(
v
))

Altogether, we can compute the sub-derivative as follows

∂J(u, v) =
(
∂ϕ
(
u
)
, ∂ψ

(
v
))

+
(
Q′u(u, v), Q′v(u, v)

)
= {∂uϕ(u) +Q′u(u, v)} × {∂vψ(v) +Q′v(u, v)}. (11)

The last implication of this theorem,

∂J(u, v) = {∂uJ(u, v)} × {∂vJ(u, v)}

follows straightforward by the definition of partial sub-derivative and (11).
Please note that the above proof holds for all definitions of sub-differentials intro-

duced in the Appendix A, as for convex functionals all the definitions are equivalent,
and for differentiable (possibly nonlinear) terms the sub-differential is a unitary set
and the sub-derivative equals the derivative. Based on Theorem 3.2 we can now
calculate the derivative of the functional is the gist for building up the upcoming
algorithm; please give heed to the structure of (10) and the proposed functional

Jδ,εα,β:

Corollary 3.3. Let Jδ,εα,β the functional defined in (8), then

∂Jδ,εα,β
(
k, f

)
= {C∗f (Cfk − gδ) + γ(k − kε) + βζ} × {A∗k(Akf − gδ) + αL∗Lf}

where ζ ∈ ∂R(k).
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Proof. The result follows straightforward from Lemma 3.1 and Theorem 3.2.
Observe that the sum C∗f (Cfk − gδ) + γ(k − kε) + βζ is well-defined in the Hilbert
space U, since the sub-derivative ζ∂R(k) is also an element of U.

Up to now, we did not specify the functional R, it is only required to be convex
and lower semi-continuous. We are in particular interested in, e.g., the Lp norm
or the weighted `p norm, denoted by R(k) =

∥∥k∥∥
w,p

. Its sub- differential is given
in Section 4. An easy way to compute the sub-derivatives of functionals R with a
specific structure is given by the following Lemma.

Lemma 3.4 ([2, Lemma 4.4]). Let H = L2(Ω, dµ) where Ω is a σ-finite measure
space. Let R : H→ (−∞,+∞] be defined by

R(u) =

{∫
Ω h(u)dµ if the integral is finite

∞ else,
(12)

where h : C → R is a convex function. Then ξ ∈ H is an element of ∂R
(
u
)

if and
only if ξ(x) ∈ ∂h

(
u(x)

)
for almost every x ∈ Ω (with the identification C2 = R).

3.2 An alternating minimisation algorithm

The computation of a solution of dbl-RTLS is not straightforward, as is determining
the minimum of the functional (8) with respect to both parameters is a nonlinear and
nonconvex problem over two variables. Nevertheless, there is a simple algorithm that
has been successfully used for optimisation problems over two variables: alternating
minimisation (AM). This procedure has been studied by several authors, see, e.g.,
[4, 16, 15].

In the following we shall denote the dbl-RTLS functional by J instead of Jδ,εα,β,
as the parameters of the functionals are kept fix for the minimisation process.

In the AM algorithm, the functional is minimised iteratively with two alternating
minimisation steps. Each step minimises the problem over one variable while keeping
the second variable fixed:

fn+1 ∈ arg min
f∈V

J(k, f |kn) (13a)

kn+1 ∈ arg min
k∈U

J(k, f |fn+1). (13b)

The notation J(k, f |u) means we minimise the function J with u fixed, where u
can be either k or f . Thus we minimise in each cycle the functionals

J(k, f |kn) =
∥∥Aknf − gδ∥∥2

+ α
∥∥Lf∥∥2

,

and
J(k, f |fn+1) =

∥∥Cfn+1k − gδ
∥∥2

+ γ
∥∥k − kε∥∥2

+ βR(k).

We highlight some important facts:
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1. For each subproblem, the considered operators are linear, and the functional
is convex. Thus a local minimum is global.

2. The first step is a standard quadratic minimisation problem.

First we will show a monotonicity result for the sequence {(kn, fn)}n of iterates:

Proposition 3.5. The functional J is non-increasing on the AM iterates,

J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

Proof. The iterates are defined as

fn+1 ∈ arg min
f∈V

J(k, f |kn)

and
kn+1 ∈ arg min

k∈U
J(k, f |fn+1).

Therefore,
J(kn, fn+1) ≤ J(kn, f) ∀f ∈ V

and
J(kn+1, fn+1) ≤ J(k, fn+1) ∀k ∈ U,

and in particular, setting f = fn and k = kn,

J(kn, fn+1) ≤ J(kn, fn)

J(kn+1, fn+1) ≤ J(kn, fn+1),

and
J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

The existence of minimiser of the the functional J has already been proven in [1,
Thm 4.2]. The goal of the following results is to prove that the sequence generated by
the alternating minimisation algorithm has at least a subsequence which converges
towards to a critical point of the functional. Throughout this Section, let us make
the following assumptions.

Assumption A.

(A1) B is strongly continuous, i.e., if (kn, fn) ⇀ (k̄, f̄) then B(kn, fn)→ B(k̄, f̄).

(A2) The adjoint of the Fréchet derivative B′ of B is strongly continuous, i.e., if
(kn, fn) ⇀ (k̄, f̄) then B′(kn, fn)∗z → B′(k̄, f̄)∗z, ∀z ∈ D(B′)

Additionally to the standard norm for the pair (k, f) ∈ U× V∥∥(k, f)
∥∥2

=
∥∥k∥∥2

+
∥∥f∥∥2

we define the weighted norm for given γ > 0 as∥∥(k, f)
∥∥2

γ
= γ

∥∥k∥∥2
+
∥∥f∥∥2

.
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Proposition 3.6. For given regularisation parameters 0 < α and β, the sequence
{(kn+1, fn+1)}n+1 of iterates generated by the AM algorithm has at least a weakly
convergent subsequence (knj+1, fnj+1) ⇀ (k̄, f̄), and its limit fulfils

J(k̄, f̄) ≤ J(k̄, f) and J(k̄, f̄) ≤ J(k, f̄) (14)

for all f ∈ V and for all k ∈ U.

Proof. As the iterates of the AM algorithm can be characterised as the minimisers
of a reduced dbl-RTLS functional, see (13a), (13b) we observe

α
∥∥Lfn+1

∥∥2
+ γ
∥∥kn − kε∥∥2

+ βR(kn) ≤ J(kn, fn+1)

= min
f
J(k, f |kn)

≤ J(kn, 0)

=
∥∥gδ∥∥2

+ γ
∥∥kn − kε∥∥2

+ βR(kn)

and

α
∥∥Lfn+1

∥∥2
+ γ
∥∥kn+1 − kε

∥∥2 ≤ J(kn+1, fn+1)

= min
k
J(k, f |fn+1)

≤ J(0, fn+1)

=
∥∥gδ∥∥2

+ γ
∥∥kε∥∥2

+ α
∥∥Lfn+1

∥∥2
.

Keeping in mind that the operator L is continuously invertible, the first inequality
gives ∥∥fn+1

∥∥2 ≤ 1

‖L−1‖2 α
∥∥gδ∥∥2

.

Using the second estimate above and the standard inequality ‖a+ b‖2 ≤ 2(‖a‖2+
‖b‖2) we have

γ
∥∥kn+1

∥∥2 ≤ 2
∥∥gδ∥∥2

+ 4γ
∥∥kε∥∥2

.

Thus, the sequence {(kn+1, fn+1)}n+1 is bounded∥∥(kn+1, fn+1)
∥∥2

γ
= γ

∥∥kn+1
∥∥2

+
∥∥fn+1

∥∥2

≤ 2
∥∥gδ∥∥2

+ 4γ
∥∥kε∥∥2

+
1

c2α

∥∥gδ∥∥2

=

(
2 +

1

‖L−1‖2 α

)∥∥gδ∥∥2
+ 4γ

∥∥kε∥∥2

and by Alaoglu’s theorem, it has a weakly convergent subsequence
{(knj+1, fnj+1)}nj+1 ⇀ (k̄, f̄) .

Since fnj+1 minimises the functional J(knj , f) for a fixed knj , it holds

J(knj , fnj+1) ≤ J(knj , f) ∀f ∈ V

9



and thus∥∥B(knj , fnj+1)− gδ
∥∥2

+ α
∥∥Lfnj+1

∥∥2 ≤
∥∥B(knj , f)− gδ

∥∥2
+ α

∥∥Lf∥∥2
.

Using the fact that J is w-lsc and the strong continuity of B, we observe∥∥B(k̄, f̄)− gδ
∥∥2

+ α
∥∥Lf̄∥∥2

≤ lim inf
nj→∞

{∥∥B(knj+1, fnj+1)− gδ
∥∥2

+ α
∥∥Lfnj+1

∥∥2
}

≤ lim inf
nj→∞

{∥∥B(knj , fnj+1)− gδ
∥∥2

+ α
∥∥Lfnj+1

∥∥2
}

≤ lim inf
nj→∞

{∥∥B(knj , f)− gδ
∥∥2

+ α
∥∥Lf∥∥2

}
≤ lim sup

nj→∞

∥∥B(knj , f)− gδ
∥∥2

+ α
∥∥Lf∥∥2

= lim
nj→∞

∥∥B(knj , f)− gδ
∥∥2

+ α
∥∥Lf∥∥2

(A1)
=
∥∥B(k̄, f)− gδ

∥∥2
+ α

∥∥Lf∥∥2
(15)

Therefore,
J(k̄, f̄) ≤ J(k̄, f) ∀f ∈ V.

The second inequality in (14) is proven similarly: Since knj+1 minimises the
functional J(k, fnj+1) for fixed fnj+1 it is

J(knj+1, fnj+1) ≤ J(k, fnj+1) ∀k ∈ U,

which is equivalent to∥∥B(knj+1, fnj+1)− gδ
∥∥2

+γ
∥∥knj+1 − kε

∥∥2
+ βR(knj+1)

≤
∥∥B(k, fnj+1)− gδ

∥∥2
+ γ
∥∥k − kε∥∥2

+ βR(k).

Again, we observe∥∥B(k̄, f̄)− gδ
∥∥2

+ γ
∥∥k̄ − kε∥∥2

+ βR(k̄)

≤ lim inf
nj→∞

{∥∥B(knj+1, fnj+1)− gδ
∥∥2

+ γ
∥∥knj+1 − kε

∥∥2
+ βR(knj+1)

}
≤ lim inf

nj→∞

∥∥B(k, fnj+1)− gδ
∥∥2

+ γ
∥∥k − kε∥∥2

+ βR(k)

= lim
nj→∞

∥∥B(k, fnj+1)− gδ
∥∥2

+ γ
∥∥k − kε∥∥2

+ βR(k)

=
∥∥B(k, f̄)− gδ

∥∥2
+ γ
∥∥k − kε∥∥2

+ βR(k), (16)

and thus
J(k̄, f̄) ≤ J(k, f̄), ∀k ∈ U.

In summary, the alternating minimisation (AM) algorithm yields a bounded se-
quence {(kn+1, fn+1)}n and hence a weakly convergent subsequence. The next result
extends the convergence on the strong topology, for both {knj+1}nj and {fnj+1}nj
.
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Proposition 3.7. Let {(knj+1, fnj+1)}nj be a weakly convergent (sub-) sequence
generated by the AM algorithm (13), where knj+1 ⇀ k̄ and fnj+1 ⇀ f̄ . Then
there exists a subsequence {knjm+1}njm of {knj+1}nj such that knjm+1 → k̄ and
0 ∈ ∂kJ(k̄, f̄).

Proof. Inequalities (16) in the Proposition 3.6’s proof reads

lim inf
nj→∞

{∥∥B(knj+1, fnj+1)− gδ
∥∥2

+ γ
∥∥knj+1 − kε

∥∥2
+ βR(knj+1)

}
=
∥∥B(k, f̄)− gδ

∥∥2
+ γ
∥∥k − kε∥∥2

+ βR(k).

for any k. Setting k = k̄ yields in particular

lim inf
nj→∞

{∥∥B(knj+1, fnj+1)− gδ
∥∥2

+ γ
∥∥knj+1 − kε

∥∥2
+ βR(knj+1)

}
=
∥∥B(k̄, f̄)− gδ

∥∥2
+ γ
∥∥k̄ − kε∥∥2

+ βR(k̄).

As the limes inferior exists, we can in particular extract a subsequence (knjm+1, fnjm+1)njm
of (knj+1, fnj+1)nj such that

lim
njm→∞

{∥∥B(knjm+1, fnjm+1)− gδ
∥∥2

+ γ
∥∥knjm+1 − kε

∥∥2
+ βR(knjm+1)

}
=
∥∥B(k̄, f̄)− gδ

∥∥2
+ γ
∥∥k̄ − kε∥∥2

+ βR(k̄).

(17)

For the sake of notation simplicity we denote for the remainder of the proof the
index njm + 1 by m+ 1. By (A1) we observe

lim
m→∞

∥∥B(km+1, fm+1)− gδ
∥∥2 (A1)

=
∥∥B(k̄, f̄)− gδ

∥∥2

As all summands in (17) are positive, we have thus and

lim
m→∞

{
γ
∥∥km+1 − kε

∥∥2
+ βR(km+1)

}
= γ lim

m→∞

∥∥km+1 − kε
∥∥2

+ β lim
m→∞

R(km+1)

= γ
∥∥k̄ − kε∥∥2

+ βR(k̄). (18)

Now let us show that km+1 converges strongly. As the sequence converges weakly,
it is enough to show

lim
m→∞

∥∥km+1
∥∥2

=
∥∥k̄∥∥2

Equivalently, we can also show limm→∞
∥∥km+1 − kε

∥∥2
=
∥∥k̄ − kε∥∥2

. Again due to
the weak convergence of km+1 it is sufficient to prove

lim sup
m→∞

∥∥km+1 − kε
∥∥2 ≤

∥∥k̄ − kε∥∥2
.

Let us assume that

µ := lim sup
m→∞

∥∥km+1 − kε
∥∥2
>
∥∥k̄ − kε∥∥2

.
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holds. Rewriting (18) yields

β lim sup
m→∞

{
R(km+1)

}
= γ

(∥∥k̄ − kε∥∥2 − lim sup
m→∞

∥∥km+1 − kε
∥∥2
)

+ βR(k̄)

= γ
(∥∥k̄ − kε∥∥2 − µ

)
+ βR(k̄)

< β R(k̄). (19)

However, since R is w-lsc, we observe

R(k̄) ≤ lim inf
m→∞

R(km+1) ≤ lim sup
m→∞

R(km+1),

which is in contradiction to (19). Thus we have shown the convergence of km+1 to
k̄ in norm.

The last part of this proof focus on the convergence of the partial sub-differential
of J with respect to k.

Since km+1 solves the sub-minimisation problem (13b), the optimality condition
reads as 0 ∈ ∂kJ(km+1, fm+1), or equivalently, there exists an element

ξm+1
k := − 1

β

(
C∗fm+1(Cfm+1km+1 − gδ) + γ(km+1 − kε)

)
(20)

such that ξm+1
k ∈ ∂R

(
km+1

)
⊂ U; see Corollary 3.3.

Now, on the limit, 0 ∈ ∂kJ(k̄, f̄), means that

ξ̄ := − 1

β

(
C∗f̄ (Cf̄ k̄ − gδ) + γ(k̄ − kε)

)
and ξ̄ ∈ ∂R

(
k̄
)

holds, i.e., the right hand-side of (20) converges and the limit of the sequence of
sub-derivatives belongs also to the sub-differential set ∂R

(
k̄
)
.

The first part of the statement above can be seeing by using condition (A2).
Whereas the second part is obtained by the assumption that R is a convex functional,
because in this case the Fenchel sub-differential coincides with the limiting sub-
differential, which is a strong-weakly closed mapping (see Appendix A).

Proposition 3.8. Let {m} be a subsequence of N such that the (sub-) sequence
{(km+1, fm+1)}m generated by AM algorithm (13) satisfies km+1 → k̄ and fm+1 ⇀
f̄ . Then there is a subsequence of {fm+1}m such that fmj+1 → f̄ and 0 ∈ ∂fJ(k̄, f̄).

Proof. Similarly as the previous theorem, by setting f = f̄ at (15) in the
Proposition 3.6’s proof we obtain

lim inf
m→∞

{∥∥B(km+1, fm+1)− gδ
∥∥2

+ α
∥∥Lfm+1

∥∥2
}

=
∥∥B(k̄, f̄)− gδ

∥∥2
+ α

∥∥Lf̄∥∥2
.

As the limes inferior exists, we can in particular extract a subsequence (kmj+1, fmj+1)mj
of (km+1, fm+1)m such that

lim
mj→∞

{∥∥B(kmj+1, fmj+1)− gδ
∥∥2

+ α
∥∥Lfmj+1

∥∥2
}

=
∥∥B(k̄, f̄)− gδ

∥∥2
+ α

∥∥Lf̄∥∥2
.

12



Since both summands in the limit above are positive and due to (A1), we con-
clude that

lim
mj→∞

∥∥Lfmj+1
∥∥2

=
∥∥Lf̄∥∥2

.

Moreover, as L is a bounded and continuously invertible operator we have

lim
mj→∞

∥∥fmj+1
∥∥2

=
∥∥f̄∥∥2

,

which in combination with the weak convergence of the subsequence gives its strong
convergence fmj+1 → f̄ .

The second half of this proof refers to the convergence of the partial sub-
differential of J with respect to f and its limit.

Since fm+1 solves the sub-minimisation problem (13a), the optimality condition
reads as 0 ∈ ∂fJ(km, fm+1). However we are interested on the partial sub-derivate
at the pair (kmj+1, fmj+1). Namely, with help of Corollary 3.3 the sub-derivative

(which is a unique element) ξ
mj+1
f ∈ ∂fJ(kmj+1, fmj+1) is computed1 as

ξm+1
f := A∗km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1,

which may not be necessarily null for each cycle of the AM algorithm (13), otherwise
the stoping criteria would be satisfied and nothing would be left to be proven.
Therefore we shall prove that it converges towards zero.

So far we have strong convergence of both sequences
{
km+1

}
m

and
{
fm+1

}
m

.
Additionally, the Assumption A implies that both linear operators Ak and A∗k are
also strongly continuous, therefore

lim
m→∞

ξm+1
f = lim

m→∞
{A∗km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1}

= A∗k̄(Ak̄f̄ − gδ) + αL∗Lf̄. (21)

Our goal is to show that the limit given in (21) is zero. Let’s suppose by con-
tradiction that 0 /∈ ∂fJ(k̄, f̄). Since this set is unitary we conclude that

A∗k̄(Ak̄f̄ − gδ) + αL∗Lf̄ 6= 0.

This means that f̄ does not fulfil the normal equation associated to the standard
Tikhonov problem

minimise
f

∥∥Ak̄f − gδ∥∥2
+ α

∥∥Lf∥∥2
,

which is a necessary condition to be a minimiser candidate to the underlying func-
tional.

Therefore the functional J(k̄, ·) for a given fixed k̄ does not attain its minimum
value at f̄ and there is at least one element f such that J(k̄, f) < J(k̄, f̄).

Moreover this functional is convex and it has a global solution, here denoted by
f̃ . By definition

J(k̄, f̃) ≤ J(k̄, f)

1For sake of notation we continue to denote the subsequence’s indices by m+1 instead of mj+1.
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for all f ∈ V .
In particular, since f̄ is not a minimiser for J(k̄, ·), the inequality above is strict,

J(k̄, f̃) < J(k̄, f̄). (22)

On the other hand, from Propostion 3.6 it also holds

J(k̄, f̄) ≤ J(k̄, f)

for all f ∈ V . Setting f := f̃ in this inequality we get

J(k̄, f̄) ≤ J(k̄, f̃),

which leads to a contradiction to (22).
Therefore for f̄ the optimality condition holds true, i.e., in the limit the source

condition is fulfilled and the limit of the partial sub-derivative sequence is zero, i.e.,
0 ∈ ∂fJ(k̄, f̄), which completes the proof.

Remark 3.9. One alternative proof would be assuming that the sequence {km+1}m
fulfils ∥∥km+1 − km

∥∥→ 0. (23)

More specifically, we have

A∗km(Akmf
m+1 − gδ) + αL∗Lfm+1 = 0

from the optimality condition, but we would like to show

lim
m→∞

{A∗km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1} = 0.

Subtracting the latter expression from the first one, we get

(A∗kmAkm −A∗km+1Akm+1)fm+1 + (A∗km −A∗km+1)gδ.

Note that by assuming the condition (23) the expression above converges to zero
and the proof would be complete. Nevertheless we cannot guarantee that subsequent
elements of the original sequence will be selected for the subsequence. As an alter-
native one can verify numerically if the sequence provided from the AM algorithm
satisfies this assumption. Moreover, if we restrict the problem to the simple case
that the characterising function is known, then the assumption (23) is trivial, the
problem becomes the standard Tikhonov regularisation and the theory is carried on.

The forthcoming and most substantial result within this section shows that the
limit (k̄, f̄) of the sequence generated by the AM algorithm is a critical point (pair)
of the functional J .

Theorem 3.10 (Main result). Let {m} a index set of N such that the sequence
generated by AM algorithm {(km+1, fm+1)}m → (k̄, f̄) and (ξm+1

k , ξm+1
f ) ⇀ (0, 0).

Then there is subsequence converging towards to a critical point of J , i.e.,

(0, 0) ∈ ∂J
(
k̄, f̄

)
.
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Proof. The Proposition 3.7 guarantees that km+1 → k̄ and ξkm+1 ∈ ∂R(km+1) (or
equivalently, 0 ∈ ∂kJ(km+1, fm+1)) such that 0 ∈ ∂kJ(k̄, f̄). Likewise, Proposition
3.8 guarantees that the sequence fm+1 → f̄ and ξfm+1 ∈ ∂J(km+1, fm+1) such that
0 ∈ ∂fJ(k̄, f̄). Combining this with the strong-weakly closedness property of the
sub-derivative (see Appendix A) and Theorem 3.2 we have

(0, 0) ∈ ∂J
(
k̄, f̄

)
= ∂kJ(k̄, f̄)× ∂fJ(k̄, f̄)

on the limit.

4 Numerical experiments

On the previous section we proposed an algorithm to minimise the functional J over
two variables. In this section we discuss few ideas for a practical implementation
and give a numerical illustration.

Within an extensive choices for the regularisation term R, we choose the weighted
lp norm of the coefficients of the characterising function k with respect to an or-
thonormal basis {φλ}λ of U, so∥∥k∥∥p

w,p
:=
∑
λ

wλ|kλ|p, (24)

where kλ = |
〈
k , φλ

〉
|. For all possible choices of p it is well known the choice p = 1

promotes sparsity [8].
One cycle of the alternating minimisation problem (13) consists of two steps,

each one solves instead a linear and convex minimisation over one variable, while
the other one is fixed. Firstly, solving (13a) we fix kn and find the solution fn+1

through, e.g., a conjugate gradient method. Secondly, solving (13b) we fix fn+1

from the previous step and solve the Shrinkage minimisation problem described on
[8] and we get kn+1. We shortly remark that this optimisation problem has to be
first recast in a Tikhonov-type with an augmented misfit (discrepancy) term, so we
can construct a surrogate functional to remove some nonlinear term. The algorithm
starts with an initial guess k0 and one cycle ends when we have the pair solution
(kn+1, fn+1).

We shall test the performance of the proposed method and AM algorithm through
the two dimensional convolution operator equation. More precisely we convolve an
image2 composed by three levels of grey with a blurring kernel described by a Gaus-
sian function (see the Figure 1 for more details).

Numerical experiments are performed from given measurements not only for the
data, but also for the kernel. An example of the initial noisy data and noisy kernel
is illustrated on Figure 2, where we add 8% relative white noise.

The numerical results are given in the Figure 4, which displays in each row three
graphics: the approximated image, the reconstructed kernel and its convolution. It
plots a collection of numerical solutions computed from four samples with 8%, 4%,

2DK Computational Mathematics’ logo from JKU Linz.
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Figure 1: From left to right: true image f true, blurring Gaussian kernel k0 and
convolved data g0.
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Figure 2: Measurements: noisy kernel (left) and noisy data (right), both with 8%
relative white noise error.

2% and 1% relative error (RE) on both measurements, respectively in each row from
top to bottom. Moreover, we compare the numerical reconstruction with the true
image and kernel; the errors in norm are displayed in the Table 1. Either numerically
or visually one can conclude that dbl-RTLS is indeed a regularisation method, since
its reconstruction and computed data improve as the noise level decreases.

The Figure 3 illustrates the significant improvement from the initial given noisy
data (with 8% relative noise) compared to the one obtained from the dbl-RTLS solu-
tion. We also remark that for higher noise levels the dbl-RTLS reconstruction gives
more than 10% accuracy than the standard Tikhonov reconstruction. On the other
hand, for small noise levels, numerical experiments suggest that the improvement
obtained from the dbl-RTLS method maynot payoff its computational cost.
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Figure 3: Firs row: noisy data (left) and true data (right). Second row: data
attainability obtained from Tikhonov method (left) and dbl-RTLS method (right).

RE(kε) RE(gδ)
∥∥kn − k̄∥∥2

∥∥fn − f̄∥∥2
SNR fn SNR kn β α

8% 8% 3.6438e-01 1.7311e-01 8.6276 10.562 0.4525 0.1246
4% 4% 2.4185e-01 1.5036e-01 12.116 12.272 0.2262 0.0784
2% 2% 2.1545e-01 1.3648e-01 13.099 13.129 0.1131 0.0493
1% 1% 1.6754e-01 1.2596e-01 15.190 13.687 0.0565 0.0310

Table 1: Error with 2-norm and respective SNR (signal-to-noise ratio).

A Appendix

The most common concept of sub-derivative is addressed to convex functions. It
was introduced by Fenchel, Moreau and Rockafellar in early 1960s, but it became
popular after [14]. The Fenchel sub-differential of a convex function ϕ : U→ R (or
[−∞,+∞]) at ū ∈ U is defined as the set

∂Fϕ (ū) = {ξ ∈ U∗ | ϕ(ū+ d)− ϕ(ū) ≥
〈
ξ , d

〉
∀d ∈ U}.

This definition was extended also to nonconvex functions by Clarke in 1973. It is
based on generalised directional derivatives for locally Lipschitz functions in Banach
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spaces [6]. The Clark sub-differential of ϕ at ū is defined by

∂Cϕ (ū) = {ξ ∈ U∗ | ϕ◦(ū; d) ≥
〈
ξ , d

〉
∀d ∈ U}

where

ϕ◦(ū; d) = lim sup
u→ū
t↓0

ϕ(u+ td)− ϕ(u)

t

is the generalised directional derivative.
We add to this list two more definitions of sub-differentials. As before, for a

set-valued mapping G : U ⇒ U∗ between a Banach space U and its topological dual
U∗, the set

Lim sup
u→ū

G(ū) = {ξ ∈ U∗ | ∃ un → ū and ξn
∗
⇀ ξ with ξn ∈ G(un) ∀n ∈ N}

denotes the sequential Painlevé-Kuratowski upper/outer limit of a set-valued map-
ping. Given a lower semi-continuous function ϕ, the ε-Fréchet sub-differential of ϕ
at ū is defined by

∂̂εϕ (ū) =

{
ξ ∈ U∗ | lim inf

‖d‖→0

ϕ(ū+ d)− ϕ(ū)−
〈
ξ , d

〉
‖d‖

≥ ε

}
.

If |ϕ(ū)| = ∞ then ∂̂εϕ (ū) = ∅. When ε = 0 the set ∂̂0ϕ (ū) will be denoted by
∂̂ϕ (ū).

The limiting sub-differential or Mordukhovich sub-differential of ϕ at ū is defined
as

∂ϕ
(
ū
)

= Lim sup
u
ϕ→ū
ε↓0

∂̂εϕ (ū)

where the notation u
ϕ→ ū means u → ū with ϕ(u) → ϕ(ū). This sub-differential

corresponds to the collection of weak-star sequential limiting points of the so-called
ε-Fréchet sub-differential.

In [7], the following inclusion property between the sets

∂Fϕ (ū) ⊂ ∂̂ϕ (ū) ⊂ ∂Cϕ (ū) .

is shown. The set of sub-gradients ∂̂ϕ (ū) may be nonconvex, whereas the Clark
sub-differential is always a nonempty convex subset of U∗ whenever ū ∈ domϕ. It
is important to note that the sub-differential definitions generate the same set if the
function is convex [5].

Finally we list another property needed to prove convergence results: the concept
of strong-weak∗ closeness (also called sw∗-closed) property of the sub-differential
mapping’s graph.

Given the sub-differential ∂ϕ of a proper lower semi-continuous function ϕ, say-
ing its graph is sw∗-closed means whenever (un, ζn) ∈ Gph ∂ϕ converges in the
sw∗-topology to (ū, ζ̄) it implies(ū, ζ̄) ∈ Gph ∂ϕ. In other words, if un → ū and

ζn
∗
⇀ ζ̄ with ζn ∈ ∂ϕ

(
un
)

then ζ̄ ∈ ∂ϕ
(
ū
)
.
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The sub-differential is indeed a sw∗-closed set-value mapping, see for instance
[6, Proposition 2.1.5] or [9, Corollary 5.1]. Moreover, this result holds true for
any maximal monotone point-to-set mapping and not only for the sub-differential
set-value mapping case; see [3, Chapter 4].

For more details on the different types of sub-differential and its properties we
refer to [14, 6, 13, 9] and references therein.
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Figure 4: From left to right columns: deconvolution solution fn, the reconstruction
of the characterising function kn and the attained data gn. From the top to bottom
each row is the solution given by the AM algorithm initiated with 8%, 4%, 2% and
1% relative error for both gδ and kε.
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