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Abstract

It is well known that Tikhonov regularization in standard form may
determine approximate solutions that are too smooth, i.e., the approxi-
mate solution may lack many details that the desired exact solution might
possess. Two different approaches, both referred to as fractional Tikhonov
methods have been introduced to remedy this shortcoming. This paper
investigates the convergence properties of these methods. We show that
both methods are order optimal when the regularization parameter is cho-
sen according to the discrepancy principle. The theory developed suggests
situations in which the fractional methods yield approximate solutions of
higher quality than Tikhonov regularization in standard form. Computed
examples that illustrate the behavior of the methods are presented.

1 Introduction

Let A be a linear compact operator between the Hilbert spaces X and Y , and
consider the operator equation

Ax = b, x ∈ X, b ∈ Y, (1)

which we assume to be consistent. We would like to determine the solution
of minimal X-norm, which we denote by x†. It can be computed as x† = A†b,
where A† is the Moore–Penrose pseudoinverse of A. The computation of x† is an
ill-posed problem, because a small perturbation in b may give rise to an arbitrar-
ily large perturbation in x†, or even make the problem unsolvable. Moreover,
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the right-hand side function that is available in applications represents data that
is contaminated by noise. Thus, instead of b, the error-contaminated function
bδ is available. We assume that a bound for the error

‖bδ − b‖Y ≤ δ (2)

is known.
Straightforward solution of (1) with b replaced by bδ generally does not

yield a meaningful approximation of x† because of severe propagation of the
error in bδ into the computed solution. A common remedy, known as Tikhonov
regularization, is to replace (1) by a penalized least squares problem of the form

min
x∈X

Jµ(x) (3)

with
Jµ(x) := ‖Ax− bδ‖2Y + µ‖x‖2X ; (4)

see, e.g., [2, 7, 9] for discussions and many details on this solution approach. The
parameter µ > 0 is referred to as the regularization parameter and determines
how sensitive the minimizer xδµ of Jµ is to the error in bδ and how close xδµ is

to the desired solution x†.
Because the bound (2) is known, we may determine a suitable value µ > 0

by the discrepancy principle, i.e., we choose µ > 0 so that

‖Axδµ − bδ‖Y = τδ,

where τ > 1 is a user-supplied constant that is independent of δ. We refer to
xδµ as an approximate or regularized solution of (1).

The Tikhonov regularization problem (3)-(4) is said to be in standard form,
because the penalty term is the square of the X-norm of the computed solution.
Determining the minimum of (4) is equivalent to solving the normal equations

(A∗A+ µI)x = A∗bδ, (5)

where A∗ denotes the adjoint of A.
It is well known that Tikhonov regularization in standard form typically

determines a regularized solution xδµ that is too smooth, i.e., many details of

the desired solution x† typically are not represented by xδµ. This shortcoming
led Klann and Ramlau [6] to introduce the fractional Tikhonov regularization
method. Subsequently another approach, also referred to as fractional Tikhonov
regularization, was investigated by Hochstenbach and Reichel [4]. The latter
approach fits into the framework of generalized Tikhonov regularization intro-
duced by Louis [7, Chapter 4]. Application of the fractional approach in [4, 7]
to Lavrentiev regularization is discussed in [5].

The method in [4, 7] can be derived by replacing the Y -norm in the fidelity
term in (4) by a weighted seminorm

‖y‖W := ‖W 1/2y‖Y

2



with
W = (AA∗)(α−1)/2 (6)

for some parameter 0 ≤ α ≤ 1, where W is defined with the aid of the Moore–
Penrose pseudoinverse of AA∗ when α < 1. We obtain the minimization problem

min
x∈X

J̃µ(x) (7)

with
J̃µ(x) := ‖Ax− bδ‖2W + µ‖x‖2X . (8)

We denote the solution of (7)-(8) by x̃δµ. It can be computed by solving the
associated normal equations

((A∗A)(α+1)/2 + µI)x = (A∗A)(α−1)/2A∗bδ. (9)

Oversmoothing in Tikhonov regularization in standard form (which corresponds
to α = 1) is caused by the fact that bδ is multiplied by A∗. Letting 0 < α < 1
reduces oversmoothing.

Klann and Ramlau [6] propose another approach to reduce oversmoothing.
They advocate that an approximation of x† be computed by solving

(A∗A+ µI)αx = (A∗A)α−1A∗bδ (10)

for some 0 < α ≤ 1, where (A∗A)α−1 is defined with the Moore–Penrose
pseudoinverse when α < 1. This leads to an interpolation between standard
Tikhonov regularization and the generalized inverse. We denote the solution by
x̂δµ. Also this method simplifies to Tikhonov regularization in standard form
when α = 1.

The present paper is organized as follows. Section 2 introduces necessary
notation. We show in Section 3 that the method defined by (7)-(8) is an order
optimal regularization method for suitable parameters α. Moreover, we show
that both fractional methods defined by (7)-(8) and (10) are order optimal when
used with the discrepancy principle. A discussion on advantages and disadvan-
tages of these fractional methods concludes the section. Section 4 contains a
few illustrative numerical examples, and concluding remarks can be found in
Section 5.

2 Regularization methods and filter factors

This section reviews definitions and properties of regularization methods; see,
e.g., [2, 7] for further details. A regularization method for A† is a family of
operators

{Rµ}µ>0, Rµ : Y → X

with the following properties: There is a mapping µ : R+ × Y → R+ such that
for all b ∈ D(A†) and all bδ ∈ Y with ‖b− bδ‖Y ≤ δ, it holds

lim
δ↘0

Rµ(δ,bδ)b
δ = A†b.
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Here µ is a regularization parameter.
The quality of a regularization method is determined by the asymptotics

of ‖A†b − Rµb
δ‖X as δ ↘ 0. Convergence rates can only be achieved under

additional assumptions on the solution. For our analysis, we assume a Hölder-
type smoothness assumption, i.e., that the minimal norm solution x† of the
error-free problem (1) satisfies a smoothness condition of the form

x† ∈ range ((A∗A)ν/2) with ‖x†‖ν :=
(∑
n≥1

σ−2νn |〈x†, un〉|2
)1/2 ≤ ρ (11)

for some constant ρ. Here (σn;un, vn)n≥1 is the singular system of the operator
A. A regularization method is said to be order optimal if there is a constant c
independent of δ and ρ such that

‖x† −Rµbδ‖X ≤ c δ
ν
ν+1 · ρ

1
ν+1 .

It is well known that Tikhonov regularization in standard form is an order
optimal method, see, e.g., [2].

Generalized Tikhonov regularization is obtained by replacing the penalty
term in (4) by ‖Bx‖2X , where B : N (A)⊥ → X is an operator whose domain
D(B) is dense in N (A)⊥ and (B∗B)−1 : N (A)⊥ → X is continuous. Here
N (A)⊥ denotes the orthogonal complement of the null space of A. The associ-
ated functional is

Jµ,B(x) := ‖Ax− bδ‖2Y + µ‖Bx‖2X . (12)

Certain conditions on the operator B allow for results on optimality and order
optimality of generalized Tikhonov regularization; see Louis [7]. Proposition 3.1
below shows the equivalence of generalized Tikhonov regularization with a spe-
cial operator B and fractional Tikhonov regularization (8).

Filter factors provide insight into the properties of regularization methods.
Let the linear compact operator A have the singular system (σn;un, vn)n≥1. We
replace the Moore–Penrose generalized inverse of A by an operator Rµ defined
by

Rµb
δ :=

∑
σn>0

Fµ(σn)σ−1n 〈bδ, vn〉un. (13)

The real-valued function Fµ is referred to as a filter function and its values
Fµ(σn) as filter factors; µ > 0 is a regularization parameter. Thus, Rµb

δ fur-
nishes an approximation of x†. For example, Tikhonov regularization in stan-
dard form can be characterized by the filter function

FTikh
µ (σ) =

σ2

σ2 + µ
. (14)

That is, the minimizer of (4) can also be computed as

xδµ =
∑
σn>0

σn
σ2
n + µ

〈bδ, vn〉un.
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as well as by (5). The filter function associated with the fractional Tikhonov
regularization method (7)-(8) is given by

F̃µ,α(σ) =
σα+1

σα+1 + µ
(15)

and gives the associated approximation

x̃δµ =
∑
σn>0

σαn
σα+1
n + µ

〈bδ, vn〉un (16)

of x†. This expression is provided in [4] with slightly different notation.
The fractional Tikhonov method (10) can be written in terms of a filter

function in a similar fashion. We have

F̂µ,α(σ) := (FTikh
µ (σ))α =

(
σ2

σ2 + µ

)α
. (17)

The corresponding approximation of x† is given by

x̂δµ =
∑
σn>0

(
σ
2−1/α
n

σ2
n + µ

)α
〈bδ, vn〉un. (18)

3 Order optimality of fractional Tikhonov meth-
ods

We first discuss the order optimality of the fractional regularization methods
(7)-(8) and (10).

Proposition 3.1. Let A : X → Y be a linear compact operator between Hilbert
spaces X and Y . Let x† := A†b satisfy ‖x†‖ν ≤ ρ, where the norm is defined by
(11). Then for all exponents α ≥ 0 and the parameter choice rule

µ = C

(
δ

ρ

)(α+1)/(2(ν+1))

, (19)

the fractional Tikhonov method (7)-(8) is order optimal. Here C > 0 is a
constant independent of δ and ρ.

Proof. Solutions of the minimization problems associated with the function-
als (8) and (12) can be determined from the associated normal equations. For
generalized Tikhonov regularization (12), we obtain with B∗B = (A∗A)−η the
normal equations

(A∗A+ µ(A∗A)−η)xδµ = A∗bδ, (20)

where (A∗A)−1 is replaced by the Moore–Penrose pseudoinverse if A is not of
full rank. Louis [7, Satz 4.2.3] establishes that this method is order optimal for
η ≥ 1/2. A comparison with (9) shows that the fractional Tikhonov method (8)
is order optimal for α ≥ 0.
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While the method (8) is order optimal for all α ≥ 0, this is not the case for
the fractional Tikhonov method (10). We have the following result.

Proposition 3.2. [6, Proposition 3.2] Let A : X → Y be a compact operator
with singular system (σn, un, vn)n≥0, and let x† := A†b satisfy ‖x†‖ν ≤ ρ for
some constant ρ and the ν-norm defined by (11). Then for α ∈ (1/2, 1], the
fractional Tikhonov method defined (10) is order optimal with the parameter
choice rule

µ = C

(
δ

ρ

)1/2(ν+1)

for all 0 < ν < 2. Here C is a positive constant independent of δ and ρ.

Klann and Ramlau [6, Theorem 4.4] show that after appropriate presmooth-
ing of the error-contaminated data bδ, fractional powers 0 < α ≤ 1/2 together
with a suitable choice of the regularization parameter µ yield quasi-optimal
convergence rates.

The above approaches to determine µ generally are not very useful for the
solution of specific problems. When an accurate estimate of the norm of the
error in the data ‖bδ − b‖Y is known, the discrepancy principle, discussed, e.g.,
in [2, 8], can be applied to determine a suitable value of µ. The idea is to choose
the value of µ so that the residual is approximately of the same norm as the
error in the data bδ. There are several slightly different formulations of the
discrepancy principle. Here we will choose µ = µ(δ, bδ) such that

‖Axµ − bδ‖ = τδ, (21)

where τ > 1 is a user-supplied constant independent of δ. This is a nonlinear
equation for µ. Its solution can be calculated by finding the positive zero of

Gα(µ) :=
∑
n∈N

(1− Fµ,α(σ))
2 〈bδ, vn〉2 − (τδ)2, (22)

for example with Newton’s method; see, e.g., [4] for further details.
Convergence of regularized approximate solutions determined by filtered reg-

ularization methods using the discrepancy principle has been analyzed by Louis
[7], who shows the following result (with slightly different notation):

Theorem 3.1. [7, Theorem 3.5.2] Let b ∈ range (A) and ‖b − bδ‖Y ≤ δ. For
all σ ∈ (0, σ1], let µ 7→ |1 − Fµ,α| be continuous and monotonically increasing,
and assume that for 0 ≤ ν ≤ 2,

sup
0<σ≤σ1

σ−1|Fµ,α(σ)| ≤ cµ−α/2 and sup
0<σ≤σ1

|1− Fµ,α(σ)|σν ≤ cνµαν/2

for a constant c independent of δ and ν, and a constant cν independent of δ.
Let µ = µ(δ, bδ) be determined by (21). Then

Rµb
δ → A†b for δ ↘ 0.
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Assume that x† can be written as x† = (A∗A)ν/2h for some h such that ‖h‖ ≤ ρ
and some 0 < ν ≤ 1. Then there is a constant dν independent of b, δ, ρ such
that

‖A†b−Rµbδ‖ ≤ dνδν/(ν+1) · ρ1/(ν+1).

Both fractional methods (7)-(8) and (10) satisfy the conditions of the above
theorem. This allows us to show that these methods are order optimal with
respect to the discrepancy principle.

Corollary 3.1. Let A : X → Y be a linear compact operator between Hilbert
spaces X and Y . Let x† := A†b satisfy ‖x†‖ν ≤ ρ. Then for all exponents α ≥ 0,
the fractional Tikhonov method (7)-(8) is order optimal with the regularization
parameter µ determined by the discrepancy principle (21).

Proof. Using the equivalence between (9) and (20), the proof follows from results
in [7], specifically from Chapter 3.5 together with Satz 4.2.2 and Satz 4.2.3.

Remark 3.1. It might appear appealing to substitute the standard norm in (21)
by the weighted norm from (8). Then with W = (A∗A)(α−1)/2,

‖Ax̃µ − bδ‖2W =
∑
n

(1− F̃µ(σn))2σα−1n 〈bδ, vn〉2.

However, since limσn→0 F̃µ(σn) = 0, the sum will not converge since for large
n the inner products 〈bδ, vn〉 are dominated by the error in bδ and do not con-
verge to zero. In a discrete setting, the residual will be very large due to noise
amplification, and equation (21) is not guaranteed to have a solution. Hence,
the weighted residual norm is in general not useful.

Corollary 3.2. Let A : X → Y be a linear compact operator between Hilbert
spaces X and Y . Let x† := A†b satisfy ‖x†‖ν ≤ ρ. Then for all exponents
α ∈ (1/2, 1], the fractional Tikhonov method of (10) is order optimal with the
regularization parameter µ given by the discrepancy principle (21).

Proof. It is shown in [6, Lemma 3.1 and Proposition 3.2] that the conditions of
Theorem 3.1 hold.

Approximations of x† determined by fractional Tikhonov regularization typi-
cally are closer to x† in theX-norm than approximations obtained with Tikhonov
regularization in standard form; see [4] for computed examples. However, a
smaller error does not always correspond to a more pleasing approximation of
x†, because the fractional Tikhonov approximation may be more oscillatory than
the approximation determined by Tikhonov regularization in standard form. We
would like to elucidate in which situations fractional methods yield more pleas-
ing approximations. The following lemma is helpful. A similar result has been
shown in [4].

Lemma 3.1. The mappings µ 7→ Fµ,α(σ) and α 7→ Fµ,α(σ) are continuous
and monotonically decreasing for µ > 0 and α in an interval α < α < α. Let

µ = µ(α) be determined by the discrepancy principle (21). Then dµ(α)
dα < 0.
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Proof. We can write (22) in the form G(α, µ(α)) = 0. Since G is differentiable,
we have

dG

dµ
=
∑
σn>0

2(1− Fµ,α(σn)) · (−1) · dFµ,α
dµ

· 〈bδ, vn〉2 > 0,

because 1 − Fµ,α(σ) > 0 and
dFµ,α
dµ < 0. Analogously, one finds that dG

dα > 0.
Hence, by the implicit function theorem,

dµ

dα
= −

(
dG

dµ

)−1
dG

dα
< 0.

An immediate consequence of the above lemma is that decreasing α results
in an increase of the regularization parameter µ. It is therefore inappropriate to
compare fractional methods with the standard Tikhonov filter using the same
regularization parameter.

We are now in position to have a closer look at the computed approximations.
Again we will make use of the explicit representation of the solution in terms of
the singular system of A. Let

ε = bδ − b.
Since

σn〈x†, un〉 = 〈x†, A∗vn〉 = 〈b, vn〉,
cf. [2], and

〈bδ, vn〉 = 〈b, vn〉+ 〈ε, vn〉,
the approximation error e(δ, α, µ) := x† −Rµbδ is given by

e(δ, α, µ) =
∑
σn>0

(1− Fµ,α(σn)) 〈x†, un〉un +
∑
σn>0

Fµ,α(σn)
1

σn
〈−ε, vn〉un. (23)

Let ε be fixed. The performance of the reconstruction is then determined by
the positive coefficients 1 − Fµ,α(σ) and Fµ,α(σ). One immediately sees that
the filter has to achieve two contradicting properties: Fµ,α(σ) should be close
to one to give a small deviation of the reconstruction from x†, and also Fµ,α(σ)
should be close to zero in order to effectively reducing propagation of the error
ε into the computed approximation.

It is not obvious from (23) in which situations letting α < 1 improves the
quality of the computed approximation of x†. We can shed some light on this
by studying the derivative d

dαFµ,α(σ). We first consider the filter function (15).
Since µ depends on α, we get

d

dα
F̃µ,α(σ) = − d

dα

(
1− F̃µ,α(σ)

)
= h(σ, α, µ(α))

(
lnσ − µ′(α)

µ(α)

)
, (24)

where h(σ, α, µ(α)) is a positive function. The sign of the derivative is deter-

mined by the factor lnσ − µ′(α)
µ(α) . When α and the error norm δ are fixed, so
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is µ, and the sign only depends on σ. By Lemma 3.1, µ′(α) < 0. Therefore,
the derivative (24) changes sign at some 0 < σ̃0 < 1. Only for n with σn < σ̃0,
the coefficient of 〈x†, un〉 in (23) will be reduced by decreasing α, since then
d
dα (1− F̃µ,α(σn)) > 0. Hence, the coefficient of 〈x†, un〉 increases. The opposite
holds true for the coefficients of the terms associated with the propagated error.
Whereas for large σn the propagated error is damped, it is amplified for all
σn < σ̃0.

The result for the fractional filter (17) is analogous. Similarly to (24), one
has

d

dα
F̂µ,α(σ) = − d

dα

(
1− F̂µ,α(σ)

)
= ĥ(σ, α, µ(α))

(
− ln

(
σ2 + µ(α)

σ2

)
− α µ′(α)

σ2 + µ(α)

)
(25)

with ĥ(σ, α, µ(α)) > 0. The logarithm is positive and µ′(α) < 0. Therefore,
the sign of (25) changes at some σ = σ̂0 > 0. Hence, the above discussion also
applies to this filter function. However, it is not clear whether the operator A
has singular values that satisfy σn > σ̂0. If this is not the case, then decreasing α
will result in error amplification in all components of the computed approximate
solution.

Although it is an open problem how to determine a value of α that yields
the best approximation of x†, we can identify two situation in which fractional
Tikhonov methods outperform standard Tikhonov regularization (3)-(4):

a) the problem is severely ill-posed, i.e., the singular values of A decrease
rapidly to zero, and

b) the error in bδ is concentrated to low frequencies.

In case the problem is severely ill-posed, σ̃0 and σ̂0 are likely to be large enough
for the propagated error to be damped. A slight loss in accuracy of terms in
(16) and (18) associated with large singular values is typically acceptable, since
they are much larger than the error and therefore usually are recovered quite
accurately. On the other hand, if there is only little error in the high frequency
components in (16) and (18), the amplification of the error in bδ is largely
avoided, while the reconstruction is improved. In other cases, both fractional
methods do not perform significantly better than Tikhonov regularization in
standard form. The reason for this can again be found in the dependency of the
filter factors Fµ,α(σ) on the parameters α and µ. By decreasing α, the Fµ,α(σ)
increase. At the same time, decreasing α leads to increasing regularization
parameter µ as shown in Lemma 3.1. From the definition of the filter factors (15)
and (17), respectively, one sees that this leads to decreasing values of the filter
factors. Hence, both effects cancel each others out to some extend. Although α
is decreased below one, the filter factors corresponding to larger singular values
stay almost constant. The following section provide some illustrative computed
examples.
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4 Numerical examples

We illustrate the theory developed in the previous section with two examples,
the first of which is a severely ill-posed Fredholm integral equation of the first
kind given by

b(s) = [A1x](s) =

∫ 1

0

√
s2 + t2f(t)dt, 0 ≤ s ≤ 1, (26)

with error-free data b(s) = 1
3

(
(1 + s2)3/2 − s3

)
and solution x†(t) = t. This

equation was first introduced by Fox and Goodwin, cf. [1]. Numerically, the
singular values decrease exponentially until they stagnate around attainable
computational precision.

The second example is the mildly ill-posed Volterra integral equation of the
first kind

b(s) = [A2x](s) =

∫ s

0

f(t)dt, 0 ≤ s ≤ 1, (27)

with error-free data

b1(s) =

{
−s 0 ≤ s ≤ 0.5,

s− 1 0.5 < s ≤ 1,

and solution

x†1(t) =

{
−1 0 ≤ t ≤ 0.5,

1 0.5 < t ≤ 1.

The same example was used in [6]. The coefficients 〈x†1, un〉 decrease slowly to
zero. In order to demonstrate that the performance of the fractional Tikhonov
methods mainly depends on properties of the operator, we also used a data func-
tion that gives an alternative solution x†2, which is designed so that 〈x†2, un〉 =
O(exp(−n)). After discretizing the operator A2 in (27) we computed the SVD
of the resulting matrix and hence the un were available. The singular system
{σn;un, vn}n≥1 of A2 (without discretization) is given in [7]. We found the
quality of the computed solution to be the same for both problems (26) and
(27). Numerically, the implementation of (26) in the Regularization Toolbox
[3] has been used. The integration problem (27) has been discretized simply
with the trapezoidal rule. In all experiments shown, we used 100 discretization
points and equipped both the domain and range of the discretized operators
with the Euclidean vector norm.

All plots compare approximate solutions obtained by the two fractional
methods (7)-(8) and (10) with the approximate solution determined by Tikhonov
regularization in standard form (4). Also the desired solution of the error-free
problem x† is shown. For all approximate solutions, the regularization param-
eter is determined by the discrepancy principle (21). Figure 1 shows that, for
the severely ill-posed problem (26) and an error in bδ made up of 5% relative
Gaussian noise, the fractional method (7)-(8) determines a much more accurate
approximation of x† than Tikhonov regularization in standard form, whereas the
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approximate solution determined by the fractional method (10) is only slightly
more accurate than the approximate solution determined by standard Tikhonov
regularization. For the fractional methods, we calculated solutions for several
0 ≤ α ≤ 1 and plotted the ones that gave the best approximation of x†. The
same technique, when applied to the problem (27), again with 5% relative Gaus-
sian noise in the data bδ, lead to α-values one or very close to one. Since then
the fractional methods are very close to Tikhonov regularization in standard
form, we plotted solutions for a fixed, smaller α instead. Figure 2 shows that,
for both exact solutions x†1 and x†2, the approximate solutions determined by the
fractional methods are not more accurate than the one determined by standard
Tikhonov regularization. Indeed, the amplification of the error in the data is
clearly visible. For problems which have a degree of ill-posedness between the
ones shown here, we observed that the quality of the computed approximate
solution strongly depends on the realization of the noise. That is, inverting
several noisy data sets where all parameters, including the noise level, were
kept constant, the fractional methods sometimes gave approximate solutions of
considerably higher quality than Tikhonov regularization, while in other cases
there was no improvement in quality.

So far the data was perturbed by white Gaussian noise. Figure 4 shows
results obtained with low-frequency noise. An example of this kind of noise
in comparison with white noise is shown in Figure 3. The fractional methods
clearly give more accurate approximations of x† than Tikhonov regularization
in standard form for low-frequency noise.

To further show the different behavior of the methods in our comparison in
the settings introduced above, we include tables in which we give regularization
parameters and approximation errors relative to those obtained with Tikhonov
regularization in standard form,

r̃e = ‖x̃δµ(α) − x
∗‖/‖xδµ(1) − x

∗‖ (28)

for the fractional method (7)-(8) and

r̂e = ‖x̃δµ(α) − x
∗‖/‖xδµ(1) − x

∗‖ (29)

for the method (10) for several values of α. All errors are averages over 20
experiments with different error-realizations. Table 1 shows results for the Fox–
Goodwin problem (26). In agreement with Figure 1, the fractional method
(7)-(8) performs the best. For the problem (27) with Gaussian white noise, the
error in the approximate solutions determined by the fractional methods is only
slightly smaller than the one obtained with Tikhonov regularization in standard
form, as shown in Table 2. However, using the same problem with low-frequency
error instead of white Gaussian error, the fractional methods yield a much better
approximations of x† than Tikhonov regularization in standard form; see Table
3.
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solution with (7)−(8), α=0.35, µ(0.35)
solution with (10), α=0.6, µ(0.6)
solution with (4), µ(1)
true

Figure 1: Comparison of solutions for the severely ill-posed Fox-Goodwin prob-
lem (26) with 5% relative white Gaussian noise in the data, µ according to (21),
τ = 1.1. For the fractional methods the solutions with lowest reconstruction
error are shown. The solution for the method (7)-(8) is plotted with the solid
line. For this type of problems it is to be preferred over the other two methods.
Those are the method (10) (dashed) an Tikhonov regularization in standard
form (dash-dotted).

α 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

µ̃ 6.1e-3 5.9e-3 5.2e-3 4.3e-3 3.8e-3 3.3e-3 2.4e-3 2.0e-3

µ̂ 1.1e-1 3.9e-2 8.2e-3 4.4e-3 3.5e-3 2.9e-3 2.2e-3 2.0e-3

r̃e 10.3 5.2 1.5 0.60 0.61 0.72 0.92 1

r̂e 2.4e15 4.7e13 1e7 4.2 0.93 0.91 0.97 1

Table 1: Regularization parameter and relative reconstruction error for both
fractional filters, tilde standing for (7)-(8), hat for (17); and the Fox-Goodwin
problem (26). In both cases µ grows monotonically with decreasing α. The
reconstruction errors (28) and (29), respectively, are shown in the two bottom
rows. For the method (7)-(8), there is a minimum clearly below one. Hence,
the reconstructions are significantly improved. Since for α < 0.5 the filter (17)
is not regularizing anymore, the reconstruction error explodes.
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solution with (7)−(8), α=0.5, µ(0.5)
solution with (10), α=0.5, µ(0.5)
solution with (4), µ(1)
true

Figure 2: Comparison of solutions for the mildly ill-posed integration problem
(27) with 5% relative white Gaussian noise in the data, µ according to (21),
τ = 1.1. Upper plot: discontinuous solution, lower plot: smooth solution. In
this case the fractional methods (7)-(8) and (10) do not perform better than
Tikhonov regularization in standard form. On the contrary, the noise is ampli-
fied even more. The lowest reconstruction error was achieved for α = 0.95 and
α = 1, respectively.
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Figure 3: Comparison of typical random draws of white noise and low frequency
noise w.r.t. the singular values. For white noise, the coefficients are equally
distributed over all singular values. The low frequency noise decreases with
growing n.
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Figure 4: Comparison of solutions for the mildly ill-posed integration problem,
5% relative low frequency noise (cf. Figure 3) in the data, µ according to (21),
τ = 1.1. The solution of the fractional methods (7)-(8) (solid) and (10) (dashed)
with appropriate α approximate the discontinuity much better than the results
of Tikhonov regularization in standard form (dash-dotted).
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α 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

µ̃ 4.7e-3 4.3e-3 2.7e-3 1.6e-3 1.3e-3 1.0e-3 0.6e-3 0.4e-3

µ̂ 3.4e-2 1.1e-2 2.3e-3 1.1e-3 0.8e-3 0.7e-3 0.5e-3 0.4e-3

r̃e 2.7 2.3 1.4 1.07 1.02 0.991 0.990 1

r̂e 21.8 12.5 2.3 1.13 1.03 1.007 0.998 1

Table 2: Regularization parameter and relative reconstruction error for both
fractional filters and the integration problem (27). In both cases µ grows mono-
tonically with decreasing α. The reconstruction errors (28) and (29), respec-
tively, grow nearly monotonically, only for α close to one it is slightly below
one, i.e., the fractional methods give a slightly lower residual than Tikhonov
regularization in standard form.

α 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

µ̃ 6.0e-3 5.5e-3 3.8e-3 2.6e-3 2.1e-3 1.7e-3 1.1e-3 0.9e-3

µ̂ 3.9e-2 1.4e-2 3.5e-3 1.9e-3 1.5e-3 1.3e-3 1.0e-3 0.9e-3

r̃e 0.62 0.65 0.75 0.84 0.88 0.91 0.97 1

r̂e 0.54 0.60 0.81 0.91 0.94 0.96 0.99 1

Table 3: Regularization parameter and relative reconstruction error for both
filters and the integration problem (27) in presence of low frequency noise (cf.
Figure 3). The reconstruction errors (28) and (29), respectively, are shown in
the two bottom rows. Both fractional filters give a much better result than
Tikhonov regularization in standard form.
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5 Conclusion

We have further investigated the fractional Tikhonov method of [4, 7], (7)-(8)
and the fractional Tikhonov method [6], (10), and showed that the method
of Louis is of optimal order for a certain interval of parameters α with an
appropriate choice of the regularization parameter. Moreover, we demonstrated
that both methods are of optimal order with the discrepancy principle. Two
situations in which the fractional methods are significantly better than Tikhonov
regularization in standard form are illustrated with numerical examples.
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