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In this paper we present a procedure for solving first-order autonomous al-
gebraic partial differential equations. The method uses rational parametriza-
tions of algebraic surfaces and generalizes a similar procedure for first-order
autonomous ordinary differential equations. In particular we are interested
in rational solutions and present certain classes in which such solutions exist.
However, the method can also be used for finding non-rational solutions.

1 Introduction

Recently algebraic-geometric solution methods for algebraic ordinary differential equa-
tions (AODEs) were investigated. First results on solving first order AODEs can be
found in [12] where Gröbner bases are used and [4] where a degree bound is computed
which might be used for making an ansatz. The starting point for algebraic-geometric
methods was an algorithm by Feng and Gao [5, 6] which decides whether or not an
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autonomous AODE, F (y, y′) = 0 has a rational solution and in the affirmative case
computes it. This result was then generalized by Ngô and Winkler [16, 18, 17] to the
non-autonomous case F (x, y, y′) = 0. First results on higher order AODEs can be found
in [9, 10, 11]. Ngô, Sendra and Winkler [15] also classified AODEs in terms of rational
solvability by considering affine linear transformations. A generalization to birational
transformations can be found in [14]. In [7, 8] a solution method for autonomous AODEs
is presented which generalizes the method of Feng and Gao to finding radical and also
non-radical solutions. In this paper we present a generalization of the procedure to alge-
braic partial differential equations (APDEs). For the moment we restrict to first-order
autonomous APDEs in two variables.

In Section 2 we will recall and introduce the necessary definitions and concepts. Then
we will present the general procedure for solving APDEs in Section 3. In Section 4
we will consider the case of rational solutions. The section is divided into two parts.
The first part proves some properties of rational solutions which can be found by the
procedure. The second part presents a class of APDEs which has rational solutions.
Finally in Section 5 we show that the procedure is not restricted to rational solutions.

2 Preliminaries

We consider the field of rational functions K(x, y). By ∂
∂x

and ∂
∂y

we denote the usual

derivative by x and y respectively. Sometimes we might use the abbreviations ux = ∂u
∂x

and uy = ∂u
∂y

. The ring of differential polynomials is denoted as K(x, y){u}. It consists
of all polynomials in u and its derivatives, i. e.

K(x, y){u} = K(x, y)[u, ux, uy, uxx, uxy, uyy, . . .].

An algebraic partial differential equation (APDE) is defined by a differential polynomial
F ∈ K(x, y){u} which is also a polynomial in x and y. We write

F (x, y, u, ux, uy, uxx, uxy, uyy, . . .) = 0

for the considered APDE. In this paper we restrict to the first-order autonomous case,
i. e. F (u, ux, uy) = 0.

An algebraic surface S is a two-dimensional algebraic variety, i. e. if we restrict to three-
dimensional space this is a zero set of a squarefree non-constant polynomial f ∈ K[x, y, z],
S = {(a, b, c) ∈ A3 | f(a, b, c) = 0}. We call the polynomial f the defining polynomial.
An important aspect of algebraic surfaces is their rational parametrizability. We consider
an algebraic surface defined by an irreducible polynomial f . A triple of rational functions
P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) is called a rational parametrization of the surface if
f(p1(s, t), p2(s, t), p3(s, t)) = 0 for all s and t and the jacobian of P has generic rank 2.
We observe that this condition is fundamental since, otherwise, we are parametrizing a
point (if the rank is 0) or a curve on the surface (if the rank is 1). A parametrization can
be considered as a dominant map P(s, t) : A2 → S. By abuse of notation we also call
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this map a parametrization. We call a parametrization P(s, t) proper if it is a birational
map or in other words if for almost every point (a, b, c) on the curve we find exactly one
pair (s, t) such that P(s, t) = (a, b, c) or equivalently if K(P(s, t)) = K(s, t).

Above we have considered rational parametrizations of a surface. However, we might
want to deal with more general parametrizations. If so, we will say that a triple of
differentiable functions Q(s, t) = (q1(s, t), q2(s, t), q3(s, t)) is a parametrization of the
surface if f(Q(s, t)) is identically zero and the jacobian of Q(s, t) has generic rank 2.

Let F (u, ux, uy) = 0 be an autonomous APDE. We consider the corresponding al-
gebraic surface by replacing the derivatives by independent transcendental variables,
F (z, p, q) = 0. Given any differentiable function u(x, y) with F (u, ux, uy) = 0, then
(u(s, t), ux(s, t), uy(s, t)) is a parametrization. We call this parametrization the corre-
sponding parametrization of the solution. We observe that the corresponding parametriza-
tion of a solution is not necessarily a parametrization of the associated surface. For in-
stance, let us consider the APDE ux = 0. A solution would be of the form u(x, y) = g(y),
with g differentiable. However, this solution generates (g(t), 0, g′(t)) that is a curve in
the surface; namely the plane p = 0. Now, consider the APDE ux = λ, with λ a
nonzero constant. Hence, the solutions are of the form u(x, y) = λx + g(y). Then,
u(x, y) = λx + y generates the line (λs + t, λ, 1) while u(x, y) = λx + y2 generates the
parametrization (λs+ t2, λ, 2t) of the associated plane p = λ. These examples motivate
the following definition. Clearly a solution of an APDE is a function u(x, y) such that
F (u, ux, uy) = 0.

Definition 2.1.
We say that a solution of an APDE is rational if u(x, y) is a rational function over an
algebraic extension of K.
We say that a solution of an APDE is proper if the corresponding parametrization is
proper.

In the case of autonomous ordinary differential equations, every non-constant solution
induces a proper parametrization of the associated curve (see [5]). However, this is not
true in general for autonomous APDEs. For instance, the solution x + y3 of ux = 1,
induces the parametrization (s + t3, 1, 3t2) which is, although its jacobian has rank 2,
not proper.

Remark 2.2.
The jacobian of a proper parametrization P of a surface has generic rank 2 as we will
see in the following. Since P is proper we know that K(s, t) = K(P(s, t)). Hence,
there is a rational function R(a, b, c) = (R1(a, b, c), R2(a, b, c)) ∈ K(a, b, c)2 such that
R(P(s, t)) = (s, t). Thus, Jid = JR◦P = JR(P) · JP . Taking into account, that the rank
of a product of two matrices is smaller equal the minimal rank of the two matrices, we
get that rank(JP) = 2.

We observe that, in the rational case, the condition on the rank of jacobian (see Def-
inition 2.1) is equivalent to ask that the implicitization ideal of the parametrization is
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generated by F ; compare with the notion of complete solution of suitable dimension in
Definition 2.3. We denote by (F ) the ideal generated by F .

Definition 2.3.
Let F (u, ux, uy) = 0 be an APDE. Assume we have a rational solution u depending on
two constants c1, c2. Let L = (p1, p2, p3) be the parametrization induced by the solution,
i. e. p1 = u, p2 = us, p3 = ut. Assume pi = Ni

Di
with gcd(Ni, Di) = 1. We say that

u(s, t) is a complete solution if (F ) = I ∩C[s, t, z, p, q] where I is the ideal generated by
{D1z −N1, D2p−N2, D3q −N3, lcm(D1, D2, D3)w − 1} over C[c1, c2, w, s, t, z, p, q].

We call a solution complete of suitable dimension if it is complete and (F ) = I ∩
C[c1, c2, z, p, q].

Intuitively speaking, the notion of complete solution is requiring that the corresponding
parametrization of the solution parametrizes an algebraic set on the surface, indepen-
dently of the constants c1 and c2. The suitable dimension ensures that it parametrizes,
indeed, the surface.

Note that the notion of complete also appears elsewhere in the theory of PDEs. In [13]
a definition of completeness can be found which has a somehow similar purpose but in
fact is not the same as the one we use here.

In the following example we will see complete and non-complete solutions of APDEs.

Example 2.4.
We consider the APDE ux = 0, F (z, p, q) = p, as well as the solution u(x, y) = y+c1+c2.
The corresponding parametrization is L = (t + c1 + c2, 0, 1). Moreover, a Gröbner
basis of I w.r.t. the lexicographic order with c1 > c2 > w > u > s > t > p > q is
{q − 1, p, w − 1,−u + t + c1 + c2}. Thus, I ∩ C[u, s, t, p, q] is generated by {q − 1, p},
that is the line parametrized by L, and hence u(x, y) is not complete. However, if we
take u(x, y) = c1y + c2, the Gröbner basis is {p, w − 1, qt + c2 − u,−q + c1}. So,
I ∩ C[u, s, t, p, q] = (p), and u is complete. However, it is not of suitable dimension
because I ∩ C[c1, c2, u, p, q] = (p,−q + c1).

Now, if we take the APDE, ux = 1. In Table 1 we see solutions and their properties.
Note that the solution s+ c1 + t2 + c2 is not complete and hence, not complete of suitable
dimension. However, the other property of suitable dimension is fulfilled.

solution complete suitable dim proper rank(J )
s+ c1 F F F 1
s+ t+ c1 + c2 F F F 1
s+ c1 + c2t T F F 1
s+ c1 + t2 + c2 F F T 2
s+ c1 + c2t

2 T T T 2
s+ c1 + (t+ c2)

2 T T T 2
s+ c1 + (t+ c2)

3 T T F 2

Table 1: Properties of the solutions of ux = 1 where T means true, F false
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3 A method for solving first-order autonomous APDEs

Let F (u, ux, uy) = 0 be an algebraic partial differential equation. We consider the surface
F (z, p, q) = 0 and assume it admits a proper (rational) surface parametrization

Q(s, t) = (q1(s, t), q2(s, t), q3(s, t)).

An algorithm for computing a proper rational parametrization of a surface can be found
for instance in [19]. Here, we will stick to rational parametrizations, but the procedure
which we present will work as well with other kinds of parametrizations, for instance
radical ones. First results on radical parametrizations of surfaces can be found in [20].
Assume that L(s, t) = (p1, p2, p3) corresponds to a solution of the APDE. Furthermore
we assume that the parametrization Q can be expressed as

Q(s, t) = L(g(s, t))

for some invertible function g(s, t) = (g1(s, t), g2(s, t)). This assumption is motivated
by the fact that in case of rational algebraic curves every non-constant rational solution
of an AODE yields a proper rational parametrization of the associated algebraic curve
and each proper rational parametrization can be obtained from any other proper one
by a rational transformation. However, in the case of APDEs, not all rational solutions
provide a proper parametrization, as mentioned in the remark after Definition 2.1. Now,
using the assumption, if we can compute g−1 we have a solution Q(g−1(s, t)).

Let J be the jacobian matrix. Then we have

JQ(s, t) = JL(g(s, t)) · Jg(s, t).

Taking a look at the rows we get that

∂q1
∂s

=
∂p1
∂s

(g)
∂g1
∂s

+
∂p1
∂t

(g)
∂g2
∂s

= q2(s, t)
∂g1
∂s

+ q3(s, t)
∂g2
∂s

∂q1
∂t

=
∂p1
∂s

(g)
∂g1
∂t

+
∂p1
∂t

(g)
∂g2
∂t

= q2(s, t)
∂g1
∂t

+ q3(s, t)
∂g2
∂t

(1)

This is a system of quasilinear equations in the unknown functions g1 and g2. In case
q2 or q3 is zero the problem reduces to ordinary differential equations. Hence, from now
on we assume that q2 6= 0 and q3 6= 0. First we divide by q2:

a1 =
∂g1
∂s

+ b
∂g2
∂s

a2 =
∂g1
∂t

+ b
∂g2
∂t

(2)

with

a1 =
∂q1
∂s

q2
, a2 =

∂q1
∂t

q2
, b =

q3
q2
. (3)
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By taking derivatives we get

∂a1
∂t

=
∂2g1
∂s∂t

+
∂b

∂t

∂g2
∂s

+ b
∂2g2
∂s∂t

∂a2
∂s

=
∂2g1
∂t∂s

+
∂b

∂s

∂g2
∂t

+ b
∂2g2
∂t∂s

(4)

Subtraction of the two equations yields

∂b

∂t

∂g2
∂s
− ∂b

∂s

∂g2
∂t

=
∂a1
∂t
− ∂a2

∂s
(5)

This is a single quasilinear differential equation which can be solved by the method of
characteristics (see for instance [22]). In case ∂b

∂t
= 0 or ∂b

∂s
= 0 equation (5) reduces to

a simple ordinary differential equation.

Remark 3.1.
Remark that if both derivatives of b are zero then b is a constant. Then the left hand
side of (5) is zero. In case the right hand side is non-zero we get a contradiction, and
hence there is no solution. In case the right hand side is zero as well we get from (5)
that

0 =
∂a1
∂t
− ∂a2

∂s
=

∂

∂t

(
∂q1
∂s

q2

)
− ∂

∂s

(
∂q1
∂t

q2

)

=
∂q1
∂t∂s

q2 − ∂q1
∂s

∂q2
∂t

q22
−

∂q1
∂s∂t

q2 − ∂q1
∂t

∂q2
∂s

q22

= −
∂q1
∂s

∂q2
∂t
− ∂q1

∂t
∂q2
∂s

q22

hence,

0 =
∂q1
∂s

∂q2
∂t
− ∂q1

∂t

∂q2
∂s

.

Moreover, since b is constant, q2 = kq3 for some constant k. But this means that the
rank of the jacobian of Q is 1, a contradiction to Q being proper.

Therefore we assume from now on, that the derivatives of b are non-zero. According
to the method of characteristics, we need to solve the following system of first-order
ordinary differential equations

ds(t)

dt
= −

∂b
∂t

(s(t), t)
∂b
∂s

(s(t), t)
,

dv(t)

dt
=

∂a1
∂t

(s(t), t)− ∂a2
∂s

(s(t), t)

− ∂b
∂s

(s(t), t)
.
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The second equation is linear and separable but depends on the solution of the first.
The first ODE can be solved independently. Its solution s(t) = η(t, k) will depend on
an arbitrary constant k. Hence, also the solutions of the second ODE depends on k.
Finally, the function g2 we are looking for is g2(s, t) = v(t, µ(s, t)) + ν(µ(s, t)) where µ
is computed such that s = η(t, µ(s, t)) and ν is some function in k. In case we are only
looking for rational solutions we can use the algorithm of Ngô and Winkler [16, 18, 17]
for solving these ODEs.

Knowing g2 we can compute g1 by using equation (1) which now reduces to a separable
ODE in g1. The remaining task is to compute h1 and h2 such that g(h1(s, t), h2(s, t)) =
(s, t). Then q1(h1, h2) is a solution of the original PDE.

Finally the method reads as

Procedure 1.
Given an autonomous APDE, F (u, ux, uy) = 0, where F is irreducible.

1. Compute a proper rational parametrization Q = (q1, q2, q3) of F (z, p, q) = 0.

2. Compute the coefficients b and ai as in (3).

3. If ∂b
∂s

= 0 and ∂b
∂t
6= 0 compute g2 =

∫ ∂a1
∂t
− ∂a2

∂s
∂b
∂t

ds + κ(t) and go to step 7 otherwise

continue.
If ∂b

∂s
= ∂b

∂t
= 0 return “No proper solution”.

4. Solve the ODE ds(t)
dt

= −
∂b
∂t

(s(t),t)
∂b
∂s

(s(t),t)
for s(t) = η(t, k) with arbitrary constant k.

5. Solve the ODE dv(t)
dt

=
∂a1
∂t

(η(t,k),t)− ∂a2
∂s

(η(t,k),t)

− ∂b
∂s

(η(t,k),t)

by v(t) = v(t, k) =
∫ ∂a1

∂t
(η(t,k),t)− ∂a2

∂s
(η(t,k),t)

− ∂b
∂s

(η(t,k),t)
dt+ ν(k).

6. Compute µ such that s = η(t, µ(s, t)) and then g2(s, t) = v(t, µ(s, t)).

7. Use the second equation of (2) to compute g1(s, t) = m(s) +
∫
a2 − b∂g2∂t dt.

8. Determine m(s) by using the first equation of (2).

9. Compute h1, h2 such that g(h1(s, t), h2(s, t)) = (s, t).

10. Return the solution q1(h1, h2).

In general ν will depend on a constant c2 and m on a constant c1. As a special case of
the procedure we will fix ν = c2. This choice is done for simplicity reasons but we may
sometimes refer to cases with other choices which are subject of further research.

Furthermore, the procedure can be considered symmetrically in step 3 for the case
that ∂b

∂t
= 0 and ∂b

∂s
6= 0. In such a case the rest of the procedure has to be changed

symmetrically as well. We will not go into further details.

Theorem 3.2.
Let F (u, ux, uy) = 0 be an autonomous APDE. If Procedure 1 returns a function v(x, y)
for input F , then v is a solution of F .
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Proof. By the procedure we know that v(x, y) = q1(h1(x, y), h2(x, y)) with hi such that
g(h1(s, t), h2(s, t)) = (s, t). The function g fulfills the assumption that u(g1, g2) = q1 for
a solution u since it is a solution of the system (1). Hence, v is a solution. We have seen
a more detailed description at the beginning of this section.

Now, we will show that the result does not change if we postpone the introduction of
c1 and c2 to the end of the procedure. It is easy to show that if u(x, y) is a solution of
an autonomous APDE then so is u(x + c, y + d) for any constants c and d. From the
procedure we see that in the computation of g1 we use the derivative of g2 only (and
hence c2 disappears). Therefore, we have that

g2 = ḡ2 + c2, g1 = ḡ1 + c1,

for some functions ḡ1, ḡ2. Let g = (g1, g2) and ḡ = (ḡ1, ḡ2). In the step 9 we are looking
for a function h such that g ◦ h = id. Now g ◦ h = ḡ ◦ h + (c1, c2). Take h̄ such that
ḡ ◦ h̄ = id. Then g ◦ h̄(s − c1, t − c2)) = id. Hence, we can introduce the constants at
the end.

In case the original APDE is in fact an AODE, the ODE in step 5 turns out to be
trivial and the integral in step 8 is exactly the one which appears in the procedure for
AODEs [7, 8]. Of course then g is univariate and so is its inverse. In this sense, this new
procedure generalizes the procedure in [7, 8]. We do not specify Procedure 1 to handle
this case.

In the following we see a simple example with a rational solution computed by the
procedure.

Example 3.3.
We consider the autonomous APDE

F (u, ux, uy) = uu2x − uuxuy + 7u2y = 0.

Since F is of degree one in each of the derivatives, it is easy to compute a parametrization

Q =
(
− 7t2

s(s−t) , s, t
)

. We compute the coefficients

a1 =
7(2s− t)t2

s3(s− t)2
, a2 =

7t(−2s+ t)

s2(s− t)2
, b =

t

s
.

In step 4 we find s(t) = tk and in step 5 we compute v(t) = − 7−14k
(−1+k)2kt + ν(k). Then

µ(s, t) = s
t

and hence (with ν = c2),

g2 =
7(2s− t)t
s(s− t)2

+ c2,

g1 =
7t2(−2s+ t)

s2(s− t)2
+m(s).

8



Using step 8 we find out that m(s) = c1. Computing the inverse of g we find

h1 = −7 (s− c1) (s+ 2t− c1 − 2c2)

(t− c2) (s+ t− c1 − c2)2
,

h2 =
7 (s− c1)2 (s+ 2t− c1 − 2c2)

(t− c2)2 (s+ t− c1 − c2)2
.

Finally, we get the solution − 7(x−c1)2
(y−c2)(x+y−c1−c2) .

4 Rational Solutions

For first-order autonomous AODE the algorithm of Feng and Gao [5] gives an answer
on whether or not a rational solution exists. As Procedure 1 is a generalization of the
the procedure for ODEs in [7, 8], it also generalizes this algorithm. However, as in [7, 8],
the procedure gives a correct answer when everything is computable, but otherwise does
not tell us whether a solution might exist. In the following we describe properties of
rational solutions found by Procedure 1 and we give a class of APDEs that has a rational
solution which can be found by the procedure.

4.1 Properties of Rational Solutions

In the following we will discuss the properties of rational solutions computed by our
procedure. We will show that these solutions are proper and complete of suitable di-
mension.

Lemma 4.1.
If Procedure 1 yields a rational solution, then the solution is proper.

Proof. Let L = (p1, p2, p3) be the corresponding parametrization of the output solution.
In the procedure we start with a proper parametrization Q of the associated surface.
When the procedure is successful we know that L(g) = Q and the inverse h of g exists.
Hence, L = Q(h) is proper as well.

Recall Remark 2.2 which proves that the jacobian of the corresponding parametrization
of a proper solution computed by the procedure has generic rank 2.

Theorem 4.2.
If Procedure 1 yields a rational solution, then the solution is complete.

Proof. Let L = (p1, p2, p3) be the parametrization corresponding to the solution. Let L∗
be the parametrization without the constants c1, c2 (i. e. L(s, t, c1, c2) = L∗(s+c1, t+c2)).
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Let U(s, t, c1, c2) = N1

D1
be the solution and Us = N2

D2
and Ut = N3

D3
its derivatives w. r. t. s

and t respectively. We consider the polynomials:

H1 = D1z −N1, H2 = D2p−N2,

H3 = D3 − qN3, H4 = W lcm(D1, D2, D3)− 1

Note that H1, . . . , H4 ∈ C[s, t, c1, c2, z, p, q,W ]. Let J = 〈H1, . . . , H4〉 be the ideal
generated by {H1, . . . , H4} over C[s, t, c1, c2, z, p, q,W ]. We want to prove that J ∩
C[s, t, z, p, q] = 〈F 〉, where the ideal 〈F 〉 is over C[s, t, z, p, q].

“⊂”: Let f ∈ J ∩ C[s, t, z, p, q]. Then, f can be written as

f(s, t, z, p, q) =
4∑
i=1

Ai(s, t, c1, c2, z, p, q,W )Hi(s, t, c1, c2, z, p, q,W ).

Let us denote

Λ = (s, t, U(s, t, c1, c2), Us(s, t, c1, c2), Ut(s, t, c1, c2)) = (s, t,L∗(s+ c1, t+ c2)).

We consider

f(Λ) =
4∑
i=1

Ai(Λ,W )Hi(Λ,W ) = A4(Λ,W )H4(Λ,W )

= A4(Λ,W )(W · lcm(D1, D2, D3)(s, t, c1, c2)− 1).

Since lcm(D1, D2, D3)(s, t, c1, c2) is not zero, because the corresponding rational
functions U(s, t, c1, c2), Us(s, t, c1, c2), Ut(s, t, c1, c2) are well defined, and since f(Λ)
does not depend on W , we have that A4(Λ,W ) is identically zero. Therefore,

f(Λ) = 0.

This means that for every particular value of the pair (s0, t0) ∈ C2, the polyno-
mial f(s0, t0, z, p, q) vanishes at the (jacobian-rank 2) parametrization L(s0, t0) of
the surface F (z, p, q) = 0. Therefore, for every particular value of (s0, t0) ∈ C2,
F (z, p, q) divides f(s0, t0, z, p, q). Let us see that this implies that F divides
f(s, t, z, p, q). Indeed, if we assume that F does not divide f , since F is irre-
ducible, then gcd(F, f) = 1. So, the resultant R = resz(f, F ) is not zero (if z does
not appear take p or q). Now we take a value (s0, t0) that does not vanish R. Since
the leading coefficient of F w. r. t. z does not vanish at (s0, t0), the resultant special-
izes properly (see for instance [21, Lemma 4.3.1]). So, gcd(f(s0, t0, z, p, q), F ) = 1
and hence F does not divide f(s0, t0, z, p, q).

“⊃”: Let us consider the polynomials

H∗i (s, t, z, p, q,W ) = Hi(s− c1, t− c2, c1, c2, z, p, q,W ) ∈ C[s, t, z, p, q,W ]

and the corresponding ideal J∗. J∗ is the implicitization ideal of L∗(s, t). There-
fore, J∗ ∩ C[z, p, q] ⊇ 〈F 〉 where now 〈F 〉 is over C[z, p, q]. We write 〈F 〉z,p,q and
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〈F 〉s,t,z,p,q to distinguish between the two ideals. In any case, F ∈ J∗. So F can
be expressed as

F =
4∑
i=1

A∗i (s, t, z, p, q,W )H∗i (s, t, z, p, q,W ).

Since, F does not depend on s and t we get the following

F (z, p, q) =
4∑
i=1

A∗i (s+ c1, t+ c2, z, p, q,W )H∗i (s+ c1, t+ c2, z, p, q,W )

=
4∑
i=1

A∗i (s+ c1, t+ c2, z, p, q,W )Hi(s, t, c1, c2, z, p, q,W ).

Now, take g ∈ 〈F 〉s,t,z,p,q. Then,

g = M(s, t, z, p, q)F (z, p, q)

= M(s, t, z, p, q)
4∑
i=1

A∗i (s+ c1, t+ c2, z, p, q,W )Hi(s, t, c1, c2, z, p, q,W ).

Thus, g ∈ J and by assumption g ∈ C[s, t, z, p, q].

4.2 APDEs with Rational Solutions

We are interested in whether or not a given APDE has rational solutions. We will not
give a full answer but show classes of APDEs which have a rational solution that can
be found by the procedure. The following lemma shows rational solvability for a certain
class of APDEs.

Lemma 4.3.
Assume we have an APDE, F (u, ux, uy) = 0, with a parametrization of the form Q =

(sn+1B(t), tsnB(t), snB(t)) where B(t) = N(t)
D(t)
6∈ K with N(t), D(t) ∈ K[t], gcd(N,D) =

1 and n ∈ Z.
Then F has an algebraic solution. Moreover, there is a rational solution if the equation

D(α)N(α)s(n+ 1) + (N ′(α)D(α)−N(α)D′(α))(sα + t) = 0

has a linear factor in α which also depends on s or t.

Proof. Let Q = (sn+1B(t), tsnB(t), snB(t)). We observe that Q is proper (its inverse is
(z/q, p/q)), and hence we can take Q in the first step of the procedure. Following the
procedure, we get:

b =
1

t
, a1 =

n+ 1

t
, a2 =

s

t

B′

B
,

11



and hence, ∂b
∂s

= 0 but ∂b
∂t
6= 0. Therefore

g2 =

∫ ∂a1
∂t
− ∂a2

∂s
∂b
∂t

ds = s(n+ 1 + t
B′

B
),

g1 =

∫
a2 − b

∂g2
∂t

dt+m(s) = −sB
′

B
+m(s).

Now we need to find m(s). We do so by using the equation as in the procedure

∂q1
∂s

= q2
∂g1
∂s

+ q3
∂g2
∂s

(n+ 1)snB = sntB(−B
′

B
+m′(s)) + snB(n+ 1 + t

B′

B
)

(n+ 1)snB = −sntB′ + sntBm′ + sn(n+ 1)B + sntB′

0 = sntBm′

0 = m′.

Hence, m is a constant and we choose m = 0. Finally we need to find h1, h2 fulfilling

g1(h1, h2) = s, g2(h1, h2) = t,

−h1
B′(h2)

B(h2)
= s, h1(n+ 1 + h2

B′(h2)

B(h2)
) = t.

This means

−s B(h2)

B′(h2)
= t(n+ 1 + h2

B′(h2)

B(h2)
)−1

−sB(h2)(n+ 1 + h2
B′(h2)

B(h2)
) = tB′(h2)

B(h2)s(n+ 1) +B′(h2)(sh2 + t) = 0.

Hence, after clearing denominators, we have an algebraic equation for h2 and therefore
also for h1. Thus, we get an algebraic solution. Furthermore we get a rational solution
if the last equation has a factor with degree 1 in h2 which also depends on s or t.

Corollary 4.4.
Let the APDE be of the form

F (u, ux, uy) = λum + γm−1(ux, uy) = 0

where m ∈ N, λ ∈ C \ {0} and γm−1(p, q) be a form of degree m − 1. Then F has an
algebraic solution.

Proof. Observe that F (z, p, q) is irreducible, and can be parametrized as

Q(s, t) =

(
−sγm−1(t, 1)

λsm
,−tγm−1(t, 1)

λsm
,−γm−1(t, 1)

λsm

)
,

that corresponds to the parametrization form in Lemma 4.3 with n = −m and B(t) =
−γm−1(t, 1)/λ. Hence, there is an algebraic solution.
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Note, that the same is applicable to APDEs F (u, ux, uy) = λumx + γm−1(u, uy) = 0 and
F (u, ux, uy) = λumy + γm−1(u, ux) = 0. The following example is of the form required in
the corollary and yields a rational solution.

Example 4.5.
We consider the APDE

F (u, ux, uy) = 6u4 + 5u3x + 5u2xuy = 0.

This example fulfills the requirements of Lemma 4.3. We compute a parametrization

Q =

(
−5t2 + 5t3

6s3
,−t (5t2 + 5t3)

6s4
,−5t2 + 5t3

6s4

)
.

With the notation of Lemma 4.3 we have B(t) = −5t2+5t3

6
and n = −4. Hence, we have

to solve the following equation for h2

B(h2)s(n+ 1) +B′(h2)(sh2 + t) = 0

−3(5h22 + 5h32)s+ (10h2 + 15h22)(sh2 + t) = 0

h2
(
−3(5h2 + 5h22)s+ (10 + 15h2)(sh2 + t)

)
= 0

5h2 (−h2s+ 3h2t+ 2t) = 0.

Doing so we get

h2 = − 2t

−s+ 3t
.

Now using −h1B
′(h2)
B(h2)

= s we compute

h1 = −t(−s+ t)

−s+ 3t
.

Finally, we get the solution u(x, y) = 10
3(x−y)2y and hence u(x + c1, y + c2) is a solution

for any constants c1 and c2.

5 Other Solutions

The procedure presented in this paper is, however, not restricted to rational solutions nor
to rational parametrizations as we will see in the following examples. In this section we
will show examples with non-rational solutions which can be computed by the procedure.
We start with an example which has a radical solution.

Example 5.1.
We consider the APDE

F (u, ux, uy) = 5u3ux − 7u5x + 5u3uy − u4xuy = 0.

13



This example fulfills the requirements of Lemma 4.3. We compute a parametrization

Q =

(
−s (5s3 + 5s3t)

−t4 − 7t5
,−t (5s3 + 5s3t)

−t4 − 7t5
,−5s3 + 5s3t

−t4 − 7t5

)
.

With the notation of Lemma 4.3 we have B(t) = − 5+5t
−t4−7t5 and n = 3. Hence, we have

to solve the following equation for h2

B(h2)s(n+ 1) +B′(h2)(sh2 + t) = 0.

Doing so we get

h2 =
−19t−

√
361t2 − 8t(3s+ 14t)

2(3s+ 14t)
.

Now using −h1B
′(h2)
B(h2)

= s we compute

h1 =
1

4

(
t− 19st

2(3s+ 14t)
−
s
√

361t2 − 8t(3s+ 14t)

2(3s+ 14t)

)
.

Finally, we get the solution

u(x, y) =
5
(
−6x− 9y +

√
3
√
y(−8x+ 83y)

)(
13xy − 28y2 +

√
3x
√
y(−8x+ 83y)

)4
256

(
19y +

√
3
√
y(−8x+ 83y)

)4 (
−6x+ 105y + 7

√
3
√
y(−8x+ 83y)

) .

Furthermore, u(x+ c1, y + c2) is a solution for any constants c1 and c2.

In a further example we compute an exponential solution of an APDE.

Example 5.2.
We consider the APDE

F (u, ux, uy) = 4u4 − 8u3x + 8u3uy = 0.

We compute a parametrization Q =
(

8st3

8s3+4s4
, 8t4

8s3+4s4
, 8t3

8s3+4s4

)
. We compute the coeffi-

cients

a1 = − 4 + 3s

2t+ st
, a2 =

3s

t2
, b =

1

t
.

Solving the ODEs we get

g2 = log(2 + s), g1 = −3s

t
.

Computing the inverse of g we find

h1 = −2 + et/2, h2 =
3
(
2− et/2

)
s

.

Finally, we get the solution −54e−y/2(−2+ey/2)
x3

.
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6 Conclusion

We have introduced a procedure which, in case all steps are computable, yields a solution
of the input APDE. In case one step of the procedure is not computable (in a certain
class of functions) we cannot give an answer. Furthermore, in the case of rational
solutions we have shown that the output of the procedure is proper and complete. We
have also shown classes of APDEs which have rational solutions. The investigation of
rational solutions will be subject of further research. The procedure finds solutions of
the following well known PDEs.

Burgers (inviscid) [22, p. 174]
F (u, ux, uy) = uux + uy = 0 with Q = (− t

s
, s, t) yields the solution s−c1

t−c2 .

Traffic [3, p. 151]

F (u, ux, uy) = uy + ux

(
−uvm

rm
+
(

1− u
rm

)
vm

)
= 0 with Q = ( rm(t+svm)

2svm
, s, t) yields

the solution rm(−s+tvm+c1−vmc2)
2vm(t−c2) .

Eikonal [2, p. 2]
F (u, ux, uy) = u2x + u2y − 1 = 0 with Q = (s, 1−t

2

1+t2
, 2t
1+t2

) yields the solution

±
√
s2 + t2 − 2sc1 + c21 − 2tc2 + c22.

Convection-Reaction [1, p. 7]
F (u, ux, uy) = ux + cuy − du = 0 with parametrization Q = ( s+ct

d
, s, t) yields the

solution ed(s−c1)+ce
d(t−c2)

c

d
.

Generalized Burgers (special case) [22, p. 176]

F (u, ux, uy) = uy+unux+
(
j
2y

+ α
)
u+
(
β + γ

x

)
un+1− δ

2
uxx = 0 with j = γ = δ = 0

and n = 1 has the parametrization Q = (− s(1+sα)
st+s2β

,− t(1+sα)
st+s2β

,− 1+sα
st+s2β

) which yields

the solution
e−sβ(−esβ+eβc1)α

(1+eα(t−c2))β
.
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