
A Decomposition Result for

Biharmonic Problems and the

Hellan-Herrmann-Johnson Method

Wolfgang Krendl Walter Zulehner

DK-Report No. 2014-08 08 2014

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE

HELLAN-HERRMANN-JOHNSON METHOD∗

WOLFGANG KRENDL† AND WALTER ZULEHNER‡

Abstract. For the first biharmonic problem a mixed variational formulation is introduced which is equivalent to

a standard primal variational formulation on arbitrary polygonal domains. Based on a Helmholtz decomposition for

an involved nonstandard Sobolev space it is shown that the biharmonic problem is equivalent to three (consecutively

to solve) second-order elliptic problems. Two of them are Poisson problems, the remaining one is a planar linear

elasticity problem with Poisson ratio 0. The Hellan-Herrmann-Johnson mixed method and a modified version are

discussed within this framework. The unique feature of the proposed solution algorithm for the Hellan-Herrmann-

Johnson method is that it is solely based on standard Lagrangian finite element spaces and standard multigrid methods

for second-order elliptic problems and it is of optimal complexity.

Key words. biharmonic equation, Hellan-Herrmann-Johnson method, mixed methods, Helmholtz decomposi-

tion
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1. Introduction. We consider the first biharmonic boundary value problem: For given

f , find w such that

(1.1) ∆2w = f in Ω, w =
∂w

∂n
= 0 on Γ,

where Ω is an open and bounded set in R
2 with a polygonal Lipschitz boundary Γ, ∆ and

∂/∂n denote the Laplace operator and the derivative in the direction normal to the boundary,

respectively. Problems of this type occur, e.g., in linear elasticity, where w is the deflection

of a clamped Kirchhoff plate under a vertical load with density f .

In this paper we focus on finite element methods for discretizing the continuous prob-

lem (1.1). The aim is to construct and analyze efficient iterative methods for solving the

resulting linear system. In particular, the Hellan-Herrmann-Johnson (HHJ) mixed finite el-

ement method is studied, see [16, 17, 19], which is strongly related to the non-conforming

Morley finite element, see [21, 2]. The proposed iterative method consists of the applica-

tion of the preconditioned conjugate gradient method to three discretized elliptic problems of

second order. The implementation requires only manipulations with standard conforming La-

grangian finite elements for second-order problems. The proposed preconditioners are stan-

dard multigrid preconditioners for second-order problems, which lead to mesh-independent

convergence rates.

The results are based on a decomposition of the continuous problem into three second-

order elliptic problems, which are to be solved consecutively. The first and the last problem

are Poisson problems with Dirichlet conditions, the second problem is a pure traction problem

in planar linear elasticity with Poisson ratio 0. The HHJ method is a non-conforming method

in this setup. A conforming modification will be discussed as well.

There are many alternative approaches for biharmonic problems discussed in literature.

Finite element discretizations range from conforming and classical non-conforming finite

element methods for fourth-order problems, discontinuous Galerkin methods for fourth-order
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problems to various mixed methods, see, e.g., [10, 12, 8, 4], and the references cited there.

Solution techniques proposed for the linear systems, which show mesh-independent or nearly

mesh-independent convergence rates are typically based on two-level or multilevel additive

or multiplicative Schwarz methods (including multigrid methods), see, e.g., [24, 7, 26, 15],

and the references cited there.

We are not aware of any other approach, which is based solely on standard compo-

nents for second-order elliptic problems and for which optimal convergence behavior could

be shown. An additional feature of the approach in this paper is a new formulation of the

underlying continuous mixed variational problem, which is fully equivalent to the original

primal variational problem without any further assumptions on Ω like convexity. This was

achieved by introducing an appropriate nonstandard Sobolev space.

The paper is organized as follows. Section 2 contains a modification of a standard

mixed formulation of the biharmonic problem, for which well-posedness will be shown. A

Helmholtz decomposition of an involved nonstandard Sobolev space is derived in Section

3 and the resulting decomposition of the biharmonic problem is presented. In Section 4 the

Hellan-Herrmann-Johnson method is discussed. Section 5 contains the discrete version of the

Helmholtz decomposition of Section 3. The paper closes with a few numerical experiments

in Section 6 for illustrating the theoretical results.

2. A modified mixed variational formulation. Here and throughout the paper we use

L2(Ω), Hm(Ω), and Hm
0 (Ω) with its dual space H−m(Ω) to denote the standard Lebesgue

and Sobolev spaces with corresponding norms ‖.‖0, ‖.‖m, |.|m, and ‖.‖−m for positive inte-

gers m, see, e.g., [1].

A standard (primal) variational formulation of (1.1) reads as follows: For given f ∈
H−1(Ω), find w ∈ H2

0 (Ω) such that

(2.1)

∫

Ω

∇2w : ∇2v dx = 〈f, v〉 for all v ∈ H2
0 (Ω),

where ∇2 denotes the Hessian, A : B =
∑2

i,j=1 Aij Bij for A,B ∈ R
2×2, and 〈·, ·〉

denotes the duality product in H∗ × H for a Hilbert space H with dual H∗, here for H =
H1

0 (Ω). Existence and uniqueness of a solution to (2.1) is guaranteed even for more general

right hand sides f ∈ H−2(Ω) by the theorem of Lax-Milgram, see, e.g., [22, 20].

For the HHJ mixed method the auxiliary variable

(2.2) w = ∇2w

is introduced, whose elements can be interpreted as bending moments in the context of linear

elasticity. This allows to rewrite the biharmonic equation in (1.1) as a system of two second-

order equations

(2.3) ∇2w = w, divdivw = f in Ω

with the following notations for a matrix-valued function v and a vector-valued function φ.

div v =

[
∂1v11 + ∂2v12

∂1v21 + ∂2v22

]
and div φ = ∂1φ1 + ∂2φ2.

In the standard approach a mixed variational formation is directly derived from the sys-

tem (2.3). We take here a little detour, which better motivates the nonstandard Sobolev space

we use in this paper for a modified mixed variational formulation. Starting point is the fol-

lowing unconstrained optimization problem: Find w ∈ H2
0 (Ω) such that

(2.4) J(w) = min
v∈H2

0
(Ω)

J(v)



THE HELLAN-HERRMANN-JOHNSON METHOD 3

with

J(v) =
1

2

∫

Ω

∇2v : ∇2v dx− 〈f, v〉.

It is well-known that (2.4) is equivalent to (2.1). Actually, (2.1) can be seen as the optimality

system characterizing the solution of (2.4). By introducing the auxiliary variablew = ∇2w ∈
L2(Ω)sym with

L
2(Ω)sym = {v : vji = vij ∈ L2(Ω), i, j = 1, 2},

equipped with the standard L2-norm ‖v‖0 for matrix-valued functions v, the objective func-

tional becomes a functional depending on the original and the auxiliary variable:

(2.5) J(v,v) =
1

2

∫

Ω

v : v dx− 〈f, v〉.

The weak formulation of (2.2) leads to the constraint

(2.6) c((w,w), τ ) = 0 for all τ ∈ M ,

where

c((v,v), τ ) = −

∫

Ω

v : τ dx−

∫

Ω

∇v · div τ dx,

and M is a (not yet specified) space of sufficiently smooth matrix-valued test functions. By

this the unconstrained optimization problem (2.4) is transformed to the following constrained

optimization problem: Find (w,w) ∈ H1
0 (Ω)×L2(Ω)sym that minimizes the objective func-

tional (2.5) subject to the constraint (2.6). The Lagrangian functional associated with this

constrained optimization problem is given by

L ((v,v), τ ) = J(v,v) + c((v,v), τ ),

which leads to the following first-order optimality system:

(2.7)

∫

Ω

w : v dx+ c((v,v),σ) = 〈f, v〉 for all (v,v) ∈ H1
0 (Ω)×L

2(Ω)sym,

c((w,w), τ ) = 0 for all τ ∈ M .

Here σ ∈ M denotes the Lagrangian multiplier associated with the constraint (2.6). The

optimality system is a saddle point problem on the space X = H1
0 (Ω)×L

2(Ω)sym, equipped

with the standard norm

‖(v,v)‖X =
(
|v|21 + ‖v‖20

)1/2

for the primal variable (v,v) and the (not yet specified) Hilbert space M , equipped with a

norm ‖τ‖M for the dual variable τ . An essential condition for the analysis of (2.7) is the

inf-sup condition for the bilinear form c, which reads: There is a constant β > 0 such that

sup
06=(v,v)∈X

c((v,v), τ )

‖(v,v)‖X
≥ β ‖τ‖M ,

It is easy to see that

(2.8) sup
06=(v,v)∈X

c((v,v), τ )

‖(v,v)‖X
=

(
‖τ‖20 + ‖ divdiv τ‖2−1

)1/2
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for sufficiently smooth functions τ . If the right-hand side in (2.8) is chosen as the norm in

M , then the inf-sup condition is trivially satisfied with constant β = 1. This motivates to set

M = H−1(divdiv,Ω)sym with

H
−1(divdiv,Ω)sym = {τ ∈ L

2(Ω)sym : divdiv τ ∈ H−1(Ω)},

equipped with the norm

‖τ‖−1,divdiv =
(
‖τ‖20 + ‖ divdiv τ‖2−1

)1/2
.(2.9)

Here divdiv τ is meant in the distributional sense. It is easy to see that H−1(div div,Ω)sym

is a Hilbert space. In order to have a well-defined bilinear form c, the original definition has

to be replaced by

c((v,v), τ ) = −

∫

Ω

v : τ dx+ 〈divdiv τ , v〉,

which coincides with the original definition, if τ is sufficiently smooth, say τ ∈ H1(Ω)sym

with

H
1(Ω)sym = {τ ∈ L

2(Ω)sym : τ ij ∈ H1(Ω), i, j = 1, 2},

equipped with the standard H1-norm ‖τ‖1 and H1-semi-norm |τ |1 for matrix-valued func-

tions τ . Observe that

H
1(Ω)sym ⊂ H

−1(divdiv,Ω)sym ⊂ L
2(Ω)sym.

From the first row of the optimality system (2.7) for v = 0 it easily follows that w = σ.

So the auxiliary variable w can be eliminated and we obtain after reordering the following

reduced optimality system: For f ∈ H−1(Ω), find σ ∈ H−1(divdiv,Ω)sym and w ∈
H1

0 (Ω) such that

(2.10)

∫

Ω

σ : τ dx − 〈divdiv τ , w〉 = 0 for all τ ∈ H
−1(div div,Ω)sym,

− 〈divdivσ, v〉 = −〈f, v〉 for all v ∈ H1
0 (Ω).

REMARK 2.1. The presented approach to derive the mixed method via the optimality

system of a constrained optimization problem is the same approach as taken in [11] for the

Ciarlet-Raviart mixed method. See [27] for a reformulation involving a similar nonstandard

Sobolev space H−1(∆,Ω) = {v ∈ H1(Ω) : ∆v ∈ H−1(Ω)} as in this paper.

Problem (2.10) has the typical structure of a saddle point problem

(2.11)
a(σ, τ ) + b(τ , w) = 0 for all τ ∈ V ,

b(σ, v) = −〈f, v〉 for all v ∈ Q.

If the linear operator A : V ×Q −→ (V ×Q)∗ is introduced by
〈
A

[
σ

w

]
,

[
τ

v

]〉
= a(σ, τ ) + b(τ , w) + b(σ, v),

the mixed variational problem (2.11) can be rewritten as a linear operator equation

A

[
σ

w

]
= −

[
0
f

]
.

If the bilinear form a is symmetric, i.e., a(σ, τ ) = a(τ ,σ), and non-negative, i.e., a(τ , τ ) ≥
0, which is the case for (2.10), it is well-known that A is an isomorphism from V ×Q onto

(V ×Q)∗, if and only if the following conditions are satisfied, see, e.g., [6]:
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1. a is bounded: There is a constant ‖a‖ > 0 such that

|a(σ, τ )| ≤ ‖a‖ ‖σ‖V ‖τ‖V for all σ, τ ∈ V .

2. b is bounded: There is a constant ‖b‖ > 0 such that

|b(τ , v)| ≤ ‖b‖ ‖τ‖V ‖v‖Q for all τ ∈ V , v ∈ Q.

3. a is coercive on the kernel of b: There is a constant α > 0 such that

a(τ , τ ) ≥ α ‖τ‖2V for all τ ∈ kerB

with kerB = {τ ∈ V : b(τ , v) = 0 for all v ∈ Q}.

4. b satisfies the inf-sup condition: There is a constant β > 0 such that

inf
06=v∈Q

sup
06=τ∈V

b(τ , v)

‖τ‖V ‖v‖Q
≥ β.

Here ‖τ‖V and ‖v‖Q denote the norms in V and Q, respectively. We will refer to theses

conditions as Brezzi’s conditions with constants ‖a‖, ‖b‖, α, and β. (We silently assume that

‖a‖ and ‖b‖ are the smallest constants for estimating the bilinear forms a and b. Then ‖a‖
and ‖b‖ match the standard notation for the norms of the bilinear forms a and b.)

In the next theorem we show that Brezzi’s conditions are satisfied for (2.10). For the

proof as well as for later use, we first introduce the following simple but useful notation for a

function v ∈ H1
0 (Ω):

(2.12) π(v) = v I with I =

[
1 0
0 1

]
.

THEOREM 2.2. The bilinear forms

a(σ, τ ) =

∫

Ω

σ : τ dx and b(τ , v) = −〈divdiv τ , v〉

satisfy Brezzi’s conditions on V = H−1(divdiv,Ω)sym and Q = H1
0 (Ω), equipped with the

norms ‖τ‖−1,divdiv and |v|1, respectively, with the constants

‖a‖ = ‖b‖ = α = 1 and β = (1 + 2c2F )
−1/2,

where cF denotes the constant in Friedrichs’ inequality: ‖v‖0 ≤ cF |v|1 for all v ∈ H1
0 (Ω).

Proof.

1. Let σ, τ ∈ H−1(divdiv,Ω)sym. Then

|a(σ, τ )| ≤ ‖σ‖0‖τ‖0 ≤ ‖σ‖−1,divdiv‖τ‖−1,divdiv.

2. Let τ ∈ H−1(divdiv,Ω)sym and v ∈ H1
0 (Ω). Then

|b(τ , v)| = |〈divdiv τ , v〉 ≤ ‖ divdiv τ‖−1 |v|1 ≤ ‖τ‖−1,divdiv |v|1.

3. Observe that kerB = {τ ∈ L2(Ω)sym : divdiv τ = 0}. Therefore,

a(τ , τ ) = ‖τ‖20 = ‖τ‖2−1,divdiv
for all τ ∈ kerB.
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4. Here we follow the proofs in [9, 6]. For v ∈ H1
0 (Ω) it is easy to see that

b(π(v), v) = |v|21 and ‖π(v)‖2−1,divdiv
= ‖π(v)‖20 + |v|21 ≤ (1 + 2c2F ) |v|

2
1.

Therefore

sup
06=τ∈V

|b(τ , v)|

‖τ‖−1,divdiv

≥
|b(π(v), v)|

‖π(v)‖−1,divdiv

=
|v|21

‖π(v)‖20 + |v|21)
1/2

≥
1

(1 + 2c2F )
1/2

|v|1.

COROLLARY 2.3. The problems (2.1) and (2.10) are fully equivalent, i.e., if w ∈ H2
0 (Ω)

solves (2.1), then σ = ∇2w ∈ H−1(div div,Ω)sym and (σ, w) solves (2.10). And, vice

versa, if (σ, w) ∈ H−1(div div,Ω)sym ×H1
0 (Ω) solves (2.1), thenw ∈ H2

0 (Ω) and w solves

(2.1).

Proof. Both problems are uniquely solvable. Therefore, it suffices to show that (w,σ)
with σ = ∇2w solves (2.10), if w solves (2.1). So, assume that w ∈ H2

0 (Ω) is a solution of

(2.1). Then, obviously, σ ∈ L
2(Ω)sym and

∫

Ω

σ : ∇2v dx = 〈f, v〉 for all v ∈ H2
0 (Ω),

which implies that divdivσ = f ∈ H−1(Ω) in the distributional sense. Therefore, σ ∈
H−1(divdiv,Ω)sym and the second row in (2.10) immediately follows.

By the definition of divdiv τ in the distributional sense we have

〈div div τ , v〉 =

∫

Ω

τ : ∇2v dx ∀v ∈ C∞
0 (Ω).

Since C∞
0 (Ω) is dense in H2

0 (Ω), it follows for v = w that

〈div div τ , w〉 =

∫

Ω

τ : ∇2w dx =

∫

Ω

τ : σ dx,

which shows the first row in (2.10).

REMARK 2.4. The space H−1(divdiv,Ω)sym was already introduced [25, 23] in the

context of linear elasticity problems.

There is a natural trace operator associated with H−1(divdiv,Ω)sym, which was dis-

cussed in [25, 23]. We shortly recall here the basic properties for later reference.

Let the boundary Γ of the polygonal domain Ω be written in the form

Γ =

K⋃

k=1

Γk,

where Γk, k = 1, 2, . . . ,K , are the edges of Γ, considered as open line segments. Γk denotes

the corresponding closed line segment. For τ ∈ H−1(div div,Ω)sym which are additionally

twice continuously differentiable and v ∈ H2(Ω) ∩H1
0 (Ω) we obtain the following identity

by integration by parts.

(2.13)

∫

Ω

(div div τ ) v dx =

∫

Ω

τ : ∇2v dx−

∫

Γ

τnn
∂v

∂n
ds



THE HELLAN-HERRMANN-JOHNSON METHOD 7

with the outer normal unit vector n of Γ and

τnn = nT
τn.

Following standard procedures this identity allows to extend the trace τnn to all functions

τ ∈ H
−1(divdiv,Ω)sym as an element of the dual of the image of the Neumann traces of

functions from H2(Ω) ∩H1
0 (Ω), i.e.

τnn ∈ H−1/2
pw (Γ) = ΠK

k=1H
−1/2(Γk),

whereH−1/2(Γk) is the dual of H̃1/2(Γk), see [14] for details. Another widely used notation

for H̃1/2(Γk) is H
1/2
00 (Γk), see [20].

From (2.13) we obtain the corresponding Green’s formula for τ ∈ H−1(divdiv,Ω)sym

and v ∈ H2(Ω) ∩H1
0 (Ω):

(2.14) 〈divdiv τ , v〉 =

∫

Ω

τ : ∇2v dx−

〈
τnn,

∂v

∂n

〉

Γ

.

Here 〈·, ·〉Γ denotes the duality product in a Hilbert space of functions on Γ.

3. A Helmholtz decomposition of H−1(divdiv,Ω)sym. In this section we study some

important structural properties of H−1(div div,Ω)sym, which are helpful for analyzing the

HHJ method in the next sections.

THEOREM 3.1. For each τ ∈ H−1(divdiv,Ω)sym, there is a unique decomposition

τ = τ 0 + τ 1,

where τ 0 = π(p) for some p ∈ H1
0 (Ω) and τ 1 ∈ L2(Ω)sym with divdiv τ 1 = 0. Moreover,

c
(
|τ 0|

2
1 + ‖τ 1‖

2
0

)
≤ ‖τ‖2−1,divdiv

≤ c
(
|τ 0|

2
1 + ‖τ 1‖

2
0

)

for all τ ∈ H−1(divdiv,Ω)sym, with positive constants c and c which depend only on the

constant cF of Friedrichs’ inequality.

Proof. For τ ∈ H−1(divdiv,Ω)sym, let p ∈ H1
0 (Ω) be the unique solution to the

variational problem

∫

Ω

∇p · ∇v dx = −〈divdiv τ , v〉 for all v ∈ H1
0 (Ω)(3.1)

and set τ 0 = π(p). Since

−〈divdiv τ 0, v〉 =

∫

Ω

∇p · ∇v dx,

it follows that divdiv τ 0 = divdiv τ , and, therefore, divdiv τ 1 = 0 for τ 1 = τ−τ 0 in the

distributional sense. On the other hand, if τ = τ 0+τ 1 with τ 0 = π(p) and divdiv τ 1 = 0,

then − divdiv τ 0 = − divdiv τ + divdiv τ 1 = − divdiv τ , which implies (3.1). This

shows the uniqueness.

Furthermore, (3.1) implies |τ 0|
2
1 = 2 |p|21 = 2 ‖ divdiv τ‖2−1. Hence

‖τ‖2−1,divdiv = ‖τ‖20 + ‖ divdiv τ‖2−1 = ‖τ 0 + τ 1‖
2
0 +

1

2
|τ 0|

2
1

≤ 2 ‖τ0‖
2
0 + 2 ‖τ1‖

2
0 +

1

2
|τ 0|

2
1 ≤

(
1

2
+ 2c2F

)
|τ 0|

2
1 + 2 ‖τ1‖

2
0
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and

|τ 0|
2
1 + ‖τ 1‖

2
0 = |τ 0|

2
1 + ‖τ − τ 0‖

2
0 ≤ |τ 0|

2
1 + 2 ‖τ‖20 + 2 ‖τ0‖

2
0

≤ 2 ‖τ‖20 + (1 + 2c2F ) |τ 0|
2
1 = 2 ‖τ‖20 + 2(1 + 2c2F ) ‖ divdiv τ‖2−1.

Then the estimates immediately follow with the constants 1/c = 2(1 + 2c2F ) and c =
max(2, 1/2 + 2c2F ).

In short, we have algebraically as well as topologically

H
−1(div div,Ω)sym = π(H1

0 (Ω))⊕ H (div div,Ω)

with

H (divdiv,Ω) = {τ ∈ L
2(Ω)sym : divdiv τ = 0}.

Here ⊕ denotes the direct sum of Hilbert spaces.

REMARK 3.2. The Helmholtz decomposition of L2(Ω)sym in [18], based on previous

results in [5], has the same second component. The first component in [5, 18] is different

and requires the solution of a biharmonic problem in contrast to Theorem 3.1, where the first

component requires to solve only a Poisson problem.

Next an explicit characterization of H (divdiv,Ω) is given.

THEOREM 3.3. For each τ ∈ H (divdiv,Ω), there is a function φ ∈
(
H1(Ω)

)2
such

that

τ = H
T
ε(φ)H with H =

[
0 −1
1 0

]
and ε(φ)ij =

1

2
(∂jφi + ∂iφj) .

And vice versa, each function of the form τ = H
T
ε(φ)H with φ ∈

(
H1(Ω)

)2
lies in

H (divdiv,Ω).

The function φ is unique up to an element from

RM =

{
τ (x) = a

[
−x2
x1

]
+ b : a ∈ R, b ∈ R

2

}
,

and there is a constant cK such that

cK ‖φ‖1 ≤ ‖τ‖0 = ‖ε(φ)‖0 ≤ ‖φ‖1 for all φ ∈
(
H1(Ω)

)2
/RM.

Proof. In [18] it was shown that τ ∈ H (divdiv,Ω) can be written in the following

way:

τ =

[
0 −ρ
ρ 0

]
+Curlφ with ρ =

1

2
div φ, Curlφ =

[
−∂2φ1 ∂1φ1
−∂2φ2 ∂1φ2

]

for some φ ∈
(
H1(Ω)

)2
. Replacing φ = (φ1, φ2)

T by (−φ2, φ1)
T yields the representation.

The estimates follow from Korn’s inequality.

Therefore, we have the following representation of the solution σ to (2.10):

σ = π(p) +H
T
ε(φ)H .



THE HELLAN-HERRMANN-JOHNSON METHOD 9

The analogous representation for the test functions τ = π(q)+HTε(ψ)H leads to following

equivalent formulation of (2.10). Find p ∈ H1
0 (Ω), φ ∈

(
H1(Ω)

)2
/RM, w ∈ H1

0 (Ω) such

that

(3.2)

∫

Ω

π(p) : π(q) dx +

∫

Ω

π(q) : ε(φ) dx +

∫

Ω

∇w · ∇q dx = 0,

∫

Ω

π(p) : ε(ψ) dx+

∫

Ω

ε(φ) : ε(ψ) dx = 0

∫

Ω

∇p · ∇v dx = −〈f, v〉

for all q ∈ H1
0 (Ω), ψ ∈

(
H1(Ω)

)2
/RM, v ∈ H1

0 (Ω).
Observe that π(p) : π(q) = 2 p q and π(q) : ε(ψ) = q divψ, which allows to simplify

parts of (3.2).

In summary, the biharmonic problem is equivalent to three (consecutively to solve) ellip-

tic second-order problems. The first problem is a Poisson problem with Dirichlet boundary

conditions for p, which reads in strong form

∆p = f in Ω, p = 0 on Γ.

The second problem is a pure traction problem in linear elasticity with Poisson ratio 0 for φ,

which reads in strong form

−div ε(φ) = ∇p in Ω, ε(φ)n = 0 on Γ.

And, finally, the third problem is a Poisson problem with Dirichlet boundary conditions for

the original variable w, which reads in strong form

∆w = 2 p+ div φ in Ω, w = 0 on Γ.

4. The Hellan-Herrmann-Johnson method. Let Th be an admissible triangulation of

the polygonal domain Ω. For k ∈ N the standard finite element spaces Sh and Sh,0 are given

by

Sh = {v ∈ C(Ω): v|T ∈ Pk for all T ∈ Th} and Sh,0 = Sh ∩H1
0 (Ω),

where Pk denotes the set of bivariate polynomials of total degree less than or equal to k.

For the approximation of the Lagrangian multiplier σ, the HHJ method uses the finite

element space

V h = {τ ∈ L
2(Ω)sym : τ |T ∈ Pk−1 for all T ∈ Th, and

τnn is continuous across inter-element boundaries}.

For the approximation of the original variable w the standard finite element space

Qh = Sh,0

is used. So, the HHJ method reads as follows: Find σh ∈ V h and wh ∈ Qh such that

(4.1)

∫

Ω

σh : τ dx − 〈divdivh τ , wh〉 = 0 for all τ ∈ V h,

− 〈divdivh σh, v〉 = − 〈f, v〉 for all v ∈ Qh
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with

〈divdivh τ , v〉 =
∑

T

{∫

T

τ : ∇2v dx −

∫

∂T

τnn
∂v

∂n
ds

}
for τ ∈ V h, v ∈ Qh.

If compared with (2.14), this definition of 〈divdivh τ , v〉 for τ ∈ V h and v ∈ Qh in

the HHJ method is just an element-wise assembled version of corresponding expression on

the continuous level, a standard technique in non-conforming methods.

REMARK 4.1. Using integration by parts we obtain

〈divdivh τ , v〉 = −
∑

T∈Th

{∫

T

div τ · ∇v dx−

∫

∂T

τns
∂v

∂s
ds

}

with the normal vector n = (n1, n2)
T , the vector s = (−n2, n1)

T , which is tangent to Γ, the

tangential derivative ∂v/∂s, and

τns = sTτn.

The HHJ method is often formulated with this representation, which allows an extension for

all functions τ from the (mesh-dependent) infinite dimensional function space

Ṽ = {τ ∈ L
2(Ω)sym : τ |T ∈ H

1(T )sym for all T ∈ Th, and

τnn is continuous across inter-element boundaries}.

This space was used for the analysis of the method in [9, 3, 13], and others. Existence and

uniqueness of a solution for the corresponding variational problem on the continuous level

could be shown under additional smoothness assumptions. For the approach taken in this

paper, this is not required.

Similar to the continuous case, the well-posedness of the discrete problem can be shown.

For the proof of the discrete inf-sup condition the discrete analogue to π(v), see (2.12), is

needed. For vh ∈ Sh,0, we define

πh(vh) = Πhπ(vh)

with the linear operator Πh, introduced in [9] by the conditions

∫

e

((τ h)nn − τnn) q ds = 0, for all q ∈ Pk−1, for all edges e of T, T ∈ Th,

and
∫

T

(τ h − τ ) q dx = 0, for all q ∈ Pk−2, T ∈ Th,

for τh = Πhτ ∈ V h and τ ∈ π(Qh). Observe that Πh was originally introduced in [9] as

a linear operator on the infinite dimensional space Ṽ from above.

From the corresponding properties of Πh in [9], Lemma 4, the next result directly fol-

lows.

LEMMA 4.2. Assume that Th is a regular family of triangulation. Then there exists a

constant cB > 0 which is independent of h such that

‖πh(v)‖0 ≤ cB |v|1 for all v ∈ Sh,0.
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Moreover, we need the following simple identity.

LEMMA 4.3. For all p, v ∈ Sh,0, we have

−〈divdivh πh(p), v〉 =

∫

Ω

∇p · ∇v dx.

Proof. By integration by parts we have

〈divdivh πh(p), v〉 =
∑

T∈Th

{∫

T

Πhπ(p) : ∇
2v dx−

∫

∂T

(Πhπ(p))nn
∂v

∂n
ds

}

=
∑

T∈Th

{∫

T

π(p) : ∇2v dx−

∫

∂T

(π(p))nn
∂v

∂n
ds

}

=
∑

T∈Th

{∫

T

p∆v dx−

∫

∂T

p
∂v

∂n
ds

}
= −

∫

Ω

∇p · ∇v dx.

Now the well-posedness of the discrete problem can be shown.

THEOREM 4.4. The bilinear forms

a(σ, τ ) =

∫

Ω

σ : τ dx, bh(τ , v) = −〈divdivh τ , v〉

satisfy Brezzi’s conditions on V h and Qh, equipped with the norms ‖τ‖−1,divdiv,h and |v|1,

respectively, where

‖τ‖−1,divdiv,h =
(
‖τ‖20 + ‖ divdivh τ‖

2
−1,h

)1/2
(4.2)

and

‖ℓ‖−1,h = sup
vh∈Sh,0

|〈ℓ, vh〉|

|vh|1
for ℓ ∈ (Sh,0)

∗,

with the constants

‖a‖ = ‖b‖ = α = 1 and β = (1 + c2B)
−1/2,

where cB denotes the constant in Lemma 4.2.

Proof.

1. Let σ, τ ∈ V h. Then

|a(σ, τ )| ≤ ‖σ‖0 ‖τ‖0 ≤ ‖σ‖−1,divdiv,h ‖τ‖−1,divdiv,h.

2. Let τ ∈ V h and v ∈ Qh. Then

|b(τ , v)| = |〈divdivh τ , v〉 ≤ ‖ divdivh τ‖−1,h|v|1 ≤ ‖τ‖−1,divdiv,h‖v‖1.

3. Observe that kerBh = {τ ∈ V h : divdiv τh = 0}. Therefore,

a(τ , τ ) = ‖τ‖20 = ‖τ‖2−1,divdiv,h for τ ∈ kerBh.
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4. From Lemma 4.2 and Lemma 4.3 we obtain for v ∈ Qh

bh(πh(v), v) = |v|21

and

‖πh(v)‖
2
−1,divdiv,h = ‖πh(v)‖

2
0 + |v|21 ≤ (1 + c2B) |v|

2
1.

Therefore,

sup
06=τ∈V h

|bh(τ , v)|

‖τ‖−1,divdiv,h
≥

|bh(πh(v), v)|

‖πh(v)‖−1,divdiv,h
=

|v|21
(‖πh(v)‖20 + |v|21)

1/2

≥
1

(1 + c2B)
1/2

|v|1.

Observe that the norms introduced for the space V = H−1(divdiv,Ω)sym in (2.9) and

its discrete counterpart V h in (4.2) are similar but different. For the discrete problem the

norm is mesh-dependent.

5. A discrete Helmholtz decomposition. We have the following discrete version of

Theorem 3.1.

THEOREM 5.1. For each τ ∈ V h, there is a unique decomposition

τ = τ̂ 0 + τ̂ 1,

where τ̂ 0 = πh(p̂) for some p̂ ∈ Qh and τ̂ 1 ∈ V h with divdivh τ̂ 1 = 0. Moreover,

c
(
|τ̂ 0|

2
1 + ‖τ̂ 1‖

2
0

)
≤ ‖τ‖2−1,divdiv,h ≤ c

(
|τ̂ 0|

2
1 + ‖τ̂ 1‖

2
0

)

for all τ ∈ V h, with positive constants c and c, which depend only on the constant cB of the

inequality in Lemma 4.2.

The proof is completely analogous to the proof for the continuous case and is, therefore,

omitted. The only difference is the use of the estimate from Lemma 4.2 instead of Friedrichs’

inequality.

So, in short,

V h = πh(Sh,0)⊕ Hh(divdivh,Ω)

with

Hh(divdivh,Ω) = {vh ∈ V h : 〈divdivh vh, vh〉 = 0 for all vh ∈ Qh}.

For describing the space Hh(divdivh,Ω) more explicitly, we consider the subspace

of all functions in H (div div,Ω) which can be represented by a finite element function

φ ∈ (Sh)
2
, for which we show the following result.

THEOREM 5.2. Hh(divdivh,Ω) = {τ = HTε(φ)H : φ ∈ (Sh)
2
}.

Proof. Let be φ ∈ (Sh)
2
. Then τ = HTε(φ)H ∈ Pk−1 for all triangles T ∈ Th.

Furthermore, let e be an edge of a triangle T with outer unit normal vector n = (n1, n2)
T

and unit tangent vector s = (−n2, n1)
T . By elementary computations we obtain

τnn = nT
H

T
ε(φ)Hn = s ·

∂φ

∂s
.
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So, τnn depends only on values of φ on the edge e, which immediately implies that τnn is

continuous on inter-element boundaries. This shows that τ lies in V h, and, therefore, the

inclusion {τ = HTε(φ)H : φ ∈ (Sh)
2} ⊂ Hh(divdivh,Ω) follows.

The equality follows by comparing the dimensions. We have

dim{τ = H
T
ε(φ)H : φ ∈ (Sh)

2} = 2dimSh − dimRM = 2dimSh − 3.

On the other hand, by Theorem 5.1, it follows that

dimHh(divdivh,Ω) = dimV h − dimSh,0.

A simple count of the degrees of freedom for V h yields

dimV h = dimSh,0 + 2 dimSh − 3.

Therefore, Hh(divdivh,Ω) = 2 dimSh − 3, which completes the proof.

REMARK 5.3. A consequence of the last theorem is the important inclusion

Hh(div divh,Ω) ⊂ H (divdiv,Ω),

which resembles the corresponding result of Lemma 5 in [9].

Therefore, we have the following representation of the approximate solution σh ∈ V h

of (4.1):

σh = πh(ph) +H
T
εh(φh)H .

The analogous representation for the test functions τ = πh(q) + HTε(ψ)H leads to the

following equivalent formulation of (4.1). Find ph ∈ Sh,0, φh ∈ (Sh)
2
/RM, wh ∈ Sh,0

such that

(5.1)

∫

Ω

π̂h(ph) : π̂h(q)dx+

∫

Ω

π̂h(q) : ε(φh) dx+

∫

Ω

∇wh · ∇q dx = 0,

∫

Ω

π̂h(ph) : ε(ψ) dx +

∫

Ω

ε(φh) : ε(ψ) dx = 0

∫

Ω

∇ph · ∇v dx = −〈f, v〉

for all q ∈ Sh,0, ψ ∈ (Sh)
2 /RM, v ∈ Sh,0, and with

π̂h(q) = Hπh(q)H
T .

Observe that the HHJ method, in the form of (5.1) is a non-conforming method for

(3.2). An natural modification of the HHJ method is the following conforming variant. Find

ph ∈ Sh,0, φh ∈ (Sh)
2
/RM, wh ∈ Sh,0 such that

(5.2)

∫

Ω

π(ph) : π(q)dx +

∫

Ω

π(q) : ε(φh) dx +

∫

Ω

∇wh · ∇q dx = 0,

∫

Ω

π(ph) : ε(ψ) dx+

∫

Ω

ε(φh) : ε(ψ) dx = 0

∫

Ω

∇ph · ∇v dx = −〈f, v〉

for all q ∈ Sh,0, ψ ∈ (Sh)
2 /RM, v ∈ Sh,0. Compared to the non-conforming method, the

conforming variant is slightly less costly, since the linear operator Πh is not needed.
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6. Numerical experiments. The obvious procedure for solving (5.1) consists of three

consecutive steps.

step 1. For given f ∈ H−1(Ω), solve

∫

Ω

∇ph · ∇v dx = −〈f, v〉

by the preconditioned conjugate gradient (PCG) method with a standard multigrid

preconditioner for a Poisson problem.

step 2. For ph, computed in step 1, solve

(6.1)

∫

Ω

ε(φh) : ε(ψ) dx = −

∫

Ω

π̂h(ph) : ε(ψ) dx

by the PCG method with a standard multigrid preconditioner for a pure traction

problem.

step 3. For ph and φh, computed in step 1 and 2, respectively, solve

(6.2)

∫

Ω

∇wh · ∇q dx = −

∫

Ω

π̂h(ph) : π̂h(q) dx+

∫

Ω

π̂h(q) : ε(φh) dx

by the PCG method with a standard multigrid preconditioner for a Poisson problem.

For the conforming variant (5.2), the right-hand sides in (6.1) and (6.2) have to replaced by

the simpler expressions

−

∫

Ω

π(ph) : ε(ψ) dx = −

∫

Ω

ph divψ dx

and

−

∫

Ω

π(ph) : π(q)dx+

∫

Ω

π(q) : ε(φh) dx = −2

∫

Ω

ph q dx+

∫

Ω

q div φh dx,

respectively.

For illustrating the theoretical results we consider the following simple biharmonic test

problem:

∆2w = f in Ω, w =
∂w

∂n
= 0 on Γ

on two domains, the square Ω = ΩS = (−1, 1)2 and the L-shaped domain Ω = ΩL depicted

in figures 6.1 and 6.2, where also the initial mesh (level ℓ = 0) is shown. The right-hand side

f(x) is chosen such that

w(x) =
[
1− cos(2πx1)

] [
1− cos(4πx2)

]

is the exact solution to the problem. The initial meshes are uniformly refined until the final

level ℓ = L. In all experiments the polynomial degree k as introduced in the beginning of

Section 4 is chosen equal to 1, which represents the lowest order HHJ method.

For each of the three multigrid preconditioners we choose one multigrid V-cycle with one

forward and one backward Gauss-Seidel sweep for pre- and post-smoothing, respectively. In

each of the three steps, a reduction of the Euclidean norm of the initial residual by a factor of

10−8 was used as stopping criterion for the PCG methods with initial guess equal to 0.
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FIG. 6.1. Ω = ΩS . FIG. 6.2. Ω = ΩL.

Table 6.1 shows the observed number of iterations for the solution procedure as described

above for Ω = ΩS . The first column contains the level L of refinement. The next three pairs

of columns show the total numberNi of degrees of freedom and the number of iterations iteri
of the PCG method for the linear system in step i = 1, 2, 3.

TABLE 6.1

Number of iterations, Ω = ΩS (square).

L N1 iter1 N2 iter2 N3 iter3

7 64 001 10 132 098 14 64 001 10

8 261 221 10 526 338 15 261 221 10

9 1 046 530 11 2 101 250 15 1 046 530 11

10 4 190 210 11 8 396 802 15 4 190 210 11

Table 6.2 shows the corresponding results for theL-shaped domainΩ = ΩL representing

a non-convex case.

TABLE 6.2

Number of iterations, Ω = ΩL (L-shaped domain).

L N1 iter1 N2 iter2 N3 iter3

7 48 665 11 99 330 16 48 665 11

8 195 585 11 395 266 16 195 585 11

9 784 385 11 1 576 962 16 784 385 11

10 3 141 630 12 6 299 650 17 3 141 630 12

In accordance with well-established convergence results for multigrid methods the num-

ber of iterations is bounded uniformly with respect to the mesh size.

Finally, in Table 6.3 the discretization error of the non-conforming method (5.1) and its

conforming variant (5.2) are compared. For the non-conforming method, the L2-error of the

original variable w decreases with the order h2, in accordance with known estimates, see

[3, 13]. The conforming variant is more accurate by roughly one digit.
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TABLE 6.3

Discretization error ‖w − wh‖0.

L (5.1) (5.2)

7 6.08 ∗ 10−4 8.13 ∗ 10−5

8 1.52 ∗ 10−4 2.03 ∗ 10−5

9 3.80 ∗ 10−5 5.08 ∗ 10−6

10 9.45 ∗ 10−6 1.27 ∗ 10−7
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Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.


