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FUNCTIONAL A POSTERIORI ERROR ESTIMATES FOR PARABOLIC
TIME-PERIODIC BOUNDARY VALUE PROBLEMS

U. LANGER, S. REPIN, AND M. WOLFMAYR

ABsTrRACT. The paper is concerned with parabolic time-periodic boundary value problems
which are of great theoretical interest and arise in different practical applications. The multihar-
monic finite element method is well adapted to this class of parabolic problems. We study prop-
erties of multiharmonic approximations, and derive guaranteed and fully computable bounds
of approximation errors. For this purpose, we use the functional a posteriori error estimation
techniques earlier introduced by Sergey Repin.

1. INTRODUCTION

This work is devoted to the a posteriori error analysis of parabolic time-periodic boundary value
problems in connection with their multiharmonic finite element discretization. More precisely, all
functions are expanded into Fourier series, truncated and the Fourier coefficients are approximated
by the finite element method (FEM). This so-called multiharmonic FEM (MhFEM) or harmonic-
balanced FEM was successfully used for the simulation of electromagnetic devices described by
nonlinear eddy current problems with harmonic excitations, see, e.g., [26, 1, 2, 5] and the references
therein. Later, this discretization technique has been applied to linear time-periodic parabolic
boundary value and optimal control problems [10, 11, 17, 20, 25] and to linear time-periodic eddy
current problems and the corresponding optimal control problems [13, 14, 15]. The functional a
posteriori error estimation techniques, which we use, are based on the works by Repin, see, e.g., the
papers on parabolic problems [22, 8] as well as on optimal control problems [6, 7], the books [23, 21]
and the references therein. In particular, our a posteriori error analysis uses the techniques close to
the one suggested in [22], but the analysis contains essential changes. In the MhFEM setting, we are
able to establish inf-sup and sup-sup conditions from which we deduce existence and uniqueness of
the solution to the parabolic time-periodic problems by applying the theorem of Babuska and Aziz.
We deduce fully computable error bounds, which to the best of our knowledge are new. Indeed, the
a posteriori error analysis presented in this paper leads to guaranteed upper bounds that are very
valuable for the evaluation of quality of the multiharmonic finite element solution. The functional a
posteriori error analysis provides these bounds via majorants the minimization of which delivers the
discrete solutions as well. This work is a starting point for the construction of a so-called adaptive
multiharmonic finite element method (AMhFEM), whose analysis and implementation is currently
subject of ongoing work. In the case of linear time-periodic parabolic problems, the computations
of the Fourier coefficients corresponding to every single mode k = 0,1... are decoupled. Hence,
we can use different meshes independently generated by adaptive finite element approximations
to the Fourier coefficients for different modes. Then, by prescribing certain bounds, we can finally
filter out the Fourier coefficients, which are important for the (numerical) solution of the problem.
Altogether, such an AMhFEM yields complete adaptivity in space and time.

The paper provides a detailed functional a posteriori error analysis of a parabolic time-periodic
boundary value problem which is discretized by means of the MhFEM. In particular, the paper is
organized as follows: In Section 2, we discuss two space-time variational formulations for parabolic
time-periodic boundary value problems (which are equivalent if the source term belongs to Ls).
These problems form the basis of the MhFEM, which is considered in Section 3. Section 4 is
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2 U. LANGER, S. REPIN, AND M. WOLFMAYR

devoted to the derivation of functional a posteriori error estimates adapted to problems in question.
We derive two types of estimates including their multiharmonic setting.

2. A PARABOLIC TIME-PERIODIC BOUNDARY VALUE PROBLEM

Let Qr := Q2 x (0,T) denote the space-time cylinder and Xp :=T" x (0,7) its mantle boundary,
where Q C RY, d = {1,2,3}, is a bounded Lipschitz domain with the boundary T, and (0,7) is a
given time interval. The following parabolic time-periodic boundary value problem is considered:

(1) o(x) Oz, t) — div (v(x) Vu(z,t)) = f(z,t) (z,t) € Qr,
(2) u(x,t) =0 (z,t) € X,
(3) u(x,0) = u(x,T) x € Q,

where f(x,t) is a given function in L?(Q7), and o(-) and v(-) satisfy the assumptions
(4) 0<o<o(x) <7, 0<v<v(x)<D, x € Q.

In order to study the parabolic time-periodic boundary value problem (1)-(3), we will derive
space-time variational formulations in Sobolev spaces of functions in the space-time cylinder Qr
using the approach similar to that used by Ladyzhenskaya et al., see [18, 19]. Let the Sobolev
spaces H*°(Q7) = {u € L*(Qr) : Vu € [L*(Q7)]¢} and Hll(QT = {u € L*(Q7) : Vu €
[L2(Q7)]?, 0;u € L*(Qr)} be equipped with the norms

1/2
lull g1.0(Qqr) = </Q (u(.’/mt)2 + |Vu(ac,t)|2) dx dt) ,

1/2
||UHH1’1(QT) = (/ (’U,(l’,t)2 + |Vu(a:,t)|2 + |6tu(a:,t)|2) dx dt) s

where V = V, and d; denote the generalized derivatives. The Sobolev space H>!(Qr) = {u €
L?(Q7) : Oyu € L*(Qr)} is defined analogously. Furthermore, the boundary and time-periodicity
conditions are included by defining the Sobolev spaces

1’O(QT) ={uec H"°(Qr) : u=0on X7},

oMQr) ={ue HY(Qr) :u=0o0n Z7},
Hg;,(QT) ={uec H" (Qr) : u(x,0) = u(zx, T) for almost all x € Q},
H)(Qr) = {u € H"(Qr) : u(,0) = u(x,T) for almost all = € Q},
,peT(QT) = {u e HY' (Qrp) : u(x,0) = u(x,T) for almost all z € Q}.
For ease of notation, all inner products and norms in L? are denoted by (,-) and || - ||, if they are
related to the whole space-time domain Q7. If they are associated with the spatial domain 2,
then we write (-,-)q and | - |q, which denote the standard inner products and norms of the space

L?(€2). The symbols (-, )10 and | - ||1,o denote the standard inner products and norms of H*().
The functions used in our analysis will be typically presented in the form of Fourier series, i.e.,

(5) vz, t) =vi(x) + Z ) cos(kwt) + vi () sin(kwt))

with the Fourier coefficients

T T
ot (@) = % /O o, £) cos(kwt) dt, oi(@) = 2 /O o(@, £) sin(kwt) dt,

where T and w = 27/T denote the periodicity and the frequency, respectively. Moreover, we
define additional function spaces, see [20], in order to derive a symmetric variational formulation
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of problem (1)-(3). The function spaces Hper (Qr), H, per (QT) and H0 Cer

(Qr) are defined by

Hye (Qr) = {u € L*(Qr) - [0} *ul] < oo},
Hy2(Qr) = {u e H0(Qr): 16/2u| < oo},
1.1

HO:;G’I‘( ) - {’LL € HZ) (QT) u=0on ET}7

respectively, where ||a§ / 2uH is defined in the Fourier space by the relation
2 T <
1/2 e (g2 .7 2
(6) Hat “H = |U|H°’%(QT) = ggkwllw\\m
where uy, := (uf,uj) for all k € N. These spaces are equipped with the scalar products

(7) (8751/2 1/2 ka Uy, Vi) (081/2u 81/2 ka oUR, Vi )a

1
The seminorm and the norm of the space H;g? (Qr) are defined by the relations

oo

1/2 c T
= |Vul® + 118, %u|? = T | Vug||3 + 3 > (kwlluelld + [V ]13)
k=1

[ul®

"% (Qr)

and

= [[ull® + 2, ,

HlﬂQ ) 2(Qr)

~

=T (lluglle + IVuglia) + 5 D+ kw)lugll + [ Varl)
k=1

respectively. Let us define

Z ) sin(kwt) + vg (x) cos(kwt))

k=1
(8) - i (@))- cos(kwt)

- sin(kwt) J°
k=1
=:(—vi)”

Lemma 1. The identities
(9) (063/2% 8751/21)) = (U@tu,vL) and (08751/2%83/21#) = (a@tu,v)

are valid for all uw € H:L(Qr) and v € HS&%«(QT).

per

Proof. Using the definition of the o-weighted scalar product in (7) and inserting the Fourier
expansions of

Opu(z, t) Z [kw uf(x) cos(kwt) — kw uf,(x) sin(kwt)]
k=1

as well as (8) into the inner products, we obtain

(032/2 1/2 ka (oug,vi)a ka auk,vk

=3 Z kw(o(—uy), (—vi))a = (J@tu,’uJ‘)
k=1
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with uit = (—ug, u$)? for all k € N, and

(Ual/Qu 81/2 J_ ka (cug, vi)g = %ka(a(—ué‘),vk)g = (o0, v).
=1

Hence, the following orthogonality relations hold:
(00pu,u) =0 and (out,u)=0  Vue Hyl(Qr),

per

(10)
(Jatl/gu, 82/21&) =0 and (vVu,Vu')=0 Vue Hp (QT)

where, e.g.,

WV, Vui)og =0  Yu e Hp? (QT)

NE

(VVu, VuL) =

>
Il

1
with Vuy, := (Vu§)?, (Vui)T)T and Vug = (—(Vui)T, (Vug)T)T for all k € N. The identity

(11) /Tnatl/va / 81/2 Ludt V/@,vEHSﬁ(QT)
is also defined in theOFourier space yielding the definitions
(12) (ﬁ,aj/%) = % i(kw)lp(/{k,vk)g
k=1
as well as
83/211(:& t) = i(kw)l/2 (kg (x) cos(kwt) + k() sin(kwt))
k=1
and
Pkt (1) = i(kw)w (—kj (z) cos(kwt) + K (2) sin(kwt)) .
k=1
Hence,
oo
(K,atl/2UJ‘) = %Z(kzw)lﬂ(nk,vﬁ)g = —(82/2I€,UL),
k=1
(r, 0170 i ko) (k0 v = gi(kw)lﬂ(_’iklyvk)fl
k=1 k=1

= %Z kw) 1/2 (kb vp)a = (82/2/&,7))

and all these identities coincide with the identities (9) in Lemma 1. In order to derive the space-
time variational formulation of the parabolic time-periodic problem (1)-(3), the parabolic partial

differential equation (1) is multiplied by a test function v € H0 per (Qr), integrated over the space-
time cylinder Q7, and after integration by parts with respect to the space and time variables, the
following “symmetric” space-time variational formulation of the parabolic time-periodic boundary

value problem (1)-(3) is obtained: Given f € L?(Qr), find u € Ho per(QT) such that

(13) a(u,v) = flx, t)v(x,t) dedt Vo € HO’;ST(QT)
Qr

with the space-time bilinear form

(14) a(u,v) = /Q (U(m)(’“)tl/zu(w,t) 85/21#(3:,0 +v(x)Vu(z,t) - Vv(a:,t))d:c dt,
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where all functions are given in their Fourier series expansion in time, i.e., everything has to be
understood in the sense of (6) and (7). In particular, this Fourier series approach makes sense due
to the time-periodicity condition (for u and v).

3. MULTIHARMONIC FINITE ELEMENT APPROXIMATION

Inserting the Fourier series ansatz (5) into (13) and exploiting the orthogonality of the functions
cos(kwt) and sin(kwt) with respect to the inner product (-,-)r2(0,1), We arrive at the following

variational formulation corresponding to every single mode k € N: Given f, € (L?*(Q))?, find
u, €V:=V xV = (H())? such that

(15) /Q (V@) Vur(@) - Vou(e) + ko o(@)u(x) - vi (@) de = /Q (@) - vi (@) de

for all v, € V. In the case k = 0, we obtain the following variational formulation: Given f§ €
L3(Q), find u§ € V = H(Q) such that

(16) [ v@vise) Vi@ de = [ fi@) i) do

Q Q
for all v§ € V. The space V = (Hg(Q))? for the Fourier coefficients is equipped with the norm
lurll o = llurlly + [Vurl|y. Note that the relation |lug||y = |lug|g is valid. The variational

problems (15) and (16) have a unique solution due to the Babuska-Aziz theorem, see [25]. In order
to numerically solve the problems, the Fourier series are truncated at a finite index N and the
unknown Fourier coefficients u, = (uz,ui)T € V are approximated by finite element functions
Ugp = (uih,uzh)T eV, =V, xV, C V. The space V, = V;, x V}, is a finite element space,
where V;, = span{ep1,...,p,} with the standard nodal basis {@;(x) = @in(x) : i = 1,2,...,n}
and h denotes the usual discretization parameter such that n = n;, = dimV}, = O(h™%). We
use continuous, piecewise linear functions on the finite elements on a regular triangulation 7, to
construct the finite element subspace V}, and its basis, see, e.g., [3, 4, 9, 24]. Let us assume that
the parameter o is positive. Hence, the following saddle point system is obtained:

kwM -K H -fe
(17) ( WiVlp, o h,v > ( glg > _ ( i’g ) ;

_Kh,l/ _kWMh,a U _ik
which has to be solved with respect to the nodal parameter vector g{c = (“i,i)i:17~--7n € R™ of the
finite element approximation

ukh § :“lm‘Pz

to the unknown Fourier coefficients ufc(w) with j € {¢,s}. The matrices K}, and M}, , corre-
spond to the weighted stiffness matrix and weighted mass matrix, respectively. Their entries are
computed by the formulas

K,iljy:/ vV, -Vo;dx and M,ijgz/ocpicpjda:
' Q ' Q
with 4,5 = 1,...,n, whereas

_ {/Qf,g% deZL and f? = [/ka 0 dx]jzlmn.

omn

In the case k = 0, the following linear system arising from the variational problem (16) is obtained:
(18) Kh,uﬂg :i((:)

Fast and robust solvers for the linear systems (17) and (18) can be found in [12, 16, 20, 25]. From
the solutions of systems (17) and (18), the multiharmonic finite element approximation

(19) unp(x,t) = ugy,(x) + Z ugy, (@) cos(kwt) + ujy, (x) sin(kwt))
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to the exact solution u(x,t) can be easily reconstructed. In the next section, we will present an
a posteriori error analysis for the error between the unknown solution u and its multiharmonic
finite element approximation uyy,.

4. FUNCTIONAL A POSTERIORI ERROR ESTIMATES

In order to derive functional a posteriori error estimates, we first present inf-sup and sup-sup
conditions for the space-time bilinear form (14):

Lemma 2 (Langer and Wolfmayr [20]). The space-time bilinear form a(-,-) defined by (14) satisfies
the following inf-sup and sup-sup conditions:

a(u,v)
20 < S <
(20) tilelinygn = o e skl
0£vEH, 2 (Qr) H>2(Qr)
1
for allu € Hé’;ET(QT) with positive constants p = min{ zr=7, 0} and p2 = max{7, v}, where Cr
’ F

is the constant coming from the Friedrichs inequality.

Remark 1. Since the condition u = 0 is imposed on the whole boundary, we can easily find an
upper bound of Cp. Indeed, Cp(2) < Cp(Q) if Q D Q. Since for such domains as rectangles or
balls the Friedrichs constants are known, we can obtain the required estimate.

Lemma 3. The space-time bilinear form a(-,-) defined by (14) meets the following inf-sup and
sup-sup conditions:

a(u,v)
21 < <
@) palel s gp = 5 et o el ban
0£vEH, 2 (Qr) (Qr)

1
for allu € Hé,’;er(QT) with positive constants p; = min{v, o} and pg = max{c,v}.

The proof of Lemma 3 follows the proof of Lemma 2, see [25]. Note that, due to the Friedrichs

inequality, | - |H17 %(or) is an equivalent norm.

4.1. Error majorant of the first type. Let a function 1 be an approximation of u. First, we
assume that 7 is a bit more regular than u. More precisely, we set n € Hé”;eT(QT). This is of
course true for the multiharmonic finite element approximation uyp, which will later play the role
of n. The goal now is to deduce a computable upper bound of the error e := u — 7 in Hé,’EET(QT).
Relation (13) implies the integral identity

/ (@0l —m) 0/ + 1)V () - Vo) dar i
) = / (fv - U(:B)E)tl/Zn 8,51/21)J‘ —v(x)Vn- Vv) dez dt,

T

which is valid for all v € Ho'2 (Qr). Let

.per

Fn(v) = / (fv - o(m)ﬁtlmn 8:/211J‘ —v(x)Vn - Vv) dex dt.

T

1
It is easy to see that F,(v) is a linear functional defined on v € H01,’pze7"(QT)' Now (22) can be
rewritten in the form

(23) ale,v) = Fy(v).
Hence, getting an upper bound of the error is reduced to finding the quantities
F, F
(24) sup _Fav) or sup &
11 [oll 13 11 o] 1.1
0£vEH, 2 (QT) H2(Qr) 0#veH, 2 (Qr) H 2(Qr)
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In order to find them, we reconstruct the functional F,(v) using the identity

(25) (0-8151/2777 8181/2UL) = (UatTh U) V77 € Hé ;er(QT) Vo e HO per(QT)?
which follows from (9) and the identity

/diVTvd:n:—/T~Vvdas,
Q Q

which is valid for any v € H{ () and any
T € H(divg, Qr) := {1 € [L*(Q7)]? : dive 7(-,t) € L*(Q) for a.e. t € (0,T)}.

For ease of notation, the index x in div, will be omitted, i.e., div = div, denotes the generalized
spatial divergence. Using the Cauchy-Schwarz inequality leads to

(26) Fy(v) = /T (fv —o(x)omv+divrv+ (1 —v(z)Vn) - Vv) de dt

< I Ra(n, Dol + 1Rz (n, D[ Voll,
where
Ri(n,7) :=c0m—divr — f and Ra(n,T) =1 —VvVn.
Applying the Friedrichs inequality in the space-time cylinder Qr, i.e.,

IVul]? = / Vul? dz dt = T | Vug|3 + — Zuwkng

T

(27)
1
Z 5 <T| ugllg + 5 Z”uk”Q) -z ull,
F
yields
Fn(v) < IR (n, T) vl + I R2(n, T) [ Vo
< [[Ri(n, D) Cr (Vo + [ R2(n, 7) Vo]
< (Crl[Ra(n, ) + [R2(n, 7)) [[Voll.
Hence,
sup | |fn(v) < sup (Cr IIRl(Ti,T):I + [[R2(n, 7)) IV
11 v 1 11 v 1
otveH 2 (@) H'E@Q1)  ogeen) (@n) H" % (Qr)
(28) _ sup (Cr IR (n, T) || + [ R2(n, T)I) IV 0|

1/2
07'5v€H;jCT(QT) ([[Vol|* + Hat/ v||?)1/2
< Cr |[Ru(n, 7)l + IR2(n, 7|

and using the left inequality of (21), i.e

‘ 77| < i sup a‘(u -1, U) _ i sup fn(v)
HY2(Qr) = 1 |v] e K1 1,1 vl 11 ’
07£v€H0 W(QT) 2(Qr) 0#£veH, 2, (Qr) H 2(Qr)

yields the following result:

Theorem 1. Let n € Hé”;ET(QT) and the bilinear form a(-,-) satisfy (21). Then,
(29) =l s0n =7 (CF IRy (n, 7)Il + [[R2(n, 7)) =2 M| (n, 7),

where py = min{v,o} and T € H(dlv, Qr).
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Theorem 1 presents an estimate of ‘6|H1’§' We can also deduce an upper bound of the full

1
H'2-norm. Indeed,

Fn(0) < [Ra(n, T)[llv]l + [[Ra(n, T) [ Vo]l

1/2 1/2
< (IRa(n, )12 + (1R2(m, 7)) (llol® + [ V0?)

In view of (20), we obtain

1/2 1/2
T (v) (IR (r, T)I* + R2(n, 7)I12) " (lloll* + [[Vol?)
sup < sup
14 [0ll 1. 11 loll 1.3
0£vEH, 2 (QT) (@r)  o0#veH, 2 (Qr) H>2(Qr)

< (IR (. )1 + IR, 7)12) 2.

Altogether, we deduce a similar estimate for HeHHL L

Theorem 2. Let n € Hé:;er(QT) and the bilinear form a(-,-) satisfy (20). Then,

1
(30) =l 2. (IR (0, )P + 1R (. T)I2) =2 M (0, 7),

1 < —

2(Qr) — 125}

where T € H(div, Qr) and now pi; = min{ &+, a}.
F

The functionals Mﬁ(n, 7) and MﬁB,H(n, T) present guaranteed and computable upper bounds

of the error in H''Z-norm. Henceforth, we call them error majorants.
Remark 2. [t is easy to see that the majorants are nonnegative functionals vanishing if and only
if n=wu and 7 = vVu. Indeed, if R1(n,7) =0 and Ra(n,7) =0, then

oo — divt = f,
T=vVn.

Since n € H&’;GT(QT) is a periodic function and satisfies the Dirichlet condition on X, it is the
solution. On the other hand, R;(u,vVu) =0, i=1,2.

Since f € L?(Qr), it can be expanded into a Fourier series. Moreover, we choose our approxi-
mation 7 of the solution u as well as the vector-valued function 7 to be truncated Fourier series,
ie.,

n(@,t) = n5(x) + ) (ni(x) cos(kwt) + i (z) sin(kwt)) ,

(31)

M= 1=

T(x,t) =75(x) + Y (75 () cos(kwt) + 73 (x) sin(kwt)) ,

k=1

where all Fourier coefficients are from the space L?(£2) and are defined by the relations
17T 1T
@) =7 [ o mif@) = 3 [ @
9 [T T
ni(x) = T/ n(x, t) cos(kwt) dt, Ti(x) = / 7 (2, t) cos(kwt) dt,
0 0

2 (T , o r .
/On(:c,t)sm(kwt)dt, Ti(x) = /OT(w,t)blIl(k‘wt)dt.

S
il
&

I

N



FUNCTIONAL A POSTERIORI ERROR ESTIMATES FOR TIME-PERIODIC PARABOLIC PROBLEMS

Hence,

N
om(x,t) Z kw nj () cos(kwt) — kw ng (x) sin(kwt)) ,
k=1

N
Vn(z,t) = Vni(x) + Z cos(kwt) + Vn; (x) sin(kwt)),
k=1

N
divr(z,t) = divri(z) + Z (div 7 () cos(kwt) + div Ty (x) sin(kwt))
k=1

and the L?(Qr)-norms of the functions

Ri(n,7) =0c0m —divr — f and Rao(n,7) =17 —vVn
can be easily computed. Thus,

IRy (0, 7)|1* =T|divr§ + £5I3

N
T X . . .
+5 (|| = kwong + div g + fEI1G + [[kwong + div ey + ££118)
k=1
z = cl|2 s(12
T3 Z (IFE IS + 11 £2 1)
k=N+1
: c cl|2 T al 1 : 2 T = 2
=T||divrg + f5lla + 3 Z kwony +div Ti + fillg + 35 Z (FAlGY
k=1 k=N+1
=:EN
where n = (—n;,n¢)7 and div 74, = (div 7§, div )T, and
[Ra(n, I = [ |r = vVl dedi
Qr
Al
=Tl —wVigll + 5 D (k= v Vgl + lImh - vVnilf3)
k=1

N
(& (o3 T
= Tl — vVnglh + 5 3 Il — v,

where T, = ()T, (75)T)T.

Remark 3. We note that the remainder term

T = 2 T = cl|2 5012
En = b) Z 1 fellc = B) Z (NS + [1LFR11E)

k=N+1 k=N+1
is always computable, due to the knowledge on the given data f. In some cases, the computation
of En is very easy, for example, if f is multiharmonic. However, even in the most complicated
cases, in which f = f(x,t) and we do not refer to special (e.g., extra regularity) properties, the
term En can be precomputed as || f — fn||, where fn is the truncated Fourier series of f.

In fact, the L?-norms of R; and Ry corresponding to every single mode k are decoupled.
Altogether, it follows that

N

C (& T C S (& S C S
IRy (n, 7)|I* = TIIRAG(TE) IS + 3 > (IR (i TG + IR (05 T3) 1)
k=1

Z (IFENE + 1F21%)

N\’ﬂ



10 U. LANGER, S. REPIN, AND M. WOLFMAYR

and
N
IR, 7)II* = TR (nf, 7OIE + 5 D (IR i G + I R27 (i, TENR) -
k=1
where
Ru(r5) = div e + f.
(32) Riz(ng, T5%) = —kwong + div i, + f, Vk=1,...,N,
Rii(ng,73) = kwong + div i, + fi, Vk=1,...,N,
and
R20(7707T8) =75—vVng,
(33) J(nd +JY e -7 _ J _ .
Ray (my,, T4) = T3 — vV, Vk=1,....,N, je{cs}

Corollary 1. The error majorants Mﬁ (n,7) and Mﬁa_” (n,T) can be presented in the forms

1
ME (0. 7) = ——(Cr [Ra(,7)l| + | Re(n, 7))
)|
T N
- |‘(OF (TIRGEOIE + 5 D (IR T0IE + IR, T)12)
k=1
T - 1/2 TIR c/( c c\ |2
+3 Z (71 + 1211E) )2 + (TR, )11
k=N+
N
T 1/2
+ 5 2 (R T I + [ Ref i m)IIB) ) )
k=1
and
1/2
M, (n,T) = o IR+ (m, )I* + I R2(n, 7))
1 T
= (TURGEEIE + IR 6 TOIE) + 5 D (IRaE k. T8I
ol k=1
IR W TG + IR (0, TG + R (0 1) 11)
T & . . 1/2
+5 2 (IR +15IE))
k=N+1
where i1 .| = min{v, o} and pq .| = min{ C2 .0}

We see that the majorants consist of computable quantities related to each harmonic. Therefore,
they not only evaluate the overall error, but also provide an information on errors associated with
a certain harmonic. Moreover, since the respective quantities are integrals over €2, their integrands
serve as indicators of spatial errors. Thus, the majorants contain a rich amount of information to
be utilized in various adaptive procedures.

Remark 4. Let f has a multiharmonic representation, i.e.,

f(z, )+ Z fi(x) cos(kwt) + fi (x) sin(kwt)) ,

where Ny € N is defined by f. If N > Ny, then n is the exact solution of problem (18) and T is
the exact flux if and only if the error majorants vanish, i.e.,

Ri5. =0 and Rof =0 Vk=0,1,...,Ny,

34
(34 Rip =0 and  Rap=0 Vk=1,2,...,Ny.
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Indeed, let the error majorants vanish. Then,
~ divrg = f5, 5= vV,
kwony — divty, = fi, —kwony — divry = fi, 7, =vVnp, T, =vVn, Vk=1,..., Ny,

so that collecting harmonics, we find that

Ny
T(x,t) = 75(x) + Z (1%(x) cos(kwt) + 74 () sin(kwt)) ,
k=1

n(x,t) = 15(@) + Y (5 (@) cos(kwt) + i (@) sin(ket))
k=1

and
o0y — divt = f, T =vVn.
Since n satisfies the boundary conditions and the equation, we conclude that n = u.

Another approach to derive a majorant is to insert the Fourier series ansatz directly to the
bilinear form a(u — n,v) and into the functional F,(v) as defined in (22). Then, we obtain the
following integral identities associated with every mode:

/Q (v(2)V (uk () — 0y, (2)) - Vor(@) + kw o () (ur (@) — n,(2)) - vi; (x)) de

(35)
= /Q (fk(:c) cvp(x) —v(x)Vn,(x) - Vo () — kwo(z)n,(x) vi‘(m)) dx,

which are valid for all v;, € (H}(£2))2. In the case k = 0, the integral identity
0 [ ve)Vii(e) ~n5@) - Vei@)dz = [ (f5(z)vi(@) - vi@) Vii(e) - T(a) da
is valid for all v§ € H}(Q). We define the left hand sides of (35) and (36) by
ak(uwr —my,vr)  and ag(ug — g, V),
and the right hand sides by
Fn,(0g)  and  Fe(vg),

respectively. Let us start with the case ¥ = 1,..., N. Hence, an upper bound for the errors
er = up — n;, in (H}(Q))? has to be computed. The bilinear form a(-,-) meets the inf-sup
condition
ax (U — My, Vk)
(37) sup IO o ok,
0#vi €(HL())? lvill1,0

1,0

with the inf-sup constant Q\}T-H = min{y, kwo}. By the same method as before, we reform the error
functionals and obtain estimates for

Fn (v
sup 7""( k).
0#vi,€(HL(Q))? [vell1e
We introduce a collection of vector-valued functions
TR = (TE,TE)T, T, T € H(div,Q) == {1 € [LZ(Q)]d cdivrt € Lz(Q)}

and use the integral relations

/div7’vdm:—/7’~Vvd:1: Yo € Hy(Q).
Q Q
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It is easy to see that
Fu,. (Vi) :/Q (fi-vi —kwo(z)ny, - vi +divry - vy
+ T - Vo, — v(x)Vn,, - Vo )de
(38) :/Q (i v +hkwo(z)ng - v +div Ty v + (T4 — v(x) V) - Vog)dz
<Rakmp Te)lellvrlle + 1R2k (g, 7)ol Voo
= (IR (e 73 + R (i )l1B) 7 o

1.9,
where
Rik(Me, T) = kwont +divry, + ), = (“kwoni + divr§ + £, kwont + divry + f5)T
= (Rag (1, 75), Rag (i, 7))
and
Ror(My, T) = Tk — vy, = (75, — Vg, 75 — vVn) "
= (Rof,(n 1), Rag (3, m3) T

Hence, the same results as in (32) and (33) for every mode k = 1,..., N have been derived. Using
the estimate (38) together with the inf-sup condition (37), we finally arrive at the following upper
bounds for every single mode k= 1,..., N:

Theorem 3. Let m,, € (H}(2))? and the bilinear form ay(-,-) satisfy (37). Then,

1 1/2
(39) [k = mplle < o (IR 1k (mies TG + I R2 (11, T1) 1) = M (g T,

=11
where Qﬁ\l =min{y, kwa} and T, = (7§, 73)T with 75,75 € H(div, Q).
Using the inf-sup condition

ar(ug, v) (VVuy, Vog)g + kw (ouy, 'vé-)Q
sup A AR LA sup
otveeri ()2 (VklLO  0reemi@)e v
L 1L
- (vVug, V(up — uj ))Q + kw (ouy, (ur, — ug) )Q

1,0

lup — ui|i0

_ (vVuy, Vug)g, + kw (cug, ur)g, < v||[Vug||3 + kwa|ukl3
V20ug10 B V2|ugl1o
k : k
VIV + A2V, minfy. £22)

> >
\/§|’uk|1,9 \/5

|U1c 1,0

together with the estimate
Fn,, 1) < R1x(es i) lellvelle + [[Rek (g, Tr) lol Vokllo
< (CrRik(Mes Ti)llo + IR2x (M, 7)) [vk]1,0
yields the following error majorant for | - |1 q:
Theorem 4. Let 1, € (H}(Q))? and the bilinear form ax(-,-) satisfy (40). Then,
1

(41) lur = melre < = (CF[Rak(my, Th)lle + [R2k (e, 7)) =: MEE (T,

=
where cf| = min{v, kwa/(CF + D}/V2 and T, = (75, 75)T with ¢, 75 € H(div, Q).



FUNCTIONAL A POSTERIORI ERROR ESTIMATES FOR TIME-PERIODIC PARABOLIC PROBLEMS 13

Now, we consider the case k = 0. Here, an upper bound for the error e§ := u§ — n§ in Hg ()
has to be computed. The inf-sup condition

(42) sup ao(ug — 16, v6)

>y llug =16l
0£vgEH (Q) [v§ll1.0 oo

with the inf-sup constant Qﬁ'\l = v/(C% + 1) can be proved quite analogously to (37). Moreover,
one can easily show that

(43) “up ao(u§ —n§,v5) _ ao(uf — g, u§ — n5)

= > Z| 7]0|1 Q
o#vceHi(Q)  |UGlLe lu§ —n§l1.0 ’

since v satisfies the assumptions (4). By arguments similar to those used above for the modes k,
we deduce the following estimates:

c c 1 C(C C(C C 1/2 [
(44) [[ug =6l < o (||R10(7'0)H?2 + ||R20(’70»7'0)||?2) = Mﬂaﬂ (16, 76)
=1
and
(45) ug = m5lie < = (CFHRlo(TO)HQ + [I1R26(nG, 76) llo) =: Mﬁ”(n& T6),

where 7§ € H(div, ),
Rig(rp) = fo +divrg  and  Rag(ng, 75) = 76 — vViig.

4.2. Error majorant of the second type. In this section, we deduce another upper bound of
the error e := u — K which is valid for approximations that are less regular with respect to the

time, i.e., n € HO ’pzer(QT) In fact, we will choose a multiharmonic finite element approximation

unp as 7, which is, of course, more regular in time, but the abstract functional a posteriori error
estimates, which are obtained, can be used in a more general setting. Let us again consider the
functional

]ﬂ,(v)z/ (fv—a( )0, 1/27781/2 Lo (w)Vn-Vv) dx dt
T
defined for all v € HO’;ST(QT) In addition to the vector-valued function 7 € H(div,Qr), we

introduce the function x € Hpm (Qr). We rearrange the functional F,(v) and write it as

Fn(v) :/ (fv—oatl/Qn@tl/QvJ‘ —VVn-VU) dz dt

T

:/ (fv 081/27781/2 l—l—am@l/Q L—1—061/2 Lo+divro
T
—|—T-VU—1/V7]~VU)d:cdt

:/ ((f—l—diVT—Faatl/?HL) v+( (— 81/277+ )> 33/2UL+(T—VV7])~VU) dac di

T

1
for all v € Hé,’;er(QT).

Remark 5. The function T can be interpreted as “an image” of vVu and the function k as “an
image” of 83/2u

Let

Ri(T, k) = f—l—d1v7'—|—081/2 L
Rao(T,n) =1 —vVn,
Ra(s,n) = o(s — 0, "n).
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Then, the functional 7, (v) can be estimated from above as follows
1/2
Fa) < [Ra(m,@)l[lvll + [Ra(r mI Vo] + [Ra(s, m)[0; ]

1/2
< (IR1 (7, m)II? + IR (7, m)II” + | Ra (. m)|1%) 1ol 1.3 0,

using the Cauchy-Schwarz inequality and ||8tl/2vLH = ||8tl/2v\|, since
2 2 T T 1/2, 12
02720 H1* = 5 D kellviclid = 5 Y kwllvella = |0 |
k=1 k=1

Altogether, we obtain the upper bound

T (v) 1/2
(46) wp R < (Ra(r )P+ IR ) 4 [Rs m)?)
0fveHy 2 (Qr) | H"2(Qr)
From (20) follows that
1 alu —n,v 1 Fn(v
T SN rewsaant S SO e
0£veH, 2,.(QT) H"2(Qr) 0#£veH, 2, (Qr) H"2(Qr)

which leads together with (46) to the following result:

Theorem 5. Letn € Hé’% (Qr) and the bilinear form a(-,-) defined in (14) satisfy (20). Then,

,PET

1 1/2
_ < 2 2 2
- =1l gy < 7 (RA(T R+ [Ralro) | + R )

= Mﬁa.” (n, 7, K),
where 7 € H(div,Qr), k € Hgéé (Qr) and py = min{ﬁ,g}.
Remark 6. If Ri(1,k) =0, Ra(7,n) =0 and R3(k,n) =0, then
—08,51/2.%L —divt = f, T =vVn, K= 83/217.

Since n satisfies the Dirichlet condition on Yp, 1 is the solution. In other words, M%\(%T’ K)
vanishes if and only if n is the exact solution, T is the exact flux and k is the exact half time
derivative of the solution. Moreover, if n € Hé”;er(QT), one derives the original equation (1) in
the weak sense, due to

— (a0, (0 n)t 0) = (00} %n,0,*0") = (08im,v)
using the o-weighted counterparts of the identities (11) and (9), cf. (10) as well.

It is obvious that similar results to the ones obtained in Theorem 1 for | - |HL 3o 0 be
T
shown here together with the estimate
1/2
Fo) < [Ra(r )llo]l + [ Ra(m, ) [ V0] + 1 Rs (s, m) 110 o]
1/2
us) <Cr [Ra(m, WIVol + IR (r ) [IIV0l] + [ Rk, m)[10: %]
48 1/2
= (Cr [Ra (7, 5)|| + [Ra(m,m) [ V0| + 1Rs (e, m) 10720
) )\ 1/2
< ((Cr IR, W) + IR (mmID? + IRs () 12) el o3

From (21) and (48), we deduce the following a posteriori estimate analogously proven as the one
of Theorem 5:
Theorem 6. Let n € Hé:p%er(QT) and the bilinear form a(-,-) defined by (14) satisfy (21). Then,
1 ) N\ 1/2
ay T < o (O IR IR+ IRst )
= M‘@‘ (777 T, "<‘7)7
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. 1 .
where T € H(div,Qr), k € H*2(Qr) and py = min{v,o}.

Remark 7. Ifn € H, pET(QT) then k = 0, 1/2 n and the term Rs vanishes. Hence, we arrive at
the estimate (29), which can be now viewed as a particular case of (49).

Similarly, one can prove a posteriori error estimates using the following weighted norm:

luly, = (vVu, Vu) + (a@,}“u, 82/211)
(50) T &
=T (vVug, Vug)a + 3 Z (vVuy, Vug)a + kw (cur, ur)q) -
k=1
First, we need to obtain the corresponding inf-sup and sup-sup inequalities.

Lemma 4. The space-time bilinear form a(-,-) defined by (14) meets the following inf-sup and
sup-sup conditions:

(51) paluly, < sup
0¢UEH;:EQT(QT)

for allu € Ho per(QT) with constants py = 1/v/2 and po = 1.

Proof. Let us start with the proof of the sup-sup condition. Using the triangle inequality and the
o- and v-weighted counterparts of the Cauchy-Schwarz inequalities in the Fourier space, e.g.,

< Z Z kw (auk uk)l/Q(O"Uk ’Uk)l/Q

) 0y ) Q) ) Q

T o0
) = |2 ka(ouk,vk)g
k=1 k=1

T T
§ <2 k5:1 kw(auk,uk)g> (2 ];:1 k‘w(avk,vk)g>

= (U@E/QU,83/2u)1/2(06t1/21), 8751/211)1/2 Yu,v € Hg;é(QT),

(Jatl/QU, 82/21)

1/2

leads to the estimate

a(u,v)| = ‘/ 0@;)5;%83/% + v(x)Vu- w) da dt‘
‘/ Vo oy v Ldacdt’

< (03;/2% 82/210 2 (U@tl/va‘, 8:/2UJ‘)1/2 + (VVu, Vu) 2 (1Vo, Vu)/?
= (U@tl/Qu, atl/Qu) 1/2 (063/21), 83/21)) Y2y (vVu, Vu)(vVo, Vo)l/2,

/ v(z)Vu - Vodedt

since

’ﬂ

((78,51/211l o L = 52 (ovr,vi)q ka OV, Vg ) = (0(9,51/21),6151/21)).

Finally, the sup-sup condition is proven by
la(u,v)| < (08}, 5‘3/211)1/2 (00}, 3,51/21))1/2 + (vVu, Vu) 2 (Vo Vu)/?

1/2 1/2
< ((082/211,83/2@ + (vVu, Vu)) ((08,51/21), 83/211) + (vVo, Vv))
= pzfulvy[vlv,

with the constant ps = 1.
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Let us now prove the inf-sup condition by choosing the test function 7, = u — u™ and using
the o- and v-weighted orthogonality relations (10). The choice 7, = u — u* yields

a(u,u) = / (a(w)@tlpu 8,51/21# +v(z)Vu - Vu) dz dt = (vVu, Vu),

T

a(u, —u®) = / (U(w)atl/Zu 5,51/2u +v(x)Vu- VuL) dxdt = (08151/2% 82/21;),

T

a(u,u—ut) = |u|%/0
Using the o- and v-weighted orthogonalities (10) again leads to |m.|v, = V2 |ulv,, i.e.,
malty = o=t = (Y (= ut), V=) + (00w~ ut). 0 (u — ')
= (vVu, Vu) — (VV’LLJ', Vu) — (Z/VU,V’LLJ') + (Z/VUJ',VUJ')
+ (aa,}/Qu, 5}1/2u) — (J@,}/QUL, 5}1/2u) — (a(‘?tl/zu, 83/21#) + (0’8251/2UL, 83/2uJ‘)
= (vVu,Vu) + (vVu, Vu) + (aatl/zu,a,}“u) + (083/2u,8tl/2u)
=2|ulf,.

Altogether, we arrive at the following estimate of the supremum from below:

S a(u,v) _ alu,u—ub) \u|%/0 1 ]

up - L = = —F=|Uu Voo

okt (an) [vlv, lu—utl,  V2luly, V2

which finally yields the inf-sup constant p; = 1/v/2. O

In order to deduce an upper bound of the quantity

sup

11
0¢U€Ho,;72er(QT)

we rearrange the functional F,(v) as follows
Fo(v) :/ (fv - 082/21783/211L —vVn- VU) dx dt
Qr

:/ (fv—aaj”na,}”# —|—0/£8t1/2vj‘ +08t1/2/£J‘v

T

+diVT’U+T'v117VV77'V’U> dx dt

:/ (<f+divr—|—08t1/2/-@J‘) v—i—(T—I/Vn)-Vv+o(—8t1/27]—|—n)8tl/2vJ‘) dx dt
T

and then obtain the estimate
Fow) < Ra(r, &)[[o]l + [Ra(r, )| V0] + (0 Ra(r,m), Ra(k, )2 (00, 20, 8,/ *0) /2
< Cp [[R1 (1, &) [V0]| + [|Ra (T, ) [[IV0]| + (0 Rk, ), Ra (s, m)) /2 (087 0, 8} 0)1/?
= (Cp |Ri (7, &) + IR (T, m) ) V0] + (0 Ra(k,m), Ra(k, n) /2 (00, %0, 0, 20)}/?

for all v € Hy'2 (Qr), where

;per
. 1/2 1 1/2
Ri(m,k):= f+divr + 09, "k, Ro(T,n) =7 —vVn, Rs(k,n) ==K — 0, n.

Hence, it follows an a posteriori error estimate for | - |y;.
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Theorem 7. Let n € Ho pe’r‘(QT) and the bilinear form a(-,-) satisfy (51). Then,

oy < (IR IRar ) + + (@ Ralmm). Rawm)))
S

= MHVO (773 T, ﬂ)7
where 7 € H(div,Qr), K € Hg{j (Qr) and pf = min{\/v,1}/V2.
Proof. Using the left inequality of (51) yields the upper bound
alu —n,v Fn(v
lu—nlv, < V2 Sup 7( 1:) =2 sup 7"( )
|U|V0 |U|Vo
0#vEH, peT(QT) 0£vEH,’ peT(QT)

which immediately leads to (52) with the estimation

2 1/2 12, 51/2 1/2
- o) _ (CrlRal+IRal)’ + (0 Re,R)) ~ (I + (00, %0, 0!%0)

< 1/2
0¢v6H0 per(QT) vl ((I/Vv, Vo) + (08,51/21),83/21)))

(Cr IR+ IRl + (0 R R3)
<
- min{,/v, 1}

In order to derive a posteriori estimates for the full weighted H L3 _norm defined as
]2, = [[o]]® + V0, Vo) + (00} *0,8,/%),

the functional F, (v) has to be rearranged again, i.e.,

fn(v):/ (fv—081/2n81/2 + Z/Vn-Vv)dwdt

:/ (Fo 0000} + 050} 20 + 00,5t 0

T

+div(rT)v+ (V&")-VU—I/Vﬁ-VU) dx dt

:/ <<f+d1V(I/T)+081/2 J‘) v+a(—81/2n—|—/<;)0tl/21)l‘

T

+u(F—Vn) -Vv) da dt Yo € Hy'Z (Qr).

Here, a vector-valued function 7 has been introduced, which satisfies the identity

div(vF)vdx = — [ (v7)-Vvdz Vv e Hj(Q).
Q Q

Let now
Ri(F,k)=f+div(vT) + 081/2 L Rao(T,n) =7 —Vn.
Then, the functional F;(v) can be estimated from above as follows
Fo(0) < |RuF m)[o]l + (v Ra(F, 1), Ra(F, )2 (v V0, Vo) /2
(53) + (0 Ra(k, ), Ra(k,n) /2 (00} %0, 0 *v) /2

< (||R1(7:7 K)Hz + (VRQ(%7W)7R2(7:777)) + (0 R3(’{777)77?’3(’{777)))1/2”7}”‘/0'

Moreover, the following inf-sup conditions can be proven:

17
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Lemma 5. The space-time bilinear form a(-,-) defined by (14) satisfies the following inf-sup and
sup-sup conditions:

a(u,v)
(54) paflullve < sup ol < piolullv,
O¢UGH;"E€,.(QT) 0

1

for allu € Hé:;e,«(QT) with constants py = min{1,v/C%} /5 and ps = 1.

Proof. The sup-sup condition is analogously proven as it is done in Lemma 4 with the final result
|a(u, v)| < ulv, [v]vy < pallullvs llv]lvo,

where 15 = 1. The inf-sup condition is proven by choosing the test function 7, = v+« — u* and
using the o- and v-weighted orthogonality relations (10) as well as the Friedrichs inequality (27)
in the Fourier space. With the choice 7, = 2u — u'’, we obtain

a(u,2u) = / (a(m)@lmu 8,51/2(2u)J‘ +v(x)Vu - V(Zu)) dx dt = 2(vVu, Vu),

a(u, —u®) = / (U(ﬁc)atl/%atlmu +v(x)Vu - Vul) dx dt = (08,51/2u,6tl/2u),

T

a(u,2u —u) = [uf?, + (Vu, Vu) > |uf?, + ]| Va2

|14 |14
> |ulf, + = lull* = min{1, =5 }|ull3,.
0 C% 70% 0

Since
Iwullfy = 112w — w7, = 120 —wt | + (#V(2u — u™), V(2u — u™))
+ (00, (2u — ut), 8 (2u — uh))
= ||2u||2 + ||’tf‘||2 + (vV(2u),V(2u)) + (I/VUJ', VuJ‘)
+ (083/2(210, 8,51/2(211)) + (Uﬁg/zul, 3)51/2ul‘)
=5|[ul® + 5 (vVu, Vu) + 5(a0;*u, 8% u) = 5 ||ul|?,

we use (10) and find that ||, |lv, = v/5 |lullv,. Hence, we arrive at the following estimate of the
supremum from below:

a(u,v) _ alu,2u —ub) min{l,é}”u“%@

sup = = = pulullvy,
2u — ut o
v oy W~ T2=Ty = ol
which finally yields the inf-sup constant p; = min{1,v/C%}/v/5. O

From (53) and (54), we deduce the following a posteriori estimate:

1
Theorem 8. Letn € Hé)’;er

(Qr) and the bilinear form a(-,-) satisfy (54). Then,

L (IRuF I + (0 Ra(F ) Ra(Fo) + (0 Ran) Rl )

IN

U — 77| Vo
(55) | |

where (vT) € H(div,Qr), k € Hgéé (Qr) and py = min{1,v/C%}/V/5.

Finally, we briefly discuss a posteriori estimates for Fourier modes in the context of Vy-norms.
In main, they are derived by the same arguments as before. Therefore, we present only the results
and comments related to specific features of this case. We introduce

|uk|%/0 = (WVuyg, Vug)q + kw (cug, ug)q,
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where the following inf-sup condition holds:

(56) Sup a'k (Uk B nk" 'Uk-)

> Jug — nglv
vk €(HE ()2 [vklv, v ’

with the parameter-independent constant ¢ |, = 1/v/2. In addition to 74 = (7¢,75)T with
T¢, 75 € H(div,Q), we introduce the functions k = (k¢, ;)7 € (L*(Q))? fulfilling the simple
orthogonality relation

/ kwo(x)ky - vt de = —/ kwo(x)ki -vde Vo€ (L)%
0 Q

Let
Rip(kp, Tr) = kwokj +divry + fi = (“kwor) + divr{ + f£, kwor +divry + )7
= (Rak(kk, 70), Rag (ki 73)T,
Rk (s Th) 1= T = vV = (75 = vV, 7 = vVm) T = (Raji(nf,, 75), Rei (i 7))
Rk, k1) = ki =y, = (55 — 0§, w5 —17) " = (Raf (05, K7, Rk (0, 67) "

By arguments similar to those used for proving Theorems 3 and 4, we deduce the following upper
bounds for every single mode k with | - |y,:

Theorem 9. Let 1, € (H}(Q))? and the bilinear form ay(-,-) satisfy (56). Then, it follows the
estimate

1 2
lur — nglv, < CT((CF IRk (kk, 7)o + Rk (e, k) | 2)
Sy,

(57) + (URSk(nkv"k)»RSk(nkaﬂk))Q)l/z

= M?B‘I;O (nka Tk, K’k)a

where T, = (¢, 73)T € (H(div,Q))?, kr = (x5, 65)T € (L*(Q))? and the constant Q|y~|vo =

min{,/z,1}/V2. In the case k = 0, we derive the estimate (45).
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