
Complexity Analysis of the Bivariate

Buchberger Algorithm in Theorema

Alexander Maletzky

DK-Report No. 2014-10 09 2014

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Manuel Kauers
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Silviu Radu

Communicated by: Bruno Buchberger
Wolfgang Schreiner

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria

Complexity Analysis of the
Bivariate Buchberger Algorithm in Theorema∗

Alexander Maletzky

DK Computational Mathematics / RISC

Johannes Kepler University Linz

alexander.maletzky@dk-compmath.jku.at

October 2014

Abstract

In this report we describe the formalization and formal, semi-automated
veriVcation of a part of Gröbner bases theory, namely the complexity anal-
ysis of Buchberger’s algorithm in the bivariate case, in the computer system
Theorema. We not only explain the individual steps we carried out to sys-
tematically explore the theory, but also the design principles we followed
for creating a new Theorema special prover, as well as the improvements
(regarding generality and simplicity) we achieved compared to the original
pencil-and-paper elaboration of the theory by Buchberger. Up to our knowl-
edge, there does not exist any other formal treatment of exactly this theory
in any other computer system.

1 Introduction

This report presents a major case study in how mathematical theory exploration
can be carried out in the Theorema system: The theory that is explored is the com-
plexity analysis of Buchberger’s algorithm with chain criterion in the bivariate
case, as investigated more than 30 years ago by Buchberger in [12, 3, 4]. Hence,
neither was the underlying theory developed only recently, nor were the main
theorems proved only with the help of the computer system – All those ingredi-
ents have already been there before. Rather, the achievement of our research is

∗The research was funded by the Austrian Science Fund (FWF): grant no. W1214-N15, project
DK1

1

alexander.maletzky@dk-compmath.jku.at

the formal treatment of the theory, including both formalization and formal veri-
Vcation by means of semi-automated proving, such that eventually we obtained a
“polished”, computer-veriVed version of the original pencil-and-paper elaboration.
Moreover, the close investigation of the hand-crafted proofs that was necessary for
achieving the formal veriVcation led to some theoretical improvements, too (both
generalizations and simpliVcations).

Although there are quite some examples of formalizations of Gröbner bases in
computer systems, like the one of Coquand and Persson [15], Thery [28] and Jorge
[19] in Coq [14], of Medina-Bulo et al. [24, 25] in ACL2 [20], and of Schwarzweller
[27] in Mizar [29], we are not aware of any formalizations that target precisely
the fragment of Gröbner bases we considered, namely the complexity analysis of
Buchberger’s algorithm in the bivariate case. This is true in particular also for all
existing formalizations of Gröbner bases in Theorema (c. f. for instance [6]).

Theorema [11, 9] is a system for mathematical theory exploration, which was
initiated by Bruno Buchberger in the mid-nineties and is now developed in his
Theorema group at RISC. It uses the computer algebra system Mathematica [33]
as software frame, in the sense that it is basically a Mathematica package. Its user
interface is currently re-designed and -implemented (Theorema Version 2.0), and
whenever we refer to Theorema we actually mean Theorema 2, because the for-
malization was already carried out in the new system. One of the main paradigms
underlying Theorema is the idea of supporting “working mathematicians” in all as-
pects of their everyday-work, ranging from developing theories, over doing com-
putations, until even writing papers – Theorema notebooks themselves look much
more like nicely-formatted journal articles than plain source code.

The research described in this report covers part of the author’s PhD project,
which is about formalizing the foundations of Gröbner bases theory (Main The-
orem on S-polynomials, correctness of Buchberger’s algorithm, . . .). The largest
part of this project is still ongoing work, and we are convinced that it will beneVt
from the successful treatment of the complexity analysis in many respects (see also
Section 6 for more information). Furthermore, this work was already presented at
[21].

The report is organized as follows: Section 2 gives an overview of the under-
lying theory, i. e. it presents the algorithm this report is all about, introduces some
basic notions, and states the main theorems. Also, the aforementioned theoret-
ical improvements of our formalization are explained there in detail. Section 3
presents the individual steps that were followed in our computer-supported theory
exploration, and how the resulting formalization is organized. Section 4 provides
a detailed description of the new Theorema special prover that was created for
verifying the theory, and Section 5 describes the “path” of lemmas and theorems
in the formalization that eventually leads to the main theorems of the complexity
analysis (this path slightly deviates from the one in the original elaboration).

2

2 Underlying Theory

The theoretical foundations underlying the formalization were investigated by
Bruno Buchberger around 1980 in [2, 12, 3, 4]. Hence, it has to be pointed out
that this report – and, in particular, this section – does not present essentially new
results obtained only recently, but rather summarizes known results the formal-
ization in Theorema is based upon. Still, it also must be mentioned that indeed
some minor improvments (i. e. generalizations and simpliVcations) compared to
the original elaboration could be achieved which will be made explicit in the up-
coming paragraphs. Therefore, this section might be regarded a summary of the
original papers by Buchberger.

2.1 The Algorithm

In order for this report to be self-contained, we state here the algorithm whose
complexity we are interested in: Algorithm 1. As usual in papers about Gröbner
bases, we Vx now some arbitrary admissible term ordering � and let lt(p) and
lcm(σ, τ) denote the leading term of polynomial p (w. r. t. �) and the least common
multiple of terms σ and τ , respectively.

chainCrit is the so-called chain criterion introduced in [2], formally deVned
as

chainCrit(p, q,G) :⇔ ¬∃g∈G
∧

lt(g)|r
deg(lcm(lt(p), lt(g))) < deg(r)
deg(lcm(lt(q), lt(g))) < deg(r)

(2.1)

for all polynomials p and q and sets of polynomialsG, where r := lcm(lt(p), lt(q)).
Algorithm 1 is Buchberger’s algorithm with chain criterion, invented by Buch-

berger in [1, 2], which computes Gröbner bases of ideals generated by Vnite sets of
polynomials w. r. t. admissible term orderings. Although the algorithm can be ap-
plied on sets of polynomials in arbitrarily many indeterminates, all the complexity
results stated here only hold in the bivariate case (which, of course, is also true
for the formalization in Theorema, see [22]. There, however, some intermediate
results could even be proved for arbitrarily many indeterminates). Otherwise, it is
well-known that its complexitiy is asymptotically double exponential in the num-
ber of indeterminates [23], and, for a Vxed number of indeterminates, polynomial
in the maximum degree of the input [17, 26].

Please also observe that the chain criterion that is used here is only one vari-
ant among many. For instance, alternatively one could compare lcm(lt(p), lt(g)),
lcm(lt(q), lt(g)) and r not w. r. t. their degrees, but directly w. r. t. the term order
�. The reason for deVning chainCrit as above is that we will mainly restrict �

3

Algorithm 1 Buchberger’s algorithm with chain criterion
Input: F = {f1, . . . , fn} ⊆ K[x, y]
Output: G ⊆ K[x, y] s. t. ideal(F) = ideal(G) and G is Gröbner basis

1: function GB(F)
2: P ← {(fi, fj)|1 ≤ i < j ≤ n}
3: G← F
4: while P 6= ∅ do
5: choose some (p, q) from P
6: P ← P\{(p, q)}
7: if chainCrit(p, q,G) then
8: h← sPoly(p, q)
9: h← totalReduce(h,G)
10: if h 6= 0 then
11: P ← P ∪ {(g, h)|g ∈ G}
12: G← G ∪ {h}
13: end if
14: end if
15: end while
16: return G
17: end function

to graded orderings anyway (see following paragraphs). Moreover, the diUerences
between the individual variants are comparatively small.

2.2 Complexity of the Algorithm

In order to obtain bounds on the complexity of Buchberger’s algorithm in the
bivariate case in terms of the number of elementary operations that are executed
for given input F , it turns out to be suXcient to only know bounds on the degrees
of the polynomials in the resulting Gröbner basis G, as shown in [2]:

Theorem 1. For any Vnite F ⊂ K[x, y] let

DF := max{deg(lt(g)) | g ∈ GB(F)}

i. e. the maximum degree of all leading terms in the Gröbner basis computed by
Algorithm 1. Furthermore, let CF := (DF+2)(DF+1)

2
. Then at most(

|F |+ CF

2

)
·
(
CF (|F |+ CF) +

(
CF

2

))

4

additions, multiplications and comparisons (w. r. t. �) of polynomials are needed
to compute GB(F).

Because of Theorem 1 the remaining part of this section is all about obtaining
good (i. e. tight) bounds for DF in terms of the degrees of the polynomials in
F . Moreover, this is precisely what the formalization in Theorema deals with
exclusively.

2.3 General Proof Strategy

In this subsection we describe the general strategy for obtaining and proving suit-
able bounds forDF , pursued both in Buchberger’s original papers as well as in the
Theorema formalization.

At the very beginning, the case of arbitrary admissible term orderings is re-
duced to the case of graded orderings, i. e. orderings where the Vrst criterion to
decide which of two terms is greater is their degree. Knowing a bound for such
orderings one can easily derive a bound that holds for any admissible ordering, if
the corresponding ideal is 0-dimensional. For more details on this we refer to [4].

Summarizing, from now on we assume that � is a graded admissible term
ordering, which, furthermore, is the only case that is treated in the formalization.
The subsequent paragraphs describe the individual steps of the general strategy.

1. Exponent Vectors First of all, the problem of estimating the degrees of poly-
nomials is reduced from a commutative-algebra- to a combinatorial problem, by
mapping each non-zero polynomial to the exponent vector of its leading term
(w. r. t. the graded ordering �). This is justiVed by the fact that in Algorithm 1
it is only the leading terms of polynomials that inWuence the behaviour of the
algorithm and the resulting Gröbner basis, be it when forming S-polynomials or
in reductions. Exponent vectors are pairs of natural numbers, meaning that from
now on we work exclusively in the space N2, and no appeal needs to be made to
polynomials any more. This, in fact, is now precisely where the formalization in
Theorema starts: There, everything is about exponent vectors (and tuples thereof)
rather than about polynomials. As functions and predicates like lcm, deg, divisi-
bility and chainCrit, deVned for polynomials, in fact only depend on their argu-
ments’ corresponding exponent vectors, the same functions/predicates, by abuse
of notation, will also be used for exponent vectors. For instance, if p and q are two
exponent vectors, then p|q iU pi ≤ qi for all i = 1, 2, where pi and qi refer to the
i-th component of p and q, respectively. This notation will be used throughout the
rest of this report.

5

2. Loop Invariant For each G ⊆ N2 (corresponding to the current basis in
Buchberger’s algorithm) the quantityMG+WG is shown to be some kind of “loop
invariant” of the main loop in Algorithm 1, in the sense that it does not increase
(it may decrease, though). MG andWG are deVned as

MG := max{deg(lcm(a, b)) | a, b ∈ G ∧ chainCrit(a, b,G)} (2.2)

respectively
WG := min{e1 | e ∈ G}+min{e2 | e ∈ G} (2.3)

and the goal of this second step is to show

MG′ +WG′ ≤MG +WG (2.4)

where G′ is obtained from G by adding a new exponent vector h, corresponding
to line 12 of Algorithm 1 where a new polynomial is added to the current basis.
Of course, h is not completely arbitrary but has some speciVc properties, like the
very important deg(h) ≤ MG since � is graded and h corresponds to a polyno-
mial that is obtained by reducing the S-polynomial of two polynomials p and q
for which the chain criterion holds, meaning that by deVnition of MG we know
deg(sPoly(p, q)) ≤MG.

3. Maximum Degree For each F ⊆ N2, maxdeg(F) is shown to be bounded
from above byMF , i. e.

maxdeg(F) ≤MF (2.5)

maxdeg(F) is deVned as the maximum degree of all exponent vectors in F .

4. Degree Bound The quantity MF + WF that was shown not to increase in
the course of Algorithm 1 in step 2 is now shown to be bounded from above by
2 ·maxdeg(F), for all F ⊆ N2, i. e.

MF +WF ≤ 2 ·maxdeg(F) (2.6)

As soon as all this is established, the whole elaboration is Vnished, as we can
now conclude

maxdeg(G) ≤(2.5) MG ≤MG +WG ≤(∗) MF +WF ≤(2.6) 2maxdeg(F)

where F corresponds to the input of Buchberger’s algorithm and G to its output.
(∗) is justiVed by an inductive argument exploiting formula (2.4).

The Vnal result of the complexity analysis is summarized in the following the-
orem:

6

Theorem 2. For all Vnite F ⊂ K[x, y] and all graded term orderings �: The
Gröbner basis G computed by Algorithm 1 on input F w. r. t. � satisVes

maxdeg(G) ≤ 2maxdeg(F) (2.7)

maxdeg(G) andmaxdeg(F) refer to the maximum total degree of the polynomials
in G respectively F .

2.4 Improvements in the Formalization

As indicated already before, some improvements in the formalization in Theorema
could be achieved compared to the original elaboration of the theory by Buch-
berger in the cited papers. Here, we list and discuss them in detail.

2.4.1 Ground Domain

By deVnition, exponents in polynomials are non-negative integers. Hence, it is
only natural to carry out steps 2 – 4 of the general proof strategy in the space N2,
just as described in the previous subsection; This is exactly how it was done in
Buchberger’s original papers.

However, since absolutely no appeal to polynomials is made in those steps and
really everything happens in the “space of exponent vectors” N2, there is nothing
that hinders us from trying to generalize the ground domain from N to wider
classes of mathematical structures (even though this might not make sense when
going back to polynomials in the end). And indeed, a detailed analysis of the proofs
of the various formulas revealed that only quite a few properties of N are actually
needed, therefore allowing us to replace N by the much wider class of so-called
totally-ordered commutative monoids, deVned as follows:

DeVnition 3. (D,+,≤) is a totally-ordered commutative monoid iU

1. (D,+) is a commutative monoid

2. (D,+) is cancellative, i. e.

x+ z = y + z ⇒ x = y

for all x, y, z ∈ D

3. (D,≤) is a total ordering

4. + is monotonic w. r. t. ≤ on D, in the sense

x ≤ y ⇒ x+ z ≤ y + z

for all x, y, z ∈ D

7

As can easily be seen, apart from N there are many other well-known math-
ematical structures that are totally-ordered commutative monoids, among them
Z, Q, R, and C with any order relation that corresponds to an admissible term
ordering (e. g. lexicographic). So, this really is a massive generalization.

There is one important thing to note, though: Apparently, totally-ordered com-
mutative monoids are not required to have a least element, or even to be well-
ordered by ≤. This might appear strange at Vrst sight, since domains that are
not well-ordered make it impossible to draw any conclusions about the complex-
ity of Buchberger’s algorithm, even when knowing bounds on the degrees of the
polynomials in the Vnal Gröbner basis. But keep in mind that steps 2 – 4 of the
general strategy are only concerned with Vnding exactly such degree bounds, but
not with the actual complexity of the algorithm. The degree bound 2maxdeg(F)
is valid for all Vnite F ⊂ D2 (if D is a totally-ordered commutative monoid and
a graded ordering on D2 is used), but deriving actual complexity results, as it is
done in Theorem 1, is indeed only possible if much stronger requirements on D
are imposed.

2.4.2 Number of Indeterminates

Although the main result maxdeg(G) ≤ 2maxdeg(F) was only proved for the
case of two indeterminates, or, in exponent vector parlance, in the space of ex-
ponent vectors in two dimensions, many intermediate auxiliary results could be
proved in arbitrary dimension. This will certainly prove a huge beneVt if the com-
plexity of Buchberger’s algorithm in a higher number of indeterminates, or even
arbitrarily many indeterminates, is investigated by similar means sometime.

2.4.3 Cover of Space of Exponent Vectors

The next improvment is a bit technical: In the proof of formula (2.4) various cases
are distinguished depending on where the new vector h lies in the two-dimensional
space of exponent vectors, w. r. t. the current set G. To this end, the space of
exponent vectors (or, in short, exponent space) is partitioned into several sets: In
the original elaboration in [12] these sets are above G, below G, interior of G, and
exterior of G (Strictly speaking, the exterior is again divided into two sets that can
be dealt with by symmetric arguments, though).

In the formalization in Theorema, a diUerent splitting of the exponent space is
pursued: Above G (same as in original elaboration), rectangular region of G, and
far exterior of G (again divided into two “symmetric” sets). This splitting is only
a cover of the exponent space, since the set above G and the rectangular region of
G are not disjoint in general.

The reason for this deviation from the original papers is the following: The

8

new rectangular region of G comprises the whole set below G, interior of G, and
parts of exterior of G from the “old” partition. Hence, what have been three cases
previously are now only one single case that, furthermore, can be dealt with by
a very nice new argument that in fact proves correct the much stronger claim
MG′ ≤ MG (if the new element h is in the rectangular region of G). For more
details on all that please see Section 5.

2.4.4 SimpliVcation of Proof of (2.6)

Originally, formula (2.6) was proved in [4] by Vrst reducing the case of arbitrary
sets F to the case of so-called contours and then proving the formula only for
contours. The latter part is easy, but the reduction of arbitrary sets to contours
is very cumbersome and involves many tedious case distinctions, making up in
total eleven pages of Buchberger’s original paper. However, a close investigation
revealed that all this cumbersome reduction to contours is not needed at all, since
the proof of the second part given for the case of contours works more or less in
exactly the same way for any set of exponent vectors. Since it is really short, we
spell it out in full detail (even for totally-ordered commutative monoids):

Proof of (2.6). Choose F ⊆ D2 arbitrary but Vxed, where D is a totally-ordered
commutative monoid. We deVne the auxiliary notionsMi andmi for i = 1, 2 as

ai := max{ei | e ∈ F}

and
bi := min{ei | e ∈ F}

With this deVnition, we apparently have WF = b1 + b2. Moreover, since MF is
the maximum degree of the least common multiples of some exponent vectors in
F , it can certainly be bounded from above by a1 + a2. Hence:

MF +WF =MF + b1 + b2 ≤ a1 + a2 + b1 + b2 = (a1 + b2) + (a2 + b1)

We show that both summands in the last expression can be bounded from above
bymaxdeg(F), which Vnishes the proof. W. l. o. g. we only consider the Vrst sum-
mand a1 + b2; The other one can be treated analogously. Since a1 is the maximum
Vrst component of all vectors in F , there must be some vector e ∈ F with e1 = a1.
By deVnition of b2, the second component of e, e2, must be at least as big as b2,
hence we can conclude

a1 + b2 = e1 + b2 ≤ e1 + e2 = deg(e) ≤ maxdeg(F)

9

Introduce
new notions

Compute
with new notions

Prove
rewrite-kind lemmas

Prove
advanced theorems

Create
special prover

Figure 1: Theory Exploration Cycle

3 Theory Exploration Cycle

The so-called Theory Exploration Cycle is a structured method for developing
mathematical theories in a systematic way, suitable both for working “with pencil
and paper” as well as for formalizing mathematics in computer systems such as
Theorema. Although such very general methods usually come in many diUerent
“Wavours”, with some minor variations here and there, we present here what in
our perception seems to be a good and reasonable approach. In particular, what
we present here is exactly the kind of theory exploration cycle we followed in the
formalization of the complexity analysis in Theorema.

Figure 1 shows the individual steps that form the Theory Exploration Cycle, as
well as their order. The remaining part of this section is dedicated to explaining all
the steps in more detail, where each step is also illustrated by concrete examples
from the complexity-formalization.

For the sake of completeness it has to be mentioned that, naturally, there are
many variations of the Theory Exploration Cycle. For instance, one may argue
that inventing problems is an integral part of exploring mathematical theories
as well. Hence, a diUerent, more “algorithm-oriented” Theory Exploration Cy-
cle might have Introduce new notions – Prove rewrite-kind lemmas – Invent
problems – Solve problems – Invent algorithms for automatic solution – Cre-
ate special prover incorporating algorithmic solutions as its individual steps.
The aim of this report is neither to present a complete list of all possible variations,
nor compre them to each other and argue why one or the other is “best”. All what
Figure 1 does is illustrating the strategy we pursued in our own formal treatment
of one particular mathematical theory, but we are aware that it could have been
done diUerently, too.

10

3.1 Introducing New Notions

The truth is that we went through the Theory Exploration Cycle not only once,
but one-and-a-half times, meaning that node Introduce new notions was visited
twice.

The Vrst time we introduced very basic notions needed for later building upon
them the more “interesting” ones at the heart of the complexity analysis. These
basic notions include tuples, total order relations, and totally-ordered commutative
monoids, as presented in Section 2.4.1. They all have in common that they are
more or less independent of the complexity analysis and can easily be used also in
completely diUerent formalizations; This, in particular, holds for tuples and total
order relations, but also totally-ordered commutative monoids might be of interest
elsewhere.

“Introducing new notions” on a formal level means to either deVne functions
or predicates explicitly by means of equalities and equivalences, or to state some
of their properties implicitly. For instance, introducing the notion of strict version
of a total order relation ≤ can be done explicitly as

∀
x,y

x < y :⇔ (x ≤ y ∧ x 6= y)

On the other hand, the notion of totally-ordered commutative monoids can only
be introduced by stating its properties implicitly, simply because it is not only one
concrete domain, but a whole class of domains.

Remark 1. In the future, knowledge about basic notions like tuples should be col-
lected in so-called knowledge archives in Theorema and distributed together with
the system. This, of course, would save not only the Vrst visit of the Introduce new
notions-node, but the whole Vrst round of the Theory Exploration Cycle, which is
dedicated entirely to the basic notions. However, at the time of our formalization
no such archives were available yet.

After the Vrst round of the Theory Exploration Cycle we concentrated on the
notions directly related to the complexity analysis, such as exponent vectors, the
chain criterion, and the quantitiesMF andWF as discussed in Section 2.3. All of
them are deVned in terms of the basic notions introduced before.

3.2 Computing

As soon as new notions have been introduced, one wants to do some computa-
tions with them. In our case, we considered concrete tuples T of exponent vectors
and computed MT and WT , and checked whether the chain criterion holds for a
given pair of exponent vectors w. r. t. a given tuple of exponent vectors. In all of
these computations we restricted the ground domain to N, but we also tried some

11

examples in higher dimension, i. e. exponent vectors corresponding to more than
only two indeterminates. This provided us with a counterexample that a certain
important theorem does not hold in general, but really only in two dimensions.

The reason why after introducing new notions we can immediately compute
with them lies in the fact that computation in Theorema is just simpliVcation mod-
ulo equational theories, i. e. equalities and equivalences (possibly quantiVed and/or
conditional) are automatically turned into rewrite rules that are later used by a
built-in rewrite mechanism to simplify expressions to some “normal form”. In par-
ticular, since chainCrit is deVned exactly by a quantiVed equivalence (see For-
mula (2.1)), every occurrence of it will be replaced by the right-hand-side of its
deVnition, which is then simpliVed further. QuantiVers in general, and the exis-
tential quantiVer in the deVnition of chainCrit, in particular, can be computed in
Theorema if the range of the variable they bind is evidently Vnite.

3.3 Proving Rewrite-Kind Lemmas

This node in the Theory Exploration Cycle is one of the most important ones: Prov-
ing rewrite-kind lemmas means collecting all the available explicit and implicit
knowledge about the notions introduced before and extending this knowledge by
new equalities/equivalences. The lemmas are called “rewrite-kind” because, as
already indicated above, equalities/equivalences can be used for rewriting expres-
sions; This does not only happen in computations, but also in proofs, and in fact
rewriting is one of the elementary general-purpose proving techniques employed
by the special prover we created for the complexity analysis (see Section 4).

A typical example of a rewrite-kind in the current framework lemma is the
following: If some value x is added to the minimum over all elements of a tuple
A, then x could also be added to each individual element of A before taking the
minimum. Formally:

∀
x,A

min(A) + x = min(〈Ai + x |
i=1,...,|A|

〉) (3.1)

Expressions of the form 〈t[i] |
i=a,...,b

ϕ[i]〉 are so-called abstraction tuples (in analogy

to abstraction terms in set theory), and 〈 | 〉 is the corresponding tuple quantiVer.
Although they are built-in concepts in Theorema, at the time of our formalization
no built-in knowledge about them in the form of inference rules was available,
which explains why we had to provide such inference rules ourselves (see again
Section 4).

Formula (3.1) can be proved formally, and as soon as its correctness has been
established, it can be used in other proofs to rewrite expressions of the form
min(A) + x. Using quantiVed rewrite-kind formulas among our assumptions as

12

rewrite rules saves us from Vnding instantiations for the bound variables, as this
is accomplished automatically by purely syntactic matching (Of course, things get
much more complicated if rewrite-kind formulas are constrained by conditions;
See Section 4.1).

3.4 Proving Advanced Theorems

The core of each theory exploration is Vrst Vnding and then proving interesting,
non-trivial theorems about the new notions introduced in the Vrst step. In our case,
we were of course mostly interested in proving the main theorem maxdeg(G) ≤
2maxdeg(F), but we also regard other results that are needed to establish this
bound interesting enough to categorize them as “advanced theorems”. An exam-
ple of such a result is the fact that MA does not increase when adding some new
exponent vector x to A if x lies in a particular region of the whole space of ex-
ponent vectors; More information on this can be found in Section 5) where the
overall Wow of the proof of the main theorem, as well as the most important aux-
iliary results, are explained in detail.

Please note that for proving the advanced theorems heavy use was made of the
rewrite-kind lemmas described in the previous paragraph. This should not come
as a surprise, as it is precisely why we stated and proved them.

3.5 Creating Special Provers

The last step of the Theory Exploration Cycle consists of creating a new special
prover that incorporates all the knowledge about the notions introduced in the
very Vrst step in a neat and eXcient way, such that later, when traversing the
cycle again and building upon the theory just explored, all these notions can be
handled in a natural and eXcient way. It should not be necessary later on to fall
back to the very deVnitions of, or at least lemmas about, “old” notions introduced
long ago, if this would result in extremely long and/or complicated proofs, and
if “lifting” knowledge about those notions to the level of inferencing would give
short and elegant proofs – That, at least, is the idea behind special provers and
proving by intermediate principles, summarized in [7].

The special prover we created for the complexity analysis is able to handle the
basic notions (tuples, total order relations, etc.) in an eXcient way that allows to
put the focus in proofs really on the interesting notions like chainCrit, without
having to Vddle around with a multitude of formulas over and over just to use, say,
associativity of+ in totally-ordered commutative monoids at some point. Section 4
describes the prover in detail.

However, we did not create a special prover also in the next round of the The-
ory Exploration Cycle, i. e. a special prover incorporating knowledge about the

13

speciVc notions for the complexity analysis. This is simply not necessary for prov-
ing the main theorem maxdeg(G) ≤ 2maxdeg(F), but it would most likely be
necessary when developing a new theory upon the complexity analysis.

4 Complexity Prover

For the formal veriVcation of the complexity analysis in Theorema a new special
prover, called Complexity Prover, was designed and implemented. The paradigm
of creating special provers for individual theories has been an integral part of the
philosophy of Theorema ever since (c. f. [9]), as indicated already in Section 3.5.

Provers in Theorema consist of two parts: A collection of inference rules and
a proving strategy, which are, however, mostly independent of each other. Since
they operate on formulas, and formulas are elements of Theorema’s object level,
provers themselves necessarily have to be elements of the meta level of Theo-
rema, which is Mathematica. Hence, “implementing a prover in Theorema” ac-
tually means implementing inference rules and/or proving strategy in Mathemat-
ica. The meta-theoretical consequences of such an approach, its drawbacks and
possible solutions, are addressed in [18, 16]; Here, we do not deal with any of the
issues presented there and exclusively concentrate on the design of the Complexity
Prover.

Special provers necessarily consist of two diUerent kinds of inference rules:
General-purpose inference rules and special inference rules (making the prover
“special”). The former ones are always needed when reasoning in (higher-order)
predicate logic (logical connectives, logical quantiVers), whereas the latter ones
deal with speciVc notions and concepts in the theory currently explored (c. f. the
Theory Exploration cycle in Section 3). Inference rules of the Complexity Prover of
either of the two kinds will be explained in more detail in the next two subsections.

4.1 General-Purpose Inference Rules

Apart from the usual inference rules of predicate logic sequent calculus, like intro-
ducing “arbitrary but Vxed” constants for universally quantiVed variables in the
proof goal, there are also other general-purpose rules that are part of the Complex-
ity Prover: Interactive inference rules and rewrite-rules.

Interactive inference rules require some sort of user interaction when they are
about to be applied. The Vrst example of such a rule that comes to one’s mind
probably is a rule that instantiates universally quantiVed formulas in the knowl-
edge base or existentially quantiVed formulas in the goal. Finding suitable in-
stantiations, in general, is a non-trivial task, and a human operator “guiding” the
search might have more insight (and certainly more intuition) and therefore might

14

be more likely to provide the prover with suitable terms. And indeed, two of the
in total four interactive inference rules of the Complexity Prover are precisely of
that kind. The third interactive rule allows the user to exchange the current goal
ψ with the negation of an assumption ϕ (such that instead of ψ one proves ¬ϕ,
assuming ¬ψ), and the fourth interactive rule allows the user to select any im-
plication in the knowledge base, whose premise is then proved in a subproof and
whose conclusion is added to the knowledge base in the main branch of the proof
(this is useful if modus ponens does not apply).

The purpose of rewrite-rules, on the other hand, is precisely to take the instan-
tiation of (certain) universal formulas in the knowledge base oU the user’s shoul-
ders. Namely, rewrite-kind formulas (c. f. Section 3.3) are internally turned into
rewrite rules that can be used to replace terms by equal ones, respectively formulas
by equivalent ones. Universally quantiVed variables are turned into patterns and
the applicability of a rewrite-rule can then simply be determined by syntactic pat-
tern matching (at least if no additional conditions occur; see below). For instance,
consider formula

∀
x,y
x < y ⇔ (x ≤ y ∧ x 6= y) (4.1)

This formula can be used to rewrite, say, a < 4 into a ≤ 4 ∧ a 6= 4, without a
human operator having to instantiate it with x← a and y ← 4 himself. In fact, the
driving engine behind rewriting in proofs is exactly the same engine that performs
computations in Theorema in general. [10] describes the concept of computation
in proofs in Theorema in detail, albeit only for Theorema 1.

A problem arises in connection with conditional rewrite rules: In practice,
formula (4.1) will be constrained by the condition on x and y being elements of
some set A on which < and ≤ are deVned. Hence, it should rather read as

∀
x,y
(x ∈ A ∧ y ∈ A) ⇒ x < y ⇔ (x ≤ y ∧ x 6= y) (4.2)

and this is now really more or less a formula that actually appears in the formal-
ization of the complexity analysis. Still, it can be used for rewriting a < 4, but
only if a ∈ A and 4 ∈ A hold. The important question here is how, and more
precisely, when this condition is checked. There are basically two alternatives:

1. Require a ∈ A and 4 ∈ A to be known when the rewrite is attempted.

2. Prove a ∈ A and 4 ∈ A in a separate subproof, if they are not known
already.

From the purely logical point of view, there is no diUerence between the two al-
ternatives: In either case, the proof can only succeed if the condition really holds,
otherwise it fails. Hence, both give rise to a correct inference rule. From the eX-
ciency point of view, however, there is a diUerence: Alternative 1 never applies a

15

rewrite that cannot be applied, and no time is wasted trying to prove a condition
that may not even hold. However, rewrites that are applicable in principle might
not be carried out either. Alternative 2, on the other hand, does not miss any con-
ditional rewrites (at least those whose conditions can be proved), but might waste
time proving invalid conditions, too. Therefore, none of the two possibilities is
optimal.

The way we tackled this problem of conditional rewrite-rules is straightfor-
ward, though not very elegant: By default, the Vrst alternative is employed, and
whenever we encountered a formula that should rather be treated according to the
second alternative, we simply made a new special inference rule out of it – We
“lifted” it to inference level (see next subsection). A better way to solve the prob-
lem in general would be to develop a mechanism for attaching some kind of “meta
information” to conditions that tells the rewrite engine how to proceed, i. e. which
of the two possible strategies to pursue. In our opinion, deVnedness conditions are
a natural candidate for the second alternative: If they do not hold, then a certain
expression is not even deVned in the sense that absolutely nothing is known about
it – And this is something one usually would not expect to happen in a proof (But
still, even this is checked!).

The development of such a mechanism and a closer investigation of how to
deal with inference rules constrained by conditions in general is work in progress.

4.2 Special Inference Rules

“Special” inference rules are rules that handle speciVc notions and concepts at the
foundations of a particular theory in a neat and eXcient way, such that in proving
one can concentrate on the more “interesting” notions one is currently exploring
(recall the Theory Exploration cycle in the previous section). A typical example of
such a special inference rule, which is also part of our Complexity Prover, is a rule
that deals with associative-commutative-cancellative functions: If + is a binary
function known to be associative, commutative and cancellative, and, say,

a+ (4 + b) < (b+ a) + 4 (4.3)

has to be shown, then it should not be necessary to fall back to the very deVnitions
of associativity, commutativity and cancellativity in order to rewrite the formula
in several steps into

a < 4

if this is not where the focus of the current proof lies. Rather, the special inference
rule exploits all the properties of + at once and therefore is able to deal with
formulas like (4.3) directly, without any tedious intermediate steps. In some sense,
the formulas describing associativity, commutativity and cancellativity are “lifted”

16

from the object- to the inference level. At the moment, in Theorema this lifting
process still has to be carried out manually, i. e. the inference rules have to be
implemented in Mathematica without any reference to the formulas they actually
originate from, and hence without any justiVcation regarding their correctness.
Therefore it is clear that a mechanism that automates the lifting (at least for a
certain class of formulas) would be a great beneVt [8].

Lifting is also needed for another kind of concepts: QuantiVers. At the mo-
ment, quantiVers can only be introduced at the meta level, meaning that their
syntax has to be hard-coded in the implementation of Theorema, and their seman-
tics has to be deVned by means of inference rules in provers; Both tasks have to
be carried out in Mathematica. Clearly, the ability of introducing quantiVers di-
rectly at the object level would prove to be a huge improvement compared to the
current status, and investigating the various possibilities for providing Theorema’s
meta level with functionality to handle quantiVers introduced at the object level
(in computations and as inference rules in proofs) is work in progress. A promis-
ing approach seems to be the use of higher-order functions/predicates that are then
turned into quantiVers, a technique that was already introduced in [13] and is now
implemented, for instance, in the Isabelle/Isar proof assistant [30].

In the formalization of the complexity analysis we made use of three quan-
tiVers (diUerent from ∀ and ∃): argmin·, argmax· and the tuple-quantiVer 〈·|·〉
(analogous to abstraction terms in set theory). A typical inference rule giving se-
mantics to the tuple-quantiVer is, for instance, the following:

` ∀
i=a,...,b

ϕ[i]⇒ ψ[t[i]]

` ∀
j=1,...,〈t[i] |

i=a,...,b
ϕ[i]〉

ψ[〈t[i] |
i=a,...,b

ϕ[i]〉j]

Intuitively, this rule says “If we have to prove that a property ψ holds for all ele-
ments of the tuple 〈t[i] |

i=a,...,b

ϕ[i]〉, then we can show instead that ψ holds for all

terms t[i] where ϕ[i] holds”. It is important that j appears in formula ψ only as
subscript (i. e. index) of the tuple.

4.3 Proving Strategy

Theorema provers not only depend on a collection of inference rules, but also on
a strategy that guids their application. Although inference rules and strategy are
mostly independent of each other, and we therefore could have taken an existing
one, we decided, for various reasons, to create our own proving strategy that is
especially tailored for the needs of the inference rules of the Complexity Prover. In
particular, in the new strategy interactive rules are treated diUerently than in all
other strategies that are currently available.

17

In Theorema, every inference rule is endowed with a so-called rule priority
that may (or may not) be used by strategies to decide in which order inference
rules are tried on proof situations, and how to proceed if several rules are appli-
cable (priority-values range from 1 to 100, where lower value means higher pri-
ority). Each rule comes with a predeVned default priority that, however, can be
changed by the human user when setting up the proof task. Our new proving
strategy uses these priorities for partitioning the collection of inference rules into
four classes: High-priority rules (1–4), medium-priority rules (5–90), low-priority
rules (91–100), and interactive rules.

High-Priority Rules are tried Vrst on proof situations, in an order that respects
their priorities. As soon as some rule is applicable, the search for further applicable
rules is aborted and only that one rule is applied. No alternative branches in the
proof tree are created. Hence, high-priority rules can be viewed as rules that shall
be applied whenever possible and whose application certainly does not have any
negative eUect on the proof search.

Medium-Priority Rules are tried only if no high-priority rule is applicable. Again,
they are tried in an order which respects their priorities, but in contrast to high-
priority rules all of them are tried, and in case more than one is applicable, several
alternatives in the proof tree are created, one for each applicable rule.

Low-Priority Rules are tried only if no high- nor medium-priority rule is ap-
plicable. They are treated just like the medium-priority rules, i. e. all of them are
tried and possibly several alternatives in the proof tree are created. Low-priority
rules can be viewed as rules whose application should be avoided whenever possi-
ble, because it might have negative eUects on the proof search (w. r. t., for instance,
eXciency). Sometimes, however, they really have to be applied, of course.

Interactive Rules are, as their name suggests, rules that require some sort of in-
teraction with a human operator. Interactive rules, regardless of their priorities, are
always tried last, even after low-priority rules. In case more than one interactive
rule is applicable, the human user may choose which one to apply interactively.
However, in any case two alternatives in the proof tree are created, such that it
is always possible to “go back” to the proof situation before the application of the
interactive rule, and “undo”, in some sense, wrong interactions.

18

4.4 Summary

This subsection, and in particular Table 1, provides a summary of all the infer-
ence rules of the Complexity Prover: General-purpose refers to the rules described
in Section 4.1, Integers refers to rules dealing with membership in integer inter-
vals, Tuples refers to rules dealing with all aspects of tuples that are needed in the
veriVcation, Addition and Order relation refer to rules handling the monoid op-
eration (“+”) respectively the order relation (“≤”) in totally-ordered commutative
monoids, and Minimum/Maximum refers to rules dealing with min, max, argmin
and argmax.

A more detailed description of the individual inference rules can be found in
the Theorema notebook containing the formalization.

General-purpose 28
Integers 2
Tuples 11
Addition 2
Order relation 7
Minimum/Maximum 7
Total 57

Table 1: Number of inference rules in each category.

5 Formalization in Theorema
This section is dedicated to describing the formalization, and in particular the de-
velopment of the proof of the main result (2.7), in more detail; For an overview of
the theory exploration we refer to Section 3, and readers interested in the formal-
ization itself (i. e. the Theorema notebook) are kindly referred to [22].

For the most part, the proof development is modeled after the one in [12, 4],
meaning that whenever not explicitly stated otherwise the ideas underlying a cer-
tain step in a proof are taken from there. However, there do exist some deviations,
mostly for the sake of simpliVcation, that have partially already been mentioned
in Section 2.4.

The following notions, notations, and conventions will be used throughout this
section:

• Degree (deg), divisibility (|), and least common multiple (lcm) of exponent
vectors, as deVned in Section 2.

19

• chainCrit, MA, WA and maxdeg(A) as deVned in Section 2.3, with the
slight modiVcation that they are now deVned for tuples A of exponent vec-
tors, rather than sets, and that we write M(A), W(A) instead of MA, WA,
respectively.

• Function ·− : {1, 2} → {1, 2}, deVned as 1− = 2, 2− = 1.

• Function ·x · that appends its second argument to its Vrst argument, if this
is a tuple.

• Function | · | giving the length of its argument, if this is a tuple.

• Exponent vector L(A) deVned as the least common multiple of all exponent
vectors in A.

• Exponent vector K(A) deVned as the greatest common divisor of all expo-
nent vectors in A (such thatW(A) = deg(K(A))).

• Predicates isAbove, inRectangle and inFarExterior as deVned below. These
are the predicates deVning the (new) cover of the exponent space, as indi-
cated already in Section 2.4.

• The dimension of the space of exponent vectors will be denoted by n. Re-
call that the dimension corresponds to the number of indeterminates in the
underlying polynomial ring.

• Typed variables: A,G for tuples of exponent vectors, x for exponent vectors,
k for elements of {1, 2}

DeVnition 4.
isAbove(x,A) :⇔ ∃

i=1,...,|A|
Ai|x (5.1)

inRectangle(x,A) :⇔ x|LA (5.2)

inFarExterior(x,A, k) :⇔ xk < K(A)k ∧ xk− > L(A)k− (5.3)

Please note that the deVnitions of isAbove and inRectangle are completely
independent of the dimension n of the exponent space, whereas for inFarExterior
n must be at least 2 (in fact, it only makes sense if n = 2).

Figure 2 illustrates the notions deVned above in the exponent space of dimen-
sion 2 (isAbove is not explicitly shown, but it is just the whole region “above” the
staircase).

20

M(A)W(A)

K(A)

L(A)

inRectangle(·, A)
inFarExterior(·, A, ·)
Elements of A
lcms of elements of A
for which chainCrit holds

Figure 2: Cover of the two-dimensional exponent space

5.1 Cover of the Exponent Space

Figure 2 suggests that, if n = 2, the three predicates really cover the whole ex-
ponent space (w. r. t. any non-empty tuple A), in the sense that for each exponent
vector at least one of them holds. And indeed, this is really the case:

Lemma 5. Assume n = 2. For every non-empty tuple A of exponent vectors and
every exponent vector x at least one of the following holds:

(i) isAbove(x,A)

(ii) inRectangle(x,A)

(iii) inFarExterior(x,A, 1)

(iv) inFarExterior(x,A, 2)

Proof. A formal, semi-automatically generated proof of Lemma 5 can be found
in the Theorema-notebook containing the formalization: Formula (cover) in Sec-
tion “Lemmata on SpeciVc Notions” / “Special Case n = 2” / “Cover of Exponent
Space”. See also Figure 3.

21

Figure 3: Lemma 5, formalized in Theorema

5.2 Bounding M(Ax x)

The following theorem states a very important property ofM(Ax x):

Theorem 6. In all dimensions n: For all non-empty tuples A of exponent vectors
and exponent vectors x the following inequality holds:

M(Ax x) ≤ max(M(A),M(x,A), deg(x))

where M(x,A) is deVned as

M(x,A) := max(deg(lcm(x,Ai)) |
i=1,...,|A|

chainCrit(x,Ai, A))

Proof. A formal, semi-automatically generated proof of Theorem 6 can be found
in the Theorema-notebook containing the formalization: Formula (Mx) in Section
“Lemmata on SpeciVc Notions” / “General Case” / “M”. See also Figure 4.

Figure 4: Theorem 6, formalized in Theorema

22

5.3 Bounding maxdeg(A)

The theorem in this subsection states an inequality that is of interest on its own:

Theorem 7. In all dimensions n: For all non-empty tuples A of exponent vectors
the following inequality holds:

maxdeg(A) ≤ M(A)

Proof. A formal, semi-automatically generated proof of Theorem 7 can be found
in the Theorema-notebook containing the formalization: Formula (maxdeg≤M) in
Section “Theorems” / “General Case”. See also Figure 5.

Figure 5: Theorem 7, formalized in Theorema

5.4 Bounding M(Ax x) if x in Rectangular Region

The theorem below is one of the two theorems needed for proving Theorem 10.
Please note that it is nowhere explicitly stated in [12, 4].

Theorem 8. If n = 2: For all non-empty tuples A of exponent vectors and all
exponent vectors x with deg(x) ≤ M(A) and inRectangle(x,A) the following
inequality holds:

M(Ax x) ≤ M(A)

Proof. A formal, semi-automatically generated proof of Theorem 8 can be found
in the Theorema-notebook containing the formalization: Formula (88) in Section
“Theorems” / “Special Case n = 2” / “Rectangular Region”. See also Figure 8.

However, since the proof of the theorem cannot be found in the literature, we
also sketch it here:

23

Let A be an arbitrary but Vxed non-empty tuple of exponent vectors, and let x be
an arbitrary but Vxed exponent vector with

deg(x) ≤M(A) (A.1)

inRectangle(x,A) (A.2)

We have to show M(A x x) ≤ M(A), which is accomplished by showing
deg(lcm(a, x)) ≤ M(A) for any element a of A such that chainCrit holds for
a and x (follows readily from the deVnition of M). Hence, we choose some a. b. f.
element a of A, assume

chainCrit(a, x,A) (A.3)

and show
deg(lcm(a, x)) ≤ M(A) (G.1)

Now we distinguish four cases, depending on the relative positions of a and x in
the two-dimensional exponent space.

Case I: x1 ≤ a1 and x2 ≤ a2.
In this case we obviously have lcm(a, x) = a and hence also deg(lcm(a, x)) =
deg(a). Together with Theorem 7 we get the desired result.

Case II: a1 ≤ x1 and a2 ≤ x2.
In this case we obviously have lcm(a, x) = x and hence also deg(lcm(a, x)) =
deg(x). Together with assumption (A.1) we get the desired result.

Case III: a1 < x1 and x2 < a2.
In order to prove (G.1) it is suXcient to Vnd an element b of A with

deg(lcm(a, x)) ≤ deg(lcm(a, b)) (G.2)

chainCrit(a, b, A) (G.3)

Let C := {c | c is an element of A, x1 ≤ c1}. C is Vnite, and because of assump-
tion (A.2) it is also non-empty, meaning that it contains an element b such that b1
is minimal among all c1 for c ∈ C (c. f. Figure 6). Of course, in general such a b
might not be unique, but this does not matter.

We claim that b witnesses (G.2) and (G.3). (G.2) is trivially witnessed by b,
since

deg(lcm(a, x)) =
case assumption

x1 + a2 ≤

≤
x1≤b1

b1 + a2 ≤

≤ deg(lcm(a, b))

For proving (G.3) we again distinguish two cases.

24

a

x

b

Figure 6: The relative positions of a, b and x. No element of A lies in the shaded region.

Case III.A: a2 ≤ b2.
In this case we have a|b, and therefore chainCrit(a, b, A) certainly holds (as al-
ways if one point divides the other, as can easily be veriVed).

Case III.B: b2 < a2.
We have to prove that there does not exist an element d of A with

d | lcm(a, b) (G.4)

deg(lcm(a, d)) < b1 + a2 (G.5)

deg(lcm(b, d)) < b1 + a2 (G.6)

(c. f. the deVnition of chainCrit in Formula (2.1)). We assume the opposite, i. e.
there exists some d with all these properties. In fact, as one can easily prove, (G.4),
(G.5) and (G.6) can only be satisVed if d fulVlls

d1 < b1 (A.4)

d2 < a2 (A.5)

(A.4) together with the deVnition of b (minimality of b1) implies now

d1 < x1 (A.6)

Figure 7 illustrates the possible positions of d.
However, the existence of d satisfying both (A.5) and (A.6) contradicts (A.3), as

can be proved easily.
Case IV: x1 < a1 and a2 < x2.

Analogous to case III.

25

a

x

b

a

x

b

Figure 7: The blue-shaded region is where dmight lie, before (left) and after (right) taking
into account the deVnition of b.

Unfortunately, Theorem 8 does not hold in arbitrary dimension, as can be seen
from the following counterexample for n = 3: If A = 〈(1, 7, 0), (5, 3, 6), (4, 1, 1)〉
and x = (3, 3, 6), then both conditions of the theorem are fulVlled, but

M(Ax x) = 16 � 14 = M(A)

Figure 8: Theorem 8, formalized in Theorema

5.5 Bounding M(Ax x) + xk if x in Far Exterior

The following theorem is also needed for proving Theorem 10. In contrast to Theo-
rem 8 above, it is not “new” in the sense that it is stated and proved in the literature,
in [12].

Theorem 9. If n = 2: For all non-empty tuples A of exponent vectors and all
exponent vectors x with deg(x) ≤ M(A) and inFarExterior(x,A, k) the following
inequality holds:

M(Ax x) + xk ≤ M(A) + K(A)k

26

Proof. A formal, semi-automatically generated proof of Theorem 9 can be found
in the Theorema-notebook containing the formalization: Formula (99) in Section
“Theorems” / “Special Case n = 2” / “Far Exterior”. See also Figure 9.

Figure 9: Theorem 9, formalized in Theorema

5.6 M(A) +W(A) Does Not Increase

The theorem in this subsection is the Vrst of the three main theorems of the
whole formalization of the complexity analysis. Note that it follows readily from
Lemma 5 and Theorems 8 and 9. Originally, it was proved in [12].

Theorem 10. If n = 2: For all non-empty tuples A of exponent vectors and all
exponent vectors x with deg(x) ≤ M(A) and ¬isAbove(x,A) the following in-
equality holds:

M(Ax x) +W(Ax x) ≤ M(A) +W(A)

Proof. A formal, semi-automatically generated proof of Theorem 10 can be found
in the Theorema-notebook containing the formalization: Formula (invariant) in
Section “Main Results” / “M[A]+W[A]Does Not Increase”. See also Figure 10.

Going back again to the domain of polynomials, the statement of Theorem 10
is as follows: In Algorithm 1, whenever we have some so-far computed set G
(corresponds to A) and we add some new polynomial h (corresponds to x) to it
in line 12, yielding the new set G′, then MG′ +WG′ is certainly not greater than

27

Figure 10: Theorem 10, formalized in Theorema

MG +WG. This we can infer from Theorem 10, since h is not reducible modulo G
(¬isAbove(x)), and the degree of the leading power product of h is not greater
than MG, since h results from reducing the S-polynomial of two polynomials in
G for which chainCrit holds, and a graded term ordering is used (deg(x) ≤
M(A)).

5.7 M(A) +W(A) ≤ 2maxdeg(A)

The theorem in this subsection is the second of the three main theorems of the
whole formalization of the complexity analysis. Originally it was proved in [4],
although a much shorter proof exists (see Section 2.4.4).

Theorem 11. If n = 2: For all non-empty tuplesA of exponent vectors the following
inequality holds:

M(A) +W(A) ≤ 2maxdeg(A)

Proof. A formal, semi-automatically generated proof of Theorem 11 can be found
in the Theorema-notebook containing the formalization: Formula (bound) in Sec-
tion “Main Results” / “M[A] +W[A] ≤ 2maxdeg[A]”. See also Figure 11.

5.8 Main Result

Now we are able to state and prove the third and last of the three main theorems
of the whole formalization of the complexity analysis, which follows readily from

28

Figure 11: Theorem 11, formalized in Theorema

all the previous theorems. It is, essentially, the analogue of Theorem 2 phrased for
exponent vectors.

Theorem 12. If n = 2: For all non-empty tuples F and G of exponent vectors with
M(G) +W(G) ≤ M(F) +W(F) the following inequality holds:

maxdeg(G) ≤ 2maxdeg(F)

Proof. A formal, semi-automatically generated proof of Theorem 12 can be found
in the Theorema-notebook containing the formalization: Formula (main theorem)
in Section “Main Results” / “maxdeg[G] ≤ 2maxdeg[F]”. See also Figure 12.

Figure 12: Theorem 12, formalized in Theorema

5.9 Summary

The formalization in Theorema consists in total of 292 formulas, of which 230
have been proved semi-automatically in Theorema with the Complexity Prover

29

described in Section 4. The remaining 62 formulas are deVnitions that do not
require any kind of proofs (including well-deVnedness proofs). Table 2 lists the
numbers of the various kinds of formulas corresponding to the various steps of the
Theory Exploration Cycle in more detail.

DeVnitions Lemmas Theorems
Basic notions 37 70 0
SpeciVc notions 25 127 33
Total 62 197 33

Table 2: Number of formulas in the formalization.

6 Conclusion and Future Work

The work presented in this report shows how non-trivial pieces of mathematics
can be formalized and formally veriVed in an elegant, read- and understandable,
but nontheless rigorious way in the Theorema system. We are conVdent that fu-
ture work on related topics, like the author’s PhD thesis on formalizing the funda-
mentals of Gröbner bases theory (Main Theorem on S-polynomials, correctness of
Buchberger’s algorithm, . . .), will certainly beneVt from the insights gained during
the formal treatment of the complexity analysis. Below, we list the most important
ones:

Checking Conditions of Inference Steps As mentioned already in Section 4.1,
inference rules whose applicability is constrained by conditions on the available
knowledge in the current proof situation may cause problems regarding the ef-
Vciency of the prover: Some formulas should be required to be known already,
whereas others should rather be proved in separate subproofs, in order to ensure
an eXcient proof search. This is a problem not especially related to our complexity
analysis, but a problem that we will most likely encounter also in future theory-
formalizations with Theorema. Therefore, we are currently working on a feasible,
Theorema-wide solution.

Lifting Functions to QuantiVers The issue of lifting functions to quantiVers
was raised in Section 4.2. Similar as with the problem of condition-checking in
inferences, also here a Theorema-wide solution is desirable, such that it is not
necessary to always implement inference rules “by hand” in Mathematica when
introducing a new higher-order function that gives rise to a quantiVer.

30

Functors The concept of functors is essential in the philosophy behind Theo-
rema, see for instance [5, 31]. In short, functors can be used for building hierar-
chies of domains in a structured way, and in fact we could have made use of them
in the formalization of the complexity analysis as well: The space of exponent vec-
tors obviously can be regarded a domain (a carrier set together with operations),
and domains in Theorema are usually deVned by means of functors. The reason
why we did not pursue this approach is because using a functor for introducing in
total only one domain in the whole theory would probably unnecessarily compli-
cate the formalization. In a structured, generic formalization of the foundations of
Gröbner bases, however, functors will be inevitable.

6.1 Future Work

The work described in this report could be extended in many diUerent ways, in-
cluding, but not restricted to, the following:

• Consider the trivariate case (c. f. [32]), building upon the parts of the present
formalization that were already shown for arbitrarily many indeterminates.

• Consider the case of arbitrarily many indeterminates (c. f. [17, 26]).

• Formalize the whole theory of Gröbner bases in Theorema, in the same spirit
as the complexity analysis. The author’s PhD project aims at doing this, at
least, for the very foundations of the theory.

Acknowledgements

The author gratefully acknowledges the many valuable discussions about all as-
pects of the formalization of mathematics and related topics with Bruno Buch-
berger, and about Theorema with Theorema’s chief developer Wolfgang Wind-
steiger.

The research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1

References

[1] Bruno Buchberger. Ein Algorithmus zum AuXnden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal (An Algo-
rithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero

31

Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, Univer-
sity of Innsbruck, Austria, 1965. English translation in J. of Symbolic Com-
putation, Special Issue on Logic, Mathematics, and Computer Science: Inter-
actions. Vol. 41, Number 3-4, Pages 475–511, 2006.

[2] Bruno Buchberger. A Criterion for Detecting Unnecessary Reductions in the
Construction of Gröbner Bases. In E. W. Ng, editor, Proceedings of the EU-
ROSAM 79 Symposium on Symbolic and Algebraic Manipulation, Marseille,
June 26-28, 1979, volume 72 of Lecture Notes in Computer Science, pages 3–21.
Copyright: Springer, Berlin - Heidelberg - New York, 1979.

[3] Bruno Buchberger. A Note on the Complexity of Constructing Gröbner-
Bases. In J.A. van Hulzen, editor, Computer Algebra (Proceedings of EURO-
CAL 83, European Computer Algebra Conference, London, March 28-30, 1983),
volume 162 of Lecture Notes in Computer Science, pages 137–145. Copyright:
Springer- Verlag Berlin - Heidelberg - New York - Tokyo, 1983.

[4] Bruno Buchberger. Miscellaneous Results on Gröbner-Bases for Polynomial
Ideals II. Technical Report 83-1, Department of Computer And Information
Sciences, University of Delaware, 1983.

[5] Bruno Buchberger. Mathematica as a Rewrite Language. In T. Ida, A. Ohori,
and M. Takeichi, editors, Functional and Logic Programming (Proceedings of
the 2nd Fuji International Workshop on Functional and Logic Programming,
November 1-4, 1996, Shonan Village Center), pages 1–13. Copyright: World
ScientiVc, Singapore - New Jersey - London - Hong Kong, 1996.

[6] Bruno Buchberger. Gröbner Rings in Theorema: A Case Study in Functors
and Categories. Technical Report 2003-49, Johannes Kepler University Linz,
Spezialforschungsbereich F013, November 2003.

[7] Bruno Buchberger. Proving by First and Intermediate Principles, November
1-2 2004. Invited talk at Workshop on Types for “Mathematics / Libraries of
Formal Mathematics”, University of Nijmegen, The Netherlands.

[8] Bruno Buchberger. Personal Communication, 2014. RISC, Johannes Kepler
University Linz.

[9] Bruno Buchberger, Adrian Craciun, Tudor Jebelean, Laura Kovacs, Temur
Kutsia, Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus
Rosenkranz, and Wolfgang Windsteiger. Theorema: Towards Computer-
Aided Mathematical Theory Exploration. Journal of Applied Logic, 4(4):470–
504, 2006.

32

[10] Bruno Buchberger, Daniela Vasaru, and Tudor Jebelean. The Theorema Sys-
tem: Current Status and the Proving-Solving-Computing Cycle. RISC Report
Series 00-37, Research Institute for Symbolic Computation (RISC), Johannes
Kepler University of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, May
2000.

[11] Bruno Buchberger, Wolfgang Windsteiger, et al. Theorema – A System for
Mathematical Theory Exploration. RISC, Johannes Kepler University Linz.
http://www.theorema.org.

[12] Bruno Buchberger and Franz Winkler. Miscellaneous Results on the Con-
struction of Gröbner-Bases for Polynomial Ideals. Technical Report 137, Jo-
hannes Kepler University, Technisch-Naturwissenschaftliche Fakultaet, Insi-
tut fuer Mathematik, June 1979.

[13] Alonzo Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(2):56–68, 1940.

[14] Thierry Coquand et al. The Coq Proof Assistant. INRIA. http://coq.
inria.fr.

[15] Thierry Coquand and Henrik Persson. Gröbner Bases in Type Theory. In
T. Altenkirch, B. Reus, and W. Naraschewski, editors, Types for Proofs and
Programs (TYPES’98, Kooster Irsee, Germany, March 27-31, 1998), volume
1657 of Lecture Notes in Computer Science, pages 33–46. Springer Berlin Hei-
delberg, 1999.

[16] Martin Giese and Bruno Buchberger. Towards Practical ReWection for For-
mal Mathematics. RISC Report Series 07-05, Research Institute for Symbolic
Computation (RISC), University of Linz, Schloss Hagenberg, 4232 Hagenberg,
Austria, 2007.

[17] Marc Giusti. Some eUectivity problems in polynomial ideal theory. In John
Fitch, editor, International Symposium on Symbolic and Algebraic Computa-
tion (EUROSAM 84), volume 174 of Lecture Notes in Computer Science, pages
159–171. Springer Berlin Heidelberg, 1984.

[18] John Harrison. Metatheory and ReWection in Theorem Proving: A Survey
and Critique. Technical report, SRI Cambridge, 1995.

[19] J. Santiago Jorge, Victor M. Guilas, and Jose L. Freire. Certifying properties
of an eXcient functional program for computing Gröbner bases. Journal of
Symbolic Computation, 44(5):571–582, May 2009.

33

http://www.theorema.org
http://coq.inria.fr
http://coq.inria.fr

[20] Matt Kaufmann, J. Strother Moore, et al. ACL2. University of Texas at Austin.
http://www.cs.utexas.edu/users/moore/acl2/.

[21] Alexander Maletzky and Bruno Buchberger. Complexity Analysis of the Bi-
variate Buchberger Algorithm in Theorema. In Hoon Hong and Chee Yap,
editors, Mathematical Software – ICMS 2014, volume 8592 of Lecture Notes
in Computer Science, pages 41–48, Seoul, Korea, August 5–9 2014. Springer
Berlin Heidelberg.

[22] Alexander Maletzky and Bruno Buchberger. Complexity Analysis of the Bi-
variate Buchberger Algorithm in Theorema [Theorema Notebook]. Technical
Report 14-10, RISC, Johannes Kepler University Linz, October 2014.

[23] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Advances in Mathematics,
46(3):305–329, December 1982.

[24] InmaculadaMedina-Bulo, Francisco Palomo-Lozano, José A. Alonso-Jiménez,
and José-Luis Ruiz-Reina. VeriVed Computer Algebra in ACL2 (Gröbner
Bases Computation). In B. Buchberger and J.A. Campbell, editors, AISC
2004, volume 3249 of Lecture Notes in ArtiVcial Intelligence, pages 171–184.
Springer-Verlag Berlin Heidelberg, 2004.

[25] Inmaculada Medina-Bulo, Francisco Palomo-Lozano, and Jose-Luis Ruiz-
Reina. A veriVed Common Lisp implementation of Buchberger’s algorithm
in ACL2. Journal of Symbolic Computation, 45(1):96–123, January 2010.

[26] H. Michael Möller and Ferdinando Mora. Upper and lower bounds for the
degree of Gröbner bases. In John Fitch, editor, International Symposium on
Symbolic and Algebraic Computation (EUROSAM 84), volume 174 of Lecture
Notes in Computer Science, pages 172–183. Springer Berlin Heidelberg, 1984.

[27] Christoph Schwarzweller. Gröbner Bases – Theory ReVnement in the Mizar
System. In M. Kohlhase, editor, Mathematical Knowledge Management (4th
International Conference, MKM 2005, Bremen, Germany, July 15-17), volume
3863 of Lecture Notes in ArtiVcial Intelligence, pages 299–314. Springer Berlin
Heidelberg, 2006.

[28] Laurent Thery. A Machine-Checked Implementation of Buchberger’s Algo-
rithm. Journal of Automated Reasoning, 26:107–137, 2001.

[29] Andrzej Trybulec et al. The Mizar System. University of Bialystok. http:
//mizar.uwb.edu.pl/.

34

http://www.cs.utexas.edu/users/moore/acl2/
http://mizar.uwb.edu.pl/
http://mizar.uwb.edu.pl/

[30] Makarius Wenzel. The Isabelle/Isar Reference Manual, August 2014. http:
//www.cl.cam.ac.uk/research/hvg/Isabelle/index.html.

[31] Wolfgang Windsteiger. Building Up Hierarchical Mathematical Domains Us-
ing Functors in THEOREMA. In A. Armando and T. Jebelean, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 23 of ENTCS, pages
401–419. Elsevier, 1999.

[32] Franz Winkler. On the Complexity of the Gröbner-Bases Algorithm over
K[x,y,z]. In J. Fitch, editor, International Symposium on Symbolic and Alge-
braic Computation (EUROSAM’84), pages 184–194, Cambridge, England, July
9-11 1984. Springer-Verlag.

[33] Stephen Wolfram et al. Mathematica. Wolfram Research. http://www.
wolfram.com/mathematica.

35

http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html
http://www.wolfram.com/mathematica
http://www.wolfram.com/mathematica

Technical Reports of the Doctoral Program

“Computational Mathematics”

2014

2014-01 E. Pilgerstorfer, B. Jüttler: Bounding the Influence of Domain Parameterization and Knot
Spacing on Numerical Stability in Isogeometric Analysis February 2014. Eds.: B. Jüttler,

P. Paule

2014-02 T. Takacs, B. Jüttler, O. Scherzer: Derivatives of Isogeometric Functions on Rational Patches
February 2014. Eds.: B. Jüttler, P. Paule

2014-03 M.T. Khan: On the Soundness of the Translation of MiniMaple to Why3ML February 2014.

Eds.: W. Schreiner, F. Winkler

2014-04 G. Kiss, C. Giannelli, U. Zore, B. Jüttler, D. Großmann, J. Barne: Adaptive CAD model
(re–)construction with THB–splines March 2014. Eds.: M. Kauers, J. Schicho

2014-05 R. Bleyer, R. Ramlau: An Efficient Algorithm for Solving the dbl-RTLS Problem March 2014.

Eds.: E. Klann, V. Pillwein

2014-06 D. Gerth, E. Klann, R. Ramlau, L. Reichel: On Fractional Tikhonov Regularization April

2014. Eds.: W. Zulehner, U. Langer

2014-07 G. Grasegger, F. Winkler, A. Lastra, J. Rafael Sendra: A Solution Method for Autonomous
First-Order Algebraic Partial Differential Equations May 2014. Eds.: P. Paule, J. Schicho

2014-08 W. Krendl, W. Zulehner: A Decomposition Result for Biharmonic Problems and the Hellan-
Herrmann-Johnson Method August 2014. Eds.: U. Langer, V. Pillwein

2014-09 U. Langer, S. Repin, M. Wolfmayr: Functional a Posteriori Error Estimates for Parabolic
Time-Periodic Boundary Value Problems August 2014. Eds.: V. Pillwein, W. Zulehner

2014-10 A. Maletzky: Complexity Analysis of the Bivariate Buchberger Algorithm in Theorema Oc-

tober 2014. Eds.: B. Buchberger, W. Schreiner

2013

2013-01 U. Langer, M. Wolfmayr: Multiharmonic Finite Element Analysis of a Time-Periodic
Parabolic Optimal Control Problem January 2013. Eds.: W. Zulehner, R. Ramlau

2013-02 M.T. Khan: Translation of MiniMaple to Why3ML February 2013. Eds.: W. Schreiner,

F. Winkler

2013-03 J. Kraus, M. Wolfmayr: On the robustness and optimality of algebraic multilevel methods for
reaction-diffusion type problems March 2013. Eds.: U. Langer, V. Pillwein

2013-04 H. Rahkooy, Z. Zafeirakopoulos: On Computing Elimination Ideals Using Resultants with
Applications to Gröbner Bases May 2013. Eds.: B. Buchberger, M. Kauers

2013-05 G. Grasegger: A procedure for solving autonomous AODEs June 2013. Eds.: F. Winkler,

M. Kauers

2013-06 M.T. Khan On the Formal Verification of Maple Programs June 2013. Eds.: W. Schreiner,

F. Winkler

2013-07 P. Gangl, U. Langer: Topology Optimization of Electric Machines based on Topological Sen-
sitivity Analysis August 2013. Eds.: R. Ramlau, V. Pillwein

2013-08 D. Gerth, R. Ramlau: A stochastic convergence analysis for Tikhonov regularization with
sparsity constraints October 2013. Eds.: U. Langer, W. Zulehner

2013-09 W. Krendl, V. Simoncini, W. Zulehner: Efficient preconditioning for an optimal control
problem with the time-periodic Stokes equations November 2013. Eds.: U. Langer, V. Pillwein

The complete list since 2009 can be found at

https://www.dk-compmath.jku.at/publications/

Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.

