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Abstract

In this paper, we propose a new approach for the atmospheric to-
mography based on the method of the approximate inverse. The image
quality of earth-bound telescopes is severely degraded by turbulences
of the atmosphere of the earth. In order to receive sharp images,
the incoming light is corrected for these distortions using deformable
mirrors. In atmospheric tomography, the turbulence profile is recon-
structed so that the shape of the mirror can be adjusted in an optimal
way. We perform this reconstruction step by applying the method
of the approximate inverse to Multi-Conjugate Adaptive Optics. We
show that the approximate inverse leads to efficient algorithms and
give numerical examples.

1 Introduction

The planned next generation of telescopes, e.g. the European Extremely
Large Telescope (E-ELT) or the Thirty Meter Telescope (TMT), depend on
Adaptive Optics (AO) technology in order to achieve highest image quality.
The image quality of ground based telescopes is heavily affected by turbu-
lences in the atmosphere. In Adaptive Optics, measurements of incoming
wavefronts from bright guide stars are used to determine the shape of de-
formable mirrors (DM) in such a way that, after reflection of the incoming
light on the deformable mirror, the influence of the turbulent atmosphere
is removed from the astronomical images. In order to compute the optimal
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mirror shapes of the DMs from the wavefront sensor measurements, an In-
verse Problem has to be solved. As the atmosphere changes rapidly, the
shapes of the DMs have to be computed between 500-3000 times per second
(depending on the AO system). Thus, powerful reconstruction methods are
needed in order to solve the related Inverse Problem in the available time.
For a survey on Inverse Problems in Adaptive Optics we refer to [15].

The simplest AO system, which is already used at existing telescopes, is
Single Conjugate Adaptive Optics (SCAO). SCAO only uses one (natural)
guide star, i.e., a bright star outside the atmosphere, one wavefront sensor and
one deformable mirror. As the natural guide star is far away, the incoming
wavefronts are assumed to be plane. However, this property is destroyed once
the light passes through the atmosphere. Wavefront sensor data are used to
reconstruct the shape of the wavefront, and based on the reconstruction the
DM is deformed such that the outgoing wavefront is “flattened” (see Figure 1)
- the image of the guide star, and consequently all astronomical objects close
to the guide star, are sharp again. In the SCAO case, the Inverse Problem

Figure 1: Principle of SCAO

that has to be solved simply consist in the reconstruction of the incoming
wavefronts from wavefront sensor measurements, see, e.g., [16, 17, 2, 18, 19,
20, 21]. Second generation AO systems as Multi Conjugate Adaptive Optics
(MCAO) and Multi Object Adaptive Optics (MOAO) use several guide stars
and wavefront sensors as well as multiple deformable mirrors, conjugated to
different heights, in order to obtain a high imaging quality over a large field
of view or to image multiple astronomical images at the same time.
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Figure 2: Principle of MCAO, courtesy of [1]

This paper is concerned with a new inversion approach for MCAO. The
setup of an MCAO system is, e.g., described in [15, 22]. MCAO systems
are based on a reconstruction of the turbulence of the atmosphere above the
telescope. To this end, the wavefronts of the incoming light from several
well separated guide stars is measured by wavefront sensors. The connection
between the incoming wavefronts and the turbulence is described by the
atmospheric tomography operator, see Section 2. Inverting the atmospheric
tomography operator thus gives a reconstruction of the turbulence profile
of the atmosphere. Atmospheric tomography for telescopes is a variant of
limited angle tomography, which is known to be a severely ill-posed problem,
see, e.g., [3, 23]. However, a common assumption in atmospheric tomography
is that turbulences in the atmosphere are restricted to certain heights. As a
consequence, only atmospheric layers are reconstructed, see Figure 2.

As mentioned above, MCAO uses several deformable mirrors for the cor-
rection. The mirrors are conjugated to different heights and are deformed
based on the reconstructed turbulence profile, see Figure 3. In the simplest
case an MCAO system has as many DMs as layers. In this case, a single DM
is used for correcting the influence of a single layer. In reality, however, one
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usually has more layers than deformable mirrors (e.g., the MCAO system at
the E-ELT will use 3 DMs). Therefore, the shape of the mirrors has to be
determined by an additional optimization routine, cf. [24, 25].

Figure 3: Mirrors in an MCAO system, courtesy of [1]

Several reconstruction approaches have been developed for MCAO. A
standard approach is to consider the operator R that maps the wavefront
sensor data to the commands that drive the deformable mirror. The inver-
sion process then involves either the inversion of large matrices [26] or the
solution of large linear systems, which can be achieved, e.g., by CG methods
[5, 6, 7, 27] or preconditioned CG methods [28, 29, 30, 2, 31]. Also, Fourier
transform based reconstructors have been proposed [32, 33, 23].
In order to further speed up the computations, iterative methods using a spe-
cific representation of the covariance matrix of the statistics of the turbulence
matrix have been investigated, e.g., the Fractal Iterative Method (FrIM) [34]
and a wavelet based method (FEWHA), [35, 36]. Finally, a class of meth-
ods has been developed that solve the subproblems for MCAO (wavefront
reconstruction, atmospheric tomography and mirror fitting) sequently. From
the so called three step methods we would like to mention in particular the
Kaczmarz method [25, 37, 38, 39].

In this paper, we present a new reconstruction method for atmospheric
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tomography, to determine the turbulence profile of the atmosphere from in-
coming wavefronts from guide stars. Therefore, our reconstructor can be
used as an ingredient for a three step method. The proposed method is
based on the method of the approximate inverse, which was first introduced
in [10] and analyzed in [8]. The main idea of the method is to precompute
a problem dependend reconstruction kernel. The reconstruction from mea-
sured data is then obtained by forming inner products between the data and
the reconstruction kernel. Using properties of the described operator, this
method leads to very efficient algorithms as required in MCAO.

The paper is organized as follows: In Section 2 we explain the principle
of MCAO in more details and present its mathematical formulation. Section
3 is concerned with the method of the approximate inverse, first introduced
for scalar functions and then extended to the case of vector-valued functions.
We apply the method of the approximate inverse to our specific problem in
Section 4 and describe the reconstruction algorithm. Numerical aspects are
discussed and the reconstruction quality is evaluated in Section 5.

2 Principle of Multi Conjugate Adaptive Op-

tics

A key factor in AO systems are the guide stars. In this paper, we consider
two types of guide stars that are used to measure the incoming wavefronts.
Natural guide stars (NGS) are simply real, bright stars. The wavefront of
such a natural guide star can be assumed to be planar before entering the
atmosphere since it travels an enormous distance in space. However, as such a
guide star has to fulfil several physical and technical conditions, the coverage
of the sky with suitable natural guide stars is rather low, and artificial guide
stars have to be used. These are created by projecting a laser beam to the
sky, hence they are called laser guide stars (LGS). At an altitude of about 90
km, there is a layer of sodium with a thickness of about 10 km. The sodium
atoms are excited by the laser beam and the returning light can be used to
measure the wavefront.

The price to pay for this type of guide stars are additional effects that
reduce the quality of reconstruction. In our simple model, laser guide stars
are modelled as a point at altitude 90 km. Hence the propagation of the light
from this point to the telescope pupil has the form of a cone rather than a
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cylinder, as would be the case for natural guide stars; see Figure 2. This
is called the cone-effect; it will be included in our model. Other effects not
considered here are tip-tilt indetermination [37, 39] and spot elongation [39].

The idea of MCAO, see Figure 3; is to use the information of several
(natural and/or laser) guide stars to compute the shape of several deformable
mirrors which are situated at ground level, but conjugated to a certain alti-
tude of the atmosphere. That way, the combination of all deformable mirrors
can be seen as an approximation to the turbulence profile of the atmosphere.

The atmosphere itself is modelled as a vector of two dimensional functions
rather than one 3D object. Each of these functions is called a layer of the
atmosphere. Hence, for MCAO, we aim at the reconstruction of a finite
number L of turbulent layers Φ(l), located at heights hl, l = 1, ..., L, each
corresponding to a deformable mirror conjugated to height hl. Available
measurements are the incoming wavefronts ϕαg , g = 1, ..., G, of the guide
stars which we identify by their angle, or more precisely by the corresponding
unit vector, αg. Because of the cone effect we define µl,αg := Hg−hl

Hg
for laser

guide stars. In this notation, we allow a different scaling not only for each
layer l, but also in each direction αg. The case of a natural guide star is
covered by setting µl,αg := 1.

At altitude hl, we can only hope to reconstruct what is “seen” by the
sensors, i.e. the layer Φ(l) will only be reconstructed within the area

Ωl =
G⋃
g=1

Ω
µl,αg
D (hlαg),

where
Ω
µl,αg
D (hlαg) := {ρ ∈ R2 : µ−1

l,αg
(ρ− hlαg) ∈ ΩD}

and ΩD represents the telescope with radius D, i.e.,

ΩD = {r ∈ R2 : ‖r‖ ≤ D}.

We consider Φ(l) ∈ L2(Ωl) and collect all the layers in a vector

Φ := (Φ(1), ...,Φ(L))T ∈
L⊗
l=1

L2(Ωl).

On this space, an inner product is defined via

〈Φ,Ψ〉⊗L
l=1 L2(Ωl)

:=
L∑
l=1

1

cl
〈Φ(l),Ψ(l)〉L2(Ωl), (1)
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Figure 4: Due to the laser being focused in a single point, the wavefronts
travel in a cone-shaped domain

where cl is the (known) relative strength of a layer in the atmosphere. The
operator describing atmospheric tomography is given by

A :
⊗L

l=1 L2(Ωl) −→ (L2(ΩD))G,

AΦ(r) :=
(∑L

l=1 Φ(l)(µl,αgr + hlαg)
)
g=1,...,G

, r ∈ ΩD. (2)

Hence, the goal is the reconstruction of Φ from the measured data

AΦ = ϕ,

where
ϕ = (ϕα1 , . . . , ϕαG)T .

3 Method of the Approximate Inverse

3.1 Reconstruction of scalar functions

The method of the approximate inverse is a regularization scheme to solve
an ill-posed inverse problem

Af = g (3)

7



with measured data g and an operator A between Hilbert spaces [8, 10] or
Banach spaces [11, 12]. In the following, we introduce the idea of this method
in the case of a linear bounded operator A : L2(ΩX)→ L2(ΩY ) with bounded
subsets ΩX ⊂ Rn and ΩY ⊂ Rm. In this setting, f ∈ L2(ΩX) and g ∈ L2(ΩY )
are scalar valued functions. In the subsequent section, the method is then
extended to vector-valued functions as occur in atmospheric tomography.

In order to get a stable approximation of the function f from the ill-posed
problem (3), we consider a smoothed version

fγ(x) := 〈f, eγx〉L2(ΩX) (4)

with a prescribed mollifier eγx ∈ L2(ΩX), γ > 0. The calculation of linear
functionals leads to regularization methods, see the theoretical result of Likht
[9] and the algorithmic of Louis and Maaß [10]. The mollifier eγx can be seen
as an approximation to the delta distribution δx. A precise definition of a
mollifier is given in the following, see [13].

Definition 3.1. For all x ∈ ΩX , γ > 0 let eγx ∈ L2(ΩX) with∫
ΩX

eγx(z) dz = 1.

Let further

fγ(x) =

∫
ΩX

f(z) eγx(z) dz

converge to f in L2(ΩX) as γ → 0. Then eγx is called a mollifier.

Now, instead of the original equation (3), one solves the auxiliary problem

A∗ψγx = eγx (5)

where A∗ denotes the adjoint of A. Thus, the mollified version fγ can be
computed from the measured data as a functional with ψγx ,

fγ(x) = 〈f, eγx〉L2(ΩX) = 〈f, A∗ψγx〉L2(ΩX) = 〈Af, ψγx〉L2(ΩY ) = 〈g, ψγx〉L2(ΩY ).

The auxiliary problem (5) is only solvable if eγx ∈ R(A∗). If at least
eγx ∈ D((A∗)†) with (A∗)† denoting the pseudo inverse of A∗, the function ψγx
can be computed by minimizing the defect ‖A∗ψγx− eγx‖2, which is equivalent
to the solution of the normal equation

AA∗ψγx = Aeγx. (6)
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We will show in Section 4.2 that in our application eγx /∈ R(A∗), i.e., we will
only be able to reconstruct approximate reconstruction kernels by solving
the normal equation (6). Hence, throughout the paper we will focus on the
theory for this case. Although now

fγ(x) = 〈f, eγx〉L2(ΩX) ≈ 〈f, A∗ψγx〉L2(ΩX) = 〈Af, ψγx〉L2(ΩY ) = 〈g, ψγx〉L2(ΩY )

holds only approximately, we will write the equality sign for the sake of
convenience.

Definition 3.2. Let eγx be a mollifier. The operator Sγ : L2(ΩY )→ L2(ΩX)
with

Sγg(x) := 〈g, ψγx〉L2(ΩY ),

where ψγx solves either (5) or (6), is called the approximate inverse of A
to compute an approximation of f . The function ψγx is called reconstruction
kernel.

The regularization property of the approximate inverse Sγ is verified in
[8].

Since the auxiliary problem is independent of the data, the reconstruc-
tion kernels ψγx can be precomputed. However, the dependence on the recon-
struction point x ∈ ΩX requires the solution of a possibly different auxiliary
problem for each of these points. Using suitable invariances of the operator
A, this computational effort and can be dramatically reduced, see e.g. [8, 13].

Theorem 3.3. Let T x1 : L2(ΩX) → L2(ΩX), T x2 : L2(ΩY ) → L2(ΩY ) and
T x3 : L2(ΩY )→ L2(ΩY ) be linear, bounded operators for x ∈ ΩX satisfying

AT x1 = T x2 A, T x2 AA
∗ = AA∗T x3 . (7)

Further assume that the mollifier eγx is generated by T x1 , i.e. eγx := T x1 e
γ with

eγ ∈ D((A∗)†). If ψγ solves AA∗ψγ = Aeγ, then the special reconstruction
kernels ψγx are given by

ψγx = T x3 ψ
γ.

Proof Using the intertwining properties (7), it holds

Aeγx = AT x1 e
γ = T x2 Ae

γ = T x2 AA
∗ψγ = AA∗T x3 ψ

γ = AA∗ψγx .

�
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According to the proof, it is sufficient if the invariance property AT x1 =
T x2 A holds for the specific prescribed mollifier eγ.

Using such invariances, only one single auxiliary problem has to be solved,
and the special reconstruction kernels ψγx are generated by this solution ψγ

and the operator T x3 , leading to the reconstruction

fγ(x) = 〈g, T x3 ψγ〉L2(ΩY ). (8)

3.2 Reconstruction of vector-valued functions

In the previous section, the regularization scheme was presented in the case
of scalar-valued functions. However, the mathematical model of atmospheric
tomography is described by an operator relating vector-valued functions,
namely Φ ∈

⊗L
l=1 L2(Ωl), which comprises the layers of the atmosphere,

and the available data ϕ ∈ (L2(ΩD))G, see (2). The method of the approxi-
mate inverse has been extended to the reconstruction of vector fields already
in the case of the three-dimensional Doppler transform [14]. In the follow-
ing, we apply the method to the setting presented in Section 2 by choosing
appropriate mollifiers for the different layers.

Let δx denote the delta distribution with x ∈ R2. The first layer of the
atmosphere, i.e. the first component of the vector Φ = (Φ(1), . . . ,Φ(L))T , is
given by

Φ(1)(x) = 〈Φ(1), δx〉L2(Ω1)

=
(

1
c1
〈Φ(1), c1 δx〉L2(Ω1) +

∑L
l=2

1
cl
〈Φ(l), 0〉L2(Ωl)

)
=
〈
Φ, δx,1

〉⊗L
l=1 L2(Ωl)

Here δx,1 := (c1 δx, 0, . . . , 0)T denotes an L-dimensional vector, where the
first component is c1 δx and the remaining components correspond to the
zero functions in L2(Ωl), l = 2, . . . , L. Replacing the delta-distribution δx by
a scalar-valued mollifier eγx ∈ L2(Ω1) leads to the mollified version

Φ(1)
γ (x) := 〈Φ, eγx,1〉⊗L

l=1 L2(Ωl)

with eγx,1 := (c1 e
γ
x, 0, . . . , 0)T ∈

⊗L
l=1 L2(Ωl). Analogously, we obtain a mol-

lified version Φ
(l)
γ of the l-th layer by

Φ(l)
γ (x) =

〈
Φ, eγx,l

〉⊗L
i=1 L2(Ωi)

for x ∈ Ωl (9)
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where
eγx,l := (cle

γ
xδi,l)i=1,...,L (10)

with the Kronecker symbol δi,l. This notation abbreviates the fact that only
the l-th component of eγx,l is nonzero with a scalar-valued mollifier eγx ∈
L2(Ωl). Especially, it can be easily verified that eγx,l is in fact a mollifier to

approximate Φ(l) in accordance to Definition 3.1.
Now, let Ψγ

l ∈ L2(ΩD)G solve the normal equation

AA∗Ψγ
l = Aeγl , (11)

where eγl := eγ0,l ∈ D((A∗)†) is, without loss of generality, the mollifier cen-

tred at zero and let T x1 :
⊗L

l=1 L2(Ωl) →
⊗L

l=1 L2(Ωl), T
x
2 : (L2(ΩD))G →

(L2(ΩD))G and T x3 : (L2(ΩD))G → (L2(ΩD))G denote suitable invariance op-
erators for A. Then, the mollified version of the layer Φ(l) can be computed
from the measured data via

Φ(l)
γ (x) = 〈ϕ, T x3 Ψγ

l 〉(L2(ΩD))G =
G∑
g=1

〈
ϕαg , (T

x
3 Ψγ

l )g
〉
L2(ΩD)

.

4 Application to Atmospheric Tomography

This section deals with the derivation of suitable invariance operators in order
to obtain efficient algorithms and with the calculation of the reconstruction
kernel.

For each layer Φ(l), the operator A only takes the respective set Ωl into
account. Thus, an interwining property (7) holds only for reconstruction
points x ∈

⋂G
g=1 Ω

µl,αg
D (hlαg), i.e. only on the part of the layer which is seen

from all angles αg, g = 1, . . . G. To overcome this restriction, a continuation
of A to the whole spatial domain R2 is presented in the following. For this
new operator, an intertwining property can be found which holds for all
reconstruction points x ∈ Ωl. Hence, the method of the approximate inverse
applied to this operator leads to an efficient reconstruction of the whole
layer. Despite the slightly changed setting, the searched-for layers will still
be adequately reconstructed, as discussed in Section 4.3.
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4.1 Continuation of the operator A

Each layer Φ(l) ∈ L2(Ωl) can be extended to R2 via

Φ̃(l)(ρ) :=

{
Φ(l), ρ ∈ Ωl

0, ρ /∈ Ωl

. (12)

We now consider the mapping

A : (L2(R2))L −→ (L2(R2))G

AΦ̃(r) :=
(∑L

l=1 Φ̃(l)(µl,αgr + hlαg)
)
g=1,...,G

. (13)

This new operator considers the whole spatial domain R2 instead of only
the subsets Ωl, l = 1, ..., L. With the correlation of Φ̃ and Φ and r ∈ ΩD, it
is for g ∈ {1, . . . , G}(

AΦ̃
)
g

(r) =
∑L

l=1 Φ̃(l)(µl,αgr + αghl)

=
∑L

l=1 Φ(l)(µl,αgr + αghl) = (AΦ)g (r) = ϕαg(r).

Hence, on the telescope, AΦ̃ corresponds to the measured data. However,
the extended operator A leads to artificial data for r /∈ ΩD. Denote

Ω̃ :=
G⋃
g=1

{r ∈ R2 \ ΩD : ∃ l with µl,αgr + αghl ∈ Ωl}. (14)

This set Ω̃ comprises all points r outside the telescope which are still so close
that µl,αgr+αghl ∈ Ωl for at least one height hl and one unit vector αg. For

r ∈ R2 \ (Ω̃ ∪ ΩD), it holds

AΦ̃(l)(r) = 0,

and for r ∈ Ω̃, it is
AΦ̃(l)(r) = ϕ̃(r)

with an unknown function ϕ̃ 6= 0. However, the effect of this deviation on
the reconstruction of Φ(l) is very weak, as discussed in Section 4.3.
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Analogously to (1), the inner product on
⊗L

l=1 L2(R2) is given by

〈Φ,Ψ〉⊗L
l=1 L2(R2) :=

L∑
l=1

1

cl
〈Φ(l),Ψ(l)〉L2(R2).

In order to apply the method of the approximate inverse, we first have to
compute the adjoint A∗ of A.

Theorem 4.1. The adjoint of A is given by

A∗ : (L2(R2))G −→
⊗L

l=1 L2(R2) (15)

(A∗ϕ)(l)(ρ) = cl
∑G

g=1 µ
−2
l,αg

ϕαg

(
µ−1
l,αg

(ρ− αghl)
)
, l = 1, . . . , L.

Proof Using the definition of A, we obtain

〈AΦ, ϕ〉(L2(R2))G =
∑G

g=1

〈
(AΦ)g, ϕαg

〉
L2(R2)

=
∑G

g=1

∫
R2

∑L
l=1 Φ(l)(µl,αgr + hlαg)ϕαg(r) dr.

With the substitution ρ := µl,αgr + hlαg, it holds

〈AΦ, ϕ〉(L2(R2))G =
∑G

g=1

∑L
l=1

∫
R2 µ

−2
l,αg

Φ(l)(ρ)ϕαg(µ
−1
l,αg

(ρ− hlαg)) dρ

=
∑L

l=1

∫
R2 Φ(l)(ρ)

∑G
g=1 µ

−2
l,αg

ϕαg(µ
−1
l,αg

(ρ− hlαg)) dρ

=
∑L

l=1
1
cl

〈
Φ(l), cl

∑G
g=1 µ

−2
l,αg

ϕαg(µ
−1
l,αg

(· − hlαg))
〉
L2(R2)

= 〈Φ,A∗ϕ〉⊗L
1=l L2(R2).

�
In order to solve the normal equation (11) and define proper intertwining
operators, we will use the following result on the interaction of A and A∗.

Theorem 4.2. It holds
AA∗ = B + λI

with the identity operator I, λ := (λg)g=1,...,G where λg :=
∑L

l=1 cl µ
−2
l,αg

and

BΨ := (BgΨ)g=1,...,G,

BgΨ(r) :=
L∑
l=1

cl

G∑
i=1,i 6=g

µ−2
l,αi

Ψi

(
µl,αg
µl,αi

r + µ−1
l,αi
hl(αg − αi)

)
. (16)
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Proof Due to the definition of the operators A (13) and A∗ (15), we
obtain for g = 1, . . . , G

(AA∗Ψ)g(r) =
∑L

l=1(A∗Ψ)(l)(µl,αgr + hlαg)

=
∑L

l=1 cl
∑G

i=1 µ
−2
l,αi

Ψi

(
µ−1
l,αi

((µl,αgr + hlαg)− hlαi)
)

=
∑L

l=1 cl

(∑G
i=1,i 6=g µ

−2
l,αi

Ψi

(
µl,αg
µl,αi

r + µ−1
l,αi
hl(αg − αi)

)
+ µ−2

l,αg
Ψg(r)

)
=
∑L

l=1 cl
∑G

i=1,i 6=g µ
−2
l,αi

Ψi

(
µl,αg
µl,αi

r + µ−1
l,αi
hl(αg − αi)

)
+
∑L

l=1 cl µ
−2
l,αg

Ψg(r)

= BgΨ(r) + λg Ψg

with B and λ defined above. �

Using this representation, we obtain the following invariances.

Theorem 4.3. Let eγl (ρ) = (cle
γδi,l) be the mollifier from (10) centred at

zero, with l ∈ {1, . . . , L} arbitrary but fixed. Define for j = 1, . . . , L the
linear operator

T x1,l :
⊗L

j=1 L2(R2) −→
⊗L

j=1 L2(R2), (T x1,le
γ
l )

(j)(ρ) = (eγl )
(j)δj,l and

T x2,l : (L2(R2))G −→ (L2(R2))G,
(
T x2,lΨ

)
g

(r) := Ψg

(
r − x

µl,αg

)
for g = 1, . . . , G. If µl,αg = µl,αi, i, g ∈ {1, . . . , G}, for all l = 1, . . . , L, then
it holds

AT x1,le
γ
l = T x2,lAe

γ
l , T x2,lAA∗ = AA∗T x2,l. (17)

Proof Using the definition of the operators T x1 and T x2,l, we obtain for
g = 1, . . . , G

(AT x1 e
γ
l )g (r) =

∑L
j=1 (T x1 e

γ
l )

(j) (µj,αgr + hjαg)

= cle
γ
(
µl,αgr + hlαg − x

)
= cle

γ
(
µl,αg

(
r − x

µl,αg

)
+ hlαg

)
=
∑L

j=1 (eγl )
(j)
(
µj,αg

(
r − x

µl,αg

)
+ hjαg

)
= (Aeγl )g

(
r − x

µl,αg

)
=
(
T x2,lAe

γ
l

)
g

(r).
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For the second invariance, we have the following situation, see Theorem 4.2
for the representation of AA∗,(

T x2,lAA∗Ψ
)
g

(r) = (AA∗Ψ)g

(
r − x

µl,αg

)
=
∑L

j=1 cl
∑G

i=1,i 6=g µj,αi
−2Ψi

(
µj,αg
µj,αi

(
r − x

µl,αg

)
+ µj,αi

−1hj(αg − αi)
)

+λgΨg

(
r − x

µl,αg

)
. (18)

On the other hand, we obtain(
AA∗T x2,lΨ

)
g

(r)

=
∑L

j=1 cl
∑G

i=1,i 6=g µj,αi
−2Ψi

(
µj,αg
µj,αi

(
r − µj,αix

µj,αgµl,αi

)
+ µj,αi

−1hj(αg − αi)
)

+λgΨg

(
r − x

µl,αg
)
)
. (19)

Hence, with µj,αi = µj,αg and µl,αi = µl,αg , it is T x2,`AA∗ = AA∗T x2,`. �

Theorem 4.3 reveals an issue when laser guide stars and natural guide
stars are combined. Comparing the action of T x2,l in (18) and (19), respec-
tively, one can spot a difference in the “cross-projections”, i.e., when project-
ing a component Ψi on a layer and then projecting it back down in direction
αg, i 6= g. The difference lies in the scaling factor of the shift, r − x

µl,αg
com-

pared to r − µj,αix

µj,αgµl,αi
. In case we only consider either natural guide stars or

laser guide stars, it is µj,αi = µj,αg for all i, g, hence the invariance holds true.
If both types of guide stars are mixed, however, this factor adds a systematic
error in the invariances. Hence, we cannot expect the approximate inverse
to perform as well for mixed guide stars as for a single type of guide stars.
This problem may to some extend be avoided when tip/tilt indetermination
of laser guide stars is part of the model. In this case, the natural guide stars
can be used only to correct the reconstructions of the layers performed with
laser guide stars. This so called separate tip/tilt reconstruction technique is
described in [37].

4.2 Calculation of the reconstruction kernel

To compute the reconstruction kernels, we have to solve the auxiliary problem

A∗Ψγ
x,l = eγx,l (20)
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for each point x we wish to reconstruct. The following Lemma shows that it
is not possible to find an exact solution.

Lemma 4.4. Let eγx,l as in (9). Then eγx,l /∈ R(A∗).

Proof Assume eγx,l ∈ R(A∗). Hence eγx,l ∈ R(A∗) = N (A)⊥, i.e.,

〈eγx,l,Φ〉⊗L
l=1 L2(R2) = 0 for all Φ ∈ N (A). Let Φ̃ constant on each layer,

Φ̃ := (ClχΩl)l=1,...,L with Cl ∈ R,
∑L

l=1 Cl = 0. Then AΦ̃ = 0, i.e., Φ̃ ∈ N (A)
but

〈eγx,l, Φ̃〉⊗L
l=1 L2(R2) = 〈eγx, Φ̃(l)〉L2(Ωl) = Cl〈eγx, 1〉L2(Ωl) 6= 0

because of Definition 3.1. Hence eγx,l /∈ N (A)⊥ = R(A∗), contradicting the
original assumption. �

Since eγx,l /∈ R(A∗), we solve the normal equation

AA∗Ψγ
x,l = Aeγx,l (21)

instead of (20). In order to circumvent the dependency of this equation on
the point x, we use the invariance properties (17) of A and AA∗. Hence the
mollifiers eγx,l are generated by

eγx,l = T x1,le
γ
l (22)

with eγl := (cle
γ δi,l)i=1...L analogously to (10). Again, eγ ∈ L2(R2) is a

prescribed mollifier and δi,l represents the Kronecker symbol. According
to Theorem 3.3 and Theorem 4.3, the corresponding special reconstruction
kernels Ψγ

x,l are given by

(
Ψγ
x,l

)
g

(r) =
(
T x2,lΨ

γ
l

)
g

(r) = (Ψγ
l )g

(
r − x

µl,αg

)
,

where Ψγ
l solves

AA∗Ψγ
l = Aeγl (23)

i.e., Ψγ
l minimizes ||AΨ − eγl ||2. It remains to solve this problem once for

each layer l = 1, . . . , L.
A common method for solving equations of type (23) are iterative meth-

ods, in particular gradient methods. Starting from an initial guess, one
iterates

Ψγ
l ← Ψγ

l − τ(AA∗Ψγ
l −Ae

γ
l ) (24)

16



until a stopping criterion is met, e.g., a maximum number of iterations. The
steplength τ is used to ensure and speed up convergence and has to be chosen
appropriately. With AA∗ = B + λI from Theorem 4.2, (24) can be written

Ψγ
l ← (1− τλ)Ψγ

l − τ(BΨγ
l −Ae

γ
l ).

This procedure updates all G components of Ψγ
l at once. However, the nu-

merical results obtained with this approach were of low quality. Alternatively,
one may update each component separately and immediately use the updated
information in the next step. This approach was introduced by Kazcmarz
for the solution of linear systems of equations. It can be extended to more
general settings, in particular to adaptive optics, see, e.g., [39, 25]. In each
step, we now minimize ||AΨγ

l − eγl ||2 in direction of component (Ψγ
l )g in a

cyclical way. The gradient w.r.t. to the g-th component is given by

∇g||AΨγ
l − e

γ
l ||

2 = (AA∗Ψγ
l −Ae

γ
l )g = λg(Ψ

γ
l )g +BgΨ

γ
l − (Aeγl )g

With this as descent direction we construct an iterative Kaczmarz-type al-
gorithm. Let k̄ := mod(k,G) + 1. Then, again starting from an initial guess
which in practice we simply chose zero, we update

(Ψγ
l )k̄ ← (1− τkλk̄)(Ψ

γ
l )k̄ − τk(Bk̄Ψ

γ
l − (Aeγl ))k̄) (25)

for k = 1, 2, . . . until a stopping criterion is met. In our numerical experi-
ments we let

τk =
‖λk̄(Ψ

γ
l )k̄ +Bk̄Ψ

γ
l − (Aeγl ))k̄‖(L2(R2))

‖A∗(λk̄(Ψ
γ
l )k̄ +Bk̄Ψ

γ
l − (Aeγl ))k̄)‖⊗L

l=1 L2(R2)

. (26)

This choice of τk minimizes the residual in the search direction, c.f. [4],

τk = min
τ
||A∗(Ψγ

l + τ(λg(Ψ
γ
l )g +BgΨ

γ
l − (Aeγl )g))− e

γ
l ||

2⊗L
l=1 L2(R2)

.

With the calculated Ψγ
l we can then reconstruct the layer l in any point

x ∈ Ωl via

Φ(l)
γ (x) = 〈AΦ, T x2,lΨ

γ
l 〉(L2(R2))G . (27)

Remark 4.5. We shortly want to discuss another set of invariance operators
which will reduce the computational cost of the reconstruction of the layers
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significantly. However, these alternative operators can only be defined when
either only natural guide stars or only laser guide stars are used. Let eγl be
again the mollifier from (10) centered at zero, with l ∈ {1, . . . , L} arbitrary
but fixed. Let µl,αg = µl,αi for g, i ∈ {1, . . . , G} for all l = 1, . . . , L, and
define µl := µl,αg . Define for j = 1, . . . , L the linear operator

T x1,µl :
⊗L

j=1 L2(R2)L −→
⊗L

j=1 L2(R2)L, (T x1,le
γ
l )

(j)(ρ) = (eγl )
(j)δj,l, and

T x2 : L2(R2)G −→ L2(R2)G, (T x2 Ψ)g (r) := Ψg (r − x)

for g = 1, . . . , G. Then it holds

AT x1,µle
γ
l = T x2Ae

γ
l , T x2AA∗ = AA∗T x2 .

Thus, it is
eγx,l(ρ) = T x1,µle

γ
l (ρ) = (cl e

γ(ρl − µlx) δi,l)i=1...L,

leading to

〈Φ, eγx,l〉⊗L
i=1 L2(R2) = 〈Φ(l), eγl (· − µlx)〉L2(R2) = Φ(l)

γ (µlx).

Hence, the mollified version 〈Φ, eγx,l〉⊗L
l=1 L2(R2) approximates a scaled version

of the layer Φ(l), instead of the layer itself.
The corresponding reconstruction kernels represent then unscaled translated
versions of Ψγ

l ,
Ψγ
x,l(r) = T x2 Ψγ

l (r) = Ψγ
l (r − x) .

Thus, the functional 〈ϕ,Ψγ
x,l〉L2(R2)G can be computed without interpolation

of the data vector. Instead, this interpolation step is transferred to an in-
terpolation on the layer. For a discussion on the numerical effort we refer to
Section 5.3.

4.3 The extension error

Our main goal is the reconstruction of the layers Φ(l), l = 1 . . . L, from the
measured data AΦ = ϕ. Using the extension Φ̃ of Φ to the whole spatial
domain R2, (12), there is the following relation between AΦ̃ and AΦ. Since

AΦ̃(r) =


AΦ(r) r ∈ ΩD

0 r ∈ R2 \ (ΩD ∪ Ω̃)

ϕ̃(r) r ∈ Ω̃
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with an unknown function ϕ̃ 6= 0 and Ω̃ defined in (14). Now, for x ∈ Ωl, it
is

Φ(l)
γ (x) = Φ̃

(l)
γ (x) = 〈AΦ̃, T x2,lΨ

γ
l 〉(L2(R2))G

= 〈AΦ, T x2,lΨ
γ
l 〉(L2(ΩD))G + 〈ϕ̃, T x2,lΨ

γ
l 〉L2(Ω̃)

= cl〈AΦ, T x2,µlΨ
γ
l 〉(L2(ΩD))G + ε.

The angles αg cover just a small range, so the domain Ω̃ will be relatively
small compared to ΩD. Besides, with the distance of r to ΩD getting larger,
less layers give a contribution to

∑L
l=1 Φ(l)(µlr+ hlαg), i.e. the value of ϕ̃(r)

is getting smaller. Altogether, the error ε will be small, so we approximate

Φ(l)
γ (x) = 〈AΦ, T x2,µlΨ

γ
l 〉(L2(ΩD))G . (28)

5 Numerical Results

Several tests are performed to show the quality of the approximate inverse
for atmospheric tomography. The computations are performed with our sim-
ulation tool. In our basic setup we consider a telescope with 42m mirror di-
ameter, as originally proposed for the E-ELT. The guide stars are positioned
in a circle of 3.75 arcmins for laser guidestars and 5 arcmin for natural guide
stars, respectively, each equipped with a Shack-Hartmann wavefront sensor
with 84 × 84 subapertures and a field of view of 10 arcmin. Note that, due
to the systematic error that occurs when both guide star types are used, we
only consider either natural guide stars or laser guide stars. The error on the
measurements of the wavefront sensor is assumed to be low due to a high
number of photons per subaperture. The atmosphere is simulated with 9 lay-
ers, moving at a speed of roughly 15 m/s with a Fried parameter r0 = 20cm
in K-band. The outer scale for the van Karmann turbulence model is 20m.
Three deformable mirrors are simulated, conjugated to heights of 0m, 4000m
and 12700m. Hence, we seek to reconstruct an artificial atmosphere consist-
ing of 3 layers at heights h1 = 0m, h2 = 4000m and h3 = 12700m. The
relative strength of the layers are c1 = 0.6, c2 = 0.2 and c3 = 0.2, respec-
tively. The incoming wavefronts ϕαg , g = 1, . . . , G are reconstructed from
the wavefront sensors with CuReD [21].
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5.1 Reconstruction Method

The reconstruction of each layer Φ(l) requires three basic steps. First, the
vectors eγl and hence the mollifier eγ ∈ L2(R2) has to be set up. Since we
are free to choose the parameter γ, we might make a different choice for each
layer l. Hence, γl denotes the mollification parameter used to reconstruct
layer l. In our first simulations we chose the Gaussian

eγl(ρ) :=
1

2πγ2
l

exp

(
−‖ρ‖

2

2γ2
l

)
with γl > 0. For this mollifier, it holds ||eγl ||L2(R2) = 1. However, since
we reconstruct directly on the actuators of the deformable mirrors, our dis-
cretization is fixed. Due to it being rather coarse, it was not possible to find
an appropriate value of γ. Instead, we followed the idea that the mollifier
is supposed to approximate the delta distribution. Therefore, let ∆l be the
spacing of the actuators of the mirror conjugated to height hl. Then we let

eγl(ρ) =

{
γl∆

−2
l , ρ = 0

0, ρ 6= 0
,

with γl being a free parameter. This definition ensures ‖eγl‖ ≈ 1 on the
actuator grid of each mirror. For the results presented subsequently we let
γ1 = 1, γ2 = 1.05 and γ3 = 1.12 in case of natural guide stars. For laser
guide stars we chose γ1 = 0.95, γ2 = 1 and γ3 = 1.07. Using this mollifier
eγl , the l-th mollifying vector is given by eγl = (cle

γlδi,l)i=1,...,L.
The second step is to solve equation (23) via the iteration procedure (25)

in order to obtain the reconstruction kernels. An example is given in Figure
5.1. In order to get an idea about the reconstruction quality, we can check
the mollifier vector obtained from the reconstruction kernels. In the optimal
case we would get A∗ψγl = eγl for l = 1, 2, 3 . However, since we can only
solve the normal equation, i.e., look for an approximate solution, we end up
with some artefacts from layers that should be zero in the case of optimal
reconstruction, see Figure 5.1. However, due to Lemma 4.4 it is not possible
to avoid this as the information is encoded in the reconstruction kernels and
cannot be removed artificially. In a last step we reconstruct the layers via
Φ

(l)
γ (x) = 〈ϕ, T x2,lΨ

γ
l 〉(L2(R2))G for each x corresponding to an actuator of the

deformable mirror.
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Figure 5: Reconstruction kernel Ψγ
3 for layer 3 and a laser guide star
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l = 1, 2, 3. Although the third layer is reconstructed adequately, the other
layers show some artefacts instead of being plain zero as would be the optimal
case.
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5.2 Simulation results

We compare the performance of the method of the approximate inverse (AI)
with a gradient-based algorithm [40] that is known to produce solutions of the
same quality as the methods currently used in practice for smaller telescopes.
As evaluation criterion we use the short exposure (SE) Strehl ratio in K-band
(for a wavelength of 2200 nm) after one time steps of 2 ms, according to the
frequency of the AO system. The Strehl ratio, taking values in the interval
[0, 1], is a measure commonly used in Adaptive Optics for the observed image
quality with higher values corresponding to better observed images. Running
the simulation against the gradient method, we observe that the AI method
performs better than the gradient method if the guide star types are not
mixed, see Figure 7 and Figure 8. In these figures, the top image shows the
Strehl over the whole field ov view, whereas in the bottom picture we show
the Strehl versus separation. Since the invariances of Theorem 4.3 only hold
for a single type of guide stars used, we expect a slight drop in reconstruction
quality when both guide star types are mixed. Numerical results confirm this,
see Figure 9. We limit ourselves to one time step here since the design of a
proper temporal control algorithm for the mirror updates is out of scope of
this paper. Closing this gap remains future work.

5.3 Computational complexity

In adaptive optics, speed is one of the most critical criteria for acceptance of
a method. For the approximate inverse, the situation is as follows. In a first
step, the wavefronts have to be reconstructed for each guide star from the
Shack-Hartmann wavefront sensors with CuReD. The computational com-
plexity is 20nwfs where nwfs is the number of subapertures in the Shack-
Hartmann wavefront sensor [21]. This has to be done for each of the G guide
stars. CuReD is parallelizable.

The reconstructed wavefronts are then used to calculate the shape of
the deformable mirrors using the reconstruction kernels. Since the ker-
nels do not depend on the data, they can be precomputed. Hence this
rather time consuming step gives no contribution during the actual com-
putations. In particular, no runtime evaluation of the forward or adjoint
operator is needed. The remaining effort lies in the evaluation of the scalar
products. For the reconstruction of a single point of one layer, G inner
products are required, each consisting of 2 · nwfs operations for the actual
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evaluation and, if the invariance operators from Theorem 4.3 are used, addi-
tional 6nwfs operations to interpolate the reconstruction kernels on the grid
of the deformable mirrors. Since we can reconstruct the artificial layers di-
rectly on the deformable mirrors, we have to do this for nact points, where
nact denotes the combined number of actuators for all mirrors. Assuming
that for each mirror we have approximately nwfs actuators, the overall com-
plexity for the reconstruction of a whole atmosphere in one time step is
G · 20 · nwfs + nact ·G · 2nwfs · 6 · nwfs ≈ G · 20 · nwfs + 12L ·G · n3

wfs. Using
the alternative invariance operators from Remark 4.5, we can avoid the in-
terpolation of the reconstruction kernels, but require an interpolation of the
reconstructed mirror shape to its actual domain. However, since there are
only very few layers compared to the huge amount of actuators, the com-
putational cost is significantly reduced. The overall complexity can then be
estimated as G ·20 ·nwfs+nact ·G ·2nwfs+6 ·nact ≈ G ·26 ·nwfs+12L ·G ·n2

wfs.
Since each inner product is independent of the other ones, the procedure is
highly parallelizable. Note that, due to the nature of the method, an exten-
sion of the model, e.g., an inclusion of additional effects of laser guide stars,
does not increase the relevant computational effort as all operations involv-
ing the model are solely performed in the calculation of the reconstruction
kernels.
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