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Bert Jüttler
Ulrich Langer
Manuel Kauers
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Silviu Radu

Communicated by: Ulrich Langer
Josef Schicho

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



A solution method for autonomous
first-order algebraic partial differential

equations in several variables

Georg Grasegger∗

Franz Winkler∗ †

DK Computational Mathematics/ RISC

Johannes Kepler University Linz

Alberto Lastra‡

J. Rafael Sendra† ‡

Dpto. de F́ısica y Matemáticas
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In this paper we present a procedure for solving first-order autonomous
algebraic partial differential equations in an arbitrary number of variables.
The method uses rational parametrizations of algebraic (hyper)surfaces and
generalizes a similar procedure for first-order autonomous ordinary differ-
ential equations. In particular we are interested in rational solutions and
present certain classes of equations having rational solutions. However, the
method can also be used for finding non-rational solutions.

1 Introduction

In the literature one can choose among several exact methods in order to solve partial
differential equations (see for instance [24, Sec. II.B]). The main aim of the present work
is to provide an alternative novel exact method for solving this type of equations. Our
method provides a tool for systematically solving various well-known equations.

Recently algebraic-geometric solution methods for algebraic ordinary differential equa-
tions (AODEs) were investigated. First results on solving first order AODEs can be
found in [15] where Gröbner bases are used and [5] where a degree bound is computed
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which might be used for making an ansatz. The starting point for algebraic-geometric
methods, such as the one described in this paper, was an algorithm by Feng and Gao [7, 8]
which decides whether or not an autonomous AODE, F (y, y′) = 0 has a rational solution
and in the affirmative case computes a rational general solution. This result was then
generalized by Ngô and Winkler [19, 21, 20] to the non-autonomous case F (x, y, y′) = 0.
First results on higher order AODEs can be found in [12, 13, 14]. Ngô, Sendra and
Winkler [18] also classified AODEs in terms of rational solvability by considering affine
linear transformations. A generalization to birational transformations can be found in
[17]. In [9, 11] a solution method for autonomous AODEs is presented which generalizes
the method of Feng and Gao to finding radical and also non-radical solutions. A gen-
eralization of the procedure to algebraic partial differential equations (APDEs) in two
variables can be found in [10]. In this paper we present a further generalization to the
case of an arbitrary number of variables.

In Section 2 we will recall and introduce the necessary definitions and concepts. The
procedure presented in this paper is a generalization of the case for two variables [10].
We will not go into details of this case but show first an extension to three variables in
Section 3. Then we will present the general procedure for solving APDEs in arbitrary
many variables. In Section 4 we will consider the case of rational solutions. The section
is divided into two parts. The first part proves some properties of rational solutions
which can be found by the procedure. The second part presents APDEs which have
rational solutions. Finally in Section 5 we show that the procedure is not restricted to
finding rational solutions.

2 Preliminaries

We consider the field of rational functions K(x1, . . . , xn) for some algebraically closed
field K of characteristic 0; in practice, one may think of K as the field C of complex
numbers. We denote the usual derivative w. r. t. xi by ∂

∂xi
. Sometimes we might use the

abbreviations uxi = ∂u
∂xi

. In case n = 2 we also write x for x1 and y for x2. The ring of
differential polynomials is denoted as K(x1, . . . , xn){u}. It consists of all polynomials in
u and its derivatives, i. e.

K(x1, . . . , xn){u} = K(x1, . . . , xn)[u, ux1 , . . . , uxn , ux1x1 , . . . , uxnxn , . . .] .

An algebraic partial differential equation (APDE) is defined by a differential polynomial
F ∈ K(x1, . . . , xn){u} which is also a polynomial in x1, . . . , xn. We write

F (x1, . . . , xn, u, ux1 , . . . , uxn , ux1x1 , . . . , uxnxn , . . .) = 0

for the corresponding APDE. In this paper we restrict our attention to the first-order
autonomous case, i. e.

F (u, ux1 , . . . , uxn) = 0 .
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An algebraic hypersurface S is an algebraic variety of codimension 1, i. e. the zero set of
a squarefree non-constant polynomial f ∈ K[x1, . . . , xn],

S = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0} ,

where An is the n-dimensional affine space over K. We call the polynomial f the
defining polynomial. An important aspect of algebraic hypersurfaces is their rational
parametrizability. We consider an algebraic hypersurface defined by an irreducible poly-
nomial f . We write s̄ = (s1, . . . , sn−1). A tuple of rational functions P(s1, . . . , sn−1) =
(p1(s̄), . . . , pn(s̄)) is called a rational parametrization of the hypersurface if f(P(s̄)) = 0
for all s̄ and the jacobian of P has generic rank n− 1. We observe that this condition is
fundamental since, otherwise, we are parametrizing a lower dimensional subvariety on the
hypersurface. A parametrization can be considered as a dominant map P(s̄) : An−1 → S.
By abuse of notation we also call this map a parametrization. We call a parametriza-
tion P(s̄) proper if it is a birational map or, in other words, if for almost every point
a = (a1, . . . , an) on the hypersurface we find exactly one tuple (s1, . . . , sn−1) such that
P(s̄) = a or equivalently if K(P(s̄)) = K(s̄).

Remark 2.1.
The jacobian of a proper parametrization P(s1, . . . , sn−1) of a hypersurface has generic
rank n − 1, where n is the dimension of the hypersurface. Since P is proper we know
that K(s1, . . . , sn−1) = K(P(s̄)). Hence, there is a rational function R(a1, . . . , an) =
(R1(ā), . . . , Rn(ā)) ∈ K(ā)n such that R(P(s̄)) = (s1, . . . , sn−1). Thus, Jid = JR◦P =
JR(P) · JP . Taking into account, that the rank of a product of two matrices is smaller
equal the minimal rank of the two matrices, we get that rank(JP) = n− 1.

Above we have considered rational parametrizations of a hypersurface. However, we
might want to deal with more general parametrizations. If so, we will say that a tuple of
differentiable functionsQ(s̄) = (q1(s̄), . . . , qn(s̄)) is a parametrization of the hypersurface
if f(Q(s̄)) is identically zero and the jacobian of Q(s̄) has generic rank n− 1.

Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. We consider the corresponding
algebraic hypersurface by replacing the derivatives by independent transcendental vari-
ables, F (z, p1, . . . , pn) = 0. Given any differentiable function u(x1, . . . , xn) which sat-
isfies F (u, ux1 , . . . , uxn) = 0, then (u(s1, . . . , sn), ux1(s1, . . . , sn), . . . , uxn(s1, . . . , sn)) is a
parametrization. We call this parametrization the corresponding parametrization of the
solution. We observe that the corresponding parametrization of a solution is not neces-
sarily a parametrization of the associated hypersurface, since the condition on the rank
of the Jacobian may fail. For instance, let us consider the APDE ux = 0 with n = 2. A
solution would be of the form u(x, y) = g(y), with g differentiable. However, this solu-
tion generates (g(s2), 0, g

′(s2)) that is a curve in the surface; namely the plane p = 0.
Now, consider the APDE ux = λ, with λ a nonzero constant. Hence, the solutions are of
the form u(x, y) = λx + g(y). Then, u(x, y) = λx + y generates the line (λs1 + s2, λ, 1)
while u(x, y) = λx+ y2 generates the parametrization (λs1 + s22, λ, 2s2) of the associated
plane p = λ. These examples motivate the following definition. Clearly a solution of an
APDE is a function u(x1, . . . , xn) such that F (u, ux1 , . . . , uxn) = 0.
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Definition 2.2.
A solution of an APDE is rational iff u(x1, . . . , xn) is a rational function over K.
A rational solution of an APDE is proper iff the corresponding parametrization is proper.

In the case of autonomous ordinary differential equations, every non-constant solution
induces a proper parametrization of the associated curve (see [7]). However, this is not
true in general for autonomous APDEs. For instance, the solution x + y3 of ux = 1,
induces the parametrization (s1 + s32, 1, 3s

2
2) which is, although its jacobian has rank 2,

not proper.

In addition, we observe that it can happen that none of the rational solutions of an
APDE is proper. This is the case for instance, of ux = 0, since all rational solutions are
of the form u = R(y), with R a rational function and K(R(s1), 0, R

′(s1)) ( K(s1, s2).
Furthermore, we see that none of the solutions of this APDE generates a parametrization
of the associated hypersurface, since the Jacobian has rank 1.

Every solution of the problem under consideration in this work can be attained by the
knowledge of a set of complete solutions (see [4] for the details). For this reason, we
focus on finding families of complete solutions. This notion of a complete solution is due
to Lagrange and can also be found in [16].

Definition 2.3.
Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. Let u be a rational solution depend-
ing on n arbitrary constants c1, . . . , cn. Let L = (p0, p1, . . . , pn) be the parametrization
induced by the solution, i. e. p0 = u and pi = uxi for i ≥ 1. We call the solution complete
if the jacobian J c1,...,cn

L of L with respect to c1, . . . , cn has generic rank n.
We call the solution complete of suitable dimension if it is complete and the jacobian
J s1,...,sn
L of L with respect to s1, . . . , sn has generic rank n.

Intuitively speaking, the notion of complete solution is requiring that the correspond-
ing parametrization of the solution parametrizes an algebraic set on the hypersurface,
independently of the constants c1, . . . , cn. On the other hand, the notion of suitable
dimension ensures that the corresponding parametrization really parametrizes the asso-
ciated hypersurface and not a lower dimensional subvariety.

In the following example we will see complete and non-complete solutions of APDEs.

Example 2.4.
We consider the APDE ux = 0, F (z, p, q) = p, as well as the solution u(x, y) = y+c1+c2.
The corresponding parametrization is L = (s2 + c1 + c2, 0, 1). Then

J c1,c2
L =

1 1
0 0
0 0

 ,

and hence u(x, y) is not complete. However, if we take u(x, y) = c1y + c2, the jacobian
with respect to c1, c2 has generic rank 2, and u is complete but not of suitable dimension,
since the jacobian of L with respect to s1, s2 has rank 1.
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Now, if we take the APDE, ux = 1. In Table 1 we see solutions and their properties.
Note that the solution x+c1 +y2 +c2 is not complete and hence, not complete of suitable
dimension. However, the other property of suitable dimension is fulfilled.

solution complete suitable dim proper rank(J s1,s2
L )

x+ c1 F F F 1
x+ y + c1 + c2 F F F 1
x+ c1 + c2y T F F 1
x+ c1 + y2 + c2 F F T 2
x+ c1 + c2y

2 T T T 2
x+ c1 + (y + c2)

2 T T T 2
x+ c1 + (y + c2)

3 T T F 2

Table 1: Properties of some solutions of ux = 1 where T means true, F false

3 A method for solving first-order autonomous APDEs

Let F (u, ux1 , . . . , uxn) = 0 be an algebraic partial differential equation, where F is an
irreducible non-constant polynomial. We consider the hypersurface F (z, p1, . . . , pn) = 0
and assume it admits a proper (rational) hypersurface parametrization

Q(s1, . . . , sn) = (q0(s1, . . . , sn), q1(s1, . . . , sn), . . . , qn(s1, . . . , sn)) .

An algorithm for computing a proper rational parametrization of a three-dimensional
surface can be found for instance in [22]. For higher-dimensional hypersurfaces there is no
general algorithm for computing rational parametrizations. Here, we will stick to rational
parametrizations, but the procedure which we present will work as well with other kinds
of parametrizations, for instance radical ones. First results on radical parametrizations of
three-dimensional surfaces can be found in [23]. Assume that L(s1, . . . , sn) = (v0, . . . , vn)
corresponds to a solution of the APDE. Furthermore we assume that the parametrization
Q can be expressed as

Q(s1, . . . , sn) = L(g(s1, . . . , sn))

for some invertible function g(s1, . . . , sn) = (g1(s1, . . . , sn), . . . , gn(s1, . . . , sn)). This as-
sumption is motivated by the fact that in case of rational algebraic curves every non-
constant rational solution of an AODE yields a proper rational parametrization of the
associated algebraic curve and each proper rational parametrization can be obtained
from any other proper one by a rational transformation. In the case of APDEs, how-
ever, not all rational solutions provide a proper parametrization, as mentioned in the
remark after Definition 2.2. Talking about hypersurface parametrizations, we still know
that any proper rational parametrization can be obtained from any other proper one
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by a rational transformation. At this point, if we can compute g−1 we have a solution
Q(g−1(s1, . . . , sn)).

Let J be the jacobian matrix. The solution of our problem comes from the solution of

JQ(s1, . . . , sn) = JL(g(s1, . . . , sn)) · Jg(s1, . . . , sn) .

Taking a look at the rows we get that

∂q0
∂s1

=
n∑
i=1

∂v0
∂si

(g)
∂gi
∂s1

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂s1

,

...

∂q0
∂sn

=
n∑
i=1

∂v0
∂si

(g)
∂gi
∂sn

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂sn

.


(1)

This is a system of quasilinear equations in the unknown functions g1 to gn. In case qi is
zero for some i the problem reduces to lower order. Since Q is a proper parametrization
of a hypersurface, at most one of its components can be zero. So, we can ensure that
there exists a non-zero qi with i > 0. Let us assume that q1 6= 0. If this is not the case,
we can always change the role of x1 and xi with i > 1. First we divide by q1:

a1 =
∂g1
∂s1

+
n∑
i=2

bi
∂gi
∂s1

,

...

an =
∂g1
∂sn

+
n∑
i=2

bi
∂gi
∂sn

.


(2)

with ai =
∂q0
∂si

q1
and bi = qi

q1
. From this system we will get by differentiation the following

system (where for each j ∈ {1, . . . , n} we take derivatives of the j-th equation in (2)
w. r. t. the variables sk for j 6= k).

∂aj
∂sk

=
∂2g1
∂sk∂sj

+
n∑
i=2

∂bi
∂sk

∂gi
∂sj

+ bi
∂2gi
∂sk∂sj

for j 6= k . (3)

Now we take the difference of two equations each and get the following equations where
the second derivatives vanished.

aj,k =
n∑
i=2

bi,k
∂gi
∂sj
− bi,j

∂gi
∂sk

for j < k , (4)

where aj,k =
∂aj
∂sk
− ∂ak

∂sj
and bi,k = ∂bi

∂sk
.

The aim now will be to take suitable linear combinations of the equations from (4) such
that all derivatives of gi vanish except for i = n, i. e. we are left with a quasilinear PDE
in gn. In [10] this was shown for n = 2 and in the Section 3.1 we will do so for n = 3.
Later in Section 3.2 we will prove the general case. Finally in Section 3.3 we will give a
step by step description of the procedure for solving APDEs in arbitrary many variables.
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3.1 The case n = 3

In the case of three variables the system (4) reads as

a1,2 = b2,2
∂g2
∂s1
− b2,1

∂g2
∂s2

+ b3,2
∂g3
∂s1
− b3,1

∂g3
∂s2

,

a1,3 = b2,3
∂g2
∂s1
− b2,1

∂g2
∂s3

+ b3,3
∂g3
∂s1
− b3,1

∂g3
∂s3

,

a2,3 = b2,3
∂g2
∂s2
− b2,2

∂g2
∂s3

+ b3,3
∂g3
∂s2
− b3,2

∂g3
∂s3

.


(5)

By a linear combination we get

b2,3a1,2 + b2,1a2,3 − b2,2a1,3

= (b2,3b3,2 − b2,2b3,3)
∂g3
∂s1

+ (b2,1b3,3 − b2,3b3,1)
∂g3
∂s2

+ (b2,2b3,1 − b2,1b3,2)
∂g3
∂s3

.

This is a quasilinear PDE in g3. Hence, it can be solved by the method of characteristics.
Once we have g3 we get a quasilinear PDE in g2 adding the two first equations of (5):

a1,2 + a1,3 −
(

(b3,2 + b3,3)
∂g3
∂s1
− b3,1

∂g3
∂s2
− b3,1

∂g3
∂s3

)
= (b2,2 + b2,3)

∂g2
∂s1
− b2,1

∂g2
∂s2
− b2,1

∂g2
∂s3

.

Again, this can be solved by the well known method of characteristics. Finding g1 is
finally computing an integral from (2).

Note, here we have shown a recursive way. However, some computations can also be
done in parallel. Indeed, we may consider this second quasilinear PDE in g2

b3,3a1,2 + b3,1a2,3 − b3,2a1,3

= (b2,2b3,3 − b2,3b3,2)
∂g2
∂s1

+ (b2,3b3,1 − b2,1b3,3)
∂g2
∂s2

+ (b2,1b3,2 − b2,2b3,1)
∂g2
∂s3

.

Indeed, the two quasilinear PDEs can be expressed as

1

q21
det

 ∂q0
∂s1

∂q0
∂s2

∂q0
∂s3

∂q1
∂s1

∂q1
∂s2

∂q1
∂s3

b2,1 b2,2 b2,3

 = det

 ∂g3
∂s1

∂g3
∂s2

∂g3
∂s3

b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


− 1

q21
det

 ∂q0
∂s1

∂q0
∂s2

∂q0
∂s3

∂q1
∂s1

∂q1
∂s2

∂q1
∂s3

b3,1 b3,2 b3,3

 = det

 ∂g2
∂s1

∂g2
∂s2

∂g2
∂s3

b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


In both cases there is no reason for the choice of the roles of gi (compare Remark 3.2).
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3.2 The general case

Theorem 3.1.
Let n ≥ 2 be the number of independent variables. Let M = (bk,`)2≤k≤n,1≤`≤n, where bi,j
are as in (4). Then system (2) yields a quasilinear PDE in gn of the following form∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+n det(M{n},{i,j}) =
n∑
i=1

∂gn
∂si

(−1)i det(M∅,{i}) , (6)

where MR,S denotes the matrix which is obtained from M by deleting all rows with index
in R and all columns with index in S.

Proof. We will start with rearranging the left hand side. Some technical details we will
outsource to lemmata which are shown later. Using equation (4) to replace the ai,j the
left hand side of (6) reads as∑

i,j∈{1,...,n}
i<j

(
n∑
k=2

bk,j
∂gk
∂si
− bk,i

∂gk
∂sj

)
(−1)i+j+n det(M{n},{i,j})

=
n∑
k=2

n∑
i=1

n∑
j=i+1

(
bk,j

∂gk
∂si
− bk,i

∂gk
∂sj

)
(−1)i+j+n det(M{n},{i,j})

=
n∑
k=2

(
n∑
i=1

n∑
j=i+1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

−
n∑
i=1

n∑
j=i+1

bk,i
∂gk
∂sj

(−1)i+j+n det(M{n},{i,j})

)

=
n∑
k=2

(
n∑
i=1

n∑
j=i+1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

−
n∑
i=2

i−1∑
j=1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

)

=
n∑
k=2

(
n∑
j=2

bk,j
∂gk
∂s1

(−1)1+j+n det(M{n},{i,j})

+
n∑
i=2

∂gk
∂si

(
n∑

j=i+1

bk,j(−1)i+j+n det(M{n},{i,j})

−
i−1∑
j=1

bk,j(−1)i+j+n det(M{n},{i,j})

))

=
n∑
k=2

(
n∑
i=1

∂gk
∂si

(
n∑

j=i+1

bk,j(−1)i+j+n det(M{n},{i,j})
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−
i−1∑
j=1

bk,j(−1)i+j+n det(M{n},{i,j})

))

=
n∑
i=1

∂gn
∂si

(
n∑

j=i+1

bn,j(−1)i+j+n det(M{n},{i,j})−
i−1∑
j=1

bn,j(−1)i+j+n det(M{n},{i,j})

)

=
n∑
i=1

∂gn
∂si

(−1)i det(M∅,{i}) .

In the last two steps we used backward Laplace expansion and got a matrix with an
additional line. This line does already appear in the matrix except for k = n.

There is no reason for the special role of gn. Hence, we can give a similar quasilinear
equation for each gν for ν > 1 and solve them in parallel.

Remark 3.2.
The equations we have to solve are

∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) =
n∑
i=1

∂gν
∂si

(−1)i det(M∅,{i})


ν∈{2,...,n}

. (7)

Finally, g1 has to be computed by using the system (2).

The system of quasilinear PDEs in (7) can be expressed as (compare to the case of 3
variables) (−1)ν

q21
det

 ∇q0∇q1
M{ν},∅

 = det

(
∇gν
M

)
ν∈{2,...,n}

.

This a consequence of using backward Laplace expansion by the first row, of the right
hand side determinant, and generalized Laplace’s expansion by the two first rows of the
left hand side determinant.

Note, that the determinants on the right hand side of (7) do not depend on ν. In the
following we will see some cases where the the determinants on the right hand side have
special properties. Mainly, we are asking some or all of them to be zero.

Remark 3.3.
If det(M∅,{i}) = 0 for every i ∈ {1, . . . , n} but one index, say `, then the equations (7)
reduce to n− 1 ODEs with solution

gν =

∫ ∑
i,j∈{1...n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j})

(−1)` det(M∅,{`})
ds` +K(s1, ..., s`−1, s`+1, ..., sn) .
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In the following remark and theorem we will see what happens if the right hand side of
(7) is zero. Two possible cases appear: Either the left hand side is zero as well, or it is
not.

Remark 3.4.
If det(M∅,{i}) = 0 for every i ∈ {1, . . . , n} and∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) 6= 0

for some ν ∈ {1, . . . , n}, then we get a contradiction, and hence, the assumption Q =
L(g) was wrong. This, however, means that there is no proper rational solution (compare
the remarks on parametrization in the beginning of Section 3). Nevertheless, there might
be a non-proper rational solution, which we cannot find with the procedure presented
here.

We will now show that the left hand side cannot be zero according to our assumptions.
Note, that the proof can also be applied in the case when Q is not rational.

Theorem 3.5.
If det(M∅,{i}) = 0 for every i ∈ {1, . . . , n}, and∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) = 0

for every ν ∈ {1, . . . , n}, then Q turns out to be a parametrization of a variety of
dimension strictly less than n.

Proof. In order to prove this statement, we take the matrix M = (bk,`)2≤k≤n
1≤`≤n

. From the

fact that det(M∅,{i}) = 0 for every i ∈ {1, . . . , n}, the rank of M is, at most, n− 2. By
definition of the bk,` we know

bk,` =
∂bk
∂s`

=
∂

∂s`

(
qk
q1

)
= q−21

(
∂qk
∂s`

q1 −
∂q1
∂s`

qk

)
for every k ∈ {2, . . . , n} and ` ∈ {1, . . . , n}. Let M? = (∂qk

∂s`
)2≤k≤n
1≤`≤n

. Then each row in M

is obtained from a linear combination of the corresponding row in M? and the vector
(∂q1
∂s`

)1≤`≤n. More precisely, one has that the ν-th row in M is given by

∇(qν+1)
1

q1
−∇(q1)

qν+1

q21

for every ν ∈ {1, . . . , n− 1}, and where ∇(qj) = (
∂qj
∂s1
, ...,

∂qj
∂sn

). So the rank of

(
∇q1
M?

)
is

upper bounded by n−1. It remains to prove that this rank is preserved when the vectors

10



(∂q0
∂sj

)1≤j≤n and (∂q1
∂sj

)1≤j≤n are incorporated to M? as new rows. If this occurs, then the

matrix (
∂qj
∂sk

)0≤j≤n
1≤`≤n

would have rank strictly lower than n, and the parametrization does

not correspond to a variety of dimension n.

From their definition,

ai,j =
∂ai
∂sj
− ∂aj
∂si

=
∂

∂sj

(
∂q0
∂si

q1

)
− ∂

∂si

(
∂q0
∂sj

q1

)
=

1

q21

(
∂q0
∂sj

∂q1
∂si
− ∂q0
∂si

∂q1
∂sj

)
.

The hypotheses held in the statement of the theorem, that the left hand side of equation
(7) vanishes for every ν ∈ {2, . . . , n} yields∑

i,j∈{1,...,n}
i<j

(
∂q0
∂sj

∂q1
∂si
− ∂q0
∂si

∂q1
∂sj

)
(−1)i+j det(M{ν},{i,j}) = 0 (8)

for ν ∈ {2, . . . , n}. Regarding the generalized Laplace expansion (see for instance [6]),
the left hand side of (8) is the determinant of a single n× n-matrix and we get

det

 ∇q0∇q1
M{ν},∅

 = 0 .

Hence, all such n × n matrices have rank n − 1. We still need to show, that the

rank of

(
∇q0
M?

)
is at most n − 1. Assume to the contrary, that the rank is n. Then

(∇q2, . . . ,∇qn) are linearly independent. Since the rank of

(
∇q1
M?

)
is at most n − 1,

we know that (∇q1, . . . ,∇qn) are linearly dependent. Hence, ∇q1 can be written as a
linear combination of ∇q1 =

∑n
j=2 λj∇qj. We take k such that λk 6= 0. Then ∇qk =

1
λk

(
∇q1 −

∑n
j=2
j 6=k

λj∇qj
)

. Hence, the rank of

(
∇q0
M?

)
equals the rank of

 ∇q0∇q1
M{k},∅

 which

we have shown to be at most n− 1 so we have a contradiction.

From this we conclude that the rank of (
∂qj
∂sk

)0≤j≤n
1≤k≤n

is, at most, n−1, and the parametriza-

tion does not correspond to a variety of dimension n.

For the rest of the paper we will assume that the quasilinear equations (7) are non-trivial,
i. e. we are not in one of the special cases described above.

Method of characteristics. The quasilinear equations (7) can be solved by using the
method of characteristics (see for instance [24]). Doing so we need to solve the following
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system of ordinary differential equations.

∂si
∂t

= (−1)i det(M∅,{i}) for 1 ≤ i ≤ n ,

dv

dt
=

∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) .

 (9)

In case n = 2 this can be transformed to a decoupled system which can be solved by
methods presented in [19, 20, 21]. Compare [10] for this case. For n ≥ 3 system (9)
is no longer uncoupled in general. The first n equations will form a possibly coupled
system, whereas (as in the case n = 2) the last one can then be solved by integration.
Hence, an arbitrary constant is involved. We will show later that the introduction of
this constants can be postponed.

Constants will also appear in the solutions of the first n equations. We get si(t) =
χi(t, k2, . . . , kn) where ki are arbitrary constants. Finally the solution of the last equation
will be v(t) = v(t, k2, . . . , kn) = v̄(t, k2, . . . , kn)+ω(k2, . . . , kn) for some v̄ and an arbitrary
function ω. To resolve these constants, we compute ξk such that si = χi(ξ1, . . . , ξn) for all
i. Note, that it is not always possible to find an explicit solution. In the negative case the
procedure will fail to find a solution of the PDE and we will not know whether a solution
exists. If we are able to find an explicit solution, then gν(s1, . . . , sn) = v̄(ξ1, . . . , ξn) +ω.
In general ω will depend on a constant c. As a special case of the procedure we will fix
ω = c. This choice is done for simplicity reasons. The cases with other choices are a
subject of further research.

Note, that the first n equations of (9) do not depend on ν since the right hand side of
(7) did not either. This means we can solve this part of the system of ODEs once for
each APDE. What remains is to solve the last equation of (9). This needs to be done
for every ν > 1, but can be done in parallel.

3.3 Solution procedure

Finally, using the results from the previous sections we give a procedure for solving
APDEs in n variables is as follows

Procedure 1.
Given an autonomous APDE, F (u, ux1 , . . . , uxn) = 0, where F is an irreducible and non-
constant polynomial, and a proper rational parametrization Q(s1, . . . , sn) = (q0, . . . , qn)
of F .

1. Compute the coefficients ai =
∂q0
∂si

q1
, and bi = qi

q1
.

Compute further aj,k =
∂aj
∂sk
− ∂ak

∂sj
and bi,` = ∂bi

∂s`
.

2. Compute det(M∅,{i}) for all i. If only one of them is non-zero, solve the ODEs by
integration as described in Remark 3.3 and continue with step 4.
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If all determinants are zero, compute
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}). If

this is non-zero, there is no proper rational solution. The procedure stops. If this
is zero, then Q does not fulfill the requirements.

3. Solve (in parallel) the quasilinear PDEs (7) for gν, n ≥ ν > 1, respectively. Using
the method of characteristics proceed as follows.

a) Solve the system of ODEs, ∂si
∂t

= (−1)i det(M∅,{i}), for all 1 ≤ i ≤ n and get
solutions si(t) = χi(t, k2, . . . , kn).

b) Solve the ODE, dv
dt

=
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}), by integration.

c) Compute ξk such that si = χi(ξ1, . . . , ξn) for all i.

d) Compute gν(s1, . . . , sn) = v̄(ξ1, . . . , ξn) + c.

4. Use (2) to compute g1.

5. Compute h1, . . . , hn such that g(h1(s1, . . . , sn), . . . , hn(s1, . . . , sn)) = (s1, . . . , sn).

6. Compute the solution q1(h1, . . . , hn).

Theorem 3.6.
Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. If Procedure 1 returns a function
v(x1, . . . , xn) for input F , then v is a solution of F = 0.

Proof. By the last step of the procedure we know that

v(x1, . . . , xn) = q0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)) .

with hi such that g(h1(s1, . . . , sn), . . . , hn(s1, . . . , sn)) = (s1, . . . , sn). The function g
fulfills the assumption that u(g1, . . . , gn) = q0 for a solution u since it is a solution of
the system (4). Hence, v is a solution. We have seen a more detailed description at the
beginning of this section.

Now, we will show that the result does not change if we postpone the introduction of the
constants c1, . . . , cn to the end of the procedure. It is easy to show that if u(x1, . . . , xn)
is a solution of an autonomous APDE then so is u(x1 + c1, . . . , xn+ cn) for any constants
ci, 1 ≤ i ≤ n. From the procedure we get that gi = ḡi+ci for i ≥ 2 and ḡi not depending
on cj for all j. Furthermore, we see that in the computation of g1 we use the derivatives
of gi only (and hence the ci disappear). Therefore, we have that g1 = ḡ1 + c1. Let
g = (g1, . . . , gn) and ḡ = (ḡ1, . . . , ḡn). In step 5 we are looking for a function h such
that g ◦ h = id. Now g ◦ h = ḡ ◦ h + (c1, . . . , cn). Take h̄ such that ḡ ◦ h̄ = id. Then
g ◦ h̄(s1 − c1, . . . , sn − cn)) = id. Hence, we can introduce the constants at the end.

In case the original APDE is in fact an AODE, the ODE in (9) turns out to be trivial
and the integral in step 4 is exactly the one which appears in the procedure for AODEs
[9, 11]. Of course then g is univariate and so is its inverse. In this sense, this new
procedure generalizes the procedure in [9, 11]. We do not specify Procedure 1 to handle
this case. Furthermore, if n = 2 this procedure is exactly the one which can be found in
[10].
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Remark 3.7.
Procedure 1 might fail in several steps. First of all, we avoided to talk about parametriz-
ability by assuming there is a parametrization of the corresponding hypersurface. In case
such a parametrization does not exist in a certain class there cannot exist a solution in
this class either. Further we use the method of characteristics which might not give an
explicit solution (compare [24]). Later we compute g1 by integration where a solution
might only be found in a field extension, i. e. we might get out of the class of functions
we are looking for. Nevertheless, if we find an integral in a field extension and the sub-
sequent steps are successful as well, we might still get a solution. See for instance the
examples in Section 5. Finally, in step 5 it might happen that there is no explicit solution
for hi. In all of these cases, we say that the procedure fails and then we do not know
anything about solvability of the input APDE. In the latter case, however, we might state
the solution implicitly.

4 Rational Solutions

For first-order autonomous AODEs the algorithm of Feng and Gao [7] gives an answer
on whether or not a rational solution exists. As Procedure 1 is a generalization of
the procedure for ODEs in [9, 11], it also generalizes this algorithm. However, as in
[9, 11], any final result of the procedure is a solution of the differential equation, but the
procedure might fail and then it does not tell us whether a solution might exist. In the
following we describe properties of rational solutions found by Procedure 1 and we give
a class of APDEs that has a rational solution which can be found by the procedure.

4.1 Properties of Rational Solutions

In the following we will discuss the properties of rational solutions computed by our
procedure. We will show that these solutions are proper and complete of suitable di-
mension.

Lemma 4.1.
If Procedure 1 yields a rational solution, then the solution is proper.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-
cedure we start with a proper parametrization Q of the associated surface. When the
procedure is successful we know that L(g) = Q and the inverse h of g exists. Hence,
L = Q(h) is proper as well.

Recall Remark 2.1 which proves that the jacobian of the corresponding parametrization
of a proper solution computed by the procedure has generic rank n.
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Theorem 4.2.
Assume Procedure 1 yields a rational solution u(x1, . . . , xn). Then the solution u is
complete of suitable dimension.

Proof. From the investigation below Theorem 3.6 we know that u(x1, . . . , xn) = u∗(x1 +
c1, . . . , xn + cn) for some u∗. As usual let L be the corresponding parametrization of u.
For the case of two variables we see that

J c1,c2
L =

 ux(x+ c1, y + c2) uy(x+ c1, y + c2)
uxx(x+ c1, y + c2) uxy(x+ c1, y + c2)
uyx(x+ c1, y + c2) uyy(x+ c1, y + c2)

 = J x,y
L = JL .

The equation J c1,...,cn
L = J x1,...,xn

L also holds in general. From Lemma 4.1 we know that
L is proper and from Remark 2.1 we know that a proper solution has a jacobian of rank
n.

4.2 APDEs with Rational Solutions

Examples with two variables can be found in [10]. Here we will therefore focus on an
example with more than two variables.

Example 4.3. (Example 7.11 of Kamke [16])
We consider the APDE, F (u, ux1 , ux2 , ux3) = d1u

2
x1

+ d2u
2
x2

+ d3u
2
x3
− u = 0, where d1,

d2 and d3 are non-zero constants. A possible parametrization is

Q = (s1, s2,
−
√
−d2
d3
s1 + d1

√
−d2
d3
s22 +

√
−d2
d3
d3s

2
3

2d2s3
,
s1 − d1s22 + d3s

2
3

2d3s3
) .

The coefficients as computed in the procedure are

a1 =
1

s2
, a2 = 0, a3 = 0 ,

b2 =
−
√
−d2
d3
s1 + d1

√
−d2
d3
s22 +

√
−d2
d3
d3s

2
3

2d2s2s3
, b3 =

s1 − d1s22 + d3s
2
3

2d3s2s3
.

Then we have to solve the following quasilinear equations

−s1 + d1s
2
2 + d3s

2
3

2d3s32s
2
3

= −

√
−d2
d3

(
s3

∂g2
∂s3

+ s2
∂g2
∂s2

+ 2s1
∂g2
∂s1

)
2d2s32s3

,

−

√
−d2
d3

(s1 − d1s22 + d3s
2
3)

2d2s32s
2
3

= −

√
−d2
d3

(
s3

∂g3
∂s3

+ s2
∂g3
∂s2

+ 2s1
∂g3
∂s1

)
2d2s32s3

.
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Simplifying these equations and using the ideas of the method of characteristics, we have
to solve the following system od ODEs.

s′1 =
2s1s3√
−d2
d3
d3
,

s′2 = −

√
−d2
d3
s2s3

d2
,

s′3 = −

√
−d2
d3
s23

d2
,

v′ =
d1s

2
2 + d3s

2
3 − s1

d3
, resp. v = −

√
−d2
d3

(−d1s22 + d3s
2
3 + s1)

d2
.

The first three equations are independent on the last one. They yield solutions

s1 =
c2(

c1

√
−d2
d3
d3 + t

)2 , s2 =
c3

c1d2 −
√
−d2
d3
t
, s3 = − d2

c1d2 −
√
−d2
d3
t
,

for some arbitrary constants c1, c2, c3. Resolving t and the constants we get

t = −

√
−d2
d3
d3

s3
, c2 = −d2d3s1

s23
, c3 = −d2s2

s3
. (10)

Solving the last equation of the system of ODEs by integrtion we get

v =

c23d1
d2

+ c2
d3

+ d2d3

t
, resp. v =

√
−d2
d3

(c23d1d3 + c2d2 − d22d23)

d22t

Using (10) get the solutions

g2 =

√
−d2
d3

(−s1 + d1s
2
2 + d3s

2
3)

s3
, g3 =

s1 − d1s22 + d3s
2
3

s3
.

Now, we need to compute g1. We do so be taking the first equation of (2). As a solution
we get

g1 = m1(s2, s3) ,

where m1 is an arbitrary function. Using the second equation of (2) we compute m1 and
get

m1 = 2d1s2 +m2(s3) .
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Finally, we compute m2 using the last equation in (2) and get m2 = c1, which we choose
to be 0. Hence,

g1 = 2a1s2 .

Solving the system gi(h) = si, we get

h1 =
1

4

(
s21
d1

+
s22
d2

+
s23
d3

)
, h2 =

s1
2d1

, h3 =

s2√
− d2
d3

+ s3

2d3
.

Hence,

q0(h(x1, x2, x3)) = h1(x1, x2, x3) =
1

4

(
s21
d1

+
s22
d2

+
s23
d3

)
is a solution of the APDE and q0(h(x1 + c1, x2 + c2, x3 + c3)) is a complete one.

5 Other Solutions

We will first show some properties of arbitrary solutions found by the procedure. Simi-
larly to Lemma 4.1 we get the following.

Lemma 5.1.
If Procedure 1 yields a solution, then the corresponding parametrization is injective al-
most everywhere.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-
cedure we start with a proper parametrization Q of the associated surface. When the
procedure is successful we know that L(g) = Q and the inverse h of g exists. Hence,
L = Q(h) is injective almost everywhere.

A parametrization which is injective almost everywhere is also called almost injective.
Note, that jacobian of an almost injective parametrization P(s1, . . . , sn) has generic
rank n. Indeed, since P is almost injective, there exists a map R such that id = R ◦ P
generically. Thus Jid = JR◦P = JR(P) · JP . Taking into account, that the rank of
a product of two matrices is smaller equal the minimal rank of the two matrices, we
getthat rank(JP) = n.

Theorem 5.2.
Assume Procedure 1 yields a solution u(x1, . . . , xn). Then the solution u is complete of
suitable dimension.

Proof. As usual let L be the corresponding parametrization of u. Then the equation
J c1,...,cn
L = J x1,...,xn

L holds in general. From Lemma 5.1 we know that L is almost injective
and from the notes above we know that an almost injective solution has a jacobian of
expected rank.
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The following examples show that the method is not restricted to finding rational so-
lutions. It might happen that the steps in Procedure 1 can be done working in some
extension field. In this case we can of course continue in the procedure and might get a
non-rational solution.

Table 2 presents a list of some well known equations in two variables and the solutions
found by the procedure. For the sake of readability we negelct the arbitrary constants
and present only specific solutions. Details can be found in [10].

Name APDE Parametrization Solution

Burgers (inviscid) [24] uux + uy (− t
s
, s, t) x

y

Traffic [3] uy − ux
(

2uvm
rm
− vm

)
( rm(t+svm)

2svm
, s, t) rm(−x+yvm)

2vmy

Eikonal [2] u2x + u2y − 1 (s, 1−t
2

1+t2
, 2t
1+t2

) ±
√
x2 + y2

Convection-Reaction
[1]

ux + cuy − du ( s+ct
d
, s, t) edx+ce

dy
c

d

Generalized Burgers
(special case) [24]

uy + uux + αu+ βu2 (sB, tB,B)
e−xβ(1−exβ)α

(1+eαy)β

B = − (1+sα)
st+s2β

Table 2: Well known PDEs and their solutions found by the method in [10], which is a
special case of the method presented here.

The procedure might as well find non-rational solutions to APDEs in more than two
variables as we will see in the following examples.

Example 5.3. (Eikonal equation with 5 variables)
We consider the APDE, F (u, ux1 , . . . , ux5) =

(∑5
i=1 u

2
xi

)
− 1 = 0. A possible rational

parametrization of the corresponding surface is

Q = (s1,
s22 + s23 + s24 + s25 − 1

D
,
2s2
D
,
2s3
D
,
2s4
D
,
2s5
D

) ,

where D = s22 + s23 + s24 + s25 + 1. The parametrization is proper. Indeed, the inverse is
given by

s1 = z , s2 = − p2
p1 − 1

, s3 =
p3(p1 + 1)

p22 + p23 + p24 + p25
,

s4 =
p4(p1 + 1)

p22 + p23 + p24 + p25
, s5 =

p5(p1 + 1)

p22 + p23 + p24 + p25
.
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The coefficients appearing in the procedure are

a1 =
s22 + s23 + s24 + s25 + 1

s22 + s23 + s24 + s25 − 1
, ai = 0 , for i ≥ 2 ,

bi =
2si

s22 + s23 + s24 + s25 − 1
.

Then we get the following quasilinear equations for 2 ≤ i ≤ 5.

32si

(s22 + s23 + s24 + s25 − 1)
5 =

16 (s22 + s23 + s24 + s25 + 1) ∂gi
∂s1

(s22 + s23 + s24 + s25 − 1)
5 .

Here we are in the case of Remark 3.3 and hence, we get by integration

gi =
2s1si
D

for i ≥ 2 .

Note, that for simplicity we chose the arbitrary functions which occur in the solutions
to be 0. Now we need to compute g1. We do so by taking the first equation of (2).

As a solution we get g1 =
s1(s22+s23+s24+s25−1)

D
+m1(s2, s3, s4, s5), where m1 is an arbitrary

function. Step by step we will compute m now by using the other equations of (2). Using
the second equation we have an ODE in m1. We get m1 = m2(s3, s4, s5). Continuing
like this we finally get m1 = c1 for an arbitrary constant. Since, we can deal with the
constants at the end of the procedure, we will take it to be zero for the moment. Now we
have to solve the system gi(h) = si. A solution of this system is

h1 =

√
s22 (s21 + s22 + s23 + s24 + s25)

s2
,

hi =
s1s2si − si

√
s22 (s21 + s22 + s23 + s24 + s25)

s2 (s22 + s23 + s24 + s25)
for i ≥ 2 .

Hence we conclude that,

q0(h(x)) = h1(x) =
√
x21 + x22 + x23 + x24 + x25

is a solution of the APDE.

Example 5.4.
We consider the APDE, F (u, ux1 , ux2 , ux3) = (ux1 + d1)ux2 − (u+ d2)ux3 = 0. A possible

proper parametrization is Q = (s1, s2, s3,
(s2+d1)s3
s1+d2

). The coefficients are

a1 =
1

s2
, a2 = 0 , a3 = 0 ,

b2 =
s3
s2
, b3 =

(s2 + d1)s3
(s1 + d2)s2

.
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Then we have to solve the following quasilinear equations

d1 + s2
(d2 + s1)s32

=
1

(d2 + s1)2s32
s3

(
(d1 + s2)s3

∂g2
∂s3

+ s2

(
(d1 + s2)

∂g2
∂s2

+ (d2 + s1)
∂g2
∂s1

))
,

− 1

s32
=

1

(d2 + s1)2s32
s3

(
(d1 + s2)s3

∂g3
∂s3

+ s2

(
(d1 + s2)

∂g3
∂s2

+ (d2 + s1)
∂g3
∂s1

))
.

Omiting the details and intermediate steps we get the solutions

g2 = −(d2 + s1)(d1 − log(s2)s2)

(d1 + s2)s3
, g3 =

(d2 + s1)
2(d1 − log(s2)s2)

(d1 + s2)2s3
.

Now, we need to compute g1. We do so be taking the first equation of (2). As a solution
we get

g1 =
(1 + log(−s2))s1

d1 + s2
+m1(s2, s3) ,

where m1 is an arbitrary function. Using the second equation of (2) we compute m1 and
get

m1 =
d2(1 + log(−s2))

d1 + s2
+m2(s3)

Finally, we compute m3 using the last equation in (2) and get m2 = c1, which we choose
to be 0. Hence,

g1 =
(1 + log(−s2))(d2 + s1)

d1 + s2
.

Solving the system gi(h) = si, we get

h1 = −d2s2 + d1s3 − e
−1− s1s2

s3 s3
s2

,

h2 = −e
−1− s1s2

s3 ,

h3 =
e
−1− s1s2

s3

(
−s1s2 +

(
−1 + d1e

1+
s1s2
s3

)
s3

)
s22

.

Hence,

q0(h(x)) = h1(x1, x2, x3) = −d2x2 + d1x3 − e
−1−x1x2

x3 x3
x2

is a solution of the APDE.
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6 Conclusion

We have presented an exact procedure for solving first-order algebraic differential equa-
tions in an arbitrary number of independent variables. In case the procedure yields a
result, it is proven to be a complete solution of suitable dimension. Even if the method
fails, it often leads to an implicit description of the solution. The method is a gener-
alization of several methods which were already known, in particular also for ordinary
differential equations.
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