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ABSTRACT
We present an axiomatic approach to Gröbner basis tech-
niques in free multi-filtered modules over a not necessar-
ily commutative multi-filtered ring. It is shown that classi-
cal Gröbner basis concepts can be viewed as models of our
axioms. Within this theory it is possible to prove a gen-
eral theorem about the dimension of filter spaces in multi-
filtered modules. We use these ideas for computing the
Hilbert function of finitely generated multi-filtered modules
over difference-differential rings. Thus the presented method
allows to compute a multivariate generalization of the uni-
variate and the bivariate dimension polynomial considered
in the papers of Winkler and Zhou.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms – Algebraic algorithms

General Terms
Algorithms

Keywords
Filtered free modules, difference and differential operators,
Gröbner bases

1. INTRODUCTION
Gröbner bases, as introduced in [1], are a well established

algorithmic concept for solving problems occurring in poly-
nomial ideal theory, that is, performing computations in
finitely generated modules over K[x1, . . . , xn]. As the the-
ory and its applications evolved, increasing interest came up
in generalizing the notion of Gröbner bases to modules over
more general rings.
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In [10] Winkler and Zhou introduced the concept of Gröbner
bases in difference-differential modules.

Already in 1964 Kolchin formulated a fundamental theorem
on univariate differential dimension polynomials [3] and ([4],
Sect. II.12. Thm. 6). In 2007, by using serveral term or-
ders, Levin was able to extend the computation of univariate
and bivariate dimension polynomials to multivariate dimen-
sion polynomials [7]. In 2008, Winkler and Zhou extended
their 2006-approach to the notion of relative Gröbner bases
and applied it to the computation of difference-differential
dimension polynomials [12]. Splitting the set of derivations
and the set of automorphisms, they provided algorithms for
the univariate and the bivariate case [11, 12].

In his 2013 paper, C. Dönch pointed out that the algorithm
which generates a relative Gröbner basis out of a finite set
of generators, as formulated in [12], might not terminate [2].

Different viewpoints on the computation and applications of
dimension polynomials are presented in [5].

The backbone of Gröbner basis techniques in a module is the
existence of monomials. In case that the set of monomials is
appropriately contained in some monoid Nn we always may
find an admissible linear extension of the product order in
Nn (a monomial order). Then the usual Gröbner basis al-
gorithms terminate, i.e., the classical concepts apply. There
are but situations where this is not the case. For example,
in rings of difference-differential operators, the set of mono-
mials is isomorphic to Nm × Zn, and it is not obvious how
to design a reduction process in a way that unique normal
forms are produced. Several methods to overcome this prob-
lem have been developed, each with its own facet of technical
difficulties, e.g. in [12] the set of monomials is covered by
finitely many subsets in each of which reduction terminates,
while in [6] characteristic sets are used to come to a solution.

In any case there is some filtration present derived naturally
from the respective type of monomials and such that the
reduction process is compatible with it.

Carefully inspecting the procedures provided by the papers
mentioned above we gained increasing evidence that the in-
terplay of filtrations and Gröbner bases must have a key
role. Thus we tried to set up a general theory of reduc-
tion in a free module that takes into account a given filtra-
tion inherited naturally from the basic ring. The resulting
computational tool is applicable to general filtered rings in-



cluding polynomial rings K[x1, . . . , xn] as well as modules
of difference-differential operators as special cases.

2. FILTERED MODULES
N, Z and Q denote the sets of non-negative integers, in-

tegers and rational numbers respectively. Throughout, the
letter K will denote a field, and R will be an associative
ring with 1, such that K ⊆ R. All modules over R are
assumed to be left modules without further mention. The
field K is not assumed to be central, so R is not necessarily
an algebra in the classical sense. In addition we always as-
sume given a distinguished basis Λ of the K-vector space R
whose members are called monomials. We will indicate this
by writing R = K(Λ) when necessary. Thus, elements a ∈ R
admit a unique representation a =

∑

λ∈Λ aλλ as a K-linear
combination of monomials.

The basis Λ extends naturally to a basis of free modules:
let F = Re1 ⊕ · · · ⊕ Req be the free R-module on the set
E = {e1, . . . , eq}. Then the set ΛE = {λe : λ ∈ Λ∧e ∈ E} is
a K-basis of F . Again we will call its members monomials,
and elements f ∈ F are represented uniquely as K-linear
combinations of monomials.

As we will work over fields exclusively, we do not distin-
guish formally between monomials and terms. So we write
T(f) for the set of terms of f , i.e., the set of all monomi-
als which appear with a non-zero coefficient in a standard
representation of f

T
(

∑

t∈ΛE

ftt
)

= {t ∈ ΛE : ft 6= 0}.

This applies in particular to elements of the ring R. Also we
will write lt(f) and lc(f) for the leading term and leading
coefficient in contexts where these notions apply, so that, in
such a situation, each f 6= 0 has a representation

f = lc(f) · lt(f) + lower order terms.

Obviously we have that T(f ± g) ⊆ T(f) ∪ T(g).

One object of particular interest is the ring D of difference-
differential operators, defined over a field K, and its finitely
generated (left) modules. On K there are assumed two
distinguished finite sets ∆,Σ where ∆ = {δ1, . . . , δm} con-
sists of derivations and Σ = {σ1, . . . , σn} contains automor-
phisms of K, all commuting with one another (a difference-
differential field, cf. [12]). The ring D is then constructed as
the free K-vector space on the set of formal expressions

δk1

1 · · · δkm
m σl1

1 · · · σln
n (ki ∈ N, lj ∈ Z) (1)

and a product that reflects the properties of derivations and
automorphisms, that is

δi · a = aδi + δi(a) and σj · a = σj(a)σj (a ∈ K). (2)

In the ring D the natural K-basis is the set Λ of all ex-
pressions (1). Note that the elements λ ∈ Λ involve nega-
tive exponents in the automorphisms σj , and from (2) one
derives that Λ is a multiplicative monoid that is isomor-
phic to Nm × Zn. The elements of D, called difference-

differential operators, are thus finite K-linear combina-
tions

∑

(k,l)∈Nm×Zn

ak,lδ
kσl.

A left module overD is also called a difference-differential
module (over K) or a ∆− Σ module.

In the sequel, the letter D will be reserved for the ring of
difference-differential operators, whereas R may denote an
arbitrary ring of the type mentioned above.

For r, s ∈ Np set r ≤π s ⇐⇒ ri ≤ si (1 ≤ i ≤ p). By a (p-
fold) filtration of R we mean a family of additive subgroups
Rr ⊆ R, indexed by Np, such that

• Rr ·Rs ⊆ Rr+s (r, s ∈ Np);

• Rr ⊆ Rs (r ≤π s ∈ Np);

• R =
⋃

r∈Np Rr;

• 1 ∈ R0.

R together with such a filtration will be called a multi-

filtered ring. In a filtered ring R, R0 is a subring and
each Rr is a left and a right R0-module.

Definition 1. A filtration of R is called monomial iff

R0 = K and ∀r ∈ N
p ∀f (f ∈ Rr ⇒ T(f) ⊆ Rr).

Example 1. For a monomial λ = δkσl in D we set

|λ|1 := k1 + · · ·+ km and |λ|2 := |l1|+ · · ·+ |ln|.

For a general operator a =
∑

λ∈Λ aλλ in D we define the
order functions |a|ν := max{|λ|ν : aλ 6= 0} (ν = 1, 2). Then,
for r, s ∈ N, the sets

Dr,s := {a ∈ D : |a|1 ≤ r ∧ |a|2 ≤ s}

define a (bivariate) monomial filtration. We call it the stan-
dard filtration of D (see [12]).

LetM be a left R-module. A (p-fold) filtration ofM w.r.t.
the (p-fold) filtered ring R is a family (Mr)r∈Np of additive
subgroups Mr ⊆M with the properties

• Rr ·Ms ⊆Mr+s (r, s ∈ Np);

• Mr ⊆Ms (r ≤π s ∈ Np);

• M =
⋃

r∈Np Mr.

M together with such a filtration is called a filtered mod-

ule (over the filtered ring R). Plainly, each Mr is an R0-
module. If in addition we haveMr = RrM0 ∀r, the filtration
is called standard. Note that the filtration on the ring D is
standard.

Notation 1. If X is an arbitrary subset of a filtered mod-
ule M =

⋃

r∈Np Mr we set Xr = X ∩Mr.

A (p-fold) filtration of R extends naturally to a (p-fold)
filtration of free modules: Let R be a filtered ring, and
F = Re1 ⊕ · · · ⊕ Req the free R-module on the set E =
{e1, . . . , eq}. Then

Fr := Rre1 ⊕ · · · ⊕Rreq (r ∈ N
p)

defines a filtration on F . If the filtration of R is monomial
(w.r.t. the basis Λ) then so is the extended filtration of F
(w.r.t. ΛE), meaning that always f ∈ Fr ⇒ T(f) ⊆ Fr.



Example 2. We extend the order functions of the difference-
differential ring D to the free module F = Dq: For λe ∈ ΛE
and ν = 1, 2 let |λe|ν := |λ|ν and for a module element
f =

∑

t∈ΛE ftt ∈ F let |f |ν := max{|t|ν : t ∈ T(f)}. This
gives the extended filtration on F - for r, s ∈ N

Fr,s = Dr,se1 ⊕ · · · ⊕Dr,seq = {f ∈ F : |f |1 ≤ r ∧ |f |2 ≤ s}.

From |ej |ν = 0 it is clear that E ⊆ F0,0 whence (Fr,s) is
a standard filtration. We will call it the standard fil-

tration of F . Since the ring filtration is monomial, the
extended filtration is so too. Obviously

f ∈ Fr,s ⇐⇒ ∀t ∈ T(f) : |t|1 ≤ r∧|t|2 ≤ s ⇐⇒ T(f) ⊆ Fr,s.

Let the ring R be a filtered ring, and M,N filtered R-
modules. An R-homomorphism ϕ : M −→ N is called a
morphism if it respects the filter structure, that is, if

ϕ(Mr) ⊆ Nr, ∀r ∈ N
p.

A morphism induces R0-linear maps Mr −→ Nr ∀r ∈ Np.

Lemma 1. Let R be a filtered ring and ϕ : M −→ N a
homomorphism of R-modules.

1. If M is filtered over R then im(ϕ) is filtered by setting
im(ϕ)r = ϕ(Mr). ϕ is then a morphism M −→ im(ϕ).

2. If N is filtered over R then M is filtered by setting
Mr = ϕ−1(Nr). ϕ is then a morphism M −→ N .

Thus, each finitely generated R-moduleM = Rh1+· · ·+Rhq

inherits a filtration by first extending the family Rr to the
free module F ∼= Rq and then pushing down with a map

π : F −→M, ei 7→ hi. (3)

By specializing Lemma 1 to inclusion N →֒M any submod-
ule N ⊆M naturally inherits a filtration from M via

Nr = N ∩Mr.

3. REDUCTION RELATIONS
Let X be a set and ρ ⊆ X×X a binary relation. We write

f −→ h to indicate that (f, h) ∈ ρ, and f −→⋆ h when there
is a chain of finite length

f = f0 −→ f1 −→ · · · −→ fk = h (k ∈ N)

from f to h, that is

f −→⋆ h ⇐⇒ (f, h) ∈ ρ⋆ =
⋃

k∈N

ρk.

With I we denote the set of ρ-irreducible elements, that is

I = {x ∈ X |6 ∃y ∈ X such that x −→ y}.

A subset Y ⊆ X is called ρ-stable if y ∈ Y and y −→ z
implies that z ∈ Y .

If ρ ⊆ M ×M is a relation on a module M then, for k ∈ N

we set

Zk = {f | (f, 0) ∈ ρk}, Z≤k =
⋃

l≤k

Zl and Z =
∞
⋃

k=0

Zk.

It is plain that Z =
⋃∞

k=0 Z≤k = {f ∈M : f −→⋆ 0}.

We consider a list of axioms which make a relation appro-
priate for reducing module elements to normal forms.

Definition 2. Let M be a module, N ⊆M a submodule
and ρ a binary relation on M . ρ is called a (weak) reduc-

tion for N provided that

1. ρ is noetherian, i.e., every sequence

f1 −→ f2 −→ · · ·

terminates;

2. I is a monomial K-linear subspace of M , that is, I is
a vector space and

∀f ∈M (f ∈ I ⇒ T(f) ⊆ I);

3. f −→ h⇒ f ≡ h mod N ;

ρ is a strong reduction for N if it satisfies in addition

4. I ∩ N = 0 that is, every non-zero element in N is
reducible.

We will refer to these items as axioms 1 to 4. A relation
satisfying Axiom 2 is used only when M is a free module, so
that the passage ‘monomial’ does make sense.

Lemma 2. Let N ⊆ M be a submodule, and the relation
ρ ⊆M ×M be such that it satisfies axioms 1. and 3. Then
we have

1. M = N + I;

2. I ∩N ⊆ 0 ⇐⇒ Z = N .

Consequently, if F is a free module and ρ is a strong reduc-
tion for N ⊆ F then

F = N ⊕ I and Z = N.

Proof. By axioms 1. and 3., Z ⊆ N . Assume I∩N ⊆ 0.
Let n ∈ N . Then there is an irreducible element r ∈ N with
n −→⋆ r. Thus r ∈ I ∩N ⊆ 0 and so n −→⋆ 0, i.e., n ∈ Z.

Conversely, assume that Z = N . Then, for x ∈ I ∩ N ,
x −→⋆ 0 and x is irreducible. Therefore x = 0. Conse-
quently I ∩N ⊆ 0.

Note that a relation satisfying axioms 1 - 4 is noetherian
and confluent. If F is a free module we will write NF(f)
for the unique normal form of f ∈ F . Thus we always have
f −→⋆ NF(f).

Theorem 1. Let M = Rm1 + · · · + Rmq be a finitely
generated R-module with free presentation

0 −→ N −→ F
π

−→M −→ 0

where F = Rq. Assume given a strong reduction for N with
set of irreducibles I. Let V ⊆ F be a monomial K-linear
subspace that is ρ-stable and let U be the set of irreducible
monomials in V . Then π(U) is a K-vector space basis for
π(V ). In particular we obtain that

dimK π(V ) = |π(U)| = |U |.

Proof. Let f, h ∈ I . Then π(f) = π(h) implies that
f − h ∈ N ∩ I = 0 whence π|I is injective. Since U =
I ∩ ΛE ∩ V ⊆ I it is plain that π|U is injective, whence
|π(U)| = |U |. Let

∑

j

cjπ(µj) = 0 (cj ∈ K, µj ∈ I ∩ ΛE).



Then
∑

j cjµj ∈ N ∩ I = 0. Therefore cj = 0 ∀j. This

demonstrates that π(I∩ΛE) isK-linearly independent. Thus
π(U) ⊆ π(I ∩ΛE) is linearly independent. Now we may re-
duce elements f ∈ F until an irreducible r is reached. Doing
this for elements f ∈ V and taking into account that the re-
duction stays inside V we obtain an irreducible r ∈ V . Thus

∀f ∈ V ∃r ∈ I ∩ V with π(r) = π(f).

Now take m ∈ π(V ). ∃f ∈ V with m = π(f). Choose
r ∈ I ∩ V with π(r) = π(f),

r =
∑

j

cjµj (cj ∈ K,µj ∈ ΛE).

Since V is monomial, all µj are in V and because r ∈ I , all
terms of r must be in I . Therefore

µj ∈ V ∩ ΛE ∩ I = U ∀j.

Consequently

m = π(r) =
∑

j

cjπ(µj) ∈ K · π(U).

So 〈π(U)〉K = π(V ) and π(U) is a K-basis.

4. GRÖBNER REDUCTION
We return to a monomially filtered ring R =

⋃

r∈Np Rr

and a finitely generated free R-module F with extended fil-
tration.

Definition 3. Let N ⊆ F be a submodule. A strong re-
duction ρ ⊆ F × F for N is called a Gröbner reduction

for N if it satisfies the axiom

5. Fr is ρ-stable ∀r ∈ Np.

Proposition 1. Let N ⊆ F be a submodule, ρ ⊆ F × F
be a relation satisfying axioms 1, 3, 5. Then

Fr = Nr + Ir ∀r ∈ N
p. (4)

Consequently, if ρ is a Gröbner reduction for N then

F = N ⊕ I and ∀r ∈ N
p Fr = Nr ⊕ Ir (5)

Proof. Let f ∈ Fr. Reduce f to normal form f −→⋆ z.
f ≡ z mod N whence f − z = n ∈ N . By axiom 5, z ∈ Fr.
Thus z ∈ I ∩ Fr = Ir. As both f and z are in Fr, so is n.
Therefore f = n+ z ∈ Nr + Ir.

Equation (4) of Proposition 1 corresponds to ‘division with
remainder’ in the classical theory. Similar, equation (5) de-
scribes ‘uniqueness of normal forms’ in Gröbner basis com-
putations.

For classical monomials it is easy to deal with monomial
submodules:

Proposition 2. Assume that the set Λ of monomials in
R satisfies ΛΛ ⊆ Λ. Let N ⊆ F be a monomial submodule.
Choose a monomial K-linear complement I of N in F (e.g.,
I = KS where S = {t ∈ ΛE : t 6∈ N}). Let pI denote
projection N ⊕ I −→ I and let ρ ⊂ F × F be the relation

ρ = pI |F\I .

Then, with arbitrary monomial filtration, ρ is a Gröbner
reduction for N .

Proof. Let N be generated by X ⊆ ΛE. The general
element of N is n =

∑

x∈X axx. The elements ax ∈ R are

ax =
∑

λ∈Λ

aλxλ (aλx ∈ K) whence n =
∑

x∈X

∑

λ∈Λ

aλxλx. (6)

Since ΛΛ ⊆ Λ, the expressions λx are monomials in ΛE.
After (possibly) some cancellations, equation (6) results in
the unique representation of n as K-linear combination of
ΛE. Since each surviving term is a (monomial) multiple of
a generator monomial of N , it is in N , this means, N is a
monomial module.

Let S = {t ∈ ΛE : t 6∈ N}, and let I = KS, the vector
space generated by elements from S. By construction, I is
a monomial subspace of F .

Evidently N ∩ I = 0.

Write f ∈ F as K-linear combination of elements of ΛE.
We may split this expression as

f =
∑

t∈S

ftt+
∑

t 6∈S

ftt (ft ∈ K)

which shows that f ∈ I+N . Consequently F = N ⊕ I . The
relation ρ results in

ρ : f −→ h ⇐⇒ f ∈ F \ I ∧ h = pI(f)

Thus, with exception of elements in I , every f ∈ F reduces
to normal form in 1 step. If f −→ h then f ∈ F \ I and
h = pI(f) = pI(n+ r) = r; thus, f − h = n ∈ N , i.e., f ≡ h
mod N . Consequently ρ is a strong reduction for N .

Let f ∈ Fr and f −→ h. By monomiality of Fr, T (f) ⊆
Fr. Because f = n+ h is a direct decomposition, it follows
that T (h) ⊆ Fr. Consequently h ∈ Fr and ρ is a Gröbner
reduction.

The following example is less artificial.

Example 3. R = K[x1, . . . , xn], N ✂ R an ideal, Rs =
{f ∈ R | deg f ≤ s}. Then R is monomially filtered (p = 1).
The reduction relation coming from a Gröbner basis of N
w.r.t a degree lexicographic order obeys axioms 1. to 5. Con-
sequently such a Gröbner basis induces a Gröbner reduction.

This filtration is not appropriate for arbitrary term orders.
For instance in R = K[x, y] with lexicographic order x ≻ y
and ideal N = 〈x − y2〉 ✁ R, the polynomial x reduces by
means of the Gröbner basis {x− y2} to y2, thereby leaving
the filter space R1. For arbitrary term orders we have the
following.

Proposition 3. If N✂R = K[x1, . . . , xn] is an ideal and
G a Gröbner basis of N w.r.t. any term order ≺, then for
r ∈ Nn

Rr := {f ∈ K[x1, . . . , xn] : ∀m ∈ T(f) : m � xr1
1 · · ·xrn

n }

defines a monomial filtration with the additional property

m ∈ Rr ∧ n � m⇒ n ∈ Rr.

Consequently −→G is a Gröbner-reduction w.r.t. (Rr)r∈Nn .

Notation 2. If ≺ is a (partial) order on ΛE (of any
kind whatsoever), λ ∈ Λ and f ∈ F , we will write f ≺ λ to
indicate that t ≺ λ ∀t ∈ T(f). In particular, if ≺ is a term
order, we have f � λ ⇐⇒ lt

�
(f) � λ.



5. RELATIVE REDUCTION OVER
DIFFERENCE DIFFERENTIAL FIELDS

For details within this section we refer to the paper [12].
As before, we treat the ring D of difference-differential op-
erators on the field K with given derivations δ1, . . . , δm and
automorphisms σ1, . . . , σn, and the finitely generated freeD-
module F on the set E = {e1, . . . , eq}. In the paper [12], the
troubles caused by negative exponents in reduction relations
are solved by introducing the notion of orthant decompo-

sition. This is a finite family of monoid homomorphisms
φu : N

n −→ Zn each of whose images generate the group Zn

and being such that
⋃

u

im(φu) = Z
n.

The decomposition extends naturally to the set

ΛE ∼= N
m × Z

n × E.

Consequently the set of monomials ΛE of F is covered by
finitely many isomorphic copies of Nm × Nn × E in which
term orders are well founded and reduction is supposed to
behave well. Remark that only the Z-part contributes to
the orthant of a monomial t = δkσlei, i.e., the position of
l = (l1, . . . , ln) in

⋃

u im(φu) determines the orthant of t.
The orthant decomposition concept provides the basis for a
special type of order:

Definition 4. Given an orthant decomposition on ΛE.
A generalized term order is a total order ≺ on ΛE such
that

1. ei is the smallest element in Λei (1 ≤ i ≤ q);

2. if λei ≺ µej and ν ∈ Λ is in the same orthant as µ
then νλei ≺ νµej .

In [10] it is proved that a generalized term order is always a
well order.

In [12] the following orders ≺ and ≺′ on ΛE are considered:

For monomials t = δkσlei in ΛE, ≺ is given lexicographically
by (|t|2, |t|1, ei, k, |l|, l) and ≺′ by (|t|1, |t|2, ei, k, |l|, l). Pre-

cisely, for λ = δk1

1 . . . δkm
m σl1

1 . . . σln
n , µ = δr11 . . . δrmm σs1

1 . . . σsn
n

λei ≺ µej :⇐⇒

(|λ|2, |λ|1, ei, k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

<lex

(|µ|2, |µ|1, ej , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn)

respectively

λei ≺
′ µej :⇐⇒

(|λ|1, |λ|2, ei, k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

<lex

(|µ|1, |µ|2, ej , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn)

where the set E of basis elements is assumed ordered by
ei < ej ⇐⇒ i < j. Both, ≺ and ≺′ are generalized
term orders w.r.t. the canonical orthant decomposition, (Zn

covered by several arrangements of cartesian products of N
and −N).

Relative reduction, invented in [12] and called≺-reduction
relative to ≺′ amounts to the following.

Let f, g, h ∈ F . Then f
rel
−→g h iff ∃λ ∈ Λ such that

lt≺(λg) = lt≺(f)∧ lt≺′(λg) �′ lt≺′(f)∧h = f −
lc≺(f)

lc≺(λg)
λg.

Therefore, writing −→g for ordinary leading term reduction
w.r.t. ≺ by g, we obtain

f
rel
−→g h ⇐⇒ f −→g h ∧ lt≺′(λg) �′ lt≺′(f).

For a set G ⊆ F relative reduction is defined as

f
rel
−→G h ⇐⇒ ∃g ∈ G with f

rel
−→g h.

Proposition 4. Let Fr,s denote standard filtration of the
free D-module F . Then

f
rel
−→g h and f ∈ Fr,s ⇒ h ∈ Fr,s

that is, ≺-reduction relative to ≺′ is a reduction compatible

with the filtration (Fr,s). Consequently
rel
−→G gives rise to a

Gröbner reduction.

Proof. Assume f
rel
−→g h and f ∈ Fr,s. Thus |f |1 ≤

r and |f |2 ≤ s. We set

u := lt≺(f) = lt≺(λg), u′ := lt≺′(f), c = lc≺(λg).

Thus we may write

f = fuu+ ϕ = fu′u′ + ϕ′

λg = cu+ ψ.

From the assumption we obtain that λg �′ u′ and

h = f −
lc≺(f)

lc≺(λg)
λg = fuu+ ϕ−

fu
c
(cu+ ψ) = ϕ−

fu
c
ψ.

Therefore

T(h) ⊆ T(ϕ) ∪ T(ψ) =
(

T(f) ∪ T(λg)
)

\ {u}.

Take µ ∈ T(h). If µ ∈ T(f) then |µ|1 ≤ r ∧ |µ|2 ≤ s. If
µ ∈ T(λg) then, since λg �′ u′, we obtain µ �′ u′ and
therefore |µ|1 ≤ |u′|1 ≤ r. Because u = lt≺(λg) we obtain
µ ≺ u and thus |µ|2 ≤ |u|2 ≤ s. So in any case we obtain
|µ|1 ≤ r ∧ |µ|2 ≤ s, that is, |h|1 ≤ r ∧ |h|2 ≤ s. Therefore

h ∈ Fr,s. Obviously f
rel
−→g h implies that lt≺(h) ≺ lt≺(f).

Consequently
rel
−→G is a noetherian reduction compatible

with the filtration.

6. EXISTENCE OF GRÖBNER REDUCTION
AND ALGORITHMIC ASPECTS

We return to the general setting of a free module F over
a ring R of the type introduced in Section 2.

Proposition 5. Let N be an arbitrary submodule of F .
Then there is a strong reduction for N .

Proof. Assume that N ⊂ F whence ΛE 6⊆ N . Choose a
set S being maximal in the non-empty inductively ordered
set {T ⊆ ΛE | KT ∩N = 0}. Put C = KS. Obviously F =

K(ΛE) = N ⊕ C, so consider projection pC : N ⊕ C −→ C
and define a reduction relation

ρ = {(f, h) ∈ F × F : f 6∈ C ∧ h = pC(f)}.

It is clear that ρ terminates. The set I of ρ-irreducible ele-
ments is C which is a monomial K-linear space. If f −→ h
then f = n+ c ∈ N ⊕ C and h = c which shows that f ≡ h
mod N . Finally, I ∩N = C ∩N = 0, and thus ρ is a strong
reduction for N .



Whereas the situation in Proposition 2 is decidable as long
as we know which monomials are in N , the present con-
struction is totally non-constructive. Comparing this with
the reduction relation induced by an ordinary Gröbner ba-
sis computation we see that, in order to be algorithmically
applicable, a Gröbner reduction τ ⊆ F × F for N has to
be an extension of ρ (i.e. such that ρ⋆ ⊆ τ⋆) being strong
enough to be decidable but weak enough to terminate. It
depends on the nature of the ring R how to design such a
reduction for algorithmic purposes. The same remark ap-
plies to the choice of a filtration. In our examples they have
been selected with the aim to weaken usual Gröbner basis
reduction w.r.t. a term order.

Now assume we are concerned with two rings and mod-
ules joined by a homomorphism, precisely, consider a ring
R = K(Λ), a free module F = Re1 ⊕ · · · ⊕ Req and a sub-
module N ⊆ F . Let S = K(Ω) be another such ring and
let ϕ : S −→ R denote a surjective homomorphism of rings
such that ϕ(K) = K and ϕ(Ω) = Λ. Further let G =
Se1⊕· · ·⊕Seq be the free S-module (with rankS = rankR).
We extend the map ϕ to a homomorphism of S-modules de-
noted by the same symbol

ϕ : G −→ F,

q
∑

i=1

riei 7→

q
∑

i=1

ϕ(ri)ei.

Proposition 6. If σ ⊆ G × G is a strong reduction for
ϕ−1(N) then there is a strong reduction ρ ⊆ F ×F such that

ϕ(NF(g)) = NF(ϕ(g)).

Further, if σ is a Gröbner reduction for ϕ−1(N) w.r.t. a
monomial filtration S =

⋃

r∈Np Sr then ρ is a Gröbner re-
duction for N w.r.t. filtration R =

⋃

r∈Np ϕ(Sr).

Proof. Let I = {g ∈ G :6 ∃z with g −→ z} denote the
monomial subspace of irreducibles in G. By Proposition 1
we have that G = ϕ−1(N) ⊕ I . Then F = N ⊕ ϕ(I). Let
π : F −→ ϕ(I) denote projection. We define the relation
ρ ⊆ F × F by

f −→ρ h ⇐⇒ f 6∈ ϕ(I) ∧ h = π(f).

It is clear that ρ is noetherian. ϕ(I) is the K-space of ρ-
irreducibles. ϕ(I) is monomial. Indeed, if f = ϕ(i) ∈ ϕ(I)
with i =

∑

t∈ΩE itt ∈ I then

f =
∑

t∈ΩE

ϕ(it)ϕ(t). (7)

By monomiality of I we know that all monomials t occuring
in this sum are in I and so the corresponding ϕ(t) are in
ϕ(I). Since ϕ(ΩE) = ΛE, i.e., ϕ maps monomials in G
onto monomials in F , by collecting terms in (7) we see, that
T(f) ⊆ ϕ(I) demonstrating Axiom 2. Axiom 3 and 4 are
obvious.

Take g ∈ G and let i = NF(g) w.r.t. σ. Then g −→⋆
σ i

and g − i = ν ∈ ϕ−1(N) (according to Ax 3 for σ). ϕ(g) =
ϕ(ν)+ϕ(i) ∈ N⊕ϕ(I). If ν ∈ kerϕ then ϕ(g) = ϕ(i) equals
its own normal form. If ν 6∈ kerϕ then ϕ(g) −→ρ ϕ(i). In
both cases we derive ϕ(i) = NF(ϕ(g)) w.r.t. ρ.

Now assume that S =
⋃

r∈Np Sr is a filtration and that σ
is a Gröbner reduction w.r.t. the extended filtration Gr =
Sre1 ⊕ · · · ⊕ Sreq. Then Proposition 1 assures that Gr =
ϕ−1(N)r ⊕ Ir ∀r ∈ Np. By Lemma 1, Rr = ϕ(Sr) is a

filtration on R and Fr = ϕ(Gr) yields the extended filtration
F =

⋃

r∈Np Fr. Let f −→ρ h and f ∈ Fr. There is a
g ∈ Gr with ϕ(g) = f . Let i = NF(g). Then i ∈ Gr and so
ϕ(i) ∈ ϕ(Gr) = Fr. But ϕ(i) = NF(f) and therefore we see
that h ∈ Fr. Consequently ρ is a Groebner reduction.

Applying the last proposition to the ring D provides an al-
ternative method for constructing a Gröbner reduction in
free D-modules.

Corollary 1. Consider the ring D (as mentioned on
page 2) and let S be the ring constructed from the same
data as D but using positive exponents exclusively. More
precisely, set τj = σ−1

j and let S be the free K-vector space
on the set of expressions

δk1

1 · · · δkm
m σl1 · · ·σln

n τ
p1
1 · · · τpnn (ki, lj , pj ∈ N)

with product being formally the same as the one in D (cf.
Equation (2)). Let ϕ be the K-linear map S −→ D defined
on basis elements

ϕ(δkσlτp) = δkσl−p (k ∈ N
m, l, p ∈ N

n).

Then ϕ is a surjective homomorphism of rings and Propo-
sition 6 applies. That is, given a submodule N of a finitely
generated free D-module F , we may derive a Gröbner reduc-
tion for N by means of one constructed in a corresponding
free module over S.

Of course the purpose is to represent the ring D as the quo-
tient of S by kerϕ

D ∼= S/〈σ1τ1 − 1, . . . , σnτn − 1〉

This construction can be used to execute computational
tasks over D omitting negative exponents.

7. DIMENSION OF FILTER SPACES AND
THE HILBERT POLYNOMIAL

In the general situation consider a finitely generated mod-
ule M over an arbitrary monomially filtered ring R

R =
⋃

r∈Np

Rr M = Rm1 + · · ·+Rmq.

Choose a free presentation

0 −→ N −→ F
π

−→M −→ 0

with F = Rq. We get the following corollary.

Corollary 2. Let F be equipped with extended filtration
from R and consider M with the filtration Mr = π(Fr). For
r ∈ Np let Ur be the set of irreducible monomials in the filter
space Fr. Assume given a Gröbner reduction for N . Then
the sets π(Ur) provide K-vector space bases for the spaces
Mr. In particular

dimK Mr = |π(Ur)| = |Ur| (r ∈ N
p).

Proof. Apply Theorem 1 with V = Fr.

Combining this corollary with Proposition 2 gives:

Corollary 3. Assume that the monomials in R satisfy
ΛΛ ⊆ Λ and let N ⊆ F be a monomial submodule. Let S =
{t ∈ ΛE : t 6∈ N}. Then, for arbitrary monomial filtration
R =

⋃

r∈Np Rr and extended filtration F =
⋃

r∈Np Fr, we
have

dimK

(

F/N
)

r
= |Sr|.



Proof. Let I = KS. Then I ∩ ΛE = S und thus I ∩
ΛE ∩ Fr = S ∩ Fr = Sr. Using Corollary 2 proves the
assertion.

We may now determine the Hilbert function for filtered
modules. This is most simple for monomial modules.

Example 4. Let R = K[x, y] and N the ideal

N = 〈x4y3, x2y5, 2x5y2 − 4x3y5〉.

It is easy to see that N is generated by the set

G = {x4y3, x2y5, x5y2}.

Thus, N is a monomial ideal and G is a Gröbner basis for
N (w.r.t. arbitrary term-order).

Thus, Corollary 3 is applicable. For example when

Rk = {f ∈ D : deg(f) ≤ k} and

Rr,s = {f ∈ D : degx(f) ≤ r ∧ degy(f) ≤ s}

counting irreducible monomials that are not multiples of el-
ements in G produces the dimensions in R/N . Let

p1(k) = # irred. monomials in Rk

p2(r, s) = # irred. monomials in Rr,s

k 7 8 9 10 11 12
p1(k) 33 37 41 45 49 53

For example, there are
(

8+2
2

)

= 45 monomials in 2 variables
of total degree ≤ 8. From this 45 monomials, 37 monomials
are irreducible, leaving 8 reducible elements w.r.t. graded
lexicographic order. They are given by:

R8 \ I = {x5y2, x6y2, x4y3, y3x5, x4y4, x2y5, x3y5, x2y6}.

From the 8 elements in R8 \ I there are 3 elements of degree
7, hence, in two variables, there are in total

(

7+2
2

)

= 36
monomials of degree 7, 3 of them reducible modulo G, giving
us the value 33.

Since the degree of the Hilbert polynomial is bounded by the
number of variables, interpolation gives

p1(k) = 4k + 5 (k ≥ 7)
p2(r, s) = 2r + 2s+ 7 ((r, s) ≥π (4, 4)).

From this we see that the growth of elements is linear by
increasing the degree in one direction. Moreover p2 is sym-
metric (p2(r, s) = p2(s, r)) which shows that the growth of
dimension is the same in x and y direction.

An obvious relation between Rr,s and Rr+s is

∀ (r, s) ∈ N
2 : Rr,s ⊆ Rr+s.

A less obvious relation is the following. We have that

# irred. elements in Rk,k = p2(k, k) = 4k + 7
# irred. elements in Rk+k = p1(k + k) = 8k + 5.

Consequently p2(k, k) ≤ p1(k + k) for k ≥ 1.

8. COMPUTATION OF MULTIVARIATE DIF-
FERENCE DIFFERENTIAL DIMENSION
POLYNOMIALS

In the general case, Corollary 2 applies. We will generalize
the dimension polynomial computed in [12].

For example, using Corollary 2 to a finitely generated mod-
ule over the ring D using relative reduction, the resulting
sets Ur coincide with those computed in [12]. We will now
set up a refined filtration of the ringD, controlled by a parti-
tion of the basic operators in the difference-differential field
K. After designing a Gröbner reduction for a submodule,
Corollary 2 will give us an improved picture of the filter
spaces in the quotient.

Consider the sets ∆ = {δ1, . . . , δm}, Σ = {σ1, . . . , σn} of
the difference-differential field K.

We divide ∆ and Σ into p respectively q pairwise disjoint
subsets

∆ = ∆1 ∪ · · · ∪∆p and Σ = Σ1 ∪ · · · ∪ Σq (8)

where

∆1 = {δ1, . . . , δm1
}

∆k = {δm1+···+mk−1+1, . . . , δm1+···+mk
}, (2 ≤ k ≤ p)

and m1 + · · ·+mp = m. Similar for Σ

Σ1 = {σ1, . . . , σn1
}

Σk = {σn1+···+nk−1+1, . . . , σn1+···+nk
}, (2 ≤ k ≤ q)

where n1 + · · ·+ nq = n.

Definition 5. For a monomial

λ = δk1

1 · · · δkm
m σl1

1 · · ·σln
n ∈ Λ

we define

|λ|∆j
=
∑

δi∈∆j

ki (1 ≤ j ≤ p)

|λ|Σj
=
∑

σi∈Σj

|li| (1 ≤ j ≤ q)

For a general difference-differential operator

a =
∑

λ∈Λ

aλλ ∈ D

we set

|a|Φ := max{|λ|Φ : λ ∈ T (a)},

with Φ ∈ {∆1, . . . ,∆p,Σ1, . . . ,Σq}.

The following device defines a p+ q-variate filtration on D.
For r ∈ Np+q set

Dr = {u ∈ D : ∀1≤i≤p |u|∆i
≤ ri ∧ ∀1≤j≤q |u|Σj

≤ rp+j}.
(9)

Definition 6. Let M be a ∆-Σ module over a ∆-Σ field
with m derivations and n automorphisms, partitioned as
given in (8) and set s = p + q. The numerical polyno-
mial p(t1, . . . , ts) is called difference-differential dimension
polynomial associated to M , if

1. deg(p) ≤ m+ n



2. p(r1, . . . , rs) = dimK Mr1,...,rs for all (r1, . . . , rs) ∈ Ns

large enough.

By a change of the vector space basis of polynomials of de-
gree less than or equal to s to the Newton basis p admits a
canonical representation of the form

n1
∑

i1=0

n2
∑

i2=0

. . .

ns
∑

is=0

ai1,i2,...,is

(

t1 + i1
i1

)(

t2 + i2
i2

)

. . .

(

ts + is
is

)

,

s.t. ai1,i2,...,is ∈ Z, the dimension polynomial mentioned in
[8, 9].

Theorem 2. Let K be a ∆−Σ field andM a finitely gen-
erated difference-differential module. Produce a partition of
the sets ∆, Σ as described in (8) and equip the operator ring
D with the filtration described in (9). Extend the filtration
to the finite free presentation

0 −→ N −→ F
π

−→M −→ 0

where F has K-basis E, and let ≺ be a generalized term or-
der on ΛE. If G is a Gröbner basis of N then the cardinality
of the sets

Ur = {t ∈ ΛE ∩ Fr : ∀g∈G ∀λ∈Λ

(t = lt≺(λg) ⇒ ∃i |λg|∆i
> ri ∨ ∃j |λg|Σj

> rp+j)}

provide the values of the Hilbert function of M , i.e.,

dimK Mr = |Ur| ∀r ∈ N
p+q.

Proof. The relation

f −→ h ⇐⇒ ∃g∈G ∃λ∈Λ lt≺(λg) = lt≺(f)∧

∀1≤i≤p |λg|∆i
≤ |f |∆i

∧ ∀1≤j≤q |λg|Σj
≤ |f |Σj

∧

h = f −
lc≺(f)

lc≺(λg)
λg

defines a Gröbner reduction for N and Corollary 2 is appli-
cable.

9. CONCLUSIONS
We have set up a theory of reduction intended to extend

Gröbner basis computations to modules over (possibly) non-
commutative rings which contain a field as a subring. This
applies in particular to rings of difference-differential opera-
tors. Assuming a multivariate filtration in the ground ring
compatible with a given vector space basis, we have for-
mulated natural axioms such a reduction should obey. It
was possible to demonstrate that relative reduction as in-
troduced in [12] as well as the reduction relations defined by
classical Gröbner bases in polynomial rings or free modules
over them can be viewed as an instance of our axioms. Fur-
ther we have proved a general theorem on the dimension of
filter spaces in finitely generated modules over such rings.
The concepts have been demonstrated to be applicable to
the computation of the Hilbert polynomial of multivariate
difference-differential modules.

So far we have not given a general algorithm for computing
such a reduction relation in nontrivial instances. In a con-
tinuing paper we plan to refine our approach and by giving
additional features to the data of the ground ring, to formu-
late Buchberger criteria for such reductions. In doing so we
try to make our approach suitable for actual computations
in such general rings.
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2015-03 C. Fürst, G. Landsmann: Computation of Dimension in Filtered Free Modules by Gröbner
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2014-03 M.T. Khan: On the Soundness of the Translation of MiniMaple to Why3ML February 2014.

Eds.: W. Schreiner, F. Winkler
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