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Abstract

The dual space of a primary ideal associated to an isolated point is a topic of study which appears in several
occasions in symbolic computation. In the present work we elaborate on the computation of a representation
for these dual spaces. A basis for the dual space reveals the multiplicity structure of the point under study.
Macaulay’s algorithm is a classic algorithm for computing such a basis [18]. However it is not the most effi-
cient algorithm due to large matrix constructions and redundant computations. There are several improvements
on Macaulay’s algorithm. Mourrain’s integration method serves as the most advanced algorithm, constructing
much smaller matrices [23]. Both algorithms are incremental, i.e., they compute a basis for the dual space degree
by degree, via computing the kernel of a certain matrix at each step. Recently, an improvement on the integration
method has been developed , which avoids redundancy in computations by computing both a primal and a dual
basis simultaneously [19]. In this work, we generalize the latter result by computing a polynomial primal basis
along with the dual basis. This reduces the size of the matrices even further. We show that a similar improve-
ment can be applied to Macaulay’s algorithm as well. We also introduce the notion of directional multiplicity,
which has applications in studying degeneracy in many problems involving variable elimination, in particular in
arrangements of planar curves.
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1 Introduction
The Problem. Consider an isolated point in the variety of a given ideal and its associated primary component.
The quotient of the polynomial ring modulo this associated primary ideal is a vector space, whose dimension is
the multiplicity of the point. A basis for the quotient and therefore the multiplicity can be computed via Gröbner
bases.

It is classically known that the dual space of the polynomial ring is isomorphic to the space of differential
operators acting at the point. This space is in general infinite dimensional. However, the dual space of a primary
ideal is a finite dimensional subspace and can be treated computationally. In fact, the dimension of this subspace
is the multiplicity of the point. Having the dual space of this subspace, a Gröbner basis of the primary component
can be obtained from it. Computing a basis for this dual space is the main topic of this work.

Considering the differential operators as polynomials, there is a bound on the degree of the monomials of such
polynomials, the so called Nil-index. The existence of this bound allows us to search for a basis incrementally,
i.e., degree by degree, among the monomials with degree at most Nil-index. In fact a basis can be found among
the linear combinations of such monomials. Assigning symbolic coefficients for those monomials and applying
some necessary and sufficient conditions that the differential operators must satisfy, we obtain a matrix whose
kernel gives us the values of the coefficients.

This argument reduces the problem into the kernel computation problem in some specific matrices. Because
of the structure of the matrices that are constructed at each step of the procedure, they can be very large and also
there are repeated and redundant computations. The problem of making improvements via constructing smaller
matrices and efficient computations is at the epicenter of this work.

It turns out that a basis for the dual space has the advantage of locality compared to a (global) Gröbner basis
computation for a given input ideal. The dual space shows us the local multiplicity structure at the point of interest,
which provides us with information on its intrinsic geometry. The multiplicity structure plays an essential role in
several problems related to multiplicity and elimination, which can be treated via directional multiplicities that will
be introduced in this work. The motivation for this work stems from our earlier investigation on using resultants
in Gröbner basis computation. The idea was to project a given ideal by resultants and then use it as an element
in the elimination ideal in order to facilitate computing a Gröbner basis. This problem lead us to the multiplicity
problem in the elimination ideal of two affine algebraic planar curves. Directional multiplicity can be used to
study the geometric properties of a point and in particular to shed light to our motivational problem.

Previous Work. Multiplicity structure of isolated points has been well studied in literature [12, 18, 30, 26, 19]
and it is an active research field with recent articles on the topic, e.g. [15]. There are efficient linear algebra
algorithms to compute the multiplicity structure via dual space. A historical work conducted by Macaulay [18]
shows how to construct the simplest matrices in order to compute a basis for the dual space. This algorithm is
still used widely and several improvements have been made that make Macaulay’s algorithm faster. Wu and Zhi
worked on a symbolic-numeric method for computing the primary components and the differential operators [29],
which is based on an algorithm for determining the dual space that is mentioned in the book [26] by Stetter. In [30]
Zeng used the ideas in Stetter’s algorithm and introduced his closedness property in order to make Macaulay’s
matrices smaller. Mourrain gave a new algorithm based on integration in [23], which is more efficient than the
algorithm of Macaulay in terms of the size of the matrices. This algorithm was improved by Mantzaflaris and
Mourrain in [19] by adding a new criterion. A detailed review of the integration method and its application to root
deflation methods is given in [20]

Marinari, Mora and Möller’s work on dual spaces in [21, 22], includes studying the behaviour of the dual space
under projection, which is the base of our result related to the use of dual elements to study the elimination ideal.
A survey on dual spaces, including Marinari, Mora and Möller’s main results, is given in the book by Elkadi and
Mourrain [12]. Also Bates, Peterson and Sommese have worked on the multiplicity of the primary components [3].
Li and Zhi’s have investigated computing the Nil-index [17]. Examining the multiplicity structure via deflation is
exhibited in the work of Dayton and Zeng [11] and Leykin and Verschelde [16].

Polynomials elimination theory is an old and central topic. The two main tools in elimination theory are Gröb-
ner Bases and resultants. Our motivational ideas for using resultants in Gröbner basis computation is described in
[24], which considers the elimination problem independent of the dual computation.

Buchberger introduced and expanded the Gröbner basis concept and gave an algorithm for Gröbner bases
computation in his PhD thesis [5, 6]. Gröbner bases initiated a field of study in computational commutative algebra
and algebraic geometry. The applications of Gröbner bases are countless both in theoretical as well as practical
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problems, when dealing with algebraic systems. Apart from the application of Gröbner bases in computing the
multiplicity, we will extensively use its elimination property [6] that allows computing the elimination ideals.

Resultants is a classic tool in elimination theory. It has been extensively studied by Sylvester, Bezout, Dixon,
Macaulay and van der Waerden [27, 28]. A smooth introduction to resultants, including Sylvester and Macaulay
resultants is given in [8] and [9]. A survey on computational methods is given in [13], and a modern view towards
the topic is [14].

Contributions. The main contributions of this work are improvements to the integration method and Macaulay’s
algorithm. As the size of the matrices constructed in each step of the algorithms is the main obstacle in compu-
tations, we propose criteria that allow deleting some columns from the matrices in order to reduce the size of the
matrices.

For the integration method, the state of the art algorithm, in Proposition 8 we give an explicit generalization of
the improvement done in [19], as we detect and use a polynomial basis for the quotient rather than the monomial
basis. The new primal bases are in accordance with [23, Prop. 3.7], which can be generalized for the case in
question. Corollary 19 shows our criterion for deleting some columns such that the kernel of the new matrix only
detects new members of a basis of the dual space, which avoids recomputing the lower degree basis elements that
are obtained in the previous steps. The reduction of lower-degree elements has been employed in [19] using a
different criterion; however, under certain circumstances this criterion can increase the row-size of the matrix.

For Macaulay’s algorithm, we propose two criteria, each reducing the size of the matrices at each step drasti-
cally. First we show Criterion 22, which is similar to the one for the integration method that deletes some columns
at each step, so that we do not recompute the previously computed basis elements. Moreover, using the properties
of the dual space, we show Criterion 11 that predicts that some columns will not appear in the basis. These criteria
employ the ideas of the integration method in order to reduce the size of the Macaulay matrices.

Apart from those criteria that can be used for computing the whole dual basis, we introduce the notion of
directional multiplicity in Definition 5, which can give us more information than the Nil-index, a classic invariant
which has been the topic of various studies in the multiplicity structure field. Our modified algorithms can be used
in several cases to compute the directional multiplicity faster than the whole dual space.

An interesting interplay between the directional multiplicity and the degree of the elimination ideal is pre-
sented. As an application, in studying arrangements and topology of curves one can use directional multiplicities
in order to project the extreme point of a curve.

Structure of the paper. In Section 2, we first give a short introduction to dual spaces of polynomial rings. Then
we focus on the multiplicity structure of an isolated point. In this way, we introduce directional multiplicity and
the extended Buchberger diagram. We show bounds on the directional multiplicities with respect to Nil-index and
the intersection multiplicity. Section 3 includes our main results. After demonstrating the existing algorithms for
computing the dual space, we show our improvements on those algorithms and discuss the advantages. Section 4
contains two subsections. In Subsection 4.1 we briefly show some applications of directional multiplicities in com-
putational problems. Subsection 4.2 includes the main problems that we are considering as the future directions
of research.

Notation. We introduce the following notation that will be consistently used in this paper, unless otherwise
is stated. For every ideal I Ĳ Krx1, . . . , xns and for J Ď t1, . . . , nu, the elimination ideal of I with respect
to J consists of those polynomials in I that contain only the variables indexed by J and is denoted by IJ :“
I XKrx1, . . . , x̂J , . . . , xns. The i-th elimination ideal of I is defined to be Ii`1,...,n :“ I XKrxi`1, . . . , xns.

2 Directional Multiplicity
In this section, we take a look at the dual space of an ideal. This leads us to introduce the notion of Directional
Multiplicity. Directional multiplicities give us a lot of information about the multiplicity structure at an isolated
point. Using Lemma 3 we provide a sound definition of directional multiplicity. Then, we show that directional
multiplicities can be bounded and can bound some other invariants of an ideal, namely the Nil-index and the
intersection multiplicity.
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2.1 Preliminaries on the Dual Space of a Polynomial Ring
We present a brief review of the dual space of polynomial rings from [23]. Let R “ Krx1, . . . , xns and consider
it as a vector space over K. Denote by R̂ the dual of R and note that it is a (not necessarily finite dimensional)
vector space. Let ζ “ pζ1, . . . , ζnq P Kn, a “ pa1, . . . , anq P Nn and define

Ba
ζ : R ÝÑ K

p ÞÑ pdx1
qa1 . . . pdxnq

anppqpζq,
(1)

Then Ba
ζ acts on p first by differentiation and then by evaluation at the point ζ.

In [23], Proposition 2.2 states that every element of the dual of R can be written as a formal power series of
linear functions. More precisely, there is an isomorphism of K-vector spaces between R̂ and KrrBζss given by the
following correspondence:

R̂ Q λ ÐÑ Λ “
ÿ

aPNn
λ
´

ź

pxi ´ ζiq
ai
¯ 1
ś

ai!
Ba
ζ P KrrBζss.

For the rest of this work, unless otherwise stated, we assume that ζ “ 0. When it is clear from the context, we
will use Ba instead of Ba

ζ . Also KrrBζss denotes the K-vector space of power series in the variables dx1, . . . , dxn,
which are linear forms that act on R as described in Equation 1. If it is clear from the context, we will use KrrBss
instead of KrrBζss. From now on, we identify R̂ with KrrBζss. Also we may use Ba

ζ instead of 1
ś

ai!
Ba
ζ in order to

simplify computations.
One can consider R̂ as an R-module, with multiplication by Bζ at i-th coordinate in KrrBζss acting as a

derivation on polynomials. The orthogonal of an ideal I of R, i.e.,

IK “

!

λ P R̂ : λpfq “ 0 @f P I
)

can be seen as a linear subspace of KrrBζss, for every ζ P Kn, as shown in [23], Proposition 2.6.
Among ideals in R, primary ideals corresponding to an isolated point have an important property. Unlike

an arbitrary ideal, the ortoghonal of such a primary ideal I can be identified by elements of the orthogonal of I
that admit only finitely many non-zero coefficients. In other words, their orthogonal contains only polynomials.
In fact, not many ideals are primary ideals corresponding to isolated points. However, if the given ideal has
a primary component corresponding to an isolated point, then we can forget about the other components and
work only on that component. Therefore, we deal with the local properties at one single point, i.e., the point
corresponding to that primary ideal. Based on the above observation, we let ζ be an isolated point of the variety
of I . Then the primary decomposition of I contains a primary ideal Qζ whose radical is of the form mζ “
xx1 ´ ζ1, . . . , xn ´ ζny. If

?
I “ mζ , then we call I an mζ-primary ideal and usually we denote it by Qζ .

Marinari, Mora and Möller in [21] have shown that the mζ-primary ideals are in one-to-one correspondence with
the non-null vector spaces of finite dimension of KrBs, which are stable under derivation. This work is attributed
to Gröbner.

The following theorem and in particular its corollary are essential for the algorithms that will be presented
later.

Theorem 1. (Theorem 3.2, [23]) Let I be an ideal of R with an mζ-primary component Qζ . Then

`

IK XKrBζs
˘K
“ Qζ and QK “ IK XKrBζs,

where
`

IK XKrBζs
˘K
“

!

f P R : λpfq “ 0 @λ P xDy
)

.

From now on, given an mζ-primary ideal Qζ , D will stand for a basis for QKζ . Therefore xDy “ QKζ “

IK XKrBζs.

Corollary 2. ([23]) If I “ Qζ is an mζ-primary ideal, then we can identify IK with a linear subspace of the
polynomial ring KrBζs.

Therefore, we are after computing a basis for a finite-dimensional linear subspace of KrBζs.
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2.2 Definition and Properties
Studying dual spaces, we define the directional multiplicity and show some of its properties. We also show how
directional multiplicity gives information useful for elimination.

We first prove that the set of monomials that appear in elements of QK is exactly the set of monomials Ba such
that xa R Q, where xa “ xa11 ¨ ¨ ¨xann . Let us observe that

Bapxbq “
ź

δai,bj (2)

where δi,j is the Kronecker delta. We prove the following proposition that first appeared without a proof in [19].

Proposition 1 (Characterization of Monomials in QK). Let Q “ Qζ be an mζ-primary ideal. Consider QK as a
sub-vector space of KrBζs as above. Then

ď

ΛPQK

supppΛq “
!

Ba | xa R Q
)

,

where supppΛq is the set of monomials with nonzero coefficient in Λ.

Proof. By Theorem 1, for all f
f P Qô

`

λpfq “ 0 for all λ P QK
˘

.

Now choose a basis D Ă KrBs of QK, the above implies that for all f

f P Qô pλpfq “ 0 for all λ P Dq .

We are ready to prove the thesis:

”Ď“ If Ba is in supppΛq then the monomial xa is not annihilated by Λ (see Equation 2), which implies xa R Q.

”Ě“ If xa R Q, then there exists λ P D such that λpxaq ‰ 0. Let Λ P KrBs be the differential operator
corresponding to λ, so Λpxaq ‰ 0. By Equation 2, we know that mpxaq “ 0 for all monomials m in
supppΛq which are different from Ba. Hence Ba has to be in supppΛq.

Now that we have a picture of the monomials in QK, we want to know how they look like under projection.
The following result shows that the objects introduced so far, behave well in the framework of elimination theory.

Proposition 2 ([12], Proposition 7.19 ). Let π be the linear map

π : Krrdx1, . . . , dxnss ÝÑ Krrdx2, . . . , dxnss
Λ ÞÑ Λp0, dx2, . . . , dxnq.

Also suppose that I is an ideal in R and I2,...,n “ I XKrx2, . . . , xns is its first elimination ideal. Then we have

pI2,...,nq
K
“ π

`

IK
˘

.

We use the above proposition in order to prove the Dual Projection Lemma which shows how to get a basis of
the dual space of the elimination ideal, having a basis for the dual space. Note that I in Proposition 2 can be any
ideal, however the following lemma is only for the local case, i.e., when we are working on an mζ-primary ideal
Q “ Qζ .

Lemma 3 (Dual Projection Lemma). With the hypotheses of Proposition 1, suppose thatD “ tΛ0,Λ1, . . . ,Λl´1u Ă

KrBs is a basis of QK. Let Q2,...,n “ QXKrx2, . . . , xns. Then

QK2,...,n “ xΛ0|dx1“0,Λ1|dx1“0, . . . ,Λl´1|dx1“0y .

Proof. We prove the lemma by proving two inclusions.

(Ě) For all i, p1 ď i ď l ´ 1q, since Λi P Q
K, therefore we have that Λi|dx1“0 P Q

K|dx1“0. But since by
proposition 2, QK|dx1“0 P Q

K
2,...,n, then Λi|dx1“0 P Q

K
2,...,n. This means that xΛ0|dx1“0,Λ1|dx1“0y Ď

QK2,...,n.
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(Ď) Suppose that Λ1 P QK2,...,n. Since by Proposition 2, QK|dx1“0 P Q
K
2,...,n, then Λ1 P QK|dx1“0. Therefore,

there exists a Λ P QK, such that Λ1 “ Λ|dx1“0. We know that QK “ xΛ0,Λ1, . . . ,Λl´1y. So, there exist

ci P K, p1 ď i ď l´ 1q, such that Λ “
l´1
ř

i“0

ciΛi, and therefore Λ|dx1“0 “
l´1
ř

i“0

ciΛi|dx1“0, which means that

Λ1 “
l´1
ř

i“0

ciΛi|dx1“0. Therefore

Λ1 P xΛ0|dx1“0,Λ1|dx1“0, . . . ,Λl´1|dx1“0y .

Thus, QK2,...,n Ď xΛ0|dx1“0,Λ1|dx1“0, . . . ,Λl´1|dx1“0y.

Corollary 4. Let D “ tΛ0,Λ1, . . . ,Λl´1u Ă KrBs be a basis of QK, and Qi “ Q X Krxis, for 1 ď i ď n.
Denote by Λ|dxi‰0 the polynomial obtained by substituting dxj “ 0 for 1 ď i ‰ j ď n in Λ. Then

QKi “ xΛ0|dxi‰0,Λ1|dxi‰0, . . . ,Λl´1|dxi‰0y .

Moreover, there exists µi P N such that

QKi “
A

1, dxi, . . . , dx
µi´1
i

E

.

Now we have the necessary tools to define the notion of directional multiplicity.

Definition 5 (Directional Multiplicity). Let ζ be an isolated point in the variety of an ideal I and Qζ be the
corresponding mζ-primary component. Using the notation of Corollary 4, for 1 ď i ď n, we define the i´th
directional multiplicity of ζ to be µi.

In order to give an intuition of directional multiplicity, we take a look at the quotient R
L

Qζ , which we will
denote by Bζ . If we consider this quotient as a vector space, finding a basis for such a quotient was the task given
to Buchberger for his PhD thesis by Gröbner, which led to the invention of Gröbner bases [5]. Let us recall that
the multiplicity of ζ is defined as dimK R

L

Qζ . We will denote the multiplicity by µpζq or simply by µ if ζ is
clear from the context. Another notion that is highly studied in the literature and describes an intrinsic parameter
of an mζ-primary ideal is the Nil-index, e.g. see work in [17].

Definition 6. The Nil-index of an mζ-primary ideal Qζ is the maximum integer N P N such that mN
ζ Ę Qζ .

There is a tight connection between the dual space of mζ-primary ideals and their Nil-index.

Lemma 7. (Lemma 3.3, [23]) The maximum degree of the elements of IKXKrBζs is equal to the Nil-index of Qζ .

Theorem 1 and Lemma 7 show that we can find the monomials of D by searching among those monomials
of IK that have degree at most the Nil-index, i.e., there exists a degree bound over the monomials of D. These
monomials are actually the monomials under the Extended Buchberger Diagram which is defined below.

Definition 8 (Extended Buchberger Diagram). The Extended Buchberger Diagram of an mζ-primary ideal Qζ is
obtained by considering all the monomials that appear in a basis of the dual space of Qζ .

We can think of the Nil-index of Qζ as the largest degree of the monomials under the extended Buchberger
diagram. Figure 1 shows the extended Buchberger diagram and all of its monomials for Example 12.

Note that the monomials under the Buchberger diagram with respect to an ordering form a vector space basis
for R {Q . They include some monomials in a basis of QK, but they do not necessarily include all the monomials
in D. In particular, they may not include the highest powers of dxi, i.e., the monomials corresponding to the
directional multiplicities. However in the extended Buchberger diagram, one can see all the possible monomials
in D, which are all the monomials that do now appear in Q, which include all the monomials in the Buchberger
diagram of Q.

The above comments are illustrated in Figure 2. The black dots show a basis for R {Q , while the white dots
are the rest of the monomials in the basis of QK, see also [20] for a similar diagram. Also Figures 3 and 4 show
the quotient of the elimination ideal with respect to x and the quotient of the elimination ideal with respect to y,
respectively. In Figure 3, black dots are the basis for QK2 and the white dots are the rest of the monomials in the
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µ2 “ 2

µ1 “ 4

dimR
L

Qζ “ µ “ dimD

N “ 4

Figure 1: Extended Buchberger Diagram for Example 12

µ2 “ 2

µ1 “ 4

µ “ dimR
L

Qζ “ dimD “ 4

N “ 4

Figure 2: Extended Buchberger diagram vs a basis for Bζ wrt a degree ordering for Example 12

µ2 “ 2

µ1 “ 4

dimR
L

Qζ “ µ “ dimD

Figure 3: Extended Buchberger diagram vs directional multiplicity wrt x for Example 12
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µ2 “ 2

µ1 “ 4

dimR
L

Qζ “ µ “ dimD

Figure 4: Extended Buchberger diagram vs directional multiplicity wrt y for Example 12

dual basis. In Figure 4, black dots are the basis for QK1 and the white dots are the rest of the monomials in the dual
basis.

Considering the above figures, one can see that the extended Buchberger diagram includes the Buchberger
diagram with respect to every order. N is a bound for the degree of the members of a Gröbner basis with respect
to every order. Directional multiplicity with respect to an axis is the largest intersection point of the extended
Buchberger diagram with that axis. The Buchberger diagram does not necessarily have an intersection with the
hyperplane x1 ` ¨ ¨ ¨ ` xn “ N , but the extended Buchberger diagram does have at least a point in common with
that hyperplane.

Example 9. Let I “
@

f1 “ x8 ` y5, f2 “ x7y4
D

. The origin is a root of the system with multiplicity µ “ 67.
We have that N “ 18, while µ1 “ 15, µ2 “ 9. The reduced Gröbner basis for I with respect to the lexicographic
order (x ą y) is tf1 “ x8 ` y5, f2 “ x7y4, gy “ y9u, and with respect to lexicographic order (y ą x) is
tf1 “ y5 ` x8, f2 “ y4x7, gx “ x15u, where gy and gx are the generators of the elimination ideal with respect to
the lexicographic orders x ą y and y ą x respectively.

These observations give us the intuition that the directional multiplicities are at most as large as the Nil-
index. Also their product gives us the volume of a cuboid which contains the Buchberger diagram. The following
statements make the comments above more precise.

Remark 10. One can easily see that the Nil-index is as large as the multiplicity and also the multiplicity is
bounded by the number of lattice points in the n-simplex. The simple conclusion of the definition of N and µ is
that

N ď µ ď Number of Lattice point in the n-simplex “
ˆ

N ` n

n

˙

.

Proposition 3. Let µ be the multiplicity of an isolated point ζ. Then

• µi ď µ for every 1 ď i ď n.

• µ ď
ś

1ďiďn

µi.

•
n
ř

i“1

µi ´ n` 1 ď µ.

Proof. For the first part, recall that dimKQ
K
ζ “ µ and that µi is the dimension of a vector subspace of QKζ . Thus

µi ď µ.
For the second part, first remember that for every 1 ď i ď n, µi is the largest degree of the elements in

QKζ X Krdis. This means that µi ` 1 is the largest possible degree of xi in R {Q . Since µ “ dimKR {Q , we
conclude that µ ď

ś

1ďiďn

µi.

For the third statement, note that as argued above, dxaii P Q
K
ζ if and only if ai ă µi. This means that xaii R Qζ

if and only if ai ă µi. Now, for all 1 ď i ď n, let Ai :“ t1, xi, ¨ ¨ ¨ , x
µi´1
i u. Then, x

Ť

Aiy Ď R
L

Qζ as
vector spaces. Note that the elements of

Ť

Ai are linearly independent. Then dimx
Ť

Aiy “
ř

µi ´ n ` 1 ď
dimR

L

Qζ “ µ and the result follows.
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Proposition 4. Let N be the Nil-index of Qζ . Then

• N ě µi for all 1 ď i ď n,

• N ď
ř

1ďiďn

µi ´ n

Proof. According to the definition of the Nil-index we have mN
ζ Ę Qζ and mN`1

ζ Ď Qζ . Since mN
ζ “

xx1 ´ ζ1, . . . , xn ´ ζny
N , therefore pxi ´ ζiq

N R Qζ and pxi ´ ζiq
N`1 P Qζ . By the definition of µi and

the Proposition 1, dxµii pxi ´ ζiq
N “ 0 and dxµii pxi ´ ζiq

N´1 ‰ 0. Therefore µi ď N .
For the second part, note that for all xi, dµi´1

xi P supppQKζ q and dµixi R supppQ
K
ζ q. Therefore by Proposition

1, xµi´1
i R Qζ and xµii P Qζ . Consider A “ ta P Nn| |a| “

ř

pµi ´ 1q ` 1u. By the Pigeonhole principle,
there exists an i, 1 ď i ď n, such that xµii |x

a. Therefore xa P Qζ for all a P A, which implies that m|a|ζ Ď Qζ and
N ă |a| “ 1`

ř

pµi ´ 1q. The result follows by minimality of N .

Remark 11. The inequalities in the Propositions 3 and 4 are sharp. An example that shows this, is the univariate
case, where I “ Qζ P Krxs. In this case the Nil-index of I1 “ µ1 is equal to its i-th directional multiplicity,
which is equal to the degree of px´ζq in g, the monic generator of the elimination ideal. The latter doesn’t happen
by accident. We will discuss more about this in Section 4.2.

A geometric interpretation of the i-th directional multiplicity at an intersection point is be the number of
instances of the intersection point that can be seen when we look at the intersection point in the direction parallel
to the xi axis. Some of the presented inequalities are direct consequences of the definitions, and reveal interesting
properties of this new notion. In particular, knowing the directional multiplicities we can deduce information
about the multiplicity or the Nil-index. Thus, the notion of directional multiplicity is, in this sense, a refinement
of multiplicity and Nil-index. Moreover, in some applications, this refined information is crucial, as described in
Section 4.1.

3 Algorithms for Dual Basis and Directional Multiplicity
In this section we present modifications of Macaulay’s algorithm and Mourrain’s integration method for computing
a basis for the dual space efficiently. These algorithms give us in addition the directional multiplicities. Before
presenting our modifications, we review the two approaches for computing the dual space of an mζ-primary
component of a given ideal I “ xf1, . . . , fey Ď Krx1, . . . , xns. We refer the reader to [20] for a recent overview.
These algorithms compute a basis D for QK degree by degree. Let Dt be the subset of KrBζs that contains degree
t elements of D. Then D0 “ x1y. The algorithms extend Dt into Dt`1, a basis for the degree t ` 1 part of QK,
until Dt “ Dt`1. Then we can conclude that D “ Dt and we have the basis D. We set di :“ dxi for presentation
reasons in what follows.

3.1 Macaulay’s Algorithm
Macaulay’s algorithm [18] is the first algorithm for computing a basis for the dual space QK. It is based on a
simple condition that the coefficients of the elements of the dual space must fulfill. Let Λ “

ř

|α|ďN
λαd

α, where

we use the multi-index notation with d “ d1d2 ¨ ¨ ¨ dn. Then Λpfq “ 0 for all f P I if and only if Λpxβfiq “ 0
for all β P Nn and 1 ď i ď e. This observation, for 1 ď |β| ď N , reduces checking that Λpfq “ 0 for an infinite
number of polynomials f into checking the finitely many conditions that are given in the right hand side. Namely,
it suffices to impose conditions on λα’s, the coefficients of Λ. For 1 ď |β| ď N , we obtain a system of linear
homogeneous equations and construct the corresponding matrix. The rows of this matrix are labeled by xβfi and
the columns are labeled by dα. Every element in the kernel of this matrix is a coefficient vector, corresponding to
an element of D.

Macaulay’s algorithm starts with D0 “ td
0 “ 1u. At step t, the algorithm computes the polynomials Λpxαfiq

for degpΛq ď t and constructs the coefficient matrix. The kernel of this matrix contains coefficient vectors of
elements of a basis Dt. If Dt “ Dt´1, then the algorithm terminates, otherwise continues with computing Dt`1.

We illustrate the algorithm by two examples.
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Algorithm 1: Macaulay’s Algorithm
Input: A basis for an mζ-primary ideal Qζ
Output: A basis for the dual of Qζ
def ComputeBasis:

Dold “ H

Dnew “ tΛ “ d0 “ 1u
while Dold ‰ Dnew:

Dold “ Dnew
Construct matrix Mnew, the coefficient matrix of Dnew
Dnew “ kernelpMnewq

return Dnew

Example 12. Let

f1 “ x2 ` py ´ 1q2 ´ 1

f2 “ y2.

Then for the root p0, 0q, we have that

M1 “

ˆ

1 d1 d2

f1 0 0 ´2
f2 0 0 0

˙

. (3)

The kernel of this matrix yields the basis D1 “ t1, d1u. In the second step, we have

M2 “

¨

˚

˚

˚

˚

˚

˚

˝

1 d1 d2 d2
1 d1d2 d2

2

f1 0 0 ´2 1 0 1
f2 0 0 0 0 0 1
x1f1 0 0 0 0 ´2 0
x1f2 0 0 0 0 0 0
x2f1 0 0 0 0 0 ´2
x2f1 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, (4)

from which we have D2 “ t1, d1, 2d
2
1 ` d2u. The algorithm runs until step 4, during which we have a matrix of

size 20ˆ 15, and
D3 “ D4 “ t1, d1, 2d

2
1 ` d2, 2d

3
1 ` d1d2u.

Thus, µ “ 4, µ1 “ 4 and µ2 “ 2.

Example 13. Let

f1 “ y3

f2 “ x2y2

f3 “ x4 ´ x3y.

The matrices in the first, second and third steps of the algorithm are zero matrices. So we have D1 “

t1, d1, d2u, D2 “ t1, d1, d2, d
2
1, d1d2, d

2
2u and

D3 “ t1, d1, d2, d
2
1, d1d2, d

2
2, d

3
1, d1d

2
2, d

2
1d2u.

The computation goes on till step 5, during which we have a matrix of size 45 ˆ 21 whose kernel gives the dual
basis

D4 “ D5 “ t1, d1, d2, d
2
1, d1d2, d

2
2, d

3
1, d1d

2
2, d

2
1d2, d

4
1 ` d

3
1d2u.

Thus, µ “ 10, µ1 “ 5 and µ2 “ 3.
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3.2 Integration Method
Macaulay’s algorithm is not efficient. In every step it builds new matrices which include previously constructed
matrices, thus some computations are repeated.

In [23], Mourrain suggested another algorithm, which builds smaller matrices, further improved in [19]. We
will demonstrate the improved version in this section. We first present the necessary background.

Given a basis for the vector space Bζ “ Krx1, . . . , xns
L

Qζ , one can construct a basis D for QK and vice
versa. This can be deduced from the constructions in the work of Macaulay in [18]. The work of Mourrain in [23],
shows the construction explicitly. Moreover, Mourrain has shown how to construct a Gröbner basis for Qζ having
a basis for QK. Below we will explain the construction of D from a basis of Bζ as in [19] in brief.

For every Λ P QK, let SupppΛq be the set of monomials that have a non-zero coefficient in Λ. Proposition 1
says that Ba P SupppΛq if and only if xa R Qζ for a P Nn. Let us denote by SupppQKq the union of supports of
all elements of QK and by s its cardinality. Then

SupppQKq “
ď

ΛPQK

tSupppΛqu “ tBa|xa R Qζu.

Since the degree of the monomials in SupppQKq is bounded by the Nil-index of Qζ , the above sets are finite. One
can find a basis B “ txβ1 , . . . , xβµu for Bζ among the monomials in the above set. Then for every monomial
xγj P SupppQKq such that xγj R B we can write

xγj “
µ
ÿ

i“1

λijx
βi mod Qζ .

Now let

Λi “ dβi `
s´µ
ÿ

j“1

λijd
γj . (5)

Then tΛ1, . . . ,Λµu is a basis for QK.
Given a basis D for QK, consider the matrix M P Kµˆs of the coefficients of the elements of this basis. Every

set of µ independent columns of M gives a basis for Bζ . Let G be the matrix whose columns are the columns of
M indexed by dβi . Then

G´1M “

¨

˚

˝

β1 . . . βµ γ1 . . . γs´µ

Λ11 1 0 λ1,1 . . . λ1,s´µ

...
. . .

...
...

Λ1µ 0 1 λµ,1 . . . λµ,s´µ

˛

‹

‚

, (6)

which gives a basis of the form 5.
Having the above matrix construction, we are ready to explain Mourrain’s algorithm. The algorithm is based on

integrating elements ofQKt´1 in order to generate the elements ofQKt with symbolic coefficients, and then applying
necessary and sufficient conditions on the generated elements, gives a system of equations for the coefficients.
Similar to Macaulay’s algorithm, each vector in the kernel of the matrix determines the coefficients of an element
in QKt . The following definition is useful in what follows.

Definition 14. For every Λ P KrBs and 1 ď i ď n, denote by
ş

i
Λ the i-th integral of Λ, which is defined as

follows.
ż

i

Λ “ Φ P KrBs such that dipΦq “ Λ and Φpd1, . . . , di´1, di “ 0, di`1, . . . , dnq “ 0.

The next theorem provides a generic, compact representation of the dual elements by exploiting the properties
of derivation in the dual space.

Theorem 15 ([23, 19]). Let tΛ1, . . . ,Λmu be the basis Dt´1 with the coefficient matrix of the form 6, yielding
the standard basis Bt “ txβi |1 ď i ď mu, i.e., the elements of the basis B that are of degree up to t. An element
Λ P KrBs with no constant term is in Dt if and only if it is of the form

Λ “
m
ÿ

i“1

n
ÿ

k“1

λik

ż

k

Λipd1, . . . , dk, 0, . . . , 0q, (7)

where λij P K, and the following conditions hold

11



1. for all 1 ď k ă l ď n,
1
ÿ

i“1

λikdlpΛiq ´
1
ÿ

i“1

λildkpΛiq “ 0. (8)

2. for all 1 ď k ď e,
Λpfkq “ 0 (9)

3. for all 1 ď i ď m,
Λpxβiq “ 0. (10)

The first condition implies that the new elements Λ that have been introduced are stable by derivation. The
second condition comes from the fact that Λ must be inside QKζ . Based on Theorem 15, having Dt´1 “

tΛ1, . . . ,Λmu, we have an algorithmic way to compute Dt. Consider Λ from the theorem with symbolic coeffi-
cients λik. Plug Λ into the conditions of the theorem and obtain a system of equations. In step t the corresponding
matrix will look like below.

Mt “

¨

˚

˚

˚

˚

˚

˝

λ11p11 . . . λ1np1n . . . λe1pe1 . . . λenpen

Λpf1q

...
Λpfeq
Condition 8
Condition 10

˛

‹

‹

‹

‹

‹

‚

. (11)

By abuse of notation and for simplifying the presentation, we use the symbolic coefficients λij instead of the
product of λij by the polynomials pij “

ş

j
Λipd1, . . . , dj , 0, . . . , 0q in order to label the columns of Mt. The

kernel of Mt will give us the possible values for λij .
The first two conditions already guarantee that Λ P Dt [23]. However, we might have that Λ P Dt´1 as well.

This means that we reproduce the elements of the previous step. The third condition which has been introduced
in [19], gives us a sufficient condition for having Λ P DtzDt´1. This helps with avoiding repetition of the
computations that have been done in the previous steps by adding new rows to the matrix, which in some cases
may lead to removing some column. It also provides a method to compute a basis D at the same time as a dual
basis for Bζ .

Algorithm 2: Integration method
Input: A basis for an mζ-primary ideal Qζ
Output: A basis for R

L

Qζ and a basis D for QKζ
def ComputeBasis:

Dold “ H

Dnew “ tΛ “ d0 “ 1u
while Dold ‰ Dnew:

Dold “ Dnew

Λ :“
m
ř

i“1

n
ř

k“1

λik
ş

k
Λipd1, . . . , dk, 0, . . . , 0q

for all 1 ď k ď l ď n,
m
ř

i“1

λikdlpΛiq ´
m
ř

i“1

λildkpΛiq “ 0

for all 1 ď k ď e, Λpfkq “ 0

for all 1 ď k ď m, Λpxβiq “ 0
Construct matrix Mnew, the coefficient matrix of Λ
Compute a basis Knew for kernelpMnewq

Dnew “ Dold
Ť

Knew

return new

Below, we do the computations for Examples 12 and 13, first without and then with considering Condition 10.
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Example 16 (Computations without Condition 10 for Example 12).

M1 “

ˆ

d1 d2

Λpf1q 0 ´2
Λpf2q 0 0

˙

. (12)

which is the same as the matrix in Macaulay’s algorithm, and D1 “ t1, d1u. Continuing into the second step
(Λ P D2), we apply the first two conditions on Λ “ λ1d1 ` λ2d2 ` λ3d

2
1 ` λ4pd1d2q, which gives us the matrix

M2 “

¨

˝

d1 d2 d2
1 d1d2

Condition8 0 0 0 0
Λpf1q 0 ´2 1 0
Λpf2q 0 0 0 0

˛

‚, (13)

which has two columns less that the second matrix of Macaulay’s algorithm. We haveD2 “ t1, 2d
2
1`d2, d1u.

The third and fourth step matrices are also smaller than the ones in Macaulay’s algorithm.

Example 17 (Computations for Example 12 with Condition 10). I this case the matrix of D1 is the same, while
the matrices for D2 and D3 are different.

M1 “

ˆ

d1 d2

Λpf1q 0 ´2
Λpf2q 0 0

˙

, (14)

which is the same as the matrix in Macaulay’s algorithm, and D1 “ t1, d1u.
In step 2 we have

M2 “

¨

˚

˚

˝

d1 d2 d2
1 d1d2

Condition10 1 0 0 0
Condition8 0 0 0 0
Λpf1q 0 ´2 1 0
Λpf2q 0 0 0 0

˛

‹

‹

‚

. (15)

Condition 10 implies that λ1 “ 0. Therefore we can remove column one from M2.

Example 18 (Computations with and without Condition 10 for Example 13). D0 “ t1u. If we do the compu-
tations without considering Condition 10, then in step 2 of the integration method, we will reach to a 3 ˆ 2 zero
matrix, which has one column less than the matrix in Macaulay’s algorithm. The matrix in step 3 is a 3 ˆ 5 zero
matrix, which is much smaller than the matrix in Macaulay’s method.

Re-doing the computations considering Condition 10, we get M0 and M1 same as above. In step 2, M2 is a
matrix of size 5ˆ 5. The two extra rows in this case comes from Condition 10. However each of the two last rows
simply will have one nonzero coordinate, which implies that two of the coefficients λij are zero. Having the value
of a coefficient equal to zero means that we can remove the corresponding column from the matrix and therefore
the size of the matrix will finally be 3 ˆ 3, smaller than the previous one. In step 3, applying Condition 10, we
will get a matrix with 4 columns instead of 9 columns in the previous case.

In the next subsection we will show modifications on the above algorithms in order to make them more efficient
for computing the directional multiplicities.

3.3 Modified Algorithms for Dual Basis
In this subsection we present modifications to the integration method and Macaulay’s algorithms, which make
computations more efficient. In particular, we give a more efficient criterion than Condition 10 in the integration
method.

We will use the following notation throughout subsection 3.3. We denote the Nil-index by N . Let t be a fixed
number between 1 and N . We refer to the current step of the algorithm as step t. Same as previous sections,
D is a basis for QK and therefore xDy “ QK. Dt stands for the degree t part of a basis of QK. Obviously
xDty is a sub-vector space of xDy. If we assume that Dt is equipped with a total degree term order, e.g. degree
lexicographic ordering, then the leading term of an element Λ of Dt is denoted by ltpΛq. If v is a column of a
matrix M , then M ´ v denotes the matrix obtained by deleting the column v from M .
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3.3.1 Modifications on Integration Method

Let Mt denote the matrix in step t of the integration method and ĂMt denote the matrix that is constructed in step
t without considering Condition 10. We assume that Dt´1 “ tΛ1, . . . ,Λmu is already computed in step t´ 1.

In the integration method, columns of Mt (similarly for ĂMt) are labeled by the λij’s appearing in Λ (see
Equation 11). Fix one of the λij’s and call it λ. We denote by vλ the column of Mt (similarly for ĂMt) that is
indexed by λ. Then pλ denotes the corresponding polynomial.

A basis D of QK is in one to one correspondence with a basis K for KerpĄMN q (also Dt is in one to one
correspondence with a basis Kt for KerpĂMtq). In step t, this correspondence is reduced to a correspondence
between Dt and Kt, a basis of KerpĂMtq). If there exists a vector q P Kt, for which the coordinate corresponding
to λ in this vector is nonzero, then we say that vλ is active in Dt. In case we explicitly know such a vector q,
i.e., a particular element of the kernel corresponding to an element E of Dt, then we say that vλ is active in E.
Since, Mt´1 is a sub-matrix of Mt and ČMt´1 is a sub-matrix of ĂMt, if it is clear from the context, by a column of
Mt´1(respectively ČMt´1) we will refer to the corresponding column in Mt(respectively ĂMt) as well. We work on
ĂMt rather than Mt in this section, although many of our arguments are correct for Mt as well.

We start with a proposition that provides us with an improvement on the integration method, related to Condi-
tion 10.

Proposition 5. Let ĂMt,ČMt´1, Dt,Λi p1 ď i ď mq, λ, pλ and vλ be as above.
Then the following hold.

1. If vλ is a column of ĂMt, then vλ is active in Dt if and only if vλ can be reduced to zero by other columns of
ĂMt.

2. For all 1 ď i ď m, if vλi is active in Λi, K 1ti is a basis for KerpĂMt ´ vλiq and D1ti is the set of its
corresponding dual elements, then tΛiu Y D1ti is a basis for the degree t part of QK. Moreover, if vλi is
active in Λi, but is not active in Λj , 1 ď j ‰ i ď m, then there exists a basisD1ti such that Λj P D

1
ti , j ‰ i.

3. Let Kt1...m be a basis for KerpĂMt ´ vλ1
´ ¨ ¨ ¨ ´ vλmq and Dt1...m be the set of its corresponding dual

elements. For all 1 ď i ď m, if vλi is active in Λi, but is not active in 1, . . . ,Λi´1, then Dt´1 YDt1...m is
a basis for the degree t part of QK.

Proof. 1. Let vλ, v1, . . . , vk denote the columns of ĂMt and pλ, p1, . . . , pk be the polynomials labeling the
columns of ĂMt. Then vλ can be reduced to zero by v1, . . . , vk if and only if there exist c1, . . . , ck P K,
such that vλ “ c1v1 ` ¨ ¨ ¨ ` ckvk, or equivalently vλ ´ c1v1 ´ ¨ ¨ ¨ ´ ckvk “ 0. This holds if and only if
q :“ p1, c1, ¨ ¨ ¨ , ckq P Kt, which holds if and only if Λ1 :“ pλ ´ c1p1 ´ ¨ ¨ ¨ ´ ckpk P Dt (Note that this is
exactly the fact that Λ1 in Dt corresponds to q P Kt). The latter is the case if and only if vλ is active in Λ1,
or equivalently vλ is active in Dt.

2. Fix 1 ď i ‰ j ď m and let qi and qj be the elements of Kt corresponding to Λi and Λj in Dt, respectively.

First we prove that for all Λ1 P Dt if Λ1 ‰ Λi, then Λ1 P
@

D1ti Y tΛiu
D

. Let q1 be the corresponding
elements of Λ1 in Kt. If vλi is not active in Λ1, then by part 1 it cannot be reduced to zero by the active
columns in Λ1. So the column vλi is not involved in computing Λ1 via column reducing in ĂMt. So Λ1 can be
computed via column reducing in ĂMt ´ vλ. Let q1 be the corresponding element to Λ1 in KerpĂMtq. Then
q1 P KerpĂMt ´ vλq. This means that Λ1 P

@

D1ti
D

.

If vλi is active in Λ1, then we prove that there exists a Λ2 in D1ti such that Λ1 “ Λi `Λ2. This is because of
the following. Let q1 P Kt be the element corresponding to Λ1 P Dt, such that that the first coordinate of q1

corresponds to vλi . Take q1 “ p1, b1, . . . , bkq. Then we have that vλi`b1v1`b2v2`¨ ¨ ¨ bkvk “ 0, where the
columns v1, . . . , vk are as in the proof of part 1. Also again as in the proof of the part 1, vλi “ c1v1` ¨ ¨ ¨ `

ckvk. Therefore pb1´c1qv1`¨ ¨ ¨`pbk´ckqvk “ 0, which means that p0, b1´c1, . . . , bk´ckq P KerpĂMtq,
and therefore q2 :“ pb1 ´ c1, . . . , bk ´ ckq P KerpĂMt ´ vλq. So one can construct a basis K 1ti in such a
way that q2 P K 1ti . Let Λ2 be the member of D1ti corresponding to q2. Then Λ1 “ Λi ` Λ2.

Secondly we note that if vλi is not active in Λj , for 1 ď j ‰ i ď m, then by the above argument, one can
compute a basis K 1ti (and respectively, D1tiq in such a way that Λj P D

1
ti .

So every element ofDt can be obtained from Λi and an element ofK 1ti and therefore xDty Ď
@

tΛiu YD
1
ti

D

.
Linear independence of the elements of tΛiu YD1ti is clear, and therefore xDty “

@

tΛiu YD
1
ti

D

“ QK.
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3. Kt1...l be a basis for KerpĂMt ´ vλ1 ´ ¨ ¨ ¨ ´ vλlq and Dt1...l the corresponding dual elements. Also as in
the proof of the previous parts, let Kt be a basis for KerpĂMtq and also let q1, . . . , qm P Kt correspond to
Λ1, . . . ,Λm respectively. Then from the proof of part 2 we have that tq1uYKt1 is a basis forKerpĂMtq. Also
by part 2 of the proposition, q2, . . . , qm P xKty and correspondingly Λ2, . . . ,Λm P xDt1y. Now consider
the matrix ĂMt ´ vλ1

and the basis Dt1 obtained from it. Since vλ2
is active in Λ2 (which corresponds to

q2 in Kt), and it is not active in Λ1, then we can apply part 2 of the proposition to the matrix ĂMt ´ vλ1

and the basis Dt1 obtained by it. Then we will have that tq2u Y Kt12 is a basis for KerpĂMt ´ vλ1
q

and q3, . . . , qm P xKt12y. Correspondingly, Λ3, . . . ,Λm P xD12y. This implies that tq1, q2u Y Kt12 is a
basis for KerpĂMtq. Continuing with vλi , i ě 3, and considering the assumption that vλi is not active in
Λ1, . . . ,Λi´1, j ‰ i, we finally get tq1, . . . , qmu Y Kt1...m as a basis for KerpĂMtq and correspondingly
tΛ1, . . . ,Λmu YD1...m as a basis for the degree t part of QK

The above proposition shows that deleting some columns from ĂMt helps us to avoid re-computing the basis
elements of degree at most t ´ 1, which were already computed in the previous steps. Not every set of m active
columns will give us degree t elements of a basis. In fact if we delete two columns that both are active in two
different basis members of Dt´1, then we may not obtain some members of Dt, For instance Let D2 “ tΛ1 “

d1`d2`d
2
1`d

2
2,Λ2 “ d1`d2`2d2

1`d1d2u and Λ1 “ d1`d
3
2 P Kerp

ĂM3q. Then Λ1 R KerpĂM3´vd1 ´vd2q.
Choosing the appropriate columns can be seen as a combinatorial problem. For each element of Dt´1, if we

consider sets corresponding to the active columns in that element, then a set of columns that satisfy the assump-
tions of part 3 of Proposition 5 form a System of Distinct Representatives. However, not every set of distinct
representatives gives us the appropriate columns. The above example shows this. There are combinatorial and
graph theoretical equivalences for the above conditions.

In the following we show how to detect columns vλ1
, . . . , vλm that satisfy the assumption of part 3 of Propo-

sition 5. This is done via changing the basis tΛ1, . . . ,Λmu into a new reduced basis tΛ11, . . . ,Λ
1
mu, in which the

leading terms satisfy the assumptions of part 3 of Proposition 5.
Let Dt´1 “ tΛ1, . . . ,Λmu as above. Remember that having Dt´1, one can construct Matrix 6 in order to

obtain a basis for the degree t part of R {Q , so that Condition 10 can be applied. Below we show constructing
a similar, but smaller matrix which gives us the desired set of active columns. Same as ĂMt, the columns of this
matrix are labeled by the coefficients/polynomials that appear in Λ in Equation 7. Same as Matrix 6, the rows
of this matrix come from Λ1, . . . ,Λm. Let vλ1 , . . . , vλu be the columns of ĂMt such that they are active in Dt´1.
Construct the following matrix containing the columns vλ1

, . . . , vλu .

M 1 “

¨

˚

˝

Columns labeled same as ĂMt

Λ1
... vλ1 . . . vλs
Λm

˛

‹

‚

, (16)

Changing M 1 into a row echelon form matrix, after moving the pivot columns to the left hand, we will reach
to a matrix of the following form.

G1´1M 1 “

¨

˚

˚

˚

˚

˝

Λ11 ˚ ˚

Λ12 0
. . . ˚

...
...

. . . ˚

Λ1m 0 ¨ ¨ ¨ 0 ˚ ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‚

, (17)

where diagonal entries are nonzero and G1 is the matrix that takes care of the operations done for the column
swapping and the row echelon form. Note that we will not have any zero row. This is because otherwise, if we
obtain a zero row in G1´1M 1, that row is linearly dependent to the other rows. But this is in contradiction with
Λ1, . . . ,Λm (and therefore Λ11, . . . ,Λ

1
m as their linear combination) being linearly independent. Then our basis

will satisfy the conditions of part 3 of Proposition 5.
Now we are ready to prove the following, which provides us with an algorithmic improvement of the integra-

tion method, more efficient than Condition 10.
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Corollary 19. (Criterion for Deleting Active Columns) Let Dt´1 “ tΛ1, ¨ ¨ ¨ ,Λmu, ĂMt, Dt, vλ1 , . . . , vλu and
G1´1M 1 be as in Equation 17, and (by abuse of notation) let vλ1

, . . . , vλm be the columns of ĂMt corresponding
to the first m columns in G1´1M 1. Also let Kt1...m be a basis for KerpĂMt ´ vλ1 ´ ¨ ¨ ¨ ´ vλmq and Dt1...m be the
set of its corresponding dual elements. Then Dt´1 YDt1...m is a basis for the degree t part of QK.

Proof. We only need to prove that the columns vλ1
, . . . , vλm in G1´1M 1 satisfy the conditions of part 3 of Propo-

sition 5. This is the case because for all 1 ď i ď m, vλi has zero in coordinates i ` 1, . . . ,m and has non-zero
coordinate i, which is the row corresponding to Λi. This means that for all 1 ď i ď m, vλi is not active in
Λ1, . . . ,Λi´1. Having the above argument, the result comes directly from Proposition 5.

Corollary 19 provides us with an optimization in the integration method. Assume that the monomials xa1 , . . . , xam

form a basis for the degree t ´ 1 part of R {Q . If the monomial dxai only appears once in Λ in Equation 7, then
applying Condition 10, we have that

Λpxaiq “ λdxaipxaiq “ λi “ 0.

This gives us an equation which adds a row to ĂMt. However, instead of adding the corresponding row to ĂMt, one
can just plug in λi “ 0 in the other equations obtained from Conditions 8, 9. This will remove λi from the other
equations, or equivalently will remove the column vλi from ĂMt. If we let vλi be the only column of Mt such that
its label contains dxai , then vλi is active in Λi and therefore according to Corollary 19, one can delete it from ĂMt

in order to avoid re-computing Dt´1.
In what follows we show how our construction implies a basis for the quotient ring as well as a normal form

algorithm and a Gröbner basis of the primary component of the isolated point in question.

Proposition 6. Let vλ1
, . . . , vλm be the columns in the criterion for deleting active columns, i.e., Corollary 19.

Also assume that p1, . . . , pm are the corresponding polynomials to the coefficients λ1, . . . , λm in Λ in Equation
7 and let p1i P Krx1, . . . , xns be the polynomial with the same monomials as pi P KrBs for 1 ď i ď m. Then
tp1, . . . , pmu is a basis for the degree t´ 1 part of R {Q .

Proof. Let l1, . . . , lm be the leading terms of p1, . . . , pm. Then from the discussion in the integration method,
we know that tl1, . . . , lmu is a basis for the degree t ´ 1 part of R {Q . Since p1, . . . , pm P R {Q and also the
cardinality of tl1, . . . , lmu and tp1, . . . , pmu are the same, then in order to prove that tp1, . . . , pmu is a basis for
R {Q , we just need to prove that p1, . . . , pm are linearly independent. Without loss of generality, we can assume
that li appears only in pi, 1 ď i ď m. Because otherwise, we can reduce p1, . . . , pm with respect to each other
so that we obtain polynomials p11, . . . , p

1
m such that l1, . . . , lm are the leading terms of p11, . . . , p

1
m and li appears

only in pi, for 1 ď i ď m and also xp11, . . . , p
1
my “ xp1, . . . , pmy. Now this shows that p1, . . . , pm are linearly

independent, because each leading term only appears in one single polynomial and therefore no pi can be in the
span of the other pj , 1 ď j ‰ i ď m.

Let p1i P Krx1, . . . , xns be the polynomial pi, substituting Bxi “ xi, for 1 ď i ď m. Then Proposition 6
implies that the criterion for deleting active basis can be viewed as adding the equation Λpp1iq “ 0, for 1 ď i ď m.
Exactly the same as Condition 10, this equation leads to adding rows to ĂMt, however those rows are in the form
p0, . . . , 0, c, 0, . . . , 0q, where c is a nonzero element in coordinate i, 1 ď i ď m and therefore they result in
deleting the corresponding columns. We can say even more.

Proposition 7. Let tp11, . . . , p
1
mu Ď Krx1, . . . , xns be a (not necessarily monomial) basis for the degree t part of

R {Q such that no monomial of p1i is in Q and let p1, . . . , pm P KrBs be the polynomials p1i, substituting xi “ Bxi ,
for 1 ď i ď m. For monomials m1, . . . ,mk R Q such that m1, . . . ,mk R Supppp1q Y . . . Y Suppppmq, write

mj “
m
ř

i“1

λijp
1
i. Then Λi “ pi `

k
ř

j“1

λijmj , 1 ď j ď m, is a basis for the degree t part of QK and the normal

form of any g P Krx1, . . . , xns with respect to the basis tp11, . . . , p
1
mu is

NF pgq “
m
ÿ

i“1

Λipgqp
1
i.

Proof. Λ1, . . . ,Λm are linearly independent because p1, . . . , pm are linearly independent in R {Q , due to the
linear independence of p11, . . . , p

1
m. The latter is the case by Proposition 6. The rest of the proof is exactly the

same as the proof of Lemma 2.4 in [19].
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If tp11, . . . , p
1
mu Ď Krx1, . . . , xns is an arbitrary basis of R {Q and tp1, . . . , pmu Ď KrBs are the correspond-

ing differential polynomials, then removing the monomials that are in Q in each p1i, we will obtain a new basis
for R {Q . So this assumption in the proposition holds without loss of generality. Thus, we have the following
generalization of Lemma 3.4 in [19].

Proposition 8. Let tp11, . . . , p
1
mu Ď Krx1, . . . , xns be a basis for the degree t part ofR {Q such that no monomial

of p1i is inQ. An element Λ P KrBs is not zero inQKt zQ
K
t´1 if and only if in addition to Equations 9 and 8 it satisfies

Λppiq “ 0, 1 ď i ď m.

Constructing matrices M 1 and G1´1M 1 in order to choose particular active columns and deleting them is a
special case of the above proposition. We have the following generalization of Proposition 3.7 in [23].

Proposition 9. Let ă be a term order and mj , pi, p
1
i,Λi, 1 ď i ď m, 1 ď j ď k be as in Proposition 8. Also

let li “ ltpp1iq and w1, . . . , ws be the monomials different from li in p11, . . . , p
1
m. Write wi “

m
ř

j“1

γijp
1
j . Consider

W “ tgwi :“ wi`
m
ř

j“1

γijp
1
j |1 ď i ď su,G :“ tmj`

m
ř

i“1

λijp
1
i|1 ď j ď mu andC :“ txc|c P Nn, |c| “ N`1u.

Then GYW Y C is a Gröbner basis for Q with respect to ă.

Proof. Proof of Proposition 3.7 in [23] works here as well. We just need to note that for every f P Q, ltpfq P
xltpGq Y ltpW q Y Cy.

Note that unlike Proposition 3.7 in [23] GYC is not a Gröbner basis in this case as we don’t necessarily have
xltpQqy “ xltpGq Y ltpW q Y Cy.

We explain the computations in step 3 of Example 3.3 in [19] using the above result. We also compare our
proposition with Condition 10. This is done below in Example 20.

Example 20. Let I “ xf1, f2y Ĳ Krx, ys, where

f1 “ x´ y ` x2

f2 “ x´ y ` y2.

In step 2 of the algorithm we have that

ĂM2 “

¨

˝

d1 d2 d2
1 d1d2 ` d

2
2

Condition 8 0 0 1 ´1
Λpf1q “ 0 1 ´1 1 0
Λpf2q “ 0 1 ´1 0 1

˛

‚,

from which we have D2 “ tΛ1 “ 1,Λ2 “ d1 ` d2,Λ3 “ d2 ` d2
1 ` d1d2 ` d2

2u. The active columns in D2 are
v1, v2, v3, v4, where vi refers to column i and therefore matrix M 1 defined in 16 (ignoring Λ1 “ 1) is

M 1 “

ˆ

d1 d2 d2
1 d1d2 ` d

2
2

Λ2 1 ´1 0 0
Λ3 0 1 1 1

˙

.

Two instances of substituting some columns of M 1 and then computing its (reduced) echelon form are shown
below. Matrix

G1´1
1 M 1 “

ˆ

d2 d2
1 d1 d1d2 ` d

2
2

Λ12 1 0 ´1 0
Λ13 0 1 1 1

˙

gives columns v2 and v3 and matrix

G1´1
2 M 1 “

ˆ

d2 d1d2 ` d
2
2 d1 d2

1

Λ12 1 0 ´1 0
Λ13 0 1 1 1

˙

gives columns v2 and v4.
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For instance if we consider G1´1
2 M 1, then Λ12 “ d2` d1` d

2
1 and Λ13 “ d1d2` d

2
2` d1` d

2
1. d2 only appears

in λ12 and d1d2 ` d2
2 only appears in Λ13, and therefore by deleting columns v2 and v4 from ĂM3 we will have the

following in step 3.

ĂM3 ´ v2 ´ v4 “

¨

˚

˚

˝

d1 d2
1 d3

1 ´ d
2
1 d3

2 ` d1d
2
2 ` d

3
1d2 ´ d1d2

Condition 8 0 0 1 1
Condition 8 0 1 0 0
Λpf1q “ 0 1 1 ´1 0
Λpf2q “ 0 1 0 0 0

˛

‹

‹

‚

.

KerpĂM3´ v2´ v4q “ 0 and we are done. Using any of the pairs of columns obtained via other possible matrices
we would have gotten the same result.

Other observations. On one hand we show how pivoting could help and on the other hand we compare the
sizes of the matrices produced by the theory presented above. Let us put an order on the monomials of Dt´1, e.g.,
degree lexicographic. Then ltpΛ1q, the leading term of Λ1, would be well-defined for every Λ1 P Dt. Now one
can consider reducing the members of a basis of Dt with respect to each other so that ltpΛ1q R SupppΛ2q for all
Λ1 ‰ Λ2 P Dt. We call such a basis a reduced basis. Then the leading term will be a monomial that uniquely
appears in the reduced basis. If Λ1, . . . ,Λm is a basis for Dt´1, then removing the columns corresponding to
ltpΛ1q, . . . , ltpλmq from ĂMt is equivalent to part 3 of Proposition 5. Using part 1 of Proposition 5, one may
check whether vλ is active in D efficiently. This must be done with precise pivoting. For that, one must start with
reducing vλ with the appropriate columns, without doing the column reductions for the other columns, unless it is
required. In the worst case, we will need to compute the whole kernel, i.e., the wholeDt, but this is not necessarily
the case all the time and therefore this can be viewed as a first potential optimization step. As a side remark, using
row echelon form is also taking advantage of pivoting.

Change of the Integration Order at Each Step. We conclude by another possible optimization strategy. One
can change the order of the variables at each step of the integration method in order to gain some computational
advantage. Suppose that we have computed Dt´1 “ tΛ1, . . . ,Λmu. Consider ni :“ #tdxαii P

Ť

i

SupppΛiq|αi P

Nu. Now, re-order the variables in the following way: if ni ď nj , then put xi ă xj (note that if the equality
happens, we don’t care whether xi appears before xj or vice versa). We call such an order a good integrable order.
Assume that xb1 ă xb2 ă . . . ă xbn is a good integrable ordering, where bi P t1, . . . , nu. Now we consider
Λ1, . . . ,Λm as polynomials in Krdxb1 , . . . , dxbns and continue with the integration in the following order:

Λ “
ÿ

i

λi1

ż

b1

Λi|dxb2“¨¨¨“dxbn“0 ` ¨ ¨ ¨ `
ÿ

i

λin´1

ż

bn´1

Λi|dxb2“¨¨¨“dxbn“0 `
ÿ

i

λin

ż

bn

Λi.

This way, we will do the least possible number of integrations. Note that the number of integrands and the number
of basis elements of Dt´1 are fixed and therefore we won’t gain any advantage in terms of the size of Mt. The
following example illustrates the optimization.

Example 21. Consider Example 16. In step two we have that

D2 “
@

Λ1 “ 1,Λ2 “ d1 ` d2,Λ3 “ ´d1 ` d
2
1 ` d1d2 ` d

2
2

D

.

Then n1 “ 3, n2 “ 2. Therefore we change the order into y ă x and work on Krdy, dxs. Then

Λ “ λ1dy ` λ2dx` λ3dy
2 ` λ4pdydx` dx

2q ` λ5pdy
3q ` λ6pdx

3 ´ dx2 ` dx2dy ` dxdy2q.

We have have only one monomial in the 5-th column of M3, while in the original ordering, we had two:

Λ “ λ1dx` λ2dy ` λ3dx
2 ` λ4pdxdy ` dy

2q ` λ5pdx
3 ´ dx2q ` λ6pdy

3 ` dxdy2 ` dx2dy ` dxdyq.
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Algorithm 3: Modified Integration Method
Input: A basis for an mζ-primary ideal Qζ
Output: A basis for QKζ and directional multiplicities
def ComputeBasis:

Dold “ H

Dnew “ tΛ “ d0 “ 1u
µi “ 0, i “ 1, . . . , n
while Dold ‰ Dnew:

Dold “ Dnew
Change the order of the variables into a good integrable order

Λ :“
s
ř

i“1

n
ř

k“1

λik
ş

k
Λipd1, . . . , dk, 0, . . . , 0q

@1 ď k ă l ď n,
s
ř

i“1

λikdlpΛiq ´
1
ř

i“1

λildkpΛiq “ 0

@1 ď i ď s, Λpfiq “ 0
Construct matrix Mnew, the coefficient matrix of Λ
Apply Criterion 19 and choose good columns vλ1

, . . . , vλm
Mnew : Mnew ´ vλ1

´ ¨ ¨ ¨ ´ vλm
Dnew “ Dold

Ť

KerpMnewq

If dxµi`1
i P SupppDnewq, then µi “ highest power of dxi in Dnew|xi‰0

return Dnew and µi

3.3.2 Modifications of Macaulay’s Algorithm

For Macaulay’s algorithm we use the following notation. Mt stands for the matrix in step t. Columns of Mt in
Macaulay’s algorithm are labeled by monomials dxa P Krdx1, . . . , dxns. Then vdxa denotes the column corre-
sponding to dxa in Mt. Note that vdxa is well-defined because in Mt obtained via Macaulay’s algorithm, for every
monomial of degree at most t, there exists a column labeled by it and vice versa. Also note that since the columns
are labeled by the monomials, a column vdxa is active in a basis D of QK if and only if vdxa P SupppDq.

Below we show a modification of Proposition 5 and its corollary for Macaulay’s algorithm. This enables us to
make Macaulay’s algorithm more efficient.

Proposition 10. Let Mt,Mt´1, Dt,Λi p1 ď i ď mq, λ, dxa and vdxa be as above.
Then the following hold.

1. If vdxa is a column of Mt, then vdxa P SupppDtq if and only if vdxa can be reduced to zero by other columns
of Mt.

2. For all 1 ď i ď m, if vdxa
i
P SupppΛiq, K 1ti is a basis for KerpĂMt ´ vλiq and D1ti is the set of its

corresponding dual elements, then tΛiu YD1ti is a basis for the degree t part of QK. Moreover, if vdxai P

SupppΛiq, but vdxai R SupppΛjq, 1 ď j ‰ i ď m, then there exists a basis D1ti such that Λj P D
1
ti , j ‰ i.

3. For all 1 ď i ď m, if vdxai P SupppΛiq, but vdxai R SupppΛjq, 1 ď j ď i ´ 1, then Dt´1 YDt1...m is a
basis for the degree t part of QK.

Proof. Similar to the proof of Proposition 5.

In order to detect columns vdxai that satisfy the assumptions of Proposition 10, one can simply adapt the
methods mentioned for the modified integration method and equivalently form the matrices M2, G2´1M2. Then
we have the following corollary, which is the equivalent of Corollary 19 for Macaulay’s algorithm.

Corollary 22. (Criterion for Deleting Suitable Columns in Macaulay’s Matrices) LetDt´1 “ tΛ1, ¨ ¨ ¨ ,Λmu,Mt,
Dt, vλ1 , . . . , vλu be as in Equation 17 and G2´1M2 be as above and (by abuse of notation) let vλ1 , . . . , vλm
be the columns of Mt corresponding to the first m columns in G2´1M2 . Also let Kt1...m be a basis for
KerpMt ´ vλ1

´ ¨ ¨ ¨ ´ vλmq and Dt1...m be the set of its corresponding dual elements. Then Dt´1 YDt1...m is a
basis for QK.
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Proof. Similar to the proof of Corollary 19.

The following provides us with more modifications on Macaulay’s algorithm.

Lemma 23. For all 1 ď i ď n, 1 ď m, t ď N and a, b P Nn the following hold.

1. Let dxa P SupppDtq and dxb|dxa then dxb P SupppDq. In particular, if dxa P SupppDtq and dxmi |dx
a

then dxmi , ¨ ¨ ¨ , dxi, 1 P SupppDq.

2. Let dxb R SupppDq, dxb|dxa and |a| ď t. Then dxa R SupppDtq. In particular, if dxmi R SupppDq then
dxm`1

i , . . . dxti R SupppDtq. Also if dxmi R SupppDt´1q then dxm`1
i , dxm`2

i , . . . R SupppDtq.

Proof. 1. For all 1 ď i ď n:

dxa P SupppDtq ô xa R Qζ

xa R Qζ ñ xb R Qζ

xb R Qζ ô dxb P SupppDq.

The rest can be proved by putting xb “ xmi .

2. Although this part can be proved directly, however, we use a simple logic argument to prove it. Consider
the following notations for the three logic statements that appear in the proposition:

p “ dxa P SupppDtq, q “ dxb|dxa, r “ dxb P SupppDq.

Then the previous part says that
p^ qñ r.

Therefore, we have the following (Note that the condition |a| ď t is a consequence of p):

pp^ qñ rq ô p rñ  pp^ qqq

ô p rñ  p_ qq

ô p r^ qñ  pq,

which means that if dxb R SupppDq and dxb|dxa then dxa R SupppDtq.

By Lemma 23, one may find some monomials in SupppDq that are of degree at most t, but not necessarily
belong to SupppDtq and therefore not necessarily they appear as monomials in the generators of Dt. Also if
dxmi is the largest power of dxi that appears in SupppDt´1q then by Lemma 23 dxm`1

i is the largest possible
power of dxi that can appear in SupppDtq. Another point that we can deduce from the above proposition is that
if dxmi is the largest power of dxi that appears in SupppDt´1q and dxm`1

i R Dt, then not necessarily µi “ m,
because dxm`1

i may appear in some other step of the algorithm and therefore, for computing µi, this doesn’t give
us a termination criterion. However, in that case there won’t be anymore a leading term of the form dxki , k P N
when we work with respect to a degree term order. Also obviously, we have that dxµii , . . . , dxi P SupppDq. All
these monomials appear in SupppDtq at some step of the integration method, as they only will be obtained via
integrating the lower power and therefore they will appear at some step of the integration algorithm. But this
doesn’t imply that they necessarily appear during Macaulay’s algorithm. The same applies not only for the powers
of a variable xi, but also to every monomial dxa P SupppDt´1q, i.e.,

ş

i
dxa, 1 ď i ď n is the only multiple of dxa

that can appear in SupppDtq.
Based on the above remarks, we can make the following improvement to Macaulay’s algorithm.

Proposition 11 (Improvement on Macaulay’s Algorithm). Let Mt be the matrix obtained via Macaulay’s algo-
rithm. Consider the set

A “

"
ż

i

dxa, 1 ď i ď n : dxa P SupppDt´1q ^
`

Edxb P SupppDt´1

˘

, dxa|dxbq

*

. (18)

ThenKerpMt´vAq “ KerpMtq, whereM´vA is the matrix obtained by deleting the columns corresponding
to the members of A.
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Proof. The proof is immediate from part 2 of Lemma 23.

We explain the improvement by redoing the calculations for Example 12, step 3 using the above result and
comparing the computations.

Example 24. Let

f1 “ x2 ` py ´ 1q2 ´ 1

f2 “ y2.

After doing the computations in step 2, we haveD2 “ t1, d1, 2d
2
1`d2u. d2 P SupppD2q, but d2

2 R SupppD2q. So,
in step 3, by the above improvement, we can remove vd1d22 and vd32 from M3. Also we can remove the columns
v1, vd1 , vd21 using proposition 10. So the new matrix has 5 columns, while the original matrix in Macaulay’s
method has 10 columns.

Algorithm 4: Modified Macaulay’s Algorithm
Input: A basis for an mζ-primary ideal Qζ
Output: A basis for QKζ and the directional multiplicities
def ComputeBasis:

Dold “ H

Dnew “ tΛ “ d0 “ 1u
t “ 0
µi “ 0, i “ 1, . . . ,m
while Dold ‰ Dnew:

Dt “ Dold
Dold “ Dnew
Construct matrix Mnew, the coefficient matrix of Dnew
@Λ P Dt , delete a good active column in Λ from Mnew
Compute A as in Equation 18
Mnew “Mnew ´ vA
If v

dx
µi`1

i
P KerpMnewq, then µi “ µi ` 1

Dnew “ kernelpMnewq

Dnew “ Dold
Ť

KerpMnewq

t “ t` 1
return Dnew and µi

Example 25. Let I “ xf1, f2, f3y Ď Krx, y, zs, where

f1 “ 2x` 2x2 ` 2y ` 2y2 ` z2 ´ 1,

f2 “ px` y ´ z ´ 1q3 ´ x3,

f3 “ p2x
3 ` 2y2 ` 10z ` 5z2 ` 5q3 ´ 1000x5.

p0, 0,´1q is a root of multiplicity 18, µx “ 5, µy “ 8, µz “ 8 and N “ 9. From step 3 to step 5, the highest
power of dx is 2. In step 6, the monomial dx3 appears and in steps 7 and 8, we see the monomial dx4. For dy
and dz all the powers appear in all steps. This is a very dense system for computing µx and µy , in the sense that
all the powers of dy and dz appear in all the steps. However for dx we see that we have done many redundant
computations.

At the end of this section, we comment on the comparison between the size of the matrices obtained at step
t of the above algorithms and their modifications, as size is a big obstacle in computations. The matrix obtained
via Macaulay’s algorithm has

`

t`n
n

˘

columns and at least the same number of rows. In the integration method,
ĂMt has nm columns and

`

n
2

˘

` e rows. Applying Condition 10 in the integration method, one gets m extra rows,
which in special cases can result in deleting at most those m rows and also at most m columns. So the size of
the matrix is at least

`

n
2

˘

` e ` m ˆ pn ´ 1qm. However, this is exactly the size of the matrix obtained using
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our modification to the integration method. Also if we let xMt be the matrix obtained from Macaulay’s algorithm
applying our modifications, for every column vdxa of xMt, there exists a pλ such that dxa P Suppppλq. In other
words, all the monomials appearing as the columns of xMt, will appear in the columns of ĂMt, but the difference is
that they might be a monomial in a polynomial. This means that the number of columns of ĂMt and yMT will be
the same if every pλ is a monomial. Thus, the columns of ĂMt are (possibly sums of) the columns of xMt. Note that
many of the rows in both methods can (and in practice are) zero and can be simply deleted.

Concluding this section we provide a list of computational observations:

• Computing the directional multiplicity is basically equivalent to computing the projection of the kernel of
MN . There are several classic kernel computation algorithms, e.g, Singular Value Decomposition. However,
we are not aware of any algorithm for projection, without computing the whole kernel. Proposition 5 can
be considered as a proposal for an incremental algorithm for computing kernel projection.

• Having a bound for the directional multiplicities, one can construct a single matrix and compute the dual
basis using that matrix rather than running several steps. This is guaranteed by Proposition 3, part 3. The
idea for constructing such a matrix is to use the resultant in order to get a bound U for directional multi-
plicities. Having MU , the Macaulay matrix of size U , the kernel of MU will give us the whole dual. Note
that the main obstacles for this method are the size of MU as well as computing the resultant. The bound U
could be the Bezout bound in worst case.

4 Applications and Future Work

4.1 Applications of Directional Multiplicity
We explore some applications of directional multiplicity. The exploration does not go into details, as the main
purpose is to show the usefulness of the concept rather than present the applications themselves.

Arrangement and Topology of Planar Algebraic Curves. There are several methods in the literature for com-
puting the arrangement and topology of a planar algebraic curve, e.g [2, 1, 7, 10, 4]. In principle, all methods use
some elimination tool, e.g Gröbner basis or resultants, in order to project algebraic curves on one axis and identify
the critical points (points where derivatives vanish). This is done by finding the real roots of the elimination ideal
and using this information to reconstruct/identify the arrangement and topology of the curve. These approaches
typically assume that no two critical points have the same projection on the axis. Our work explains what happens
in that situation. In Section 4.1, we show how directional multiplicity can handle degenerate situations. Particu-
larly, our algorithms for computing directional multiplicity with respect to an axis could be useful for computing
the multiplicity of a point in its fiber. Devising a full algorithm for determining the topology of the algebraic curve
is beyond the scope of this paper.

Geometry of the Elimination Ideal. Let I Ď Crx, ys be a zero dimensional ideal with no roots at infinity
generated by two polynomials corresponding to two planar curves and I1 “ I X Crys “ xgy be its elimination
ideal. We illustrate the case of geometric degeneracy and how directional multiplicity can be used, in a concrete
example. Let f1 “ py ` 1qpy ´ x` 1q and f2 “ x2 ` y2 ´ 1 as shown in the figure. The two curves intersect at
two points, namely p1, 0q and p0,´1q. Their Sylvester resultant is 2ypy ` 1q3, which implies that the projection
on the y-axis of the roots p1, 0q and p0,´1q have multiplicity 1 and 3 respectively. On the other hand, comput-
ing the Gröbner basis of the elimination ideal in Crys, we obtain the unique monic generator g “ ypy ` 1q2.

f1 py ` 1qpy ´ x` 1q
f2 x2 ` y2 ´ 1
g ypy ` 1q2

resultant 2ypy ` 1q3
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Observing the difference in the multiplicities of the resultant and g, the questions “when does the multiplicity
drop?” and “what does the multiplicity of a factor in g mean?” arise. Using the concept of directional multiplicity,
we are able to address these question in the degenerate case, as the one in the example.

The exponent of the factor of g corresponding to an intersection point is the directional multiplicity at that
point. The exponent of the corresponding factor of the resultant give us the multiplicity of the intersection points.
However Gröbner basis did not say much about the geometry of the intersection. Now having the concept of
directional multiplicity, we can explain the generator of the elimination ideal geometrically. In general given
dense polynomials f1, . . . , fn P Krx1, . . . , xns, let I1 “ xgy and R1 . . . Rk be the square-free factorization of the
Macaulay resultant. Then g “ Rµ1

1 . . . Rµkk .

Computing Hilbert Series of Zero Dimensional Ideals. For an isolated point ζ and its corresponding mζ-
primary ideal Qζ , Mourrain has shown in [23] that having a base for QKζ , one can obtain a basis for R

L

Qζ . Also
the improvement of the integration method using Equation 10 is based on computing a dual basis along with a
basis for R

L

Qζ . The function mapping t to the dimension of the space generated by the degree t part of this
quotient is actually the Hilbert Function. Hilbert function and Hilbert series can be computed via Gröbner bases.
Having the dual basis, one can compute the Hilbert function and Hilbert series. For instance, for a 0-dimensional
ideal, given the set of points in the variety of the ideal, Chapter 7 of [25] shows such a method to compute the
Hilbert function and series as well as the regularity. These are based on using Gröbner basis for the computations.
Alternatively, one can use dual bases in order to compute these objects. In particular, directional multiplicities
can be used to compute the degree of the elements of the ideal, which can be useful in computing the regularity.
Finally, directional multiplicities can be used in computing the Hilbert series of the last elimination ideal.

4.2 Future Work
Directional Multiplicity with respect to an arbitrary v P Rn. In the definition of directional multiplicity, we
have considered the n axes as the directions. One could think of defining the multiplicities in the direction of an
arbitrary vector v P Rn. The directional multiplicities along these vectors might be useful in studying singularities
of curves.

Directional Multiplicity for Sparse Systems. Let us consider the following example.

Example 26. Let I “
@

f1 “ x9 ´ x6y2, f2 “ y
D

Ď Krx, ys. Then the origin is a root of degree 9, µ1 “ 9, µ2 “

1. Both the integration method and Macaulay’s algorithm need to run until step 10 in order to find the dual space.

In the above example many columns (corresponding to monomials) are considered, which are equal to the zero
vector. This is because the system is sparse. If we knew a-priori that dx9 P D, then we could have avoided the
previous steps. One idea to deal with such cases is to start with the matrix Mk, where k is an upper bound for
N and do the binary search top-down. However the only such bound that we are aware of is the Bezout bound
for µ, which can be too big and hence this method is impractical. For computing µi, when we have a sparse
system with respect to xi, one could follow a down-top algorithm which works by a-priory adding extra columns
vdxi , . . . , vdx2t

i
to the modified matrix Mt, where modified Mt refers to the matrix that has been obtained at step

t of either modified integration method or Macaulay’s algorithm.

Acknowledgments
The authors would like to express their sincere gratitude to Matteo Gallet for discussions and comments on the
early versions of this work.

Part of this work was done during the second author’s supported visit to the Centre de Recerca Matemàtica,
Bellaterra, Spain. For the third author, part of this work has been co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALIS-UOA (MIS
375891).

23



References
[1] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of semi-algebraic planar

curves. Computer Aided Geometric Design, 25(8):631–651, 2008.

[2] D. S. Arnon and S. McCallum. A polynomial-time algorithm for the topological type of a real algebraic
curve. Journal of Symbolic Computation, 5(1):213–236, 1988.

[3] D. Bates, C. Peterson, and A. J. Sommese. A numerical-symbolic algorithm for computing the multiplicity
of a component of an algebraic set. Journal of Complexity, 22(4):475–489, 2006.

[4] E. Berberich, P. Emeliyanenko, A. Kobel, and M. Sagraloff. Arrangement computation for planar algebraic
curves. In Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, pages 88–
98. ACM, 2012.

[5] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
Nulldimensionalen Polynomiideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring
Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck,
Austria, 1965. (English translation in Journal of Symbolic Computation, Special Issue on Logic, Mathemat-
ics, and Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475-511, 2006).

[6] B. Buchberger. Ein Algorithmisches Kriterium für die Lösbarkeit eines Algebraischen Gleichungssystems
(An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations) . Aequationes Mathe-
maticae, 3:374–383, 1970. (English translation in B. Buchberger, F. Winkler (eds.): Gröbner Bases and
Applications, London Math. Society Lecture Note Series 251, Cambridge Univ. Press, 1998, Pages 535
-545).

[7] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, and E. Tsigaridas. On the topology of planar
algebraic curves. In Proceedings of the twenty-fifth annual symposium on Computational geometry, pages
361–370. ACM, 2009.

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational
Algebraic Geometry and Commutative Algebra. Springer, 7 2005.

[9] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer, 2nd edition, 2005.

[10] D. N. Daouda, B. Mourrain, and O. Ruatta. On the computation of the topology of a non-reduced implicit
space curve. In Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’08, pages 47–54, New York, NY, USA, 2008. ACM.

[11] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial systems. In Pro-
ceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC ’05, pages
116–123, New York, NY, USA, 2005. ACM.

[12] M. Elkadi and B. Mourrain. Introduction à la Résolution des Systèmes Polynomiaux, volume 59. Springer,
2007.

[13] I. Emiris and B. Mourrain. Matrices in elimination theory. Journal of Symbolic Computation, 28(1-2):3–44,
1999.

[14] M. M. Kapranov I. M. Gelfand and A. V. Zelevinski. Discriminants, Resultants, and Multidimensional
Determinants. Birkhäuser, 1994.

[15] R. Krone and A. Leykin. Eliminating dual spaces. arXiv preprint arXiv:1503.02038, 2015.

[16] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with isolated singular
solutions. In Algorithms in algebraic geometry, pages 79–97. Springer, 2008.

[17] N. Li and L. Zhi. Computing isolated singular solutions of polynomial systems: case of breadth one. SIAM
Journal on Numerical Analysis, 50(1):354–372, 2012.

24



[18] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge mathematical library. Cambridge
University Press, Cambridge, New York, Melbourne, 1994.

[19] A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singular zeros of polynomial systems.
In Proceedings of the 36th international symposium on Symbolic and algebraic computation, pages 249–256.
ACM, 2011.

[20] A. Mantzaflaris and B. Mourrain. Singular zeros of polynomial systems. In Tor Dokken and Georg Muntingh,
editors, SAGA – Advances in ShApes, Geometry, and Algebra, volume 10 of Geometry and Computing, pages
77–103. Springer International Publishing, 2014.

[21] M Marinari, H Möller, and T. Mora. Gröbner duality and multiplicities in polynomial system solving. In
Proceedings of the 1995 international symposium on Symbolic and algebraic computation, pages 167–179.
ACM, 1995.

[22] M Marinari, H Möller, and T. Mora. On multiplicities in polynomial system solving. Transactions of the
American Mathematical Society, 348(8):3283–3321, 1996.

[23] B. Mourrain. Isolated points, duality and residues. Journal of Pure and Applied Algebra, 117:469–493,
1997.

[24] H. Rahkooy and Z. Zafeirakopoulos. Using resultants for inductive gröbner bases computation. ACM Com-
munications in Computer Algebra, 45(1), 2011.

[25] H. Schenck. Computational Algebraic Geometry, volume 58. Cambridge University Press, 2003.

[26] H. J. Stetter. Numerical Polynomial Algebra. SIAM, 2004.

[27] B. L. van der Waerden. Algebra, volume 1. Springer, New York, 7th edition, 1991. Based in part on lectures
by E. Artin and E. Noether.

[28] B. L. van der Waerden. Algebra, volume 2. Springer, New York, 5th edition, 1991. Based in part on lectures
by E. Artin and E. Noether.

[29] X. Wu and L. Zhi. Computing the multiplicity structure from geometric involutive form. In Proceedings
of the twenty-first international symposium on Symbolic and algebraic computation, pages 325–332. ACM,
2008.

[30] Z. Zeng. The closedness subspace method for computing the multiplicity structure of a polynomial system.
Contemporary Mathematics, 496:347, 2009.

25



Technical Reports of the Doctoral Program

“Computational Mathematics”

2015

2015-01 G. Grasegger, A. Lastra, J. Rafael Sendra, F. Winkler: A Solution Method for Autonomous
First-Order Algebraic Partial Differential Equations in Several Variables January 2015. Eds.:

U. Langer, J. Schicho

2015-02 P. Gangl, U. Langer, A. Laurain, H. Meftahi, K. Sturm: Shape Optimization of an Electric
Motor Subject to Nonlinear Magnetostatics January 2015. Eds.: B. Jüttler, R. Ramlau

2015-03 C. Fürst, G. Landsmann: Computation of Dimension in Filtered Free Modules by Gröbner
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