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Abstract

This report presents the formal treatment of the theory of reduction
rings in the Theorema system. We describe how the formalization is sys-
tematically structured into sub-theories and how we carried out the proofs
with assistance of Theorema. For this, we devote a whole section to the
special inference rules designed speciVcally for the veriVcation of the the-
ory. In addition, we also review the most important notions related to
reduction rings and explain why one of them, the notion of irrelativity of
reductors, had to be replaced by a slightly adjusted version.

Keywords: Computer-supported theory exploration, automated reasoning, reduc-
tion rings, Gröbner bases, Theorema

1 Introduction

The computer-supported exploration of a mathematical theory aims at Vrst for-
malizing and then formally verifying, by means of automated or interactive
proving, the theory in a computer system. In our case, the system of choice
is Theorema [4, 5, 6], which was conceived by Buchberger in the mid-nineties
as a system for supporting the “working mathematician” in all aspects of his ev-
eryday work. A few years ago it has undergone a major relaunch, Vnally leading
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to version “Theorema 2.0” which, albeit incorporating all the main design prin-
ciples of Theorema 1 and still being based onMathematica [26], is very diUerent
compared to the old version of the system from the user-interface point of view.
Hence, it must be noted that the theory exploration presented in this report was
carried out entirely in Theorema 2.0.

The mathematical theory under consideration, reduction ring theory, is a nat-
ural candidate for being treated, in a completely formal way, by a mathemati-
cal assistant system. This is because large parts of the theory are extremely
technical, with many complicated and lengthy deVnitions (the axioms in Sec-
tion 2.1 serve as good examples in this respect) and tedious, but nonetheless
mostly straight-forward, proofs. Therefore, delegating some of the more techni-
cal tasks to the system for being taken care of either in a fully automatic, or at
least interactive manner, certainly is a great beneVt. This claim is also supported
by the fact that since their introduction in the early 1980s, and some extensions
and generalizations by Stifter in the late 1980s / early 1990s, reduction rings
have hardly seen any progress for more than 20 years now – and we do be-
lieve that progress is possible and has the potential to lead to interesting new
insights and valuable results. For instance, a natural generalization of reduction
rings are non-commutative reduction rings, which have not been considered so
far. Sure, extending the theory to the non-commutative case is a highly non-
trivial endeavour, but the availability of a solid and thorough formalization of
the commutative case might ease some of the possible complications.

Although, up to our knowledge, the theory of reduction rings has never been
subject to computer-supported theory exploration so far, in any system, there
already exist formal treatments of classical Gröbner bases theory in ACL2 [13],
Coq [23], Mizar [20] and Objective CAML [9]. Still, the algorithmic aspect of re-
duction rings (without any proofs) was implemented in Theorema in [3]. There,
similar as in our approach, functors are used for constructing towers of domains
in a generic way.

The report is structured as follows: Section 2 reviews the most important no-
tions of reduction ring theory, mainly in order for the report to be self-contained,
but also a couple of minor deviations of our formalization compared to existing
literature are described there. Section 3 provides an overview of our formaliza-
tion, i. e. how the theory is structured into sub-theories, how they are related
to each other, and what exactly they contain. Section 4 outlines the Theorema-
generated proof of the Main Theorem (Theorem 12) in more detail, serving as
a concrete example of a non-trivial mathematical theorem and how it can be
proved in Theorema. Section 4.1 contains some rather technical considerations
related to the notions of correlativity and irrelativity (DeVnition 3) and may be
skipped. Section 5 draws the focus from the object- to the meta level, by de-
scribing the special prover and special inference rules designed and used for the
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formal veriVcation of the theory in Theorema. Finally, Section 6 concludes the
report with a short summary and outlook.

A preliminary and shorter version of this report has already been accepted
for publication in the proceedings of the CASC’2015 conference [12]. The The-
orema notebooks containing the formalization can be obtained from the author.

2 Reduction Rings and Gröbner Bases

Reduction rings were Vrst introduced by Buchberger in 1984 [2] as a general-
ization of his Gröbner bases theory to much wider classes of domains than only
polynomial rings over Velds. Later, around 1988, Sabine Stifter further general-
ized Buchberger’s approach [21, 22], such that, for instance, also Zn (i. e. integer
quotient rings modulo arbitrary n) could be turned into reduction rings.1 Our
formalization is mainly based on Stifter’s approach, since it is the most general
one. However, the diUerences between the two approaches by Buchberger and
Stifter are only in the technical details anyway and will partly be pointed at ex-
plicitly in the remainder of this section. Furthermore, during the formalization
of the theory it turned out that part of the deVnition of reduction rings due to
[22] was slightly erroneous, in the sense that the Main Theorem (Theorem 12)
did not hold in reduction rings in general. Still, this error could be Vxed easily
and will be explained in detail in Section 4.1.

The main purpose of reduction rings clearly is being able to solve ideal-
theoretic problems, e. g. deciding ideal membership, algorithmically (or, at least,
having a procedure for solving them if the domain in question is not an algo-
rithmic reduction ring, cf. Section 2.1). Although the axioms deVning reduction
rings are quite complicated and technical, as will be seen below, they are satis-
Ved by some well-known domains, if ≺, Ic andM i

c are deVned appropriately:

• Velds,

• Z, the ring of integers,

• Zn := Z/nZ for arbitrary n ∈ Z+,

• the Gaussian integers {a+ b ı | a, b ∈ Z},

• R×R . . .×R, i. e. the n-fold direct product of R, if R is a reduction ring,

• R[X], i. e. the polynomial ring over R in the Vnitely many indeterminates
X , if R itself is a reduction ring. This property does not come “by chance”

1This had wrongly been claimed already in [2]. See [21] for details.
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but was a fundamental requirement when designing the reduction ring
axioms in [2].

For the sake of completeness one must mention that there are many other
generalizations of Gröbner bases besides reduction rings, both in the commu-
tative and in the non-commutative setting: On the one hand, Zacharias [27],
Kandri-Rody and Kapur [10], Pauer [17] and Sato et al. [19], among others,
consider commutative polynomial rings over rings with certain properties. On
the other hand, Kandri-Rody and Weispfenning [11], Mora [15], Reinert [18]
and Mialebama Bouesso and Sow [14] deal with non-commutative algebras over
Velds or rings, only to name a few. As can be seen, there are hardly any variants
of Gröbner bases in the spirit of reduction rings, where no polynomial structure
of the underlying domain is required in the Vrst place, but instead a “lifting”
method for moving from an arbitrary reduction ring R to R[X] (for a Vnite set
of indeterminates X) is provided.

Although most of the contents of the remaining part of this section can also
be found in the literature, in particular in [22], they are included here in order
for the report to be self-contained. Still, there are also some slight deviations.

2.1 DeVnitions

Let in the sequel R always be a commutative ring with unit, endowed with a
partial Noetherian order relation �. Furthermore, every non-zero c ∈ R must
have a non-zero natural number Ic and setsM1

c , . . . ,M
Ic
c ⊆ R associated to it,

where the latter are the sets of multipliers c may be multiplied with during a
reduction process. Apparently, every cmay have its own multipliers, in contrast
to the classical setting of polynomials over Velds, where the multipliers of every
polynomial are precisely the monomials; this, in fact, is still the case in [2],
where moreover Ic is restricted to 1. In [21] every c has its own multipliers, but
Ic must be 2 for all c.

DeVneMc (without superscript) asMc := M1
c ∪ . . .∪M Ic

c . In the sequel, the
typed variables a, b, c, z andm, possibly with subscripts, will always be elements
of R.

DeVnition 1 (Reduction relation). a reduces to b modulo c using m, written as
a →m,c b, iU b = a −mc ≺ a and m ∈ Mc. If m is omitted, e. g. in a →c b, the
meaning is that there existsm ∈Mc such that a→m,c b. If C ⊆ R, then a→C b
abbreviates ∃c∈C a→c b.

For a Vxed reductor r (i. e. an element of R or a set thereof), ↔r denotes
the symmetric, →∗r the reWexive-transitive, and ↔∗r the symmetric-reWexive-
transitive closure of→r.
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Note that →r is Noetherian for any reductor r, since by deVnition a →r b
implies b ≺ a and � is Noetherian.

DeVnition 2 (Connectibility below). Let r be an arbitrary reductor. Then a

and b can be connected below z modulo r, written as a
≺z
↔∗r b, iU there exist

e1 = a, e2, . . . , en−1, en = b such that ei ↔r ei+1 for 1 ≤ i ≤ n − 1 and in
addition ei ≺ z for 1 ≤ i ≤ n.

Now come the deVnitions of irrelativity and correlativity. The former can be
found in the literature (in a slightly diUerent variant, without referring to indices
i and j), whereas the latter had to be introduced in order to Vx the aforemen-
tioned problems in the deVnition of reduction rings.

DeVnition 3 (Irrelativity and correlativity). Let 1 ≤ i, j ≤ Ic1 . The pairs
(m1, c1) and (m2, c2) are said to be irrelative w. r. t. i and j iU

• c1 6= c2 or

• i 6= j,m1 ∈M i
c1
andm2 ∈M j

c1
.

The pairs (m1, c1) and (m2, c2) are said to be correlative iU c1 = c2 and there
exists 1 ≤ k ≤ Ic1 withm1 ∈Mk

c1
andm2 ∈Mk

c1
.

Note that correlativity is not the negation of irrelativity: It may well be that
there are c1, c2,m1,m2 ∈ R, 1 ≤ i, j ≤ Ic1 such that the pairs (m1, c1) and
(m2, c2) are both irrelative w. r. t. i and j and at the same time also correlative.

Next we introduce the crucial notions of (minimal, non-trivial) common re-
ducibles:

DeVnition 4 (Common reducible). Let 1 ≤ i, j ≤ Ic1 . a is called a common
reducible of c1 and c2 w. r. t. i and j iU there exist m1,m2 such that a →m1,c1

a −m1 c1, a →m2,c2 a −m2 c2 and the pairs (m1, c1) and (m2, c2) are irrelative
w. r. t. i and j.

DeVnition 5 (Non-trivial common reducible). Let again 1 ≤ i, j ≤ Ic1 . a is
called a non-trivial common reducible of c1 and c2 w. r. t. i and j, written as
c1 Ma

i,j c2, iU it is a common reducible of c1 and c2 w. r. t. i and j (according to
DeVnition 4) and there do not existm1,m2 such that

• a→m1,c1 a−m1 c1,

• a→m2,c2 a−m2 c2,

• a−m1 c1 is further reducible modulo c2 usingm2 or vice versa, and
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• the pairs (m1, c1) and (m2, c2) are irrelative w. r. t. i and j.

DeVnition 6 (Minimal non-trivial common reducible). Let again 1 ≤ i, j ≤ Ic1 .
a is called a minimal non-trivial common reducible of c1 and c2 w. r. t. i and j,
written as c1Oa

i,jc2, iU c1 M
a
i,j c2 and there does not exist a0 ≺ a with c1 M

a0
i,j c2.

Note that in the deVnitions of (minimal, non-trivial) common reducibles the
two indices i and j are completely irrelevant if c1 6= c2.

In addition to (minimal, non-trivial) common reducibles for two elements
c1, c2 there is also the notion of (minimal) non-trivial common reducible for only
one single element:

DeVnition 7 (Non-trivial common reducible for one element). a is called a non-
trivial common reducible for c, written as c Ma, iU a is reducible modulo c and
there do not existm1,m2 such that a→mk,c a−mk c, for k = 1, 2, and a−m2 c
can be further reduced modulo c usingm1.

DeVnition 8 (Minimal non-trivial common reducible for one element). a is
called a minimal non-trivial common reducible for c, written as cOa, iU c Ma

and there does not exist a0 ≺ a with c Ma0 .

It is important to note that c Ma (cOa) is not the same as c Ma
i,j c (cO

a
i,jc) for

suitable i, j; see [21], page 6, for details.
There is only one more notion left to be introduced before we can state the

deVnition of reduction rings:

DeVnition 9 (Critical-pair multipliers). Assume c1Oa
i,jc2 for some 1 ≤ i, j ≤

Ic1 . Then m1,m2 constitute critical-pair multipliers for c1, c2 and a w. r. t. i and
j iU a can be reduced modulo ck using mk, for k = 1, 2, and the pairs (m1, c1)
and (m2, c2) are irrelative w. r. t. i and j. In that case, the pair (b1, b2) with
bk := a−mk ck, for k = 1, 2, is called a critical pair of c1, c2 and a w. r. t. i and j.

Now we are ready to formally introduce reduction rings: R is a reduction
ring iU it is a commutative ring with unit, endowed with a partial Noetherian
ordering � and sets of multipliersM i

c , as speciVed above, satisfying the follow-
ing nine axioms (R0) – (R8):

(R0) If c 6= 0, then 1 ∈Mc.

(R1) If c 6= 0 andm ∈Mc, then −m ∈Mc.

(R2) If c 6= 0 and m ∈ Mc, then mc 6= 0. This axiom is only needed since we
do not require R to be free of zero divisors.
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(R3) For every b, c 6= 0: There exist m1,m2, . . . ,mn ∈ Mc such that b =∑
i=1,...,nmi. This axiom is actually only needed to prove that ≡B , i. e.

congruence modulo the ideal generated by the set B, coincides with↔∗B .

(R4) If a 6= 0, then 0 ≺ a.

(R5) If a→m,c b, then there arem1,m2, . . . ,mx and n1, n2, . . . , ny such that

– a+d→m1,c a+d−m1 c→m2,c . . .→mx,c a+d−(m1+. . .+mx) c =
b+ d− (n1 + . . .+ny) c←ny ,c . . .←n2,c b+ d−n1 c←n1,c b+ d and

– m1 + . . .+mx = m+ n1 + . . .+ ny.

In short, a+ d and b+ d have a common successor.

(R6) If a→mk,c a−mk c, k = 1, 2, and (m1, c) and (m2, c) are correlative, then
there are n1, n2, . . . , nx such that

– a−m1 c↔n1,c a−m1 c−n1 c↔n2,c . . .↔ny ,c a− (m1 +n1 + . . .+
ny) c = a−m2 c,

– m1 + n1 + . . .+ ny = m2, and

– a− (m1 + n1 + . . .+ ni) c ≺ a for all 1 ≤ i ≤ y.

In short, a − m1 c and a − m2 c can be connected below a. In [22] the
requirement is “(m1, c) and (M − 2, c) not irrelative”, which turned out
not to be suXcient for proving Theorem 12.

(R7) If c1 Ma
i,j c2 then there are 1 ≤ k, l ≤ Ic1 , a � a andm such that

– c1Oa
i,jc2,

– for every e 6= 0 andm0 ∈Me, alsomm0 ∈Me,

– if a+ e ≺ a then a+me ≺ a, for all e,

– if b→e d thenmb↔e md, for all b, d, e, and

– in case c1 = c2: If a is reducible modulo c1 both using m1 and m2,
and m1 ∈ Mk

c1
and m2 ∈ M l

c1
, then mm1 ∈ M i

c1
and mm2 ∈ M j

c1
,

or the other way round, for allm1,m2.

(R8) If c Ma then there are a � a andm such that

– cOa,

– for every e 6= 0 andm0 ∈Me, alsomm0 ∈Me,

– if a+ e ≺ a then a+me ≺ a, for all e, and
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– if b→e d thenmb↔e md, for all b, d, e.

This axiom is only needed to prove that the property of being a reduction
ring is preserved in R[X].

If R satisVes all of the nine axioms, it is a reduction ring. However, in order
to eUectively compute normal forms and Gröbner bases, and to eUectively decide
ideal membership, R in addition needs to fulVll certain computability and Vnite-
ness criteria. Deviating from the existing literature on reduction rings, where
these criteria are simply part of the reduction ring axioms, we therefore intro-
duce the notion of algorithmic reduction rings: R is an algorithmic reduction
ring iU it is a reduction ring and moreover satisVes the Vve axioms (R9) – (R13):

(R9) For every c1, c2 6= 0 and 1 ≤ i, j ≤ Ic1 the set {a|c1Oa
i,jc2} is Vnite and

can be computed algorithmically.

(R10) For every c 6= 0 the set {a|cOa} is Vnite and can be computed algorithmi-
cally. Similar as (R8), this axiom is only needed in the proof that R[X] is
an algorithmic reduction ring if R is.

(R11) For every a, c reducibility of a modulo c can be eUectively decided, and in
case of reducibility a suitable multiplier can be computed algorithmically.

(R12) If c1Oa
i,jc2 at least one pair of critical-pair multipliers for c1, c2 and a w. r. t.

i and j can be found algorithmically.

(R13) There does not exist an inVnite sequence of setsD1, D2 . . .withRed(D1) ⊂
Red(D2) ⊂ . . ., where Red(D) := {a|a is reducible modulo D}.

2.2 Gröbner Bases

It is a well-known fact that there are various equivalent characterizations of
Gröbner bases in the classical setting of polynomials over a Veld. For instance,
a set G is a Gröbner basis iU lm(〈G〉) ⊆ 〈lm(G)〉 (where lm stands for “leading
monomials” and 〈·〉 denotes the ideal generated by its argument). Equivalently,
G is a Gröbner basis iU →G is Church-Rosser, or if a →∗G 0 for every a ∈
〈G〉. In reduction rings, however, due to the lack of any polynomial structure,
it is apparent that the Vrst characterization by leading-monomial-ideals cannot
be used. Therefore, it is the Church-Rosser property of the reduction relation
induced by G that determines whether G is a Gröbner basis or not, leading to
the following

DeVnition 10 (Gröbner basis). A Vnite set G ⊆ R is a Gröbner basis iU→G is
Church-Rosser, i. e. whenever a ↔∗G b then there exists some d with a →∗G d
and b→∗G d.
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The deVnition requires G to be Vnite, although in principle one could of
course also consider inVnite Gröbner bases; however, since the main purpose of
Gröbner bases is to provide algorithmic means for solving ideal-theoretic prob-
lems, inVnite sets would not be of great help.2

The characterization given in DeVnition 10 is algebraic, but not algorithmic:
if R is inVnite, there are inVnitely many pairs a, b that have to be checked.
Hence, what is needed is a Vnite, algorithmic criterion for deciding whether a
given set is a Gröbner basis or not; this is the content of Theorem 12. Before we
can state it, we need one more deVnition.

DeVnition 11 (Critical-pair connectibility). Let B ⊆ R. Then B is said to have
connectible critical pairs, denoted by cpConnectible[B], iU for all c1, c2 ∈ B
(not necessarily distinct), all 1 ≤ i, j ≤ Ic1 and all a with c1Oa

i,jc2 there exists a

critical pair (b1, b2) for c1, c2 and a w. r. t. i and j such that b1
≺a
↔∗B b2.

Theorem 12 (Main Theorem). Let R be a reduction ring and G ⊆ R Vnite. Then
G is a Gröbner basis iU G has connectible critical pairs.

The proof of Theorem 12 is outlined in Section 4.3 Now it should be clear
that if R is not only a reduction ring, but even an algorithmic reduction ring,
if can be eUectively decided whether a given set G is a Gröbner basis or not.
Moreover, if G is not, it can be completed in such a way that the new set still
generates the same ideal but in addition is a Gröbner basis; this is achieved by
Buchberger’s critical-pair/completion algorithm in reduction rings:

Some remarks on Algorithm 1 are in place:

• Algorithm 1 is only an algorithm ifR is an algorithmic reduction ring, oth-
erwise it is a (possibly inVnite) procedure. Termination follows essentially
from axioms (R9) and (R13).

• In lines 2 and 11 also pairs of identical elements have to be taken into
account. This is because singleton sets are not necessarily Gröbner bases.

• mntcr is deVned for sets C ⊆ R2 as

mntcr(C) := {(a, 1, 1, c1, c2)|(c1, c2) ∈ C, c1 6= c2, c1O
a
1,1c2} ∪

∪{(a, i, j, c, c)|(c, c) ∈ C, 1 ≤ i < j ≤ Ic, cO
a
i,jc}

Hence, all minimal non-trivial common reducibles for all combinations of
indices i, j (with i < j) have to be taken into account. However, if c1 6= c2,
the indices are irrelevant and thus it is suXcient to only consider 1 and 1.

2In non-commutative polynomial rings there are Vnitely generated ideals without Vnite
Gröbner basis, where one typically computes truncated Gröbner bases up to a certain degree.

3Actually, only the direction from right to left was proved. The other direction is obvious.
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Algorithm 1 Buchberger’s algorithm in reduction rings R
Input: F = {f1, . . . , fn} ⊆ R
Output: G ⊆ R s. t. 〈G〉 = 〈F 〉 and G is Gröbner basis

1: function GB(F )
2: P ← mntcr({(fi, fj)|1 ≤ i ≤ j ≤ n})
3: G← F
4: while P 6= ∅ do
5: choose some p = (a, i, j, c1, c2) from P
6: P ← P\{p}
7: (b1, b2)← some critical pair for c1, c2 and a w. r. t. i and j
8: Find h1, h2 with bk →∗G hk and hk irreducible, for k = 1, 2
9: h← h1 − h2
10: if h 6= 0 then
11: P ← P ∪ mntcr({(h, h)} ∪ {(g, h)|g ∈ G})
12: G← G ∪ {h}
13: end if
14: end while
15: return G
16: end function

• In contrast, only one critical pair needs to be considered in line 7.

• Instead of reducing the diUerence of c1 and c2, c1 and c2 must be reduced
individually in line 8 to obtain h1 and h2. As long asG is no Gröbner basis,
h1 and h2 are of course not unique.

• The algorithm could be made more eXcient by adding the so-called chain
criterion for avoiding unnecessary reductions. This criterion was intro-
duced by Buchberger in [1] in the classical setting, but can easily be gen-
eralized to reduction rings.

IfG is a Gröbner basis, membership of a in 〈G〉 can eUectively be decided by
reducing a to normal form w. r. t. G. Since→G is Church-Rosser normal forms
are unique, and furthermore the normal form of a is 0 iU a ∈ 〈G〉 (thanks to
axiom (R3)).

2.3 Polynomial Reduction Rings

We brieWy review the construction of polynomial reduction rings, as contained
in [2, 21]. For this, let R as usual be a reduction ring and let ≤ be an admissible
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term ordering on the monoid of power-products [X]. The typed variables s and t
denote power-products, p and q denote polynomials, and the following notation
will be used: C(p, t) denotes the coeXcient of p at t, H(p, t) denotes the “higher
part” of p w. r. t. t (i. e. all monomials with power-product > t), lp(p) denotes
the leading power-product of non-zero p, and lc(p) is the leading coeXcient of
p (i. e. lc(p) = C(p, lp(p))).

R[X] can be made a reduction ring by deVning the Noetherian order relation
�̃, the integers Ĩp and the sets of multipliers M̃ i

p as follows:

p ≺̃ q :⇔ ∃t H(p, t) = H(q, t) ∧ C(p, t) ≺ C(q, t) (2.1)

Ĩp := Ilc(p) (2.2)

M̃ i
p := M i

lc(p) · [X] (2.3)

3 Overview of the Formalization in Theorema

Most of the theory presented in Section 2 has been formalized in the Theorema
system, more precisely in Theorema 2.0 [24]. The formalization, as every for-
malization in Theorema, consists of formal (formulas and proofs thereof) and
informal parts (explanatory text, drawings) making up the theory, distributed
across several Theorema notebooks to achieve a structured hierarchical built-up
of the theory in terms of sub-theories. The theory-structure of the formalization
of reduction rings, as it is at the moment, is depicted in Figure 1, and Table 1
contains a short summary of the sizes of the individual components by means of
formulas and proofs. As can be seen in Figure 1, any of the seven other theories
depends, or will depend, directly on ElementaryTheories.

Theory Formulas Proofs Proof Size (av./max.)
ElementaryTheories 433 228 21.7 / 94
ReductionRings 208 152 41.0 / 193
Polynomials 380 324 44.5 / 322
Fields 17 0
Integers 20 0
IntegerQuotientRings 19 0
PolyTuples 66 0
GroebnerRings 32 0

1175 704 36.4 / 322

Table 1: Number of formulas and proofs in the formalization. The proof size refers to
the number of inference steps.
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ElementaryTheories

ReductionRings

Polynomials

Fields

Integers

IntegerQuotientRings

PolyTuples

GroebnerRings

Figure 1: The structure of the formalization. An arrow from A to B denotes depen-
dency of B on A, in the sense that formulas from A are used in B in proofs (blue) or
computations (red). Dashed arrows denote future dependencies.

3.1 Theory ElementaryTheories

Theory ElementaryTheories is a collection of theories that are not directly
related to reduction rings, but rather consist of deVnitions of and lemmas about
basic notions and concepts, such as sets, integers and tuples. These notions
are ubiquitous in almost every mathematical theory, hence it does not come as
a surprise that all of the other seven components of the present formalization
directly depend, or will directly depend, on ElementaryTheories.

Apart from the treatment of tuples and sequences, almost none of the lem-
mas and theorems stated in this notebook were proved formally using Theo-
rema, simply because the focus of the work presented in this report was not
on the systematic build-up of fundamental concepts, but rather on the formal
treatment of reduction ring theory. These unproved lemmas and theorems are,
of course, not concerned with deep mathematical insights, but state trivial facts
like

(a ∈ Z ∧ i ∈ Z1,...,a+1)⇒ (i ∈ Z1,...,a ∨ i = a+ 1)

where, following Theorema notation, Za,...,b denotes the set {x ∈ Z|a ≤ x ≤ b};
a and b may be ±∞.

In the following subsections we describe the constituents of ElementaryTheories
in more detail.
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3.1.1 Sets

This part introduces basic notions related to sets, e. g. Vnite sets, the subset re-
lation, unions of sets, and abstraction terms. Simple properties of these notions,
mostly about Vnite sets and abstraction terms, like

∀
A,B

(isFinite[A] ∧ isFinite[B])⇒ isFinite[A ∪B]

are stated (without proof).4

In addition, functor DomainSets is introduced.5 This functor maps a domain
D to the domain of sets over D, i. e. the elements of DomainSets[D] are all sets
consisting of elements in D, which reads as

∀
D,x

∈
DomainSets[D]

[x] :⇔
(
isSet[x] ∧ ∀

y∈x
∈
D

[y]

)
in Theorema notation. Under-scripted non-binder symbols are domain opera-
tions, i. e. operations deVned in the domain appearing as the underscript. The
under-scripted “∈” is the domain decision predicate, i. e. the predicate that deter-
mines whether an object belongs to the respective domain or not.

3.1.2 Algebraic Structures

This part formally deVnes various algebraic categories, like groups, rings and
Velds, and notions related to them, like partial/total/Noetherian order relations
and associative/commutative/distributive operations. One of the most important
formulas contained in there, at least for developing the theory of reduction rings,
is the principle of Noetherian induction:(
∃
�

(
isNoetherian[�, D] ∧ ∀

∈
D
[x]

(
∀
∈
D
[y]
y ≺ x⇒ P [y]

)
⇒ P [x]

))
⇒ ∀

∈
D
[x]
P [x]

3.1.3 Integers and Inductive DeVnitions

This part, on the one hand, is a mere collection of facts about natural numbers
and integers, including

• the induction principle for natural numbers (in analogy to the Noetherian
induction principle),

• linear arithmetic on Z
4Following Theorema notation, function application is denoted by square brackets.
5For terminology in Theorema, especially “functor”, “category” and “domain”, we refer to [3].
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• intervals of natural numbers and integers

• logical quantiVers ranging over intervals of integers.

As indicated above, the theory of natural numbers and integers was not devel-
oped systematically from scratch, but important and useful results were col-
lected and stated without reference to any foundational deVnitions.

In addition to that, Vnite sums of the form
∑

i=a,...,b f [i] are introduced, by
means of a recursive deVnition, and then a couple of their properties are stated,
most of them being concerned with splitting sums into two parts.

3.1.4 Tuples

The theory of tuples was developed from scratch, starting from the very deVni-
tion of tuples as functions whose domain is a Vnite interval of natural numbers
of the form N1,...,n. Elementary operations, such as concatenation (“join”), ap-
pend/prepend, rest/most, reverse, as well as tuple-abstraction, are introduced
and some (more or less obvious) lemmas and theorems are stated (together
with Theorema-generated proofs). The most important of these theorems are
perhaps those that describe under which conditions on the constituents of a
tuple-constructor (concatenation, append, . . . ) an arbitrary property P holds,
either for all elements or for all pairs of consecutive elements, of the new tuple.
For example, a binary relation P holds for all pairs of consecutive elements of
join[S, T ] iU it holds for all pairs of consecutive elements of S and T , and more-
over it also holds for the pair consisting of the last element of S and the Vrst
element of T , given that both tuples are non-empty.

In analogy to the DomainSets functor described in Section 3.1.1, a Domain-
Tuples functor is introduced. This functor maps a domain D to the domain
of tuples (of arbitrary length) over D; no further mathematical operations are
deVned in the functor.

3.1.5 InVnite Sequences

InVnite sequences are needed to handle axiom (R13) in the deVnition of reduc-
tion rings (see Section 2.1), in particular in conservation theorems. Similar as
tuples, inVnite sequences are deVned as functions over N, only that their do-
main is unbounded, of course. The most important concept formalized in the
theory of inVnite sequences is the notion of sub-sequence of a sequence S, and
under which conditions on S certain sub-sequences (described by some property
P that shall hold for all sequence-elements, or all pairs of consecutive elements,
respectively) exist. As an example, the following (proved) formula is part of the
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theory:

∀
P,S

(
∀

a∈N
∃
i≥a
∀
j>i
P [S[i], S[j]]

)
⇒ ∃

T
isSubsequence[T, S] ∧ ∀

i<j
P [T [i], T [j]]

Unlike for tuples, there is no nice syntax for accessing elements of sequences
(e. g. with the index as subscript), but rather the i-th element of sequence S
really has to be denoted by S[i], i. e. the function S evaluated at i.

3.2 Theory ReductionRings

Theory ReductionRings is the core theory of the whole formalization of re-
duction rings, as expected. It contains the deVnitions of reduction rings and
algorithmic reduction rings by means of the axioms listed in Section 2.1, as well
as the deVnitions of many auxiliary notions (e. g. the reduction relation→ and
its symmetric and symmetric-reWexive-transitive closures).

Apart from lots of useful lemmas, the two main theorems stated and proved
in this theory are the Main Theorem of reduction ring theory (Theorem 12) and
the fact that in reduction rings ideal congruence coincides with the symmetric-
reWexive-transitive closure of the reduction relation. The proof of the former
serves as an example for proving in Theorema and is presented more thoroughly
in Section 4. As can be seen in Table 1, the size of ReductionRings in terms
of the number of formulas and proofs is quite moderate (at least compared to
ElementaryTheories and Polynomials), which indicates that the proof of the
Main Theorem is actually not that diXcult6.

The formal treatment of this particular theory is in principle Vnished by now;
every result stated comes together with a formal, Theorema-generated proof,
meaning that the only unproved formulas are deVnitions. However, it might
be that in the future it turns out that additional results, holding in general in
reduction rings, are needed to prove theorems in other theories; these theorems
will have to be added to ReductionRings then.

3.3 Theory Polynomials

Theory Polynomials introduces the categories of commutative power-products,
reduction polynomials and algorithmic reduction polynomials. The main contents
of the theory in terms of theorems are three theorems that state that if R is a
reduction ring and T is a domain of commutative power-products, and P is a
domain belonging to the category of reduction polynomials overR and T , then
P is also a reduction ring. Moreover, if R is even an algorithmic reduction ring

6Still, 193 inference steps is quite something.
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and P belongs to the category of algorithmic reduction polynomials, then P is
an algorithmic reduction ring as well.

A domain P belongs to the category of reduction polynomial iU it is en-
dowed with a coeXcient function that maps any element p of the domain (i. e.
any polynomial) and any power-product τ to the coeXcient of p at τ ; the ax-
ioms characterizing the category of reduction polynomials ensure that this coef-
Vcient function has all the properties it is supposed to have (i. e. how it behaves
w. r. t. addition and multiplication, and that it may give non-zero coeXcients
only for Vnitely many power-products, for each polynomial). Besides the coeX-
cient function, P also needs to provide a binary relation ≺̃ and sets of multipliers
M̃ i

p, satisfying the properties stated in Section 2.3.
The category of algorithmic reduction polynomials is a subcategory of re-

duction polynomials, which additionally requiresP to provide certain functions,
e. g. a function that returns all minimal non-trivial common reducibles (mntcr)
for p and q w. r. t. two indices i and j. This does not have to be stated using the
very deVnition of mntcr in general reduction rings, but instead a more concise
description of mntcr for polynomial domains, that captures precisely the essence
of what it means to be a mntcr in a polynomial domain, is available. Something
similar holds for multipliers suitable for reduction and for critical-pair multipli-
ers. We do not go into details here, because this is already covered in [2] and
[22].

As can be seen from Table 1, Polynomials is by far the largest theory in
terms of the number of proofs. This stems from the fact that for showing that a
domain belongs is an algorithmic reduction ring, in total 18 subgoals (including
the 14 axioms (R0) – (R13)), of which most are highly non-trivial, have to be
shown. Furthermore, although it is a well-known fact that a polynomial ring
over a commutative ring with unit is itself a commutative ring with unit, proving
this fact formally with Theorema turned out to be very tedious and lengthy.
In general, most of the proofs in theory Polynomials are lengthy but involve
comparatively little creativity, making them ideal candidates for being treated
by a mathematical assistant system.

Actually, the Theorema-generated proofs of the 17 other subgoals (apart
from P being a commutative ring with unit), follow more or less exactly the
proofs contained in [2], with only slight modiVcations here and there due to the
presence of diUerent sets of multipliers and our new deVnitions of correlativity
and irrelativity; the crucial (but obvious) property of irrelativity and correlativ-
ity needed for proving that (R7) is preserved by reduction polynomials is the
following:

Lemma 13. For all c,m1,m2, n1, n2 and all 1 ≤ i, j ≤ Ic: If (m1, c) and (m2, c)
are irrelative w. r. t. i and j, and (n1, c) and (n2, c) are correlative, then there exists
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1 ≤ k ≤ Ic s. t.

• (nl, c) and (m1, c) are irrelative w. r. t. k and i, for l = 1, 2, or

• (nl, c) and (m2, c) are irrelative w. r. t. k and j, for l = 1, 2.

Moreover, for proving that (R13) is preserved by reduction polynomials one
needs that the domain of power-products T is what we call a Dickson domain,
i. e. a domain where Dickson’s Lemma holds [7]. Since this does not follow
from our rather general deVnition of commutative power-products as elements
of cancellative commutative monoids, it must be required separately.7

As for ReductionRings, also the development of theory Polynomials is
Vnished, at least unless it turns out that additional results are needed for proving
that concrete domains belong to the categories of commutative power-products
or (algorithmic) reduction polynomials.

3.4 Theories of Basic Domains and Functors

The collection of theories of basic domains and functors consists of Fields,
Integers, IntegerQuotientRings and PolyTuples, each of them containing
a functor which constructs a particular reduction ring.

3.4.1 Theory Fields

The functor in Fields, called ReductionField, takes as input a domain K and
constructs a new domain RK where functions and relations, like the Noethe-
rian ordering and the sets of multipliers, are deVned in such a way that RK
is an algorithmic reduction ring if K is a Veld. The formal proof of this fact
has not been carried out yet but will most probably not be too diXcult, at least
compared to the proofs in theories ReductionRings and Polynomials; this is
also the reason why Fields, at the moment, only contains 17 formulas (making
up the deVnition of the functor). However, the functor can already be used in
computations.

3.4.2 Theory Integers

The functor in Integers, called ReductionIntegers, does not take any input
but merely constructs the domain RZ of reduction integers, i. e. the domain
of integers endowed with all the functions and relations necessary for being an
algorithmic reduction ring, according to [2]. As in Fields, the proof of this fact
is still future work, but the functor itself can already be used for computations.

7We did not include it in the deVnition of commutative power-products, since it is not needed
for proving preservation of any of the other axioms.
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3.4.3 Theory IntegerQuotientRings

The functor in IntegerQuotientRings, called ReductionIQR, takes as input
a value n (which is supposed to be a non-negative integer) and constructs the
reduction ring RZ\ of residue classes modulo n, according to [21]. Theorema-
generated proofs are still missing also in this theory.

3.4.4 Theory PolyTuples

PolyTuples does not contain only one, but even Vve functors:

• PPTuples constructs the domain of (unordered) power-products repre-
sented as exponent tuples of length n of natural numbers. n is an in-
put argument of the functor. The most important functions deVned by
this functor are addition, multiplication, division and LCM of two power-
products, as well as the divisibility relation.

• Lex extends a domain T constructed by PPTuples by deVning the binary
relation ≤ on the new domain as the lexicographic order relation on T .

• DegLex is similar to Lex, only that≤ is deVned as the degree-lexicographic
order relation.

• DegRevLex is again similar to Lex, only that ≤ is deVned as the degree-
reverse-lexicographic order relation.

• PolyTuples takes two domains R and T and constructs the domain of
polynomials over coeXcient domain R and power-product domain T ,
represented as tuples of pairs of coeXcients and power-products. The
functor does not rely on any particular representation of T , meaning that
it does not have to be a domain constructed by one of Lex, DegLex or
DegRevLex.

Of course, PolyTuples is supposed to construct domains belonging to the
category of algorithmic reduction polynomials, and hence also to the category of
algorithmic reduction rings, ifR is an algorithmic reduction ring itself and T is
a commutative power-product domain (and also a Dickson domain). The proof
of this fact, as well as the proofs that Lex, DegLex and DegRevLex construct
commutative power-product- and Dickson domains, are still missing.
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3.5 Theory GroebnerRings

Theory GroebnerRings, Vnally, puts together the computational aspects of re-
duction ring theory by introducing a functor, called GroebnerRing, that ex-
tends a given domain R by deVning the function GB for actually computing
Gröbner bases in R. GB implements (a variant of) Algorithm 1 and is deVned
solely in terms of functions of G, such that it is correct only ifR is an algorithmic
reduction ring (which, following a general principle in the design of functors in
Theorema, is nowhere required in the deVnition of the functor). Furthermore,
the so-called chain criterion for detecting useless steps in Algorithm 1 is also
taken into account in function GB, making computations even more eXcient.
The chain criterion was introduced in [1] for the classical setting of polynomials
over Velds, but it is valid in general reduction rings, too.

Lots of sample computations of Gröbner bases using function GB have al-
ready been carried out, in all the reduction rings constructed by the functors
listed in Section 3.4. As expected, the performances in terms of absolute timings
are nowhere near of what one achieves with built-in Mathematica functions,
hence we spare a detailed summary and comparison.

4 Proof of the Main Theorem

In this section we present the Theorema-generated proof of Theorem 12 in more
detail. More precisely, we give an overview of the individual sub-proofs the
proofs was split into and explain why the “old” deVnition of irrelativity due to
[22] is not suitable.

The key result needed for proving Theorem 12 is the so-called Generalized
Newman Lemma, which describes a very weak suXcient condition for a binary
relation→ to be Church-Rosser, without any appeal to reduction ring theory. It
was Vrst introduced and proved in [25] and is, of course, also used in [2]:

Lemma 14 (Generalized Newman Lemma). Let � be a partial Noetherian order
relation and→ a binary relation such that a → b implies b ≺ a. If b1 and b2 can
be connected below a (w. r. t. �; cf. DeVnition 2) whenever a→ b1 and a→ b2, for
all a, b1, b2, then→ is Church-Rosser.

Please note that although Lemma 14 holds for arbitrary Noetherian order-
ings � and binary relations →, we only proved it for the particular family of
reduction relations →c according to DeVnition 1. Its proof is comparatively
easy: In our formalization, where we follow precisely the proof in [25], it is the
combination of six formulas which in turn can be proved without any trouble.
One only needs to perform Noetherian induction and induction on N and use
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reWexivity and transitivity of→∗; this, among other basic properties of→∗,↔∗

and
≺z
↔∗, is also needed for proving that congruence modulo the ideal generated

by B coincides with↔∗B .
Knowing Lemma 14 it is clear how to prove Theorem 12: It suXces to show

that whenever a→B b1 and a→B b2 we also have b1
≺a
↔∗B b2, for any set B; this

is what we call local connectivity:

DeVnition 15 (Local connectivity). LetB ⊆ R. B is said to be locally connective,
denoted by isLocConnective[B], iU for all c1, c2 ∈ B and all a, b1, b2 with a→c1

b1 and a→c2 b2 we have b1
≺a
↔∗B b2.

Summarizing, the direction from right to left in the Main Theorem is a con-
sequence of the following

Theorem 16. For all reduction rings R and all B ⊆ R:

cpConnectible[B] ⇒ isLocConnective[B]

Theorem 16 is stated exactly as it is shown here in the formalization. Its proof
goes along the same lines as the original pencil-and-paper proof in [2], only that
correlativity and irrelativity, as well as the possibility of identical reductors (i. e.
c1 = c2 in DeVnition 15), have to be taken into account. Also note that some
important subgoals, most importantly the special case of identical reductors, are
stated and proved separately. The reason for this is twofold: First, it reduces
the size of the proof of Theorem 16, and second, the case of identical reductors
appears more than once in the proof, making the availability of a reusable lemma
desirable. Another subgoal that is stated and proved separately comprises the
situation where c1 Ma

i,j c2 (for the a in DeVnition 15 and indices 1 ≤ i, j ≤ Ic1),
both if c1 6= c2 and c1 = c2. These situations are the “interesting” ones, i. e.
where one really needs axiom (R7) to prove local connectivity.

Figure 2 shows the proof tree corresponding to the Theorema-generated proof
of Theorem 16. The node labeled with 1© is where the two cases c1 6= c2 (left
subtree) and c1 = c2 (right subtree) are distinguished, and the node labeled with
2© is where the two cases ¬ c1 Ma

1,1 c2 (left subtree) and c1 Ma
1,1 c2 are distin-

guished. The right subtree of node 1© is small because, as mentioned above, the
case c1 = c2 is contained in a separate lemma. Figure 3 shows a little fragment
of the automatically generated proof document, where the inference steps cor-
respond to 1© and its right subtree (in the proof document, c1 and c2 are named
s and s, respectively). The time spent for generating the proof in a dialog-based
interaction with the system, using the fully-interactive proof strategy (see Sec-
tion 5), was not quite 36 minutes.8 Note that this proof is precisely the one

8 After a couple of unsuccessful attempts, as usual.
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1©
2©

Figure 2: The proof tree corresponding to the proof of Theorem 16. Each node
represents an inference step.

with the maximum of 193 inference steps in theory ReductionRings, as listed
in Table 1.

4.1 Issues with Irrelativity

As mentioned in Section 2, the deVnition of irrelativity according to [22] is not
suitable for proving the Main Theorem, making a re-deVnition necessary. In
order to give evidence to this claim, we Vrst present the “old” deVnition of irrel-
ativity, which we call irrelative0:

DeVnition 17 (Irrelative0; [22], page 405). Let R be a reduction ring and let
c1, c2,m1,m2 ∈ R. The pairs (m1, c1) and (m2, c2) are said to be irrelative0 iU

• c1 6= c2 or

• there exists 1 ≤ i ≤ Ic1 such thatm1 ∈M i
c1
andm2 ∈Mc1\M i

c1
.

The Vrst indication that irrelative0 is not suitable is the fact that it is not
symmetric in general, although it clearly should be: If Ic = 2, M1

c ⊂ M2
c ,

m1 ∈M1
c andm2 ∈M2

c \M1
c , then apparently (m1, c) and (m2, c) are irrelative0,

but (m2, c) and (m1, c) are not.
A Vrst attempt to make irrelative0 symmetric could be to change it to irrelativeS ,

deVned as follows:

DeVnition 18 (IrrelativeS). LetR be a reduction ring and let c1, c2,m1,m2 ∈ R.
The pairs (m1, c1) and (m2, c2) are said to be irrelativeS iU
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Figure 3: Part of the proof document of the proof of Theorem 16.
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• c1 6= c2 or

• there exist 1 ≤ i 6= j ≤ Ic1 such thatm1 ∈M i
c1
andm2 ∈M j

c1
.

IrrelativeS already looks very similar to our deVnition of irrelativity, only
that the indices i, j are not part of the notion itself, as free variables, but exis-
tentially quantiVed. In fact, irrelativeS generalizes irrelativity due to [21], where
it is only deVned if Ic = 2 for all c. However, even irrelativeS is still not suitable,
for the following reason: The crucial property of irrelativity (with i, j existen-
tially quantiVed) we would need for proving Theorem 12 is the following:

For all c,m1,m2,m3 ∈ R with (m1, c) and (m2, c) irrelativeS
and (m1, c) and (m3, c) irrelativeS : (m2, c) and (m3, c) are not
irrelativeS .

(4.1)

Property (4.1) does not hold: If Ic ≥ 2, M1
c ∩ M2

c 6= ∅ and m1,m2,m3 ∈
M1

c ∩M2
c , then all combinations of pairs (mk, c) are irrelativeS , for k = 1, 2, 3.

Finally, after a thorough investigation of the proofs of Theorem 12 as well as
the conservation theorem for polynomial domains, we arrived at our deVnitions
of irrelativity, and also correlativity, as given in DeVnition 3. Instead of (4.1)
there are now two crucial properties for proving the Main Theorem, due to the
fact that the indices i and j are free variables in our deVnition of irrelativity.
Either of them can easily be seen to be indeed satisVed:

For all c,m1,m2 ∈ R with (m1, c) and (m2, c) not correlative:
There exist 1 ≤ i, j ≤ Ic such that (m1, c) and (m2, c) irrelative
w. r. t. i and j.

(4.2)

For all c,m1,m2, n1, n2 ∈ R and 1 ≤ i, j ≤ Ic with (m1, c) and
(m2, c), (n1, c) and (n2, c) irrelative w. r. t. i and j: (mk, c) and
(nk, c) are correlative, for k = 1, 2.

(4.3)

5 Provers

In this section we describe the inference mechanisms (i. e. the provers) used for
verifying the theory presented in the preceding sections. In Theorema, a prover
consists of two (mostly independent) parts: a proof strategy (or, more precisely, a
proof-search strategy), and a collection of inference rules. Inference rules trans-
form proof situations, characterized by the current proof goal and the current
knowledge base, to zero, one or more new, ideally simpler, proof situations. The
inference rules used used in the present theory exploration naturally fall into
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two categories: General-purpose predicate logic rules and special-purpose rules
for the theories of integers, order relations, monoids and rings. The former will
be described in Section 5.1, the latter in Section 5.2.

The proof strategy that was employed is a fully interactive strategy: the hu-
man user has full control over the inference rule to be applied to a proof situa-
tion, which branch in the proof tree to follow in case there are several possible
ones, and what to do if a rule is applicable in several ways. All this happens
in a dialog-oriented way, i. e. instead of writing a “proof script” that is later
checked by the system, the user rather tries to Vnd the proof by interacting with
the system. The Vnal result, still, is not only “proved” or “failed”, but a nicely
formatted, human readable document presenting the proof both by formal and
informal means – just as always in Theorema.

Note that the fully-interactive proof strategy was implemented for exploring
the theory of reduction rings, but it was designed suXciently general and Wexible
to be used also together with other provers in other theory explorations.

5.1 General Inference Rules: RewriteInteractiveProver

The so-called RewriteInteractiveProver is a collection of general predicate-logic
inference rules not attached to any particular theories and not depending on
any knowledge about notions other than the usual logical quantiVers and con-
nectives from predicate logic.9 The inferences making up the prover are further
distributed into Vve categories:

1. Propositional logic: Inference rules dealing with logical connectives in the
obvious ways, e. g. distinguishing two cases based on a disjunction in the
knowledge base.

2. Miscellaneous: Three more rules for logical connectives that are not as
standard as the ones from the Vrst category. In particular, one rule handles
cases distinctions by Vrst eliminating impossible cases and then distin-
guishing between the remaining ones, and the other rules simplify negated
formulas by applying deMorgan rules for getting rid of negations that are
not directly in front of predicate symbols.

3. Logical quantiVers: One rule for introducing “arbitrary but Vxed” con-
stants for variables bound by universal quantiVers in the proof goal, one
rule for introducing Skolem constants for variables bound by existential
quantiVers in the assumptions, and one rule for splitting a multi-range of

9The only exception being the case distinction construct, which is typically not considered
part of core predicate logic.
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one universal quantiVer (in the goal) into several quantiVers with individ-
ual ranges. The latter rule is particularly useful in connection with certain
higher-order backward rules (e. g. induction).

4. Rewriting: Several rules for all kinds of rewriting, for instance expanding
explicit/implicit deVnitions, substituting equals by equals, or using (quan-
tiVed) implications for reducing the goal.

5. Interactive rules: Inferences that cannot be applied completely automati-
cally, but require a certain amount of user interaction. The most promi-
nent examples of such rules are of course instantiation of quantiVers by
suitable terms, or distinguishing two cases based upon whether an arbi-
trary formula holds or not. Another interactive rule gives the user full
control over how to rewrite one or more formulas in the current proof sit-
uation by speciVc rewrite rules (unlike the inferences in the “Rewriting”
category). And, last but not least, there is one rule that allows the user
to add random formulas from the whole formalized theory to the proof, if
they turn out to be needed.

The overall idea underlying the RewriteInteractiveProver is to apply stan-
dard propositional inferences as long as possible, and then rewriting the proof
situation in a mostly goal-directed manner by performing substitutions and re-
ducing to goal by backward reasoning. As the name suggests, the emphasis
clearly lies on interactive proving where the human user decides which rule to
apply in which way.

As for the rewriting, the default Vrst-order rewriting mechanism currently
in use in Theorema was enhanced by a higher-order one. At the moment, this
mechanism is still part of the RewriteInteractiveProver and has not been inte-
grated into the oXcial release of Theorema, although this might change with
future versions. Please also note that the higher-order rewriting mechanism is
not complete in the sense that it can deal with all kinds of higher-order rules,
but rather it treats a variable as higher-order only if it can evidently only be
instantiated by one single term (that of course depends on the expression it is
matched against), regardless of the expression it is matched against; otherwise
it becomes a Vrst-order variable, and application is only syntactic application
instead of application modulo β-reduction. This, for instance, includes the case
where the variable is applied only on non-uniVable arguments, each containing
at least one bound variable outside the argument list of any other higher-order
variable. Most10 of the higher-order formulas one typically encounters in a the-
ory exploration, like induction principles, are of such form.

10Though not all, as some examples in ElementaryTheories show.
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The total number of inference rules in the RewriteInteractiveProver is 36,
implemented by roughly 3200 lines ofMathematica code (this includes the func-
tions for generating the interactive dialogs and the proof documents).

5.2 Special Inference Rules: ReductionRingProver

The ReductionRingProver, Vnally, extends the RewriteInteractiveProver by infer-
ence rules speciVcally designed to handle proof situations frequently arising in
the theory of reduction rings. More precisely, the inferences only cover basic
notions the theory is built upon, like tuples, order relations, and commutative
rings, but no reduction-ring speciVc notions like reduction relations, irrelativity,
etc.

The inferences are grouped into the following Vve classes, each being de-
scribed in detail below: rules for intervals of integers, rules for tuple- and set
membership, rules for order relations, rules for cancellative commutative monoids,
and rules for commutative rings with unit. In total there are only eleven spe-
cial inference rules, implemented by roughly 2400 lines of Mathematica code
(including the functions for proof-document-generation).

5.2.1 Intervals of Integers

This group of rules contains only one single inference, which deals with proof
situation where the proof goal is a (possibly universally quantiVed) integer-
interval formula of the form t ∈ Za,...,b, or a conjunction thereof.

The rule basically employs closure properties of functions +,− and ·, as well
as some simple arithmetic truths (e. g. b − (x − 1) ∈ Z1,...,b ⇔ (b ∈ Z ∧ x ∈
Z1,...,b)) to successively simplify the proof goal. Knowledge about integer literals
and other objects that belong to certain intervals of integers (e. g. the length
of a tuple certainly belongs to Z0,...,∞) is used as well. Most of the knowledge
implicitly used in this rule is also explicitly stated as an object-level formula in
ElementaryTheories.

The reason for having a rule like this as part of the ReductionRingProver is
simple: tuples play an important role in the theory, be it for deVning transitive
closures of reduction relations, or as summands in Vnite sums, and hence one
very often has to deal with objects of the form Ti for a tuple T .11 Now, properties
of such objects can only be inferred if the index i can be shown to be between
1 and |T |, i. e. the length of T – and this is exactly expressed by the formula
i ∈ Z1,...,|T |.

11Ti denotes the i-th element of T , of course.
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5.2.2 Tuples and Sets

This group contains two inference rules, one for tuples and one for sets. Since
they behave completely analogously, we only describe the tuple-rule here.

The inference rule for tuples incorporates knowledge about the DomainTu-
ples notion, a notion not built into standard Theorema but rather deVned in
ElementaryTheories, see Section 3.1.4. The inference rule itself is in fact a com-
bination of the following basic inferences:

∈
DomainTuples[D]

[T ] ` isTuple[T ]
(5.1)

K ` i ∈ Z1,...,|T |

K, ∈
DomainTuples[D]

[T ] ` ∈
D

[Ti]
(5.2)

K ` ∈
DomainTuples[D]

[A] K ` ∈
DomainTuples[D]

[B]

K ` ∈
DomainTuples[D]

[join[A,B]]
(5.3)

K ` ∈
DomainTuples[D]

[A] K ` ∈
D

[a]

K ` ∈
DomainTuples[D]

[(append|prepend)[A, a]]
(5.4)

K ` ∈
DomainTuples[D]

[A] K ` A 6= 〈〉

K ` ∈
DomainTuples[D]

[(rest|most)[A]]
(5.5)

K ` ∈
DomainTuples[D]

[A]

K ` ∈
DomainTuples[D]

[reverse[A]]
(5.6)

K ` a ∈ Z K ` b ∈ Z K ` ∀i=a,...,b P [i]⇒∈
D

[f [i]]

K ` ∈
DomainTuples[D]

[〈f [i] |i=a,...,b P [i]〉]
(5.7)

The meaning of these basic inferences should be obvious. Only note that

〈f(i) |i=a,...,b P (i)〉

in (5.7) is an abstraction tuple, in close analogy to abstraction terms of set theory.
All of these inferences are justiVed by formulas explicitly stated in Elementary-
Theories.
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5.2.3 Order Relations

There are three inference rules contained in the group of ordering-rules: the
Vrst one (“orderingGoal”) handles proof goals that are formulas of the form a �
b or a � b for orderings �, the second one (“orderingKB”) proof situations
where formulas of that kind appear in the knowledge base, and the third one
(“orderingEqualGoal”) proof goals of the form a = b, if a and b are elements of
an ordered domain. All of them are capable of dealing with three diUerent kinds
of orderings, namely

• partial irreWexive (i. e. asymmetric) orderings (here written as “pi” for the
sake of brevity, in the formalization written as “isPartIrreflOrder”),

• partial reWexive (i. e. antisymmetric) orderings (here “pr”, in the formal-
ization “isPartReflOrder”), and

• total irreWexive orderings (here “ti”, in the formalization
“isTotalIrreflOrder”).

All of pi, pr and ti are binary predicates, depending additionally on the domain
D the respective relation is a partial/total ordering on. Furthermore,

isOrderEmbedding[◦,�, D]

states that ◦ is an order embedding w. r. t. � onD, i. e. that a◦c � b◦cwhenever
a � b.

“orderingGoal” comprises the following basic inferences:

K ` ∈
D

[a]

K, (pi|ti)[≺, D] ` a ⊀ a
(5.8)

K ` ∈
D

[a]

K, pr[�, D] ` a � a
(5.9)

TODO: Introduce n-ary version of domain membership predicate

K ` ∈
D

[a, b, c1, . . . , cn]

K, (pi|ti)[≺, D], b ≺ c1, c1 ≺ c2, . . . , cn ≺ a ` a ⊀ b
(5.10)

K ` a 6= b K ` ∈
D

[a, b, c1, . . . , cn]

K, pr[�, D], b � c1, c1 � c2, . . . , cn � a ` a � b
(5.11)

K ` ∈
D

[a, b, c1, . . . , cn]

K, (pi|pr|ti)[�, D], a � c1, c1 � c2, . . . , cn � b ` a � b
(5.12)
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K ` ∈
D

[a, b, c] K ` a � b

K, (pi|pr|ti)[�, D], isOrderEmbedding[◦,�, D] ` a ◦ c � b ◦ c
(5.13)

“orderingKB” comprises the following basic inferences:

K ` ∈
D

[a]

K, (pi|ti)[≺, D], a ≺ a ` Γ
(5.14)

K ` ∈
D

[a]

K, pr[�, D], a � a ` Γ
(5.15)

Finally, “orderingEqualGoal” comprises the following basic inferences:

K ` ∈
D

[b] K ` a ⊀ b K ` b ⊀ a

K, ti[≺, D],∈
D

[a] ` a = b
(5.16)

K ` ∈
D

[b] K ` a � b K ` b � a

K, pr[�, D],∈
D

[a] ` a = b
(5.17)

One remark on the inferences is still in place: Since Theorema’s core logic is
untyped, we cannot rely on the fact that, say, a, is an element of domain D if
we are given a formula a � a and � is “deVned” only on D. Hence, in all of the
inferences above, membership of the involved terms in the respective domain
always has to be checked explicitly.

5.2.4 Cancellative Commutative Monoids

Two special inference rules were designed to deal with cancellative commutative
monoids, i. e. commutative monoids with the so-called cancellation property

x+ z = y + z ⇔ x = y

Algebraic structures of that kind are needed when working with power-products
of polynomials, as they have precisely the prescribed properties (w. r. t. multi-
plication, of course). The Vrst inference rule simply reduces proof goals of the
form ∈

M
[1] and ∈

M
[a ◦ b], exploiting the facts that the neutral element 1 belongs

to the monoidM and that the monoid operation ◦ is closed inM . Like the sec-
ond inference rule described below, it is only applicable if isCCMonoid[M ] or
isCommPPDomain[M ] appears in the current knowledge base.12

12isCommPPDomain[M ] expresses that M is a domain of commutative power-products, and
thus by deVnition a cancellative commutative monoid.
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The second rule is more involved: it simpliVes goals of the form a = b,
where a and b are elements of a cancellative commutative monoid, making use
of the various properties of the monoid operation ◦ and the neutral element 1.
Although this is straight-forward in principle, Theorema not being typed causes
some trouble: Whenever we want to use, say, cancellativity to cancel a common
subterm x of a and b, we have to make sure (by means of sub-proofs) that not
only x, but also all other terms appearing in the argument list of any ◦ visited
when traversing a and b to reach the respective occurrence of x – otherwise,
cancellativity can simply not be used. Therefore, the rewrite-control underlying
the inference rule does not blindly fully expand both sides of the equality and
then cancels common subterms, but tries to be “smart” and perform only those
rewrites that look promising, just to generate as few domain-membership side-
conditions as possible. The far more complicated rule dealing with equality in
commutative rings with unit, described below, behaves similarly.

5.2.5 Commutative Rings with Unit

As for cancellative commutative monoids, there are also special inference rules
dealing with domain-membership and equality in commutative rings with unit,
which is naturally a far more diXcult task. One thing that complicates matters
even more is the fact that besides the usual ring operations +,− and · also Vnite
sums of the form

∑
i=a,...,b f(i) have to be taken into account. Still, in principle

the strategies for proving domain membership and equality are comparatively
simple: Use closure properties of +, − and · to successively reduce domain-
membership goals, and in addition employ

K ` a ∈ Z K ` b ∈ Z K ` ∀i=a,...,b ∈
R

[f [i]]

K, isCommRing1[R] ` ∈
R

[
∑

i=a,...,b f [i]]
(5.18)

to prove membership of sums.
Regarding equality, care has to be taken about domain-membership of terms

when properties associativity/commutativity/distributivity/etc. of the various
operations is to be used, exactly as in the rule for cancellative commutative
monoids. To that end, the underlying rewrite-control at least tries to use these
properties as few as possible. Please note that only the basic properties of + are
made use of when simplifying sum-expressions, e. g. associativity and commu-
tativity are used to rewrite

∑
i=a,...,b

(f [i] + g[i]) −→

( ∑
i=a,...,b

f [i]

)
+

( ∑
i=a,...,b

g[i]

)
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given that all terms involved are in R. However, no “sum-splitting” and “sum-
rearranging” theorems, e. g.

∑
i=a,...,b

f [i] =

( ∑
i=a,...,c

f [i]

)
+

( ∑
i=c+1,...,b

f [i]

)
for a ≤ c ≤ b

are used implicitly by the inference rule; instead, many of these are available
explicitly as higher-order formulas in ElementaryTheories.

Besides the two rules for proving membership in R and for proving equality
in R, also a third rule for simplifying known equalities is available. Internally,
this rule relies on the same methods as the one for proving equality. Applicabil-
ity of either of the three rules depends on the presence of isCommRing1[R] or
isReductionRing[R] in the current knowledge base, since reduction rings are
commutative rings with unit by deVnition.

5.3 General Remarks on Special Provers in Theorema

This subsection aims at clarifying the very purpose of having special provers
with special inferences in the Theorema system. As already mentioned at the
beginning of this section, proving in Theorema consists of two main compo-
nents: the proof strategy and the collection of inference rules.

Usually, proof strategies are not very special in the sense they only can be
used in particular theories, but in principle there are no limitations regarding
their generality. However, at the moment all strategies implemented in Theo-
rema 2.0 are of a rather general form that can eUectively be used for basically all
theories.

The component that really has the prospect of making provers special are
the inference rules. One might argue that in principle only a few of these rules
are suXcient to obtain a “reasonable” inference mechanism, e. g. natural deduc-
tion for higher-order predicate logic. Moreover, at the very core of every rea-
soner there in fact only needs to be a general (higher-order) conditional rewrit-
ing mechanism; Anything else (i. e. proofs and proof situations, inference rules,
etc.) can then simply be formulated solely in the language of higher-order logic.
Such an approach is pursued, for instance, in the well-known Isabelle system
[16].

The philosophy in Theorema, however, is slightly diUerent: Although we
are of course aware of the fact that in principle only a few inference rules would
suXce, we think that in practice, when developing a theory, one would also like
to enhance the meta-level by special inference techniques to eXciently reason
about new concepts and notions, without having to fall back to the very ele-
mentary rules of natural deduction and rewriting all the time.
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In more concrete terms, there are at least two types of special inference rules
one might envision:

1. Inference rules that are actually based on rewriting, but which have the
rewrite rules “built-in” and maybe also implement a new control that
applies these rules in a diUerent way than the default, general-purpose
rewriting mechanism usually employed in Theorema. As a simple exam-
ple consider the theory of rings (cf. Section 5.2). When working in this
theory one would certainly like to have a way for proving equality of
two terms, making use of associativity, commutativity, etc. of the ring-
operations + and ·. Having a special inference rule available that incor-
porates all the knowledge about + and · obviates the need for having the
very deVnitions of rings, associativity, commutativity, etc. explicitly in
the knowledge base, but instead it would be suXcient to only know, say,
isRing[R] in order to prove 0

R
·
R

1
R

= 1
R
−
R

1
R
. Furthermore, the various

properties of + and ∗ might be exploited in a more “clever”/eXcient way
than by simply rewriting both sides of the equality in all possible ways,
until two identical expressions are found. In that sense, special inference
rules can be understood as mere abbreviations of combinations of other,
general ones.

2. Inference rules that enhance the logic of Theorema. Actually, Theorema
is more of a logical “frame”, and its logic is thus very elementary: It is
untyped higher-order predicate logic with set theory, without a partic-
ular interpretation of, e. g., functions. Now, if someone wants to work
in a strictly-typed logic, where functions are total mappings from one
type to another that can only be deVned by very special means (e. g. by
primitive recursion), one can do so: DeVne new syntax for datatype-
and function deVnitions and for type annotations (which should not pose
any big issues thanks to the very Wexible and extensible syntax of The-
orema/Mathematica), and then implement a special inference rule that,
when applied to a proof situation, type-checks all expressions and maybe
also explicitly annotates all terms with their type; in short, the inference
rule gives semantics to the newly introduced concept of types. Similarly,
a recursively deVned function could automatically be endowed with suit-
able induction rules for proving properties about it in an elegant way –
this, for instance, is exactly what happens in Isabelle.

Summarizing, we do not claim that special inference rules cannot be simu-
lated by other, elementary inference techniques as well. We do believe, however,
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that eXcient and “human-oriented” theory exploration proVts from the possibil-
ity of designing and applying more and more elaborated and tailor-made infer-
ence techniques for all logics at all stages of the exploration. This, clearly, also
means that at some point facilities for verifying new inference rules within the
same logical system need to be available for ensuring the integrity of the system.
Facilities of that kind are not yet integrated into Theorema,13 meaning that new
rules must be proved correct by pencil and paper.

6 Conclusion and Future Work

In the preceding sections we demonstrated how computer-supported mathemat-
ical theory exploration can be carried out in the Theorema system, following
Theorema’s paradigm of working in parallel on the object- and meta level: On
the object level we formalized and formally veriVed large parts of the theory of
reduction rings, and even managed to Vnd and Vx a subtle issue connected to the
notion of irrelativity which, up to our knowledge, was not known before. On
the meta level we designed special inference rules for eXciently dealing with
concepts such as tuples and rings in proofs, and moreover even implemented a
completely new, absolutely general, dialog-oriented interactive proof strategy.

Although we hope to have convinced the reader that lots of progress has
already been made, there are still tasks left for the future. In the near future, we
want to Vll the remaining gaps in the formal veriVcation; in particular, the “0”s
in the “Proofs” column of Table 1 shall be replaced by positive numbers.

A more distant goal could be the investigation of non-commutative reduction
rings. As of now, reduction rings were only considered in the commutative case,
but making use of the existing formalization the extension to non-commutative
domains might be practicable. A useful tool for undertakings like that might
be some kind of a “proof synthesizer”, i. e. a mechanism that takes a formula
F to be proved and an existing proof P of a similar formula, and tries to con-
struct, ideally fully automatically, a proof of F simply by re-doing the – suitably
adjusted – inferences from P . All this is possible future work.
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