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Method for Nonlinear Ill-Posed Problems
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Abstract

We perform a convergence analysis of a Two-Point Gradient (TPG) method
which is based on Landweber iteration and on Nesterov’s acceleration scheme.
Additionally, we show the usefulness of this method via two numerical example
problems based on a nonlinear Hammerstein operator and on the nonlinear inverse
problem of single photon emission computed tomography (SPECT).
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1 Introduction

In this paper, we deal with nonlinear inverse problems of the form

F (x) = y , (1.1)

where F : D(F ) ⊂ X → Y is a continuously Fréchet-differentiable, nonlinear operator
between real Hilbert spaces X and Y . Throughout this paper we will assume that (1.1)
has a solution x∗, which need not be unique. Furthermore, we assume that instead of
y, we are only given noisy data yδ satisfying

∥

∥y − yδ
∥

∥ ≤ δ . (1.2)

Since we are interested in ill-posed problems, we need to use regularization methods in
order to obtain stable approximations of solutions of (1.1). The two most prominent
examples of such methods are Tikhonov regularization and Landweber iteration.

∗Johannes Kepler University Linz, Doctoral Program Computational Mathematics, Altenberger-
straße 69, A-4040 Linz, Austria (simon.hubmer@dk-compmath.jku.at)

†Johannes Kepler University Linz, Institute of Industrial Mathematics, Altenbergerstraße 69, A-
4040 Linz, Austria (ronny.ramlau@jku.at)

‡Johann Radon Institute Linz, Altenbergerstraße 69, A-4040 Linz, Austria
(ronny.ramlau@ricam.oeaw.ac.at)

1



In Tikhonov regularization, one attempts to approximate an x0-minimum-norm so-
lution x† of (1.1), i.e., a solution of F (x) = y with minimal distance to a given initial
guess x0, by minimizing the functional

T δ
α (x) :=

∥

∥F (x)− yδ
∥

∥

2
+ α ‖x− x0‖

2 , (1.3)

where α is a suitably chosen regularization parameter. Under very mild assumptions
on F , it can be shown that the minimizers of T δ

α , usually denoted by xδ
α, converge to

x† as δ → 0, given that α and the noise level δ are coupled in an appropriate way [6].
While for linear operators F the minimization of T δ

α is straightforward, in the case
of nonlinear operators F the computation of xδ

α requires the global minimization of
the then also nonlinear functional T δ

α , which is rather difficult and usually done using
various iterative optimization algorithms.

This motivates the direct application of iterative algorithms for solving (1.1), the
most popular of which being Landweber iteration, given by

xδ
k+1 = xδ

k + ωF ′(xδ
k)

∗(yδ − F (xδ
k)) ,

xδ
0 = x0 ,

(1.4)

where ω is a scaling parameter and x0 is again a given initial guess. If one uses the
discrepancy principle, i.e., stops the iteration after k∗ steps, where k∗ is the smallest
integer such that

∥

∥yδ − F (xδ
k∗
)
∥

∥ ≤ τδ <
∥

∥yδ − F (xδ
k)
∥

∥ , 0 ≤ k < k∗ , (1.5)

with a suitable constant τ > 1, then it was proven in [6] that under some additional
assumptions, most notably the nonlinearity condition (2.1), Landweber iteration gives
rise to a convergent regularization method.

One necessary assumption in the convergence analysis of Landweber iteration is that

ω
∥

∥F ′(x†)
∥

∥

2
≤ 1 . (1.6)

Although estimating a suitable value for ω is easy in the linear case, for example using
the power method (see e.g. [6]), in the nonlinear case a good estimate is hard to obtain.
The steepest descent method [25] overcomes this problem by using the following iteration

xδ
k+1 = xδ

k + αδ
ks

δ
k , sδk = F ′(xδ

k)
∗(yδ − F (xδ

k)) , k ∈ N0 , (1.7)

with the iteration dependent stepsize αδ
k defined via

αδ
k :=

∥

∥sδk
∥

∥

2

∥

∥F ′(xδ
k)s

δ
k

∥

∥

2 . (1.8)

This has the advantage of not having to estimate a fixed scaling parameter ω at the cost
of having to compute F ′(xδ

k)s
δ
k at every iteration step. Another possibility of choosing
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an iteration dependent stepsize αδ
k without having to estimate ω is given by the minimal

error method [14], which will be considered in a later section.
As is well known [14], both Landweber iteration and the steepest descent/minimal

error method are quite slow. Hence, acceleration strategies have to be used in order to
speed them up to make them applicable in practise. Acceleration methods and their
analysis for linear problems can be found for example in [6] and [7]. Unfortunately, since
their convergence proofs are mainly based on spectral theory, their analysis cannot be
generalized to nonlinear problems immediately. However, there are some acceleration
strategies for Landweber iteration for nonlinear ill-posed problems, for example [17,21].

As an alternative to (accelerated) Landweber-type methods, one could think of
using second order iterative methods for solving (1.1), such as the Levenberg-Marquardt
method [8, 11]

xδ
k+1 = xδ

k + (F ′(xδ
k)

∗F ′(xδ
k) + αkI)

−1F ′(xδ
k)

∗(yδ − F (xδ
k)) , (1.9)

or the iteratively regularized Gauss-Newton method [3, 13]

xδ
k+1 = xδ

k + (F ′(xδ
k)

∗F ′(xδ
k) + αkI)

−1(F ′(xδ
k)

∗(yδ − F (xδ
k)) + αk(x0 − xδ

k)) . (1.10)

The advantage of those methods [14] is that they require much less iterations to meet
their respective stopping criteria than for example Landweber iteration or the steepest
descent method. However, each of those iterations might take considerably longer than
one step of Landweber iteration, due to the fact that in both cases a linear system
involving the operator

F ′(xδ
k)

∗F ′(xδ
k) + αkI (1.11)

has to be solved. In practical applications, this usually means that a huge linear system
of equations has to be solved, which often proves to be costly, if not impossible. Hence,
accelerated Landweber type methods avoiding this drawback are desirable in practise.

An accelerated gradient method which also works remarkably well for nonlinear,
albeit convex and well-posed optimization problems of the form

min{Φ(x) | x ∈ X} (1.12)

was first introduced by Nesterov in [16] and is given by

zk = xk +
k−1

k+α−1
(xk − xk−1) ,

xk+1 = zk − ω(∇Φ(zk)) ,
(1.13)

where again ω is a given scaling parameter and α ≥ 3 (with α = 3 being common
practise). This so-called Nesterov acceleration scheme is of particular interest, since not
only is it extremely easy to implement, but Nesterov himself was also able to prove that
it generates a sequence of iterates xk for which there holds ‖Φ(xk)− Φ(x∗)‖ = O(k−2),
where x∗ is any solution of (1.12). This is a big improvement over the classical rate
O(k−1). For α > 3 the even further improved rate O(k−2) was recently proven in [1].
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Combined with a projection step, Nesterov’s acceleration scheme can also be used
to solve convex (and even non-smooth) optimization problems of the form

min{Φ(x) + Ψ(x) | x ∈ X} , (1.14)

and as such serves as the basis of the highly successful FISTA algorithm [2] for the fast
solution of linear ill-posed problems with sparsity constraints.

Even though for general nonlinear operators F it is non-convex, one could think of
applying Nesterov’s acceleration scheme to the functional

Φ(x) :=
1

2

∥

∥F (x)− yδ
∥

∥

2
, (1.15)

which leads to the algorithm

zδk = xδ
k +

k−1
k+α−1

(xδ
k − xδ

k−1) ,

xδ
k+1 = zδk + αδ

kF
′(zδk)

∗(yδ − F (zδk)) ,

xδ
0 = xδ

−1 = x0 ,

(1.16)

which in this form was first proposed in [12] to accelerate Landweber iteration for
solving (nonlinear) ill-posed problems. Although no convergence analysis for (1.16)
could be given, the numerical examples presented in [12] clearly show its usefulness and
acceleration effect. Motivated by this, a slightly modified version of (1.16) promoting
sparsity was used [24] and one of the authors of that paper, A. Neubauer, went on to
show that for linear operators F and combined with a suitable stopping rule, (1.16)
gives rise to a convergent regularization method [20]. This serves as motivation for
considering general iteration methods of the form

zδk = xδ
k + λδ

k(x
δ
k − xδ

k−1) ,

xδ
k+1 = zδk + αδ

ks
δ
k , sδk := F ′(zδk)

∗(yδ − F (zδk)) ,

xδ
0 = xδ

−1 = x0 ,

(1.17)

which, for further reference, we will call Two-Point Gradient (TPG) methods in this
paper, since they require the use of the previous two iterates at every iteration step.
Following the usual convention, we will drop the superscript δ whenever the iteration
(1.17) with exact data yδ = y, i.e., δ = 0, is considered.

The subsequent paper is structured as follows: In the next section, i.e., Section 2,
we present a convergence analysis of general TPG methods of the form (1.17), based
on the classical convergence analysis of gradient based iterative regularization methods
(see [14,25]). This analysis will require certain abstract conditions on λδ

k and αδ
k, which

we will show to be satisfied for the steepest descent and the minimal error stepsizes
and suitable choices of λδ

k in Section 3. Afterwards, we will test the resulting TPG
methods on both a nonlinear Hammerstein operator and a nonlinear SPECT example
problem, numerically showing a considerable acceleration effect. Finally, we summarize
our findings in Section 5, discussing the results and providing a short outlook.
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2 Convergence Analysis

For the analysis of TPG methods of the form (1.17), we will need a few assumptions
which are quite similar to the assumptions needed for the analysis of Landweber it-
eration or the steepest descent method [25]. Firstly, we will need the following local
nonlinearity condition:

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ η ‖F (x)− F (x̃)‖ , η <
1

2
,

x, x̃ ∈ B4ρ(x0) ⊂ D(F ) ,
(2.1)

where B4ρ(x0) denotes the closed ball around x0 with radius 4ρ. Assuming this condition
to hold will allow the application of the following:

Lemma 2.1. Let ρ, ε > 0 be such that

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ c(x, x̃) ‖F (x)− F (x̃)‖ ,

x, x̃ ∈ Bρ(x0) ⊂ D(F ) ,
(2.2)

where c(x, x̃) ≥ 0 and c(x, x̃) < 1 if ‖x− x̃‖ ≤ ε. If F (x) = y is solvable in Bρ(x0),
then a unique x0-minimum-norm solution exists. It is characterized as the solution x†

of F (x) = y in Bρ(x0) satisfying the condition

x† − x0 ∈ N (F ′(x†))⊥ . (2.3)

Proof. [14, Proposition 2.1]

It will be necessary to place some restrictions on the stepsizes αδ
k and the combina-

tion parameters λδ
k. Minimal requirements on their values are:

λδ
0 = 0 , 0 ≤ λδ

k ≤ 1 , ∀ k ∈ N , αδ
k ≥ 0 , ∀ k ∈ N . (2.4)

With this, we can prove the following important:

Proposition 2.2. Assume that (2.1) and (2.4) hold and that equation F (x) = y has a
solution x∗ in Bρ(x0) = Bρ(x−1) and let xδ

k, x
δ
k−1 ∈ Bρ(x∗). Let

∥

∥yδ − F (zδk)
∥

∥ > τδ , (2.5)

with τ satisfying

τ > 2
1 + η

1− 2η
. (2.6)

Setting

∆k :=
∥

∥xδ
k − x∗

∥

∥

2
−
∥

∥xδ
k−1 − x∗

∥

∥

2
, (2.7)

and
Ψ := (1− 2η)− 2τ−1(1 + η) > 0 , (2.8)

there holds

∆k+1 ≤ λδ
k∆k + λδ

k(λ
δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
.

(2.9)
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Proof. Since xδ
k, x

δ
k−1 ∈ Bρ(x∗), using the triangle inequality and x∗ ∈ Bρ(x0), we get

that xδ
k, x

δ
k−1 ∈ B2ρ(x0). Together with λδ

k ≤ 1, this implies

∥

∥zδk − x0

∥

∥ ≤
∥

∥zδk − xδ
k

∥

∥+
∥

∥xδ
k − x0

∥

∥ = λδ
k

∥

∥xδ
k − xδ

k−1

∥

∥+
∥

∥xδ
k − x0

∥

∥

≤ λδ
k

∥

∥xδ
k − x∗

∥

∥+ λδ
k

∥

∥x∗ − xδ
k−1

∥

∥+
∥

∥xδ
k − x0

∥

∥ ≤ 2λδ
kρ+ 2ρ ≤ 4ρ .

(2.10)

which shows that zδk ∈ B4ρ(x0). Hence, we can apply (2.1), which leads to

∥

∥xδ
k+1 − x∗

∥

∥

2
−
∥

∥zδk − x∗

∥

∥

2
=
∥

∥xδ
k+1 − zδk + zδk − x∗

∥

∥

2
−
∥

∥zδk − x∗

∥

∥

2

= 2
〈

xδ
k+1 − zδk, z

δ
k − x∗

〉

+
∥

∥xδ
k+1 − zδk

∥

∥

2

(1.17)
= 2αδ

k

〈

yδ − F (zδk), F
′(zδk)(z

δ
k − x∗)

〉

+ (αδ
k)

2
∥

∥sδk
∥

∥

2

= 2αδ
k

〈

yδ − F (zδk), y
δ − y

〉

+ 2αδ
k

〈

yδ − F (zδk), F (zδk)− yδ
〉

+ 2αδ
k

〈

yδ − F (zδk), y − F (zδk) + F ′(zδk)(z
δ
k − x∗)

〉

+ (αδ
k)

2
∥

∥sδk
∥

∥

2

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

∥

∥y − F (zδk) + F ′(zδk)(z
δ
k − x∗)

∥

∥

(2.1)

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
kη
∥

∥yδ − F (zδk)
∥

∥

∥

∥F (x∗)− F (zδk)
∥

∥

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
kη
∥

∥yδ − F (zδk)
∥

∥ (
∥

∥F (zδk)− yδ
∥

∥+ δ)

= αδ
k

∥

∥yδ − F (zδk)
∥

∥

(

2δ(1 + η)− (1− 2η)
∥

∥yδ − F (zδk)
∥

∥

)

− αδ
k

(

∥

∥F (zδk)− yδ
∥

∥

2
− αδ

k

∥

∥sδk
∥

∥

2
)

(2.5)

≤ αδ
k

∥

∥yδ − F (zδk)
∥

∥

2 (
2τ−1(1 + η)− (1− 2η)

)

− αδ
k

(

∥

∥F (zδk)− yδ
∥

∥

2
− αδ

k

∥

∥sδk
∥

∥

2
)

(2.11)

Hence, using (2.8), we arrive at the estimate

∥

∥xδ
k+1 − x∗

∥

∥

2
≤
∥

∥zδk − x∗

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
. (2.12)
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Now, using the above inequality, we get

∆k+1 =
∥

∥xδ
k+1 − x∗

∥

∥

2
−
∥

∥xδ
k − x∗

∥

∥

2

(2.12)

≤
∥

∥zδk − x∗

∥

∥

2
−
∥

∥xδ
k − x∗

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= 2
〈

zδk − xδ
k, x

δ
k − x∗

〉

+
∥

∥zδk − xδ
k

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

(1.17)
= −2λδ

k

〈

xδ
k−1 − xδ

k, x
δ
k − x∗

〉

+ (λδ
k)

2
∥

∥xδ
k − xδ

k−1

∥

∥

2

− (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= −λδ
k

(

∥

∥xδ
k−1 − xδ

k + xδ
k − x∗

∥

∥

2
−
∥

∥xδ
k − x∗

∥

∥

2
−
∥

∥xδ
k − xδ

k−1

∥

∥

2
)

+ (λδ
k)

2
∥

∥xδ
k − xδ

k−1

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= −λδ
k

(

∥

∥xδ
k−1 − x∗

∥

∥

2
−
∥

∥xδ
k − x∗

∥

∥

2
)

+ λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2

− (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= λδ
k∆k + λδ

k(λ
δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
− (1 + Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
,

which yields the assertion.

In order to stop the iteration, we will use the discrepancy principle with respect to
zδk, i.e., we will stop the iteration after k∗ iterations, where k∗ = k∗(δ, y

δ) is the smallest
integer such that

∥

∥yδ − F (zδk∗)
∥

∥ ≤ τδ <
∥

∥yδ − F (zδk)
∥

∥ , 0 ≤ k < k∗ , (2.13)

and use zδk∗ as approximation of x†. For the constant τ , as suggested by Proposition 2.2,
we will use the condition

τ > 2
1 + η

1− 2η
. (2.14)

In the convergence analysis of Landweber iteration, one uses the fact that ∆k+1 ≤ 0
for all k < k∗, i.e., that xδ

k+1 is a better approximation of x∗ than xδ
k as long as the

discrepancy principle (1.5) is not yet satisfied. We would like our TPG methods to share
this property. Hence, in view of (2.9), we will use the following coupling condition:

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
−

(

1 +
Ψ

µ

)

αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
≤ 0 . (2.15)

which has to hold for all 0 ≤ k < k∗ with k∗ determined by (2.13) and where µ is a
constant satisfying µ > 1. This implies ∆k+1 ≤ λδ

k ∆k and therefore, in view of λδ
0 = 0

and λδ
k ≥ 0 for all k, we inductively get that ∆k+1 ≤ 0 1.

1This is not necessarily the case for the classical Nesterov Acceleration scheme (1.16), for which
convergence can therefore not be proven using the presented framework.
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Condition (2.15) essentially yields restrictions on the parameters λδ
k and αδ

k. As a
result, one has to ask if there exist choices of λδ

k and αδ
k such that (2.15) is satisfied.

For all stepsizes αδ
k considered below, we will see that there holds

αδ
k

∥

∥sδk
∥

∥

2
≤
∥

∥F (zδk)− yδ
∥

∥

2
, (2.16)

and hence, a sufficient condition for (2.15) to hold is given by

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
. (2.17)

Obviously, λδ
k = 0 satisfies this inequality, which corresponds to classical Landweber

type iterations. In finding other admissible choices of λδ
k and αδ

k, one has to be careful,
since both αδ

k and zδk might depend on λδ
k. Even for constant stepsizes αδ

k = ω one is
left with

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
ω
∥

∥F (zδk)− yδ
∥

∥

2
, (2.18)

where it is not immediately clear how to choose λδ
k such that this inequality is satisfied.

From the discrepancy principle (2.13), one can derive the sufficient condition

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
ω(τδ)2 , (2.19)

which leads to the choice

λδ
k = min

{

−
1

2
+

√

1

4
+

Ψω(τδ)2

µ
∥

∥xδ
k − xδ

k−1

∥

∥

2 , 1

}

, (2.20)

where the minimum with 1 is taken in order to guarantee 0 ≤ λδ
k ≤ 1. As the numer-

ical examples presented in Section 4 will show, this choice indeed leads to a speedup
compared to classical Landweber iteration which, however, decreases as δ → 0, which
could be expected, since for δ = 0, we get λδ

k = λ0
k = 0 and hence, we recover classical

Landweber iteration, known to be slow.
One possibility for finding a sequence λδ

k, based on a backtracking search procedure,
which takes nonzero values also for δ = 0, satisfies condition (2.15) and leads to a
considerable acceleration effect will be presented in Section 3.

We now continue the convergence analysis of the TPG methods (1.17) by deducing
the following proposition based on Proposition 2.2 and the coupling condition (2.15):

Proposition 2.3. Assume that (2.1) and (2.4) hold and that equation F (x) = y has a
solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k(δ, yδ) be chosen according to the stopping
rule (2.13), (2.14) and assume that (2.15) holds for all 0 ≤ k < k∗. Then xδ

k as in
(1.17) is well-defined and

∥

∥xδ
k+1 − x∗

∥

∥ ≤
∥

∥xδ
k − x∗

∥

∥ , ∀(−1) ≤ k < k∗ . (2.21)
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Moreover, xδ
k ∈ Bρ(x∗) ⊂ B2ρ(x0) for all (−1) ≤ k ≤ k∗ and

(

min
0≤k<k∗

{αδ
k}

)

k∗(τδ)
2 ≤

k∗−1
∑

k=0

αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
≤ (µ̄Ψ)−1

∥

∥xδ
0 − x∗

∥

∥

2
, (2.22)

where µ̄ = (µ− 1)/µ > 0.

Proof. From (2.9) it follows for k = 0 that

∆1 ≤ λδ
0∆0 + λδ

0(λ
δ
0 + 1)

∥

∥xδ
0 − xδ

−1

∥

∥

2
− (1 + Ψ)αδ

0

∥

∥yδ − F (zδ0)
∥

∥

2
+ (αδ

0)
2
∥

∥sδ0
∥

∥

2
.

Using (2.15) and λδ
0 = 0, we can deduce that

∆1 ≤ λδ
0(λ

δ
0 + 1)

∥

∥xδ
0 − xδ

−1

∥

∥

2
− (1 + Ψ)αδ

0

∥

∥yδ − F (zδ0)
∥

∥

2
+ (αδ

0)
2
∥

∥sδ0
∥

∥

2

(2.15)

≤ −
µ− 1

µ
Ψαδ

0

∥

∥yδ − F (zδ0)
∥

∥

2
= −µ̄Ψαδ

0

∥

∥yδ − F (zδ0)
∥

∥

2
≤ 0 ,

(2.23)

from which we get that xδ
1 ∈ Bρ(x∗). Now, we proceed inductively to show that

∆k+1 ≤ −µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2
≤ 0 , (2.24)

and xδ
k+1 ∈ Bρ(x∗) for all 0 ≤ k < k∗. To do so, we assume that this holds for all

0 ≤ m ≤ k. Again using (2.9), we deduce that

∆k+1 ≤ λδ
k∆k+λδ

k(λ
δ
k+1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
−(1+Ψ)αδ

k

∥

∥F (zδk)− yδ
∥

∥

2
+(αδ

k)
2
∥

∥sδk
∥

∥

2
, (2.25)

which, together with (2.15) and the induction hypothesis yields (2.24). From this, we
can deduce xδ

k+1 ∈ Bρ(x∗) ⊂ B2ρ(x0), which completes the induction.
Furthermore, from (2.24) we can deduce that

µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2
≤
∥

∥xδ
k − x∗

∥

∥

2
−
∥

∥xδ
k+1 − x∗

∥

∥

2
, (2.26)

and hence, also

k∗−1
∑

k=0

µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2
≤
∥

∥xδ
0 − x∗

∥

∥

2
−
∥

∥xδ
k∗
− x∗

∥

∥

2
≤
∥

∥xδ
0 − x∗

∥

∥

2
. (2.27)

From this, we get the estimate

(

min
0≤k<k∗

{αδ
k}

)

k∗(τδ)
2 ≤

k∗−1
∑

k=0

αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
≤ (µ̄Ψ)−1

∥

∥xδ
0 − x∗

∥

∥

2
, (2.28)

which yields the assertion.

From the above proposition, we get the following simple:
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Corollary 2.4. Under the assumptions of Proposition 2.3, we have

k∗ ≤

(

min
0≤k<k∗

{αδ
k}

)−1
∥

∥xδ
0 − x∗

∥

∥

2

µ̄Ψ(τδ)2
. (2.29)

If we are given exact data yδ = y, i.e., if δ = 0, then (2.22) implies

∞
∑

k=0

αk ‖y − F (zk)‖
2 < ∞ , (2.30)

as in this case k∗ = ∞. Note that this only holds if F (zk) 6= y for all k ∈ N, since other-
wise the sum terminates in a finite number of steps. However, this is not a restriction,
since if F (zk) = y for some k, then a solution is found and the iteration is terminated.

Combining (2.30) together with (2.15), we furthermore get that

∞
∑

k=0

λ0
k(λ

0
k + 1) ‖xk − xk−1‖

2 < ∞ , (2.31)

and
∞
∑

k=0

(αk)
2 ‖sk‖

2 < ∞ , (2.32)

from which there obviously follows

lim
k→∞

αk ‖y − F (zk)‖
2 = 0 ,

lim
k→∞

λ0
k(λ

0
k + 1) ‖xk − xk−1‖

2 = 0 ,

lim
k→∞

(αk)
2 ‖sk‖

2 = 0 .

(2.33)

If, additionally, αδ
k is bounded from below, i.e.,

0 < αδ
min := min

k∈N
{αδ

k} , (2.34)

then it even follows that
lim
k→∞

‖y − F (zk)‖ = 0 . (2.35)

If we can show that zk converges as well, then we get convergence of the iteration to a
solution of F (x) = y. In order to do this, we first have to show a couple of intermediate
results. We start by showing that under certain assumptions, the sequence ‖zk − x∗‖
has a finite limit as k → ∞.

Proposition 2.5. Let x∗ be a solution of F (x) = y, and let xk be the iterates (1.17)
with exact data, i.e., δ = 0. Assume that ‖xk − x∗‖ → ε as k → ∞, where ε ≥ 0 is a
constant. If λ0

k ‖xk − xk−1‖ → 0 and αk ‖sk‖ → 0 as k → ∞, then there holds

lim
k→∞

‖zk − x∗‖ = ε . (2.36)
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Proof. From the definition of the iterates (1.17), we have the inequality

‖zk − x∗‖ =
∥

∥xk − x∗ + λ0
k(xk − xk−1)

∥

∥ ≤ ‖xk − x∗‖+ λ0
k ‖xk − xk−1‖ (2.37)

and
‖xk+1 − x∗‖ = ‖zk − x∗ + αksk‖ ≤ ‖zk − x∗‖+ αk ‖sk‖ , (2.38)

from which there follows

‖xk+1 − x∗‖ − αk ‖sk‖ ≤ ‖zk − x∗‖ ≤ ‖xk − x∗‖+ λ0
k ‖xk − xk−1‖ (2.39)

Taking the limit as k → ∞ now yields the assertion.

The following characterisation of the iterates xδ
k will be useful later on:

Lemma 2.6. For the iterates of the TPG methods (1.17) there holds

xδ
k = x0 +

k−1
∑

i=0

λδ
i (x

δ
i − xδ

i−1) +
k−1
∑

i=0

αδ
i s

δ
i , (2.40)

as well as

xδ
l − xδ

j =
l−1
∑

i=j

λδ
i (x

δ
i − xδ

i−1) +
l−1
∑

i=j

αδ
i s

δ
i , (2.41)

and

xδ
i − xδ

i−1 =
i−2
∑

m=0

(

i−1
∏

n=m+1

λδ
n

)

αδ
ms

δ
m + αδ

i−1s
δ
i−1 . (2.42)

Proof. The first two of the above statements follow immediately from (1.17). Hence,
it remains to prove (2.42), which we do by induction. For i = 1 the statement follows
immediately from (1.17). Assuming now that (2.42) holds for all 1 ≤ l ≤ i, we get

xδ
i+1 − xδ

i

(1.17)
= λδ

i (x
δ
i − xδ

i−1) + αδ
i s

δ
i

= λδ
i

(

i−2
∑

m=0

(

i−1
∏

n=m+1

λδ
n

)

αδ
ms

δ
m + αδ

i−1s
δ
i−1

)

+ αδ
i s

δ
i

=
i−1
∑

m=0

(

i
∏

n=m+1

λδ
n

)

αδ
ms

δ
m + αδ

i s
δ
i ,

(2.43)

which concludes the induction and hence the lemma is shown.

Lemma 2.7. Assume that (2.1) holds, let x∗ ∈ B4ρ(x0) be a solution of F (x) = y and
let x1, x2 ∈ B4ρ(x0). Then there holds

‖F ′(x1)(x∗ − x2)‖ ≤ 2(1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x2)− y‖ . (2.44)
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Proof. The proof of this lemma was already done in [25] and is re-stated here for the
sake of completeness. Using (2.1), it follows that

‖F ′(x1)(x∗ − x2)‖ = ‖F ′(x1)(x∗ − x1 + x1 − x2)‖

≤ ‖−F (x∗) + F (x1) + F ′(x1)(x∗ − x1)− F (x1) + F (x∗)‖

+ ‖F (x2)− F (x1) + F ′(x1)(x1 − x2)− F (x2) + F (x1)‖

≤ (1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x1)− F (x2)‖

≤ 2(1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x2)− y‖ ,

(2.45)

which yields the assertion.

In order to prove convergence in the case of exact data in Theorem 2.8 below, we
need the following additional assumption on the combination parameters λ0

k:

∞
∑

k=0

λ0
k ‖xk − xk−1‖ < ∞ . (2.46)

Since under the previous assumptions ‖xk − xk−1‖ can be bounded (by 2ρ), it follows
that a sufficient condition for (2.46) to hold is given by

∞
∑

k=0

λ0
k < ∞ . (2.47)

For λδ
k defined via (2.20), condition (2.47) is obviously satisfied. However, it is quite

a restrictive condition, since it implies λ0
k → 0 as k → ∞. Comparing this with the

classical Nesterov combination parameters λδ
k = (k − 1)/(k + α − 1), which tend to 1

as k → ∞ even for δ = 0, we see that in order to achieve a non-negligible acceleration
effect also for δ = 0, one has to work with condition (2.46) instead of only the sufficient
condition (2.47). In Section 3, we will present an algorithm for choosing λδ

k such that
(2.46) is satisfied and the numerical examples presented in Section 4 will show that for
this sequence, under a suitable choice of parameters, there holds λδ

k → 1 as k → ∞,
leading to the desired acceleration effect. Using (2.46), we can now prove the following:

Theorem 2.8. Assume that (2.1) holds and that equation F (x) = y has a solution x∗

in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(0, y) = ∞, λδ
k and αδ

k satisfy (2.4), (2.34) and (2.46)
and assume that (2.15) holds for all k ∈ N. Then the iterates zk defined as in (1.17)
with exact data yδ = y converge to a solution of F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x))
for all x ∈ B4ρ(x

†), then zk converges to x† as k → ∞.

Proof. This proof closely follows the corresponding proof for Landweber iteration given
in [6]. Let x∗ be a solution of F (x) = y in Bρ(x0) and define

ek := zk − x∗ . (2.48)

From Proposition 2.3 it follows that ‖xk − x∗‖ converges to some ε ≥ 0 and hence,
using (2.33) and Proposition 2.5, we can deduce that ‖ek‖ converges to this same ε as

12



well. We are now going to show that ek is a Cauchy sequence. Given j ≥ k, we choose
some integer l between k and j with

‖y − F (zl)‖ ≤ ‖y − F (zi)‖ , ∀ k ≤ i ≤ j . (2.49)

We have
‖ej − ek‖ ≤ ‖ej − el‖+ ‖el − ek‖ , (2.50)

and

‖ej − el‖
2 = 2 〈 el − ej, el 〉+ ‖ej‖

2 − ‖el‖
2 ,

‖el − ek‖
2 = 2 〈 el − ek, el 〉+ ‖ek‖

2 − ‖el‖
2 ,

(2.51)

For k → ∞, the last two terms on each of the right hand sides of the above equations
converge to ε2 − ε2 = 0. We now show that 〈 el − ek, el 〉 and 〈 el − ej, el 〉 also tend to
0 as k → ∞. For this we first consider:

|〈 el − ek, el 〉| = |〈 zl − zk, el 〉| =
∣

∣

〈

xl − xk + λ0
l (xl − xl−1)− λ0

k(xk − xk−1), el
〉∣

∣

≤ |〈 xl − xk, el 〉|+ λ0
l |〈 xl − xl−1, el 〉|+ λ0

k |〈 xk − xk−1, el 〉|

≤ |〈 xl − xk, el 〉|+ λ0
l ‖xl − xl−1‖ ‖el‖+ λ0

k ‖xk − xk−1‖ ‖el‖ .

(2.52)

Now, using (2.33) and the fact that ‖ek‖ converges to ε, we get that

lim
k→∞

(

λ0
l ‖xl − xl−1‖ ‖el‖+ λ0

k ‖xk − xk−1‖ ‖el‖
)

= 0 . (2.53)

Hence, it remains to consider

|〈 xl − xk, el 〉|
(2.41)
=

∣

∣

∣

∣

∣

〈

l−1
∑

i=k

λ0
i (xi − xi−1) +

l−1
∑

i=k

αisi, el

〉∣

∣

∣

∣

∣

≤
l−1
∑

i=k

λ0
i |〈 xi − xi−1, el 〉|+

l−1
∑

i=k

αi |〈 si, el 〉| .

(2.54)

We now consider the above two sums separately, starting with the second one. By
Lemma 2.7, we have

l−1
∑

i=k

αi |〈 si, el 〉| =
l−1
∑

i=k

αi |〈 y − F (zi), F
′(zi)(zl − x∗) 〉|

≤
l−1
∑

i=k

αi ‖y − F (zi)‖ ‖F
′(zi)(zl − x∗)‖

(2.44)

≤ 2(1 + η)
l−1
∑

i=k

αi ‖y − F (zi)‖
2 + (1 + η)

l−1
∑

i=k

αi ‖y − F (zi)‖ ‖y − F (zl)‖ .

≤ 3(1 + η)
l−1
∑

i=k

αi ‖y − F (zi)‖
2 ≤ 3(1 + η)

∞
∑

i=k

αi ‖y − F (zi)‖
2 ,

(2.55)
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where we have used (2.49). From this, it follows by using (2.30) that

lim
k→∞

(

l−1
∑

i=k

αi |〈 si, el 〉|

)

= 0 . (2.56)

Next we consider

l−1
∑

i=k

λ0
i |〈 xi − xi−1, el 〉| ≤

l−1
∑

i=k

λ0
i ‖xi − xi−1‖ ‖el‖ ≤

∞
∑

i=k

λ0
i ‖xi − xi−1‖ ‖el‖ . (2.57)

Since ‖el‖ is bounded, it immediately follows from (2.46) that

lim
k→∞

(

l−1
∑

i=k

λ0
i |〈 xi − xi−1, el 〉|

)

= 0 . (2.58)

Combining the above estimates, we arrive at |〈 xl − xk, el 〉| → 0, from which there
follows that |〈 el − ek, el 〉| → 0 as k → ∞. Since it can similarly be shown that
|〈 el − ej, el 〉| → 0 as k → ∞, it follows that

lim
k→∞

‖ej − ek‖ = 0 , (2.59)

from which we deduce that ek and hence, also zk is a Cauchy sequence and therefore
convergent in the Hilbert space X . Since ‖F (zk)− y‖ converges to 0, the limit of zk is
a solution of F (x) = y.

Now we turn to the second part of the proof. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ B4ρ(x

†), then by the definition of the iterates (1.17) we have

zk+1 − zk = xk+1 + λ0
k+1(xk+1 − xk)− zk = αksk + λ0

k+1(xk+1 − xk)

= (1 + λ0
k+1)αksk + λ0

k+1(zk − xk) = (1 + λ0
k+1)αksk + λ0

k+1λ
0
k(xk − xk−1)

and therefore

zk − z0 =
k−1
∑

i=0

(zi+1 − zi) =
k−1
∑

i=0

(

(1 + λ0
i+1)αisi + λ0

i+1λ
0
i (xi − xi−1)

)

. (2.60)

Since obviously (1 + λ0
i+1)αisi ∈ R(F ′(zi)

∗) and since

R(F ′(zi)
∗) ⊂ N (F ′(zi))

⊥ ⊂ N (F ′(x†))⊥ for all i ∈ N , (2.61)

it follows that
k−1
∑

i=0

(1 + λ0
i+1)αisi ∈ N (F ′(x†))⊥ . (2.62)

Similarly as above, it can be seen via using Lemma 2.6 that also

k−1
∑

i=0

λ0
i+1λ

0
i (xi − xi−1) ∈ N (F ′(x†))⊥ , (2.63)
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and we therefore conclude that

zk − z0 ∈ N (F ′(x†))⊥ for all k ∈ N . (2.64)

Since this also holds for the limit of zk and since x† is the unique solution for which
this condition holds (cf. Lemma 2.1), this proves that zk → x† as k → ∞.

In the next corollary, we deduce the convergence of xk given the convergence of zk.

Corollary 2.9. Under the assumptions of Theorem 2.8, we get that xk converges to x∗,
where x∗ is the limit of zk as k → ∞.

Proof. The statement follows immediately from

‖xk+1 − x∗‖ ≤ ‖zk − x∗‖+ αk ‖sk‖ , (2.65)

together with (2.33).

Next, we show that using the discrepancy principle (2.13) as a stopping rule, our
TPG method (1.17) becomes a convergent regularization method, if we additionally
assume that λδ

k depends continuously on δ for δ → 0.

Theorem 2.10. Assume that (2.1) holds and that equation F (x) = y has a solution x∗

in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y
δ) be chosen according to the discrepancy principle

(2.13), (2.14) and assume that (2.15) holds for all 0 ≤ k < k∗. Assume that λδ
k and αδ

k

satisfy (2.4), (2.34) and (2.46) and that λδ
k → λ0

k as δ → 0. Then the iterates zδk∗ defined
via (1.17) converge to a solution of F (x) = y, as δ → 0. If N (F ′(x†)) ⊂ N (F ′(x)) for
all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. Again this proof closely follows the corresponding proof for Landweber iteration
given in [6]. Let x∗ be the limit point of zk (and hence, by Corollary 2.9, also of xk)
given exact data y and let δn be a sequence converging to 0 as n → ∞. Let furthermore
yn := yδn be a sequence of noisy data with ‖y − yn‖ ≤ δn and let kn := k∗(δn, yn) be
the stopping index determined via the discrepancy principle applied to the pair (δn, yn).
There are two cases. First, assume that k is a finite accumulation point of kn. Without
loss of generality, we can assume that kn = k for all n ∈ N. Thus, from the definition
of the discrepancy principle, it follows that

∥

∥yn − F (zδnk )
∥

∥ ≤ τδn . (2.66)

As k is fixed, zδk depends continuously on the data yδ and we can take the limit n → ∞
in the above inequality, which yields

zδnk → zk , F (zδnk ) → F (zk) = y , as n → ∞ . (2.67)

In other words, the kth iterate of Landweber iteration with exact data is a solution
of F (x) = y and hence, the iteration terminates with zk = x∗, and zδnkn → x∗ for this
subsequence as δn → 0.
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For the second case, assume that kn → ∞ as n → ∞. For some k and kn > k + 1,
Proposition 2.3 and 0 ≤ λδ

k ≤ 1 yield
∥

∥zδnkn − x∗

∥

∥ ≤
∥

∥xδn
kn

− x∗

∥

∥+ λδ
k

∥

∥xδn
kn

− x∗

∥

∥+ λδ
k

∥

∥xδn
kn−1 − x∗

∥

∥

≤
∥

∥xδn
k − x∗

∥

∥+ λδ
k

∥

∥xδn
k − x∗

∥

∥+ λδ
k

∥

∥xδn
k − x∗

∥

∥

≤ 3
∥

∥xδn
k − x∗

∥

∥ ≤ 3
∥

∥xδn
k − xk

∥

∥+ 3 ‖xk − x∗‖ .

(2.68)

If we fix some ε > 0, it follows from Proposition 2.2 and from Corollary 2.9 that we can
fix some k = k(ε) such that ‖xk − x∗‖ ≤ ε/6. Since, for fixed k, the iterates depend
continuously on the data, there is an n = n(ε, k) such that

∥

∥xδn
k − xk

∥

∥ ≤ ε/6 for all
n > n(ε, k). Thus if we choose n sufficiently large, such that also kn > k + 1, we get
that

∥

∥zδnkn − x∗

∥

∥ ≤ 3
∥

∥xδn
k − x∗

∥

∥ ≤ 3
∥

∥xδn
k − xk

∥

∥+ 3 ‖xk − x∗‖ ≤ 3
ε

6
+ 3

ε

6
= ε , (2.69)

and therefore zδnkn → x∗ as n → ∞, which shows the first part of the assertion. If
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then x∗ can be chosen as x∗ = x†, in which
case Theorem 2.8 guarantees convergence of zk → x† (and then also xk → x†). Thus
the above arguments apply to that case as well, which yields the assertion.

We can now apply the above result to the TPG method (1.17) with constant stepsize
αδ
k = ω and λδ

k defined via (2.20). For this, we need the additional assumption

sup
x∈B4ρ(x0)

‖F ′(x)‖ ≤ ω̄ < ∞ . (2.70)

Theorem 2.11. Assume that (2.1) and (2.70) hold and that equation F (x) = y has
a solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y

δ) be chosen according to the
discrepancy principle (2.13), (2.14). Assume that αδ

k = ω ≤ 1/ω̄2, where ω̄ satisfies
(2.70) and that λδ

k is defined via (2.20), for some µ > 1 and Ψ defined via (2.8). Then
the iterates zδk∗ defined via (1.17) converge to a solution of F (x) = y, as δ → 0. If
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. Due to αδ
k = ω ≤ 1/ω̄2 and (2.70), there holds

αδ
k

∥

∥sδk
∥

∥

2
≤
∥

∥F (zδk)− yδ
∥

∥

2
, (2.71)

and hence, due to the discrepancy principle (2.13) and the definition of λδ
k via (2.20),

we get that (2.15) is satisfied for all 0 ≤ k < k∗. Obviously, (2.4) and (2.34) hold, λδ
k

depends continuously on δ for fixed k and, since λ0
k = 0, also (2.46) is trivially satisfied.

Hence, Theorem 2.10 is applicable, which immediately yields the desired results.

3 Examples of TPG methods based on the Steepest

Descent and the Minimal Error stepsize

In this section, we will introduce two TPG methods (1.17) based on the steepest descent
and on the minimal error stepsize and show that, under some assumptions, they lead
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to convergent regularization methods. If we again denote

sδk := F ′(zδk)
∗(yδ − F (zδk)) , (3.1)

then the steepest descent stepsize αSD
k is defined by

αSD
k := αSD

k (zδk) :=

∥

∥sδk
∥

∥

2

∥

∥F ′(zδk)s
δ
k

∥

∥

2 , (3.2)

and the minimal error stepsize αME
k is defined by

αME
k := αME

k (zδk) :=

∥

∥yδ − F (zδk)
∥

∥

2

∥

∥sδk
∥

∥

2 . (3.3)

The choice of the steepest descent stepsize αSD
k is motivated by line-search procedures

for optimization methods, where one tries to find an αδ
k such that the functional

1

2

∥

∥F (zδk + αδ
ks

δ
k)− yδ

∥

∥

2
(3.4)

is minimized. The stepsize αSD
k minimizes the linearisation of this functional, i.e.,

αSD
k = argmin

αδ
k

1

2

∥

∥F (zδk) + αδ
kF

′(zδk)s
δ
k − yδ

∥

∥

2
. (3.5)

As for the minimal error stepsize αME
k , note that in the proof of Proposition 2.2 we

showed the following inequality:

∥

∥xδ
k+1 − x∗

∥

∥

2
≤
∥

∥zδk − x∗

∥

∥

2
− αδ

k

(

∥

∥F (zδk)− yδ
∥

∥

2
− αδ

k

∥

∥sδk
∥

∥

2
)

. (3.6)

Now, in order to ensure that
∥

∥xδ
k+1 − x∗

∥

∥ ≤
∥

∥zδk − x∗

∥

∥, the stepsize αδ
k has to satisfy

αδ
k

∥

∥sδk
∥

∥

2
≤
∥

∥F (zδk)− yδ
∥

∥

2
, (3.7)

and the choice of αδ
k = αME

k is the largest stepsize fulfilling that requirement.
In the following proposition we will show that αSD

k and αME
k are well defined. The

proof is almost completely similar to the one of [14, Proposition 3.20].

Proposition 3.1. Assume that (2.1) holds and that equation F (x) = y has a solution
x∗ in Bρ(x0). Assume that xδ

k, x
δ
k−1 ∈ Bρ(x∗) for an arbitrary k ∈ N ∪ {0} and

∥

∥yδ − F (zδk)
∥

∥ > 2
1 + η

1− 2η
δ (3.8)

holds. Then sδk 6= 0 and F ′(zδk)s
δ
k 6= 0 and consequently, αSD

k and αME

k defined via (3.2)
and (3.3) are well-defined.
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Proof. Since xδ
k, x

δ
k−1 ∈ Bρ(x∗) it follows as in Proposition 2.2 that zk ∈ B4ρ(x0) and

hence (2.1) is applicable. Assume now that sδk = 0. Then we have

0 =
〈

sδk, z
δ
k − x∗

〉

=
〈

F ′(zδk)
∗(yδ − F (zδk)), z

δ
k − x∗

〉

=
〈

yδ − F (zδk), F
′(zδk)(z

δ
k − x∗)

〉

=
〈

yδ − F (zδk), y
δ − y + y − yδ + F (zδk)− F (zδk) + F ′(zδk)(z

δ
k − x∗)

〉

=
〈

yδ − F (zδk), y
δ − y

〉

−
∥

∥yδ − F (zδk)
∥

∥

2

−
〈

yδ − F (zδk), F (zδk)− F (x∗)− F ′(zδk)(z
δ
k − x∗)

〉

.

(3.9)

Using (1.2) and (2.1), we get

∥

∥yδ − F (zδk)
∥

∥

2
≤
∥

∥yδ − F (zδk)
∥

∥ δ + η
∥

∥yδ − F (zδk)
∥

∥

∥

∥F (zδk)− F (x∗)
∥

∥

≤
∥

∥yδ − F (zδk)
∥

∥ δ + η
∥

∥yδ − F (zδk)
∥

∥ (
∥

∥yδ − F (zδk)
∥

∥+ δ)

=
∥

∥yδ − F (zδk)
∥

∥

(

δ + η(δ +
∥

∥yδ − F (zδk)
∥

∥)
)

,

(3.10)

and therefore
∥

∥yδ − F (zδk)
∥

∥ ≤
1 + η

1− η
δ , (3.11)

which is a contradiction to (3.8). Hence, sδk 6= 0.
Now assume that F ′(zδk)s

δ
k = 0. Then obviously sδk ∈ N (F ′(zδk)). By the definition

of sδk, we also have that sδk ∈ R(F ′(zδk)
∗) ⊂ N (F ′(zδk))

⊥. Hence, we have sδk = 0, which
is a contradiction to what we have shown above. Hence, F ′(zδk)s

δ
k 6= 0 and therefore

αSD
k and αME

k are well-defined.

We now want to prove that all conditions on the stepsize αδ
k used in the previous

section also hold for αSD
k and αME

k . We start by considering condition (2.34). Assuming
(2.70) to hold, it then obviously follows that αSD

k ≥ 1/ω̄2 and αME
k ≥ 1/ω̄2 and hence,

condition (2.34) is satisfied. Now we state another helpful result due to [25]:

Lemma 3.2. For the stepsizes αδ
k = αSD

k , αME

k defined via (3.2) and (3.3), respectively,
there holds

αδ
k

∥

∥sδk
∥

∥

2
≤
∥

∥yδ − F (zδk)
∥

∥

2
, (3.12)

where equality holds for αδ
k = αME

k in the above inequality.

Proof. According to its definition, the statement is trivial for αME
k . For αSD

k , it follows
immediately from

αSD
k

∥

∥sδk
∥

∥

2
=

〈

F ′(zδk)s
δ
k, y

δ − F (zδk)
〉2

∥

∥F ′(zδk)s
δ
k

∥

∥

2 ≤
∥

∥yδ − F (zδk)
∥

∥

2
. (3.13)
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We now turn back to the very important condition (2.15). Due to Lemma 3.2, if we
use αδ

k = αSD
k or αδ

k = αME
k , then a sufficient condition for (2.15) to hold is given by

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
. (3.14)

As we previously noted in Section 2, the choice λδ
k = 0 satisfies this inequality,

which, however, corresponds to the classical steepest descent or minimal error method,
respectively. Another possibility which, using (2.70), can be derived analogously to
(2.20), is given by

λδ
k = min

{

−
1

2
+

√

1

4
+

Ψ(τδ)2

µ ω̄2
∥

∥xδ
k − xδ

k−1

∥

∥

2 , 1

}

. (3.15)

Note that this is the same as (2.20), given that the optimal stepsize ω = 1/ω̄2 is being
used. For λδ

k as in (3.15), we can deduce the following:

Theorem 3.3. Assume that (2.1) and (2.70) hold and that equation F (x) = y has
a solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y

δ) be chosen according to the
discrepancy principle (2.13), (2.14). Assume that either αδ

k = αSD

k or αδ
k = αME

k ,
defined by (3.2) or (3.3), respectively. Furthermore, let λδ

k be defined via (3.15), for
some µ > 1, Ψ defined via (2.8) and ω̄ satisfying (2.70). Then the iterates zδk∗ defined
via (1.17) converge to a solution of F (x) = y, as δ → 0. If N (F ′(x†)) ⊂ N (F ′(x)) for
all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. From Lemma 3.2, we get that

αδ
k

∥

∥sδk
∥

∥

2
≤
∥

∥F (zδk)− yδ
∥

∥

2
. (3.16)

Together with αSD
k , αME

k ≥ 1/ω̄2, the statements of the theorem now follow from Theo-
rem 2.10, analogously as in the proof of Theorem 2.11.

As for λδ
k defined via (2.20), for λδ

k defined via (3.15) there also holds λδ
k = 0 for

δ = 0. Since this corresponds to classical Landweber iteration, the steepest descent or
minimal error method, the acceleration effect due to those choices of λδ

k will decrease
for δ → 0. Since for small values of δ acceleration is needed most, other choices of λδ

k

also have to be considered.
The crucial conditions which a pair (λδ

k, α
δ
k) has to satisfy in order for Theorem 2.10

to be applicable are the conditions (2.15) and (2.46). We have already seen that λδ
k = 0

and λδ
k defined via either (2.20) or (3.15), and hence, all sequences in between those two,

satisfy the coupling condition (2.15). Given a stepsize αδ
k, one could think of choosing

λδ
k ≤ 1 as large as possible such that the coupling condition (2.15) is satisfied. However,

one also has to guarantee that condition (2.46) is satisfied as well.
One possibility is to choose λδ

k as a subsequence of a summable sequence like (cqk)k∈N,
0 ≤ q < 1, in such a way that (2.15) is satisfied, which, together with the boundedness
of
∥

∥xδ
k − xδ

k−1

∥

∥, guarantees (2.46). Unfortunately, the resulting sequence λδ
k tends to 0
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as k → ∞, which in turn only leads to a negligible acceleration effect. However, notice
that for condition (2.46) to be satisfied, it suffices that the sequence λ0

k ‖xk − xk−1‖ is
summable. Hence, we propose the following strategy:

Given a stepsize αδ
k, define the combination parameters λδ

k via

λδ
k =







0 , k = 0 ,

min

{

qδk

‖xδ
k
−xδ

k−1‖
, 1

}

, k ≥ 1 ,
, (3.17)

where (qδk)k∈N is a decreasing sequence depending continuously on δ for fixed k, satisfying

∞
∑

k=0

qδk < ∞ , (3.18)

and chosen such that condition (2.15) holds. If the sequence (qδk)k∈N can be chosen
in such a way that it converges to 0 fast enough to satisfy (3.18) but slower than
∥

∥xδ
k − xδ

k−1

∥

∥, the resulting sequence λδ
k will stay away from 0 and possibly even tend

towards 1 as k → ∞.
Finding a sequence (qδk)k∈N satisfying all the required properties such that the re-

sulting TPG method indeed gives rise to a convergent regularization method and how
to compute a viable sequence λδ

k in practise will be the topics of the remainder of this
section. First, we will consider the problem of finding a suitable sequence (qδk)k∈N, or
alternatively, λδ

k, via what in the following we will call the backtracking search (BTS)
algorithm, given by:

Algorithm 3.1. [Backtracking search (BTS) algorithm for λδ
k, k > 1]

• Given: xδ
k, x

δ
k−1, Ψ, µ, yδ, F , q : R+

0 → R
+
0 , m

δ
k−1 ∈ R.

• Calculate
∥

∥xδ
k − xδ

k−1

∥

∥ and define

βδ
k(m) := min

{

q(m)
∥

∥xδ
k − xδ

k−1

∥

∥

, 1

}

. (3.19)

• Define the functions

λ̃δ
k(m) := βδ

k(m
δ
k−1 + 1 +m) ,

z̃δk(m) := xδ
k + λ̃δ

k(m)(xδ
k − xδ

k−1) ,

α̃δ
k(m) := αδ

k(z̃
δ
k(m)) .

(3.20)

• Calculate

m̃δ
k = inf

{

m ≥ 0
∣

∣

∣
λ̃δ
k(m)(λ̃δ

k(m) + 1)
∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2
}

(3.21)
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• Define λδ
k := λ̃δ

k(m̃
δ
k), z

δ
k := z̃δk(m̃

δ
k) and mδ

k := mδ
k−1 + 1 + m̃δ

k.

• Output: λδ
k, z

δ
k, m

δ
k.

In order to carry out the above algorithm, a function q : R+
0 → R

+
0 needs to be

specified. In order to prove convergence of our iteration method with λδ
k chosen via

Algorithm 3.1, we will have to make the following assumptions on this function:

q(m1) ≤ q(m2) ∀m1 > m2 ,

∞
∑

k=0

q(k) < ∞ . (3.22)

Concerning the calculation of m̃δ
k, note first that it is possible that α̃δ

k(m) is not well-
defined for certain values of m. However, by Proposition 3.1 this can only happen if
z̃δk(m) is such that (3.8) holds, i.e., that the stopping criterion (2.13) is satisfied, and we
will therefore consider the inequality in (3.21) to be satisfied for those m. Furthermore,
if there is no m ≥ 0 such that the inequality

λ̃δ
k(m)(λ̃δ

k(m) + 1)
∥

∥xδ
k − xδ

k−1

∥

∥

2
≤

Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2
(3.23)

is satisfied, then m̃δ
k = inf ∅ = ∞ and hence λ̃δ

k(m̃
δ
k) and z̃δk(m̃

δ
k) have to be understood

in the limit sense, i.e.,

λ̃δ
k(∞) := lim

m→∞
λ̃δ
k(m) = 0 , z̃δk(∞) := lim

m→∞
z̃δk(m) = xδ

k . (3.24)

However, since by (3.19) and (3.22) there holds λ̃δ
k(m) → 0 as m → 0 and since αδ

k is
bounded away from 0 in this case, m̃δ

k = ∞ can only happen if
∥

∥yδ − F (z̃δk(m))
∥

∥ →
0 as m → ∞. By the continuity of the involved quantities, this in turn implies
∥

∥yδ − F (z̃δk(∞))
∥

∥ = 0 and hence, due to the discrepancy principle, the TPG method
will be terminated with zδk = z̃δk(∞) after the current iteration.

Combining the above considerations, for TPG methods (1.17) combined with the
BTS algorithm (3.1) for determining a suitable sequence λδ

k we can now prove the
following convergence result:

Theorem 3.4. Assume that (2.1) and (2.70) hold and that equation F (x) = y has a
solution x∗ in Bρ(x0) = Bρ(x−1). Let x

δ
k, z

δ
k be defined via (1.17) with αδ

k being given by
either (3.2) or (3.3). Let λδ

k be defined via Algorithm 3.1 with λδ
0 = 0, mδ

0 = 0, µ > 1,
Ψ as in (2.8) and q : R+

0 → R
+
0 satisfying (3.22). Let k∗ = k∗(δ, y

δ) be chosen according
to the discrepancy principle (2.13), (2.14). Then the following statements hold:

1. If y = yδ, i.e., if δ = 0, and if k∗ = k∗(0, y) = ∞ then the iterates zk and xk

converge to a solution of F (x) = y as k → ∞. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ B4ρ(x

†), then zk and xk converge to x† as k → ∞.

2. For all (−1) ≤ k < k∗ there holds
∥

∥xδ
k+1 − x∗

∥

∥ ≤
∥

∥xδ
k − x∗

∥

∥. Furthermore, if, for
fixed k, m̃δ

k defined via (3.21) depends continuously on the data as δ → 0 then
zδk∗ converges to a solution of F (x) = y as δ → 0. If additionally N (F ′(x†)) ⊂
N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.
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Proof. From Algorithm 3.1 it is obvious that mδ
k ≥ mδ

k−1 + 1 and therefore mδ
k ≥ k.

Using this together with (3.22), we get that

∞
∑

k=0

λ0
k ‖xk − xk−1‖ ≤

∞
∑

k=0

β0
k(m

0
k) ‖xk − xk−1‖ =

∞
∑

k=0

min
{

q(m0
k), ‖xk − xk−1‖

}

≤
∞
∑

k=0

q(m0
k) ≤

∞
∑

k=0

q(k) < ∞ ,

(3.25)

from which it follows that (2.46) holds. Furthermore, condition (3.14) follows directly
from the definition of λδ

k = λ̃δ
k(m̃

δ
k) and due to (3.19), also 0 ≤ λδ

k ≤ 1 holds. Together
with the observations made above, the first part of this theorem follows immediately
from Theorem 2.8 and Corollary 2.9, as does the monotonicity result in the second
part of the theorem. Furthermore, if m̃δ

k depends continuously on the data, i.e., if, for
fixed k, m̃δ

k → m̃0
k as δ → 0, then by the continuity of the involved quantities, also the

sequence λδ
k defined via Algorithm 3.1 depends continuously on δ for δ → 0 and fixed

k. Using this, the remaining statements of the theorem now follow immediately from
Theorem 2.10.

Concerning the convergence analysis above, note that we require that m̃δ
k depends

continuously on δ as δ → 0. Comparing this with the definition (3.21) of m̃δ
k, we see

that it is equivalent to requiring that the first point of intersection of the two functions

f δ(m) := λ̃δ
k(m)(λ̃δ

k(m) + 1)
∥

∥xδ
k − xδ

k−1

∥

∥

2
and gδ(m) := Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2

depends continuously on δ as δ → 0. Although this might not always necessarily be
true due to pathological cases, it is reasonable to expect this to be true in practise.

The BTS algorithm 3.1 has one disadvantage, namely the fact that one has to
calculate an infimum for determining m̃δ

k. While this might be possible analytically for
very specific problems, in general one cannot hope to be able to resolve the infimum
explicitly. In order to avoid having to approximate this infimum numerically via some
potentially very costly numerical routine, we introduce a numerically feasible version of
the BTS algorithm, which we will call discrete backtracking search (DBTS) algorithm.
It is based on the same ideas as the BTS algorithm and takes the following form:

Algorithm 3.2. [Discrete backtracking search (DBTS) algorithm for λδ
k, k > 1]

• Given: xδ
k, x

δ
k−1, τ , Ψ, µ, yδ, F , q : R+

0 → R
+
0 , ik−1 ∈ N, jmax ∈ N.

• Calculate
∥

∥xδ
k − xδ

k−1

∥

∥ and define

βk(i) = min

{

q(i)
∥

∥xδ
k − xδ

k−1

∥

∥

, 1

}

. (3.26)

• For: j = 1 . . . , jmax,
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Set λδ
k = βk(ik−1 + j).

Calculate zδk = xδ
k + λδ

k(x
δ
k − xδ

k−1) and αδ
k = αδ

k(z
δ
k).

If:
(∥

∥yδ − F (zδk)
∥

∥ ≤ τδ
)

,

ik = ik−1 + j,

break.

Elseif:
(

λδ
k(λ

δ
k + 1)

∥

∥xδ
k − xδ

k−1

∥

∥

2
≤ Ψ

µ
αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
)

,

ik = ik−1 + j,

break.

Else: λδ
k = 0, ik = ik−1 + jmax.

End For

• Output: λδ
k, ik.

The above algorithm is easy to implement and does not require the computation of
an infimum. Furthermore, similarly to above we can show a convergence result:

Theorem 3.5. Assume that (2.1) and (2.70) hold and that equation F (x) = y has a
solution x∗ in Bρ(x0) = Bρ(x−1). Let x

δ
k, z

δ
k be defined via (1.17) with αδ

k being given by
either (3.2) or (3.3). Let λδ

k be defined via Algorithm 3.2 with λδ
0 = 0, jmax ∈ N, µ > 1,

τ as in (2.14), Ψ as in (2.8) and q : R+
0 → R

+
0 satisfying (3.22). Let k∗ = k∗(δ, y

δ) be
chosen according to the discrepancy principle (2.13), (2.14). Then there holds:

1. If y = yδ, i.e., if δ = 0, and if k∗ = k∗(0, y) = ∞ then the iterates zk and xk

converge to a solution of F (x) = y as k → ∞. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ B4ρ(x

†), then zk and xk converge to x† as k → ∞.

2. For all (−1) ≤ k < k∗ there holds
∥

∥xδ
k+1 − x∗

∥

∥ ≤
∥

∥xδ
k − x∗

∥

∥. Furthermore, if
k∗(0, y) = ∞ and if for all k ∈ N there holds

λ0
k(λ

0
k + 1) ‖xk − xk−1‖

2 <
Ψ

µ
α0
k ‖y − F (zk)‖

2 , (3.27)

then zδk∗ converges to a solution of F (x) = y as δ → 0. If additionally N (F ′(x†)) ⊂
N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. The proof of this theorem is analogous to the proof of Theorem 3.4. Note that
due to checking whether

∥

∥yδ − F (zδk)
∥

∥ ≤ τδ, the stepsize αδ
k is guaranteed to be well

defined during the search procedure and the iteration. Furthermore, the assumption
that k∗(0, y) = ∞ together with (3.27) and the continuity of the involved quantities
implies that for fixed k, λδ

k → λ0
k as δ → 0.

Note that the analysis carried out above in Theorem 3.4 and Theorem 3.5 also
applies to constant stepsizes αδ

k = ω, as long as ω ≤ 1/ω̄2 with ω̄ satisfying (2.70),
since for that choice, as we have already seen in the proof of Theorem 2.11, the results
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of Lemma 3.2 hold as well. Furthermore, in this case, the If branch in the DBTS
algorithm which checks whether

∥

∥yδ − F (zδk)
∥

∥ ≤ τδ can be dropped, since the stepsize
is now always well-defined. Consequently, also the requirement that k∗(0, y) = ∞ in the
second part of Theorem 3.5 can then be removed. Hence, using a TPG method with
a constant stepsize combined with the BTS algorithm for λδ

k gives rise to a convergent
regularization method as well.

Note that in order to apply either of the backtracking search algorithms presented
above one needs to have an estimate of the same parameters as for ordinary nonlinear
Landweber iteration, that is, of δ and η. Whereas in ordinary Landweber iteration η
only plays a role in choosing τ , here it also enters into the BTS and DBTS algorithms
via Ψ. For linear problems, η = 0 can be chosen and therefore

Ψ = 1− 2τ−1 , with τ > 2 . (3.28)

If we take for example τ = 4, then we get Ψ = 1/2. Note that one would want to have
τ as small and Ψ as big as possible. However, since by the above equation τ and Ψ
are direct proportional, one has to settle for a compromise when choosing τ . Note also
that usually the exact value of η is not known. In this case, a value for η close to 0.5
is chosen in numerical algorithms requiring η explicitly.

4 Numerical Examples

In this section, we numerically demonstrate the acceleration effect of our proposed TPG
methods (1.17) compared to their non-accelerated counterparts. We do this by looking
at a nonlinear Hammerstein operator and at the 2D inverse problem of single-photon-
emission computed tomography (SPECT).

4.1 Numerical Example - Nonlinear Hammerstein Operator

As a first example, we consider the nonlinear Hammerstein integral operator

F : H1[0, 1] → L2[0, 1] , F (x)(s) :=

∫ s

0

(x(t))3 dt , (4.1)

which is often used in the literature (see for example [9,17–19]) to illustrate convergence
conditions, demonstrate convergence rates and show the effects of different stepsizes
and acceleration techniques. Importantly, the operator F is Fréchet differentiable and
furthermore, if x ≥ κ > 0 for all x ∈ B4ρ(x0) then one can show that there exists a
family of bounded linear operators Rx(x̃) : Y → Y and a constant c > 0 such that

F ′(x) = Rx(x̃)F
′(x̃) , ‖Rx(x̃)− I‖ ≤ c ‖x− x̃‖ , (4.2)

for all x, x̃ ∈ B4ρ(x0) ⊂ D(F ), which in particular implies that

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤
c

2− c ‖x− x̃‖
‖x− x̃‖ ‖F (x)− F (x̃)‖ . (4.3)
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Hence, if x† ∈ Bρ(x0) satisfies x
† ≥ κ̄ > 0 and if ρ > 0 is small enough such that both

x ≥ κ > 0 for all x ∈ B4ρ(x0) and 6cρ < 1 are satisfied, then the nonlinearity condition
(2.1) holds with

η =
2cρ

1− 2cρ
<

1

2
. (4.4)

Hence, since for this problem the operators Rx(x̃) can be given explicitly by (see [9])

Rx(x̃)
∗w = −





φ′(x)

φ′(x̃)

1
∫

•

w(t) dt





′

, (4.5)

it is possible to determine an η from (4.4) by deriving an estimate of the constant c in
(4.2). Since explicit estimates of this constant are usually not sharp enough, one often
tries to numerically compute an estimate for c. However, since we do not require c but
only η for our tests, we will numerically estimate η directly from (2.1).

For our tests we use the same setup as in [19], i.e., we assume that y = F (x†) with

x†(t) := 1 + 10−2(7− 3t2 + 2t3) , (4.6)

and that x0(t) = 1. Hence, we have that

x† − x0 ∈ R(F ′(x†)∗) and ρ =
∥

∥x† − x0

∥

∥ =
1

100

√

305

7
≈ 0.066 . (4.7)

Numerical calculations show that the constant c in (4.2) is given by c ≈ 3, which, by
(4.4) would imply that η ≈ 0.656 > 1

2
. However, numerically estimating η directly

via (2.1) shows that η is actually much smaller, i.e., η ≈ 0.4. Moreover, when using
classical Landweber iteration, with or without the steepest descent or the minimal error
stepsize, condition (2.1) only has to hold on B2ρ(x0) (see [14]). Estimating η on this set
gives η ≈ 0.2, the choice of which leads to strongly improved results also for our TPG
methods. Hence, we will use η = 0.2 in all of the numerical tests below.

In order to discretize the problem, we subdivide the interval [0, 1] into n = 128
equally spaced subintervals and replace the operators F , F ′(x) and F ′(x)∗ by finite
dimensional approximations defined in the same way as in [17, 19]. The data was
created on a finer grid and a random relative data error of 0.001% was added to get yδ.

We now want to compare the TPG methods based on a constant stepsize ω, the
steepest descent stepsize αSD

k and the minimal error stepsize αME
k , which we introduced

in the previous section, with their classical, non-accelerated counterparts. For choosing
λδ
k, we will use the Nesterov combination parameter (compare with (1.16)),

λN
k :=

k − 1

k + α− 1
, (4.8)

where we will only consider the standard choice α = 3, the sequence of λδ
k defined via

the DBTS algorithm 3.2, which we will denote by λB
k , as well as the sequences given
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explicitly by (2.20) and (3.15), which are equivalent, since we will use ω = 1/ω̄2, and
which we will denote by λE

k .
For using the DBTS algorithm, but also for choosing a suitable τ in the discrep-

ancy principle, the approximation for η described above was used. From this, Ψ was
calculated via (2.8) and τ was chosen via

τ = 2τ̃
1 + η

1− 2η
, (4.9)

where τ̃ = 1.01, which ensures that condition (2.14) is satisfied. In the backtracking
algorithm for λB

k , we use jmax = 5 and µ = 2. For the function q : R+
0 → R

+
0 , we use

q(m) = 1/m1.1, which obviously satisfies the necessary condition (3.22). When using a
constant stepsize, we have use the scaling parameter ω = 0.3175, which is chosen via
numerically estimating the constant ω̄ in (2.70) and then taking ω = 1/ω̄2.

Stepsize λδ
k = 0 λδ

k = λE
k λδ

k = λB
k λδ

k = λN
k k∗ Time

Steepest Descent x 125 79 s
Steepest Descent x 35 22 s
Steepest Descent x 41 26 s
Steepest Descent x 14 9 s
Minimal Error x 7 4 s
Minimal Error x 183 116 s
Minimal Error x 192 135 s
Minimal Error x 78 45 s

Constant, ω = 0.3175 x 260 178 s
Constant, ω = 0.3175 x 42 29 s
Constant, ω = 0.3175 x 48 33 s
Constant, ω = 0.3175 x 32 22 s

Table 4.1: Comparison of different stepsizes αδ
k and combination parameters λδ

k: Num-
ber of iterations k∗ and total amount of time necessary to satisfy the discrepancy prin-
ciple. A relative data error of 0.001% was used.

A summary of the results can be found in Table 4.1. For both the constant and
the steepest descent stepsize all three non-zero combination parameters λδ

k lead to a
considerable decrease in the required number of iterations and computation time to
meet the stopping rule. The choices λδ

k = λE
k and λδ

k = λB
k seem to perform equally

well, with the explicit choice λδ
k = λE

k requiring slightly less time and iterations in
both cases. Furthermore, using the combination parameter λδ

k = λN
k requires the least

amount of time and iterations, the necessary time being more than halved in the case
of the steepest descent stepsize. For the minimal error stepsize, the choice λδ

k = λN
k is

again the best of all three non-zero combination parameters λδ
k = 0. However, using

λδ
k = 0, i.e., the pure minimal error method without acceleration, only 7 iterations are
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required, making it the best reconstruction method for this example. This fact was
already observed in [19], where regardless of the discretization and the noise level, a
constant number of iterations was required to meet the stopping rule. No explanation
for this could be given in [19] for this pathological case and here we only state that in the
numerical example treated in the next section, the choice λδ

k = λN
k requires significantly

less iterations than the choice λδ
k = 0 also for the minimal error stepsize..

4.2 Numerical Example - SPECT

In the medical imaging technique of SPECT, one aims at reconstructing a radioactive
distribution f , termed activity function, from radiation measurements outside the body,
denoted by y. The usual modelling approach connects f and y via the attenuated Radon
transform (ATRT), see for example [15], which is given by

y = A(f, µ)(s, ω) :=

∫

R

f(sω⊥ + tω) exp



−

∞
∫

t

µ(sω⊥ + rω) dr



 dt , (4.10)

where s ∈ R, ω ∈ S1. The function µ is called an attenuation map and is related
to the density of different tissues. If µ is known, then reconstructing f from y is a
linear problem. However, unless an additional CT (computerized tomography) scan is
performed, which is not preferable due to the increased cost of the medical examination,
µ is unknown as well. Hence, we face the nonlinear inverse problem of reconstructing
the pair (f, µ) from y, or rather, from a noisy version yδ of y.

This inverse problem and its numerical treatment, under various additional condi-
tions like sparsity, has already been extensively studied (see for example [4, 5, 22, 23]
and the references therein). Considering the definition space of the ATRT operator, it
was shown in [4], that if

D(A) := Hs1
0 (Ω)×Hs2

0 (Ω) , (4.11)

where Hs
0(Ω) is the classical Sobolev space of order s over the bounded domain Ω with

zero boundary conditions, then, assuming that s1 and s2 are chosen large enough, the
operator A is twice continuously Fréchet differentiable with a Lipschitz continuous first
derivative. Since one expects some discontinuities in (f, µ), one wants to choose s1 and
s2 as small as possible. In [4] it was shown that it is possible to use s1 > 4/9 and
s2 = 1/3, a choice which also allows a certain amount of non-smoothness of (f, µ).

For our numerical simulations, we used the so-called MCAT-phantom [10], which is
depicted in Figure 4.1. As one can see, the simulated activity function f∗ is concentrated
in the heart and the attenuation function µ∗ models a cut through the thorax. Both
functions are given as 80×80 pixel images. The Radon transform, its Fréchet derivative
and the adjoint thereof were discretized to work on those pixel images, using 79 angles
ω, equally distributed over 360 degrees, and 80 samples for s.

The data y was calculated via y = A(f∗, µ∗), i.e., by applying the discretized version
of the attenuated Radon transform to the pair (f∗, µ∗). The resulting sinogram is
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Figure 4.1: Activity function f∗ (left) and attenuation function µ∗ (right).

Figure 4.2: The generated data y = A(f∗, 0) (left) and y = A(f∗, µ∗) (right).

depicted in Figure 4.2, once for the already shown attenuation function µ∗ and once for
µ∗ = 0. Afterwards, random data error was added in order to arrive at yδ.

As in the previous section, we now want to compare the TPG methods based on a
constant stepsize ω, the steepest descent stepsize αSD

k and the minimal error stepsize
αME
k with their classical, non-accelerated counterparts. Again we use the notation λE

k ,
λB
k and λN

k to distinguish between the different combination parameters λδ
k.

Concerning the nonlinearity constant η, it is not clear weather a condition like
(2.1) holds for SPECT. Unfortunately, this is the case for almost all nonlinear inverse
problems of practical importance. However, a value for η is both in the DBTS algorithm
and for calculating Ψ and τ . Hence, we used the conservative estimate of η = 0.4 for
obtaining the presented results. From this, Ψ was calculated via (2.8) and τ was chosen
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via

τ = 2τ̃
1 + η

1− 2η
, (4.12)

where this time τ̃ = 4 was chosen. The resulting τ = 56 might seem rather large but
numerical tests show that decreasing τ for example to the canonical choice τ = 2 leads
to numerical instabilities which make it impossible for any of the methods to decrease
the residual to the level of τδ. Hence, the choice of τ as stated above seems to be at least
of optimal order. Furthermore, as noted in the last paragraph of Section 3, τ should not
be chosen too small since otherwise Ψ would become undesirably small. Concerning the
remaining parameters, they were all chosen as in the previous section, with the obvious
exception of ω, for which the value ω = 4.7 · 10−4 was found by numerical calculations.

We now compare the effects of combining different choices of λδ
k with different step-

sizes αδ
k. For this test, the results of which are presented in Table 4.2, we used a relative

data error of 0.25% 2. Note first that independently of the chosen stepsize αδ
k, using

λδ
k = λN

k leads to the smallest number of iterations necessary before meeting the stop-
ping rule, with only about one tenth of iterations and computation time required! For
λδ
k = λB

k defined via the DBTS algorithm, we can see that for the constant stepsize
ω = 10−5 and the steepest descent stepsize αSD

k , although requiring more iterations
and computation time, the overall effort is still significantly lower than when not using
any acceleration. The bad behaviour of the combination of λB

k with the minimal error
stepsize αME

k can best be explained by the fact that using the minimal error stepsize,
the residuals are not decreasing monotonously and hence, the DBTS algorithm has
difficulties finding a suitable parameter λB

k . As for the choice λδ
k = λE

k , one can see
that in combination with the steepest descent stepsize αSD

k , about three times as many
iterations are required than when using λδ

k = λN
k . However, still much less iterations

are required than when using no acceleration at all. A similar phenomenon can also
be observed for the constant stepsize ω, where the choice λδ

k = λE
k can even compete

with the choice λδ
k = λB

k , needing only slightly more iterations but significantly less
computation time. As was also the case for the choice λδ

k = λB
k , the choice λδ

k = λE
k

behaves badly in combination with the minimal error stepsize αME
k . Again the most

likely reason is the non-monotone nature of this stepsize choice.
Since the acceleration effect is due to λδ

k, it makes sense to look at it’s evolution over
the course of the iteration. The left sub-figure in Figure 4.3 depicts the development of
λE
k , λ

B
k and λN

k when used in the TPG method with steepest descent stepsize αSD
k for the

SPECT problem considered above. One can see that in all three cases λδ
k goes to 1 as the

iteration progresses, which is the reason for the acceleration effect. Although seemingly
going to 1 with growing k, λB

k stays 0 for some of the first iterations and then exhibits a
steep jump followed by some small oscillations, before starting to increase monotonously.
This can be explained by the backtracking search procedure of the DBTS algorithm,
which first has to go through some unsuccessful search cycles before the function q(m)

2This is a very optimistic estimate for SPECT, since in practice one would expect the relative data
error to be upwards of 5%. However, for such a high amount of noise, only a couple of iterations are
required to satisfy the stopping criterion (2.13) even for Landweber iteration and hence, no acceleration
effect would be observable.
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Stepsize λδ
k = 0 λδ

k = λE
k λδ

k = λB
k λδ

k = λN
k k∗ Time

Steepest Descent x 3433 489 s
Steepest Descent x 631 90 s
Steepest Descent x 345 77 s
Steepest Descent x 205 30 s
Minimal Error x 2021 185 s
Minimal Error x 6665 603 s
Minimal Error x 6253 600 s
Minimal Error x 288 28 s

Constant, ω = 4.7 · 10−4 x 2019 186 s
Constant, ω = 4.7 · 10−4 x 474 46 s
Constant, ω = 4.7 · 10−4 x 467 57 s
Constant, ω = 4.7 · 10−4 x 265 26 s

Table 4.2: Comparison of different stepsizes αδ
k and combination parameters λδ

k: Num-
ber of iterations k∗ and total amount of time necessary to satisfy the discrepancy prin-
ciple. A relative data error of 0.25% was used.

has decreased to the right order of magnitude. Afterwards, a monotonous increase
also of λB

k can be seen. A similar phenomenon can also be observed when the DBTS
algorithm is applied to the TPG method with constant stepsize ω. In the first iterations,
λB
k is zero, then switches between 0 and 1 before it changes to monotonous increase

starting from some value in [0, 1], after which it again drops to some value in [0, 1]
and stars yet again to increase monotonously. In combination with the minimal error
stepsize, λB

k first exhibits the same pattern as with the steepest descent stepsize αSD
k

but, after a certain amount of increase, starts to decreases monotonously, which explains
why the acceleration effect is lost.

Note that if the function q is chosen such that it decreases too fast, then λB
k will

become a decreasing sequence. For example, the function q(m) = 1/2m often led
to a decreasing sequence λB

k in our experiments. Hence, in order to profit from an
acceleration effect, one has to choose a slowly decreasing function satisfying (3.22),
like q(m) = 1/m1+α with a small α > 0. Similar restrictions can also be observed
for second order methods like the Levenberg-Marquardt or the iteratively regularized
Gauss-Newton method.

The right figure in Figure 4.3 depicts the development of the norm of the residuals
during the iterations of the TPG methods using the steepest descent stepsize αSD

k to-
gether with the different choices of λδ

k considered above. Once again, one can clearly
see the acceleration effect due to the three considered parameters λE

k , λ
B
k and λN

k , which
manage to decrease the residual norm much faster than in the case when no acceleration,
i.e., λδ

k = 0, is being used.
Note that the residual norms decrease monotonously, which is also the case for the

other stepsizes, except for the case when the minimal error stepsize αME
k is used in
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Figure 4.3: Results of using the TPG methods with steepest descent stepsize αSD
k and

various choices of λδ
k, using a relative data error of 0.25%. Left: Plot of the values of

λk over the iteration number k. Right: Plot of the residual
∥

∥A(fk, µk)− yδ
∥

∥ over the
iteration number k. Dashed red line: λδ

k = λN
k , solid blue line: λδ

k = λB
k , dash-dotted

black line: λδ
k = λE

k , solid magenta line in the right sub-figure (extending up to the
y-axis value 1500): λδ

k = 0.

combination with either λδ
k = λE

k or λδ
k = 0, in which case oscillations occur.

In Figure 4.4, one can see the results of the reconstruction of the activity and
the attenuation function achieved when using the TPG method with steepest descent
stepsize αSD

k combined with λB
k for the choices of parameters as above and with a relative

data error δ = 0.25%. One can see that the activity function f∗ is nicely reconstructed.
The attenuation function, however, does not resemble the true attenuation function µ∗

at all. This phenomenon is common for SPECT and has already been observed in [23].
The reason for this is the high nonlinearity of the problem, leading to non-uniqueness
of the solution and therefore, since the reconstruction algorithm selects a solution with
minimal distance to (f0, µ0) = (0, 0), to the reconstruction of µ∗ as seen in Figure 4.4.
Possible remedies already mentioned in [23] are for example a better initial guess or
a coupled tomography approach. In any case, the main reason for including µ in the
reconstruction is to arrive at reconstructions conforming to the data. Besides, this
paper did not aim at improving the reconstruction quality of SPECT, but at showing
the acceleration effect of TPG methods of the form (1.17).

5 Conclusion and Outlook

We have proven convergence of general TPG methods of the form (1.17) under classical
assumptions for iterative regularization methods for nonlinear ill-posed problems. Af-
terwards, we have applied the theory to various TPG methods using either the steepest
descent, the minimal error or a constant stepsize, together with different choices for the
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Figure 4.4: Results of the TPG method using the steepest descent stepsize αSD
k together

with λδ
k = λB

k for the SPECT example problem with a relative data error of δ = 0.25%.
Activity function fk∗ (left) and attenuation function µk∗ (right).

combination parameters λδ
k.

Although no analytical results are yet available proving that indeed less iterations are
required when using TPG methods (1.17), the numerical simulation results presented
above clearly show their advantages in practise. Besides the fact that much fewer itera-
tions are necessary to arrive at suitable solutions, the implementation of TPG methods
is exceedingly simple. Furthermore, they requiring hardly more computation time than
their non-accelerated counterparts. Due to the numerically demonstrated great re-
duction of the required number of iterations, TPG methods could serve as a viable
alternative to commonly used ”fast” iterative methods like the iteratively regularized
Gauss-Newton method, especially when dealing with large-scale inverse problems, where
the latter ones often become impracticable due to having to solve huge and usually full
linear systems in each iteration step.

As a final comment, note that the TPG method (1.17) can also be rewritten in
terms of zδk, leading to

zδk+1 = (1 + λδ
k+1)(z

δ
k + αδ

ks
δ
k)− λδ

k+1(z
δ
k−1 + αδ

k−1s
δ
k−1)

= zδk + λδ
k+1(z

δ
k − zδk−1) + (1 + λδ

k+1)α
δ
ks

δ
k − λδ

k+1α
δ
k−1s

δ
k−1 ,

(5.1)

and it therefore structurally differs from the iteration methods considered by Scherzer
in [25] by the additional term λδ

k+1(z
δ
k−zδk−1). However, many of his ideas and arguments

for proving convergence of those methods were re-used in the proofs of this paper.
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