Doctoral Program
Computational Mathematics

Convergence Analysis of a Two-Point Gradient Method for Nonlinear Ill-Posed Problems

Simon Hubmer Ronny Ramlau

Editorial Board: Bruno BuchbergerBert JüttlerUlrich Langer
Manuel Kauers
Esther KlannPeter PauleClemens PechsteinVeronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang SchreinerFranz WinklerWalter Zulehner
Managing Editor: Silviu Radu
Communicated by: Bert JüttlerUlrich Langer
DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

Convergence Analysis of a Two-Point Gradient Method for Nonlinear Ill-Posed Problems

Simon Hubmer, Ronny Ramlau ${ }^{\dagger \ddagger}$

Abstract

We perform a convergence analysis of a Two-Point Gradient (TPG) method which is based on Landweber iteration and on Nesterov's acceleration scheme. Additionally, we show the usefulness of this method via two numerical example problems based on a nonlinear Hammerstein operator and on the nonlinear inverse problem of single photon emission computed tomography (SPECT).

Keywords: Two-Point Gradient Method, Nesterov Acceleration Scheme, Landweber Iteration, Steepest Descent, Minimal Error, Regularization Method, SPECT
AMS: 65J15, 65J20, 65J22

1 Introduction

In this paper, we deal with nonlinear inverse problems of the form

$$
\begin{equation*}
F(x)=y, \tag{1.1}
\end{equation*}
$$

where $F: \mathcal{D}(F) \subset \mathcal{X} \rightarrow \mathcal{Y}$ is a continuously Fréchet-differentiable, nonlinear operator between real Hilbert spaces \mathcal{X} and \mathcal{Y}. Throughout this paper we will assume that (1.1) has a solution x_{*}, which need not be unique. Furthermore, we assume that instead of y, we are only given noisy data y^{δ} satisfying

$$
\begin{equation*}
\left\|y-y^{\delta}\right\| \leq \delta \tag{1.2}
\end{equation*}
$$

Since we are interested in ill-posed problems, we need to use regularization methods in order to obtain stable approximations of solutions of (1.1). The two most prominent examples of such methods are Tikhonov regularization and Landweber iteration.

[^0]In Tikhonov regularization, one attempts to approximate an x_{0}-minimum-norm solution x^{\dagger} of (1.1), i.e., a solution of $F(x)=y$ with minimal distance to a given initial guess x_{0}, by minimizing the functional

$$
\begin{equation*}
\mathcal{T}_{\alpha}^{\delta}(x):=\left\|F(x)-y^{\delta}\right\|^{2}+\alpha\left\|x-x_{0}\right\|^{2} \tag{1.3}
\end{equation*}
$$

where α is a suitably chosen regularization parameter. Under very mild assumptions on F, it can be shown that the minimizers of $\mathcal{T}_{\alpha}^{\delta}$, usually denoted by x_{α}^{δ}, converge to x^{\dagger} as $\delta \rightarrow 0$, given that α and the noise level δ are coupled in an appropriate way [6]. While for linear operators F the minimization of $\mathcal{T}_{\alpha}^{\delta}$ is straightforward, in the case of nonlinear operators F the computation of x_{α}^{δ} requires the global minimization of the then also nonlinear functional $\mathcal{T}_{\alpha}^{\delta}$, which is rather difficult and usually done using various iterative optimization algorithms.

This motivates the direct application of iterative algorithms for solving (1.1), the most popular of which being Landweber iteration, given by

$$
\begin{align*}
x_{k+1}^{\delta} & =x_{k}^{\delta}+\omega F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right), \tag{1.4}\\
x_{0}^{\delta} & =x_{0}
\end{align*}
$$

where ω is a scaling parameter and x_{0} is again a given initial guess. If one uses the discrepancy principle, i.e., stops the iteration after k_{*} steps, where k_{*} is the smallest integer such that

$$
\begin{equation*}
\left\|y^{\delta}-F\left(x_{k_{*}}^{\delta}\right)\right\| \leq \tau \delta<\left\|y^{\delta}-F\left(x_{k}^{\delta}\right)\right\|, \quad 0 \leq k<k_{*} \tag{1.5}
\end{equation*}
$$

with a suitable constant $\tau>1$, then it was proven in [6] that under some additional assumptions, most notably the nonlinearity condition (2.1), Landweber iteration gives rise to a convergent regularization method.

One necessary assumption in the convergence analysis of Landweber iteration is that

$$
\begin{equation*}
\omega\left\|F^{\prime}\left(x^{\dagger}\right)\right\|^{2} \leq 1 \tag{1.6}
\end{equation*}
$$

Although estimating a suitable value for ω is easy in the linear case, for example using the power method (see e.g. [6]), in the nonlinear case a good estimate is hard to obtain. The steepest descent method [25] overcomes this problem by using the following iteration

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{k}^{\delta}+\alpha_{k}^{\delta} s_{k}^{\delta}, \quad s_{k}^{\delta}=F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right), \quad k \in \mathbb{N}_{0}, \tag{1.7}
\end{equation*}
$$

with the iteration dependent stepsize α_{k}^{δ} defined via

$$
\begin{equation*}
\alpha_{k}^{\delta}:=\frac{\left\|s_{k}^{\delta}\right\|^{2}}{\left\|F^{\prime}\left(x_{k}^{\delta}\right) s_{k}^{\delta}\right\|^{2}} . \tag{1.8}
\end{equation*}
$$

This has the advantage of not having to estimate a fixed scaling parameter ω at the cost of having to compute $F^{\prime}\left(x_{k}^{\delta}\right) s_{k}^{\delta}$ at every iteration step. Another possibility of choosing
an iteration dependent stepsize α_{k}^{δ} without having to estimate ω is given by the minimal error method [14], which will be considered in a later section.

As is well known [14], both Landweber iteration and the steepest descent/minimal error method are quite slow. Hence, acceleration strategies have to be used in order to speed them up to make them applicable in practise. Acceleration methods and their analysis for linear problems can be found for example in [6] and [7]. Unfortunately, since their convergence proofs are mainly based on spectral theory, their analysis cannot be generalized to nonlinear problems immediately. However, there are some acceleration strategies for Landweber iteration for nonlinear ill-posed problems, for example [17, 21.

As an alternative to (accelerated) Landweber-type methods, one could think of using second order iterative methods for solving (1.1), such as the Levenberg-Marquardt method (8, 11]

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{k}^{\delta}+\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1} F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right), \tag{1.9}
\end{equation*}
$$

or the iteratively regularized Gauss-Newton method [3, 13]

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{k}^{\delta}+\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I\right)^{-1}\left(F^{\prime}\left(x_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(x_{k}^{\delta}\right)\right)+\alpha_{k}\left(x_{0}-x_{k}^{\delta}\right)\right) . \tag{1.10}
\end{equation*}
$$

The advantage of those methods [14] is that they require much less iterations to meet their respective stopping criteria than for example Landweber iteration or the steepest descent method. However, each of those iterations might take considerably longer than one step of Landweber iteration, due to the fact that in both cases a linear system involving the operator

$$
\begin{equation*}
F^{\prime}\left(x_{k}^{\delta}\right)^{*} F^{\prime}\left(x_{k}^{\delta}\right)+\alpha_{k} I \tag{1.11}
\end{equation*}
$$

has to be solved. In practical applications, this usually means that a huge linear system of equations has to be solved, which often proves to be costly, if not impossible. Hence, accelerated Landweber type methods avoiding this drawback are desirable in practise.

An accelerated gradient method which also works remarkably well for nonlinear, albeit convex and well-posed optimization problems of the form

$$
\begin{equation*}
\min \{\Phi(x) \mid x \in \mathcal{X}\} \tag{1.12}
\end{equation*}
$$

was first introduced by Nesterov in [16] and is given by

$$
\begin{align*}
z_{k} & =x_{k}+\frac{k-1}{k+\alpha-1}\left(x_{k}-x_{k-1}\right), \tag{1.13}\\
x_{k+1} & =z_{k}-\omega\left(\nabla \Phi\left(z_{k}\right)\right),
\end{align*}
$$

where again ω is a given scaling parameter and $\alpha \geq 3$ (with $\alpha=3$ being common practise). This so-called Nesterov acceleration scheme is of particular interest, since not only is it extremely easy to implement, but Nesterov himself was also able to prove that it generates a sequence of iterates x_{k} for which there holds $\left\|\Phi\left(x_{k}\right)-\Phi\left(x_{*}\right)\right\|=\mathcal{O}\left(k^{-2}\right)$, where x_{*} is any solution of (1.12). This is a big improvement over the classical rate $\mathcal{O}\left(k^{-1}\right)$. For $\alpha>3$ the even further improved rate $\mathcal{O}\left(k^{-2}\right)$ was recently proven in [1].

Combined with a projection step, Nesterov's acceleration scheme can also be used to solve convex (and even non-smooth) optimization problems of the form

$$
\begin{equation*}
\min \{\Phi(x)+\Psi(x) \mid x \in \mathcal{X}\} \tag{1.14}
\end{equation*}
$$

and as such serves as the basis of the highly successful FISTA algorithm [2] for the fast solution of linear ill-posed problems with sparsity constraints.

Even though for general nonlinear operators F it is non-convex, one could think of applying Nesterov's acceleration scheme to the functional

$$
\begin{equation*}
\Phi(x):=\frac{1}{2}\left\|F(x)-y^{\delta}\right\|^{2}, \tag{1.15}
\end{equation*}
$$

which leads to the algorithm

$$
\begin{align*}
z_{k}^{\delta} & =x_{k}^{\delta}+\frac{k-1}{k+\alpha-1}\left(x_{k}^{\delta}-x_{k-1}^{\delta}\right), \\
x_{k+1}^{\delta} & =z_{k}^{\delta}+\alpha_{k}^{\delta} F^{\prime}\left(z_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(z_{k}^{\delta}\right)\right), \tag{1.16}\\
x_{0}^{\delta} & =x_{-1}^{\delta}=x_{0},
\end{align*}
$$

which in this form was first proposed in [12] to accelerate Landweber iteration for solving (nonlinear) ill-posed problems. Although no convergence analysis for 1.16) could be given, the numerical examples presented in 12] clearly show its usefulness and acceleration effect. Motivated by this, a slightly modified version of (1.16) promoting sparsity was used [24] and one of the authors of that paper, A. Neubauer, went on to show that for linear operators F and combined with a suitable stopping rule, (1.16) gives rise to a convergent regularization method [20]. This serves as motivation for considering general iteration methods of the form

$$
\begin{align*}
z_{k}^{\delta} & =x_{k}^{\delta}+\lambda_{k}^{\delta}\left(x_{k}^{\delta}-x_{k-1}^{\delta}\right), \\
x_{k+1}^{\delta} & =z_{k}^{\delta}+\alpha_{k}^{\delta} s_{k}^{\delta}, \quad s_{k}^{\delta}:=F^{\prime}\left(z_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(z_{k}^{\delta}\right)\right), \tag{1.17}\\
x_{0}^{\delta} & =x_{-1}^{\delta}=x_{0},
\end{align*}
$$

which, for further reference, we will call Two-Point Gradient (TPG) methods in this paper, since they require the use of the previous two iterates at every iteration step. Following the usual convention, we will drop the superscript δ whenever the iteration (1.17) with exact data $y^{\delta}=y$, i.e., $\delta=0$, is considered.

The subsequent paper is structured as follows: In the next section, i.e., Section 2 , we present a convergence analysis of general TPG methods of the form (1.17), based on the classical convergence analysis of gradient based iterative regularization methods (see $[14,25]$). This analysis will require certain abstract conditions on λ_{k}^{δ} and α_{k}^{δ}, which we will show to be satisfied for the steepest descent and the minimal error stepsizes and suitable choices of λ_{k}^{δ} in Section 3. Afterwards, we will test the resulting TPG methods on both a nonlinear Hammerstein operator and a nonlinear SPECT example problem, numerically showing a considerable acceleration effect. Finally, we summarize our findings in Section 5, discussing the results and providing a short outlook.

2 Convergence Analysis

For the analysis of TPG methods of the form (1.17), we will need a few assumptions which are quite similar to the assumptions needed for the analysis of Landweber iteration or the steepest descent method [25]. Firstly, we will need the following local nonlinearity condition:

$$
\begin{align*}
& \left\|F(x)-F(\tilde{x})-F^{\prime}(x)(x-\tilde{x})\right\| \leq \eta\|F(x)-F(\tilde{x})\|, \quad \eta<\frac{1}{2}, \tag{2.1}\\
& x, \tilde{x} \in \mathcal{B}_{4 \rho}\left(x_{0}\right) \subset \mathcal{D}(F),
\end{align*}
$$

where $\mathcal{B}_{4 \rho}\left(x_{0}\right)$ denotes the closed ball around x_{0} with radius 4ρ. Assuming this condition to hold will allow the application of the following:
Lemma 2.1. Let $\rho, \varepsilon>0$ be such that

$$
\begin{align*}
\left\|F(x)-F(\tilde{x})-F^{\prime}(x)(x-\tilde{x})\right\| \leq & c(x, \tilde{x})\|F(x)-F(\tilde{x})\|, \\
& x, \tilde{x} \in \mathcal{B}_{\rho}\left(x_{0}\right) \subset \mathcal{D}(F), \tag{2.2}
\end{align*}
$$

where $c(x, \tilde{x}) \geq 0$ and $c(x, \tilde{x})<1$ if $\|x-\tilde{x}\| \leq \varepsilon$. If $F(x)=y$ is solvable in $\mathcal{B}_{\rho}\left(x_{0}\right)$, then a unique x_{0}-minimum-norm solution exists. It is characterized as the solution x^{\dagger} of $F(x)=y$ in $\mathcal{B}_{\rho}\left(x_{0}\right)$ satisfying the condition

$$
\begin{equation*}
x^{\dagger}-x_{0} \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \tag{2.3}
\end{equation*}
$$

Proof. [14, Proposition 2.1]
It will be necessary to place some restrictions on the stepsizes α_{k}^{δ} and the combination parameters λ_{k}^{δ}. Minimal requirements on their values are:

$$
\begin{equation*}
\lambda_{0}^{\delta}=0, \quad 0 \leq \lambda_{k}^{\delta} \leq 1, \forall k \in \mathbb{N}, \quad \alpha_{k}^{\delta} \geq 0, \forall k \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

With this, we can prove the following important:
Proposition 2.2. Assume that (2.1) and (2.4) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$ and let $x_{k}^{\delta}, x_{k-1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$. Let

$$
\begin{equation*}
\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|>\tau \delta \tag{2.5}
\end{equation*}
$$

with τ satisfying

$$
\begin{equation*}
\tau>2 \frac{1+\eta}{1-2 \eta} \tag{2.6}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\Delta_{k}:=\left\|x_{k}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k-1}^{\delta}-x_{*}\right\|^{2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi:=(1-2 \eta)-2 \tau^{-1}(1+\eta)>0 \tag{2.8}
\end{equation*}
$$

there holds

$$
\begin{equation*}
\Delta_{k+1} \leq \lambda_{k}^{\delta} \Delta_{k}+\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \tag{2.9}
\end{equation*}
$$

Proof. Since $x_{k}^{\delta}, x_{k-1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$, using the triangle inequality and $x_{*} \in \mathcal{B}_{\rho}\left(x_{0}\right)$, we get that $x_{k}^{\delta}, x_{k-1}^{\delta} \in \mathcal{B}_{2 \rho}\left(x_{0}\right)$. Together with $\lambda_{k}^{\delta} \leq 1$, this implies

$$
\begin{align*}
\left\|z_{k}^{\delta}-x_{0}\right\| & \leq\left\|z_{k}^{\delta}-x_{k}^{\delta}\right\|+\left\|x_{k}^{\delta}-x_{0}\right\|=\lambda_{k}^{\delta}\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|+\left\|x_{k}^{\delta}-x_{0}\right\| \tag{2.10}\\
& \leq \lambda_{k}^{\delta}\left\|x_{k}^{\delta}-x_{*}\right\|+\lambda_{k}^{\delta}\left\|x_{*}-x_{k-1}^{\delta}\right\|+\left\|x_{k}^{\delta}-x_{0}\right\| \leq 2 \lambda_{k}^{\delta} \rho+2 \rho \leq 4 \rho
\end{align*}
$$

which shows that $z_{k}^{\delta} \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$. Hence, we can apply (2.1), which leads to

$$
\begin{align*}
& \left\|x_{k+1}^{\delta}-x_{*}\right\|^{2}-\left\|z_{k}^{\delta}-x_{*}\right\|^{2}=\left\|x_{k+1}^{\delta}-z_{k}^{\delta}+z_{k}^{\delta}-x_{*}\right\|^{2}-\left\|z_{k}^{\delta}-x_{*}\right\|^{2} \\
& =2\left\langle x_{k+1}^{\delta}-z_{k}^{\delta}, z_{k}^{\delta}-x_{*}\right\rangle+\left\|x_{k+1}^{\delta}-z_{k}^{\delta}\right\|^{2} \\
& \stackrel{\text { 1.17) }}{=} 2 \alpha_{k}^{\delta}\left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\rangle+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& =2 \alpha_{k}^{\delta}\left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), y^{\delta}-y\right\rangle+2 \alpha_{k}^{\delta}\left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), F\left(z_{k}^{\delta}\right)-y^{\delta}\right\rangle \\
& +2 \alpha_{k}^{\delta}\left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), y-F\left(z_{k}^{\delta}\right)+F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\rangle+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& \leq 2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \delta-2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& +2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left\|y-F\left(z_{k}^{\delta}\right)+F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\| \\
& \stackrel{\text { 2.1 }}{\leq} 2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \delta-2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \tag{2.11}\\
& +2 \alpha_{k}^{\delta} \eta\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left\|F\left(x_{*}\right)-F\left(z_{k}^{\delta}\right)\right\| \\
& \leq 2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \delta-2 \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& +2 \alpha_{k}^{\delta} \eta\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left(\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|+\delta\right) \\
& =\alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left(2 \delta(1+\eta)-(1-2 \eta)\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\right) \\
& -\alpha_{k}^{\delta}\left(\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}-\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2}\right) \\
& \stackrel{\text { 2.5) }}{\leq} \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}\left(2 \tau^{-1}(1+\eta)-(1-2 \eta)\right) \\
& -\alpha_{k}^{\delta}\left(\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}-\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2}\right)
\end{align*}
$$

Hence, using (2.8), we arrive at the estimate

$$
\begin{equation*}
\left\|x_{k+1}^{\delta}-x_{*}\right\|^{2} \leq\left\|z_{k}^{\delta}-x_{*}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \tag{2.12}
\end{equation*}
$$

Now, using the above inequality, we get

$$
\begin{aligned}
& \Delta_{k+1}=\left\|x_{k+1}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k}^{\delta}-x_{*}\right\|^{2} \\
& \stackrel{\sqrt{2.12 /}}{\leq}\left\|z_{k}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k}^{\delta}-x_{*}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& =2\left\langle z_{k}^{\delta}-x_{k}^{\delta}, x_{k}^{\delta}-x_{*}\right\rangle+\left\|z_{k}^{\delta}-x_{k}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& \stackrel{(1.17)}{=}-2 \lambda_{k}^{\delta}\left\langle x_{k-1}^{\delta}-x_{k}^{\delta}, x_{k}^{\delta}-x_{*}\right\rangle+\left(\lambda_{k}^{\delta}\right)^{2}\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \\
& -(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& =-\lambda_{k}^{\delta}\left(\left\|x_{k-1}^{\delta}-x_{k}^{\delta}+x_{k}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}\right) \\
& +\left(\lambda_{k}^{\delta}\right)^{2}\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& =-\lambda_{k}^{\delta}\left(\left\|x_{k-1}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k}^{\delta}-x_{*}\right\|^{2}\right)+\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \\
& -(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \\
& =\lambda_{k}^{\delta} \Delta_{k}+\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2},
\end{aligned}
$$

which yields the assertion.
In order to stop the iteration, we will use the discrepancy principle with respect to z_{k}^{δ}, i.e., we will stop the iteration after k_{*} iterations, where $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ is the smallest integer such that

$$
\begin{equation*}
\left\|y^{\delta}-F\left(z_{k_{*}}^{\delta}\right)\right\| \leq \tau \delta<\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|, \quad 0 \leq k<k_{*} \tag{2.13}
\end{equation*}
$$

and use $z_{k_{*}}^{\delta}$ as approximation of x^{\dagger}. For the constant τ, as suggested by Proposition 2.2, we will use the condition

$$
\begin{equation*}
\tau>2 \frac{1+\eta}{1-2 \eta} \tag{2.14}
\end{equation*}
$$

In the convergence analysis of Landweber iteration, one uses the fact that $\Delta_{k+1} \leq 0$ for all $k<k_{*}$, i.e., that x_{k+1}^{δ} is a better approximation of x_{*} than x_{k}^{δ} as long as the discrepancy principle (1.5) is not yet satisfied. We would like our TPG methods to share this property. Hence, in view of (2.9), we will use the following coupling condition:

$$
\begin{equation*}
\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}-\left(1+\frac{\Psi}{\mu}\right) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \leq 0 \tag{2.15}
\end{equation*}
$$

which has to hold for all $0 \leq k<k_{*}$ with k_{*} determined by (2.13) and where μ is a constant satisfying $\mu>1$. This implies $\Delta_{k+1} \leq \lambda_{k}^{\delta} \Delta_{k}$ and therefore, in view of $\lambda_{0}^{\delta}=0$ and $\lambda_{k}^{\delta} \geq 0$ for all k, we inductively get that $\Delta_{k+1} \leq 0{ }^{1}$.

[^1]Condition 2.15) essentially yields restrictions on the parameters λ_{k}^{δ} and α_{k}^{δ}. As a result, one has to ask if there exist choices of λ_{k}^{δ} and α_{k}^{δ} such that (2.15) is satisfied. For all stepsizes α_{k}^{δ} considered below, we will see that there holds

$$
\begin{equation*}
\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2} \leq\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \tag{2.16}
\end{equation*}
$$

and hence, a sufficient condition for (2.15) to hold is given by

$$
\begin{equation*}
\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \tag{2.17}
\end{equation*}
$$

Obviously, $\lambda_{k}^{\delta}=0$ satisfies this inequality, which corresponds to classical Landweber type iterations. In finding other admissible choices of λ_{k}^{δ} and α_{k}^{δ}, one has to be careful, since both α_{k}^{δ} and z_{k}^{δ} might depend on λ_{k}^{δ}. Even for constant stepsizes $\alpha_{k}^{\delta}=\omega$ one is left with

$$
\begin{equation*}
\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \omega\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \tag{2.18}
\end{equation*}
$$

where it is not immediately clear how to choose λ_{k}^{δ} such that this inequality is satisfied. From the discrepancy principle (2.13), one can derive the sufficient condition

$$
\begin{equation*}
\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \omega(\tau \delta)^{2} \tag{2.19}
\end{equation*}
$$

which leads to the choice

$$
\begin{equation*}
\lambda_{k}^{\delta}=\min \left\{-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\Psi \omega(\tau \delta)^{2}}{\mu\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}}}, 1\right\} \tag{2.20}
\end{equation*}
$$

where the minimum with 1 is taken in order to guarantee $0 \leq \lambda_{k}^{\delta} \leq 1$. As the numerical examples presented in Section 4 will show, this choice indeed leads to a speedup compared to classical Landweber iteration which, however, decreases as $\delta \rightarrow 0$, which could be expected, since for $\delta=0$, we get $\lambda_{k}^{\delta}=\lambda_{k}^{0}=0$ and hence, we recover classical Landweber iteration, known to be slow.

One possibility for finding a sequence λ_{k}^{δ}, based on a backtracking search procedure, which takes nonzero values also for $\delta=0$, satisfies condition (2.15) and leads to a considerable acceleration effect will be presented in Section 3 .

We now continue the convergence analysis of the TPG methods 1.17) by deducing the following proposition based on Proposition 2.2 and the coupling condition 2.15):

Proposition 2.3. Assume that (2.1) and (2.4) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $k_{*}=k\left(\delta, y^{\delta}\right)$ be chosen according to the stopping rule (2.13), (2.14) and assume that (2.15) holds for all $0 \leq k<k_{*}$. Then x_{k}^{δ} as in (1.17) is well-defined and

$$
\begin{equation*}
\left\|x_{k+1}^{\delta}-x_{*}\right\| \leq\left\|x_{k}^{\delta}-x_{*}\right\|, \quad \forall(-1) \leq k<k_{*} \tag{2.21}
\end{equation*}
$$

Moreover, $x_{k}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right) \subset \mathcal{B}_{2 \rho}\left(x_{0}\right)$ for all $(-1) \leq k \leq k_{*}$ and

$$
\begin{equation*}
\left(\min _{0 \leq k<k_{*}}\left\{\alpha_{k}^{\delta}\right\}\right) k_{*}(\tau \delta)^{2} \leq \sum_{k=0}^{k_{*}-1} \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \leq(\bar{\mu} \Psi)^{-1}\left\|x_{0}^{\delta}-x_{*}\right\|^{2} \tag{2.22}
\end{equation*}
$$

where $\bar{\mu}=(\mu-1) / \mu>0$.
Proof. From (2.9) it follows for $k=0$ that

$$
\Delta_{1} \leq \lambda_{0}^{\delta} \Delta_{0}+\lambda_{0}^{\delta}\left(\lambda_{0}^{\delta}+1\right)\left\|x_{0}^{\delta}-x_{-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{0}^{\delta}\left\|y^{\delta}-F\left(z_{0}^{\delta}\right)\right\|^{2}+\left(\alpha_{0}^{\delta}\right)^{2}\left\|s_{0}^{\delta}\right\|^{2}
$$

Using (2.15) and $\lambda_{0}^{\delta}=0$, we can deduce that

$$
\begin{align*}
& \Delta_{1} \leq \lambda_{0}^{\delta}\left(\lambda_{0}^{\delta}+1\right)\left\|x_{0}^{\delta}-x_{-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{0}^{\delta}\left\|y^{\delta}-F\left(z_{0}^{\delta}\right)\right\|^{2}+\left(\alpha_{0}^{\delta}\right)^{2}\left\|s_{0}^{\delta}\right\|^{2} \\
& \quad \stackrel{(2.15)}{\leq}-\frac{\mu-1}{\mu} \Psi \alpha_{0}^{\delta}\left\|y^{\delta}-F\left(z_{0}^{\delta}\right)\right\|^{2}=-\bar{\mu} \Psi \alpha_{0}^{\delta}\left\|y^{\delta}-F\left(z_{0}^{\delta}\right)\right\|^{2} \leq 0 \tag{2.23}
\end{align*}
$$

from which we get that $x_{1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$. Now, we proceed inductively to show that

$$
\begin{equation*}
\Delta_{k+1} \leq-\bar{\mu} \Psi \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \leq 0 \tag{2.24}
\end{equation*}
$$

and $x_{k+1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$ for all $0 \leq k<k_{*}$. To do so, we assume that this holds for all $0 \leq m \leq k$. Again using (2.9), we deduce that

$$
\begin{equation*}
\Delta_{k+1} \leq \lambda_{k}^{\delta} \Delta_{k}+\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}-(1+\Psi) \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\left(\alpha_{k}^{\delta}\right)^{2}\left\|s_{k}^{\delta}\right\|^{2} \tag{2.25}
\end{equation*}
$$

which, together with (2.15) and the induction hypothesis yields (2.24). From this, we can deduce $x_{k+1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right) \subset \mathcal{B}_{2 \rho}\left(x_{0}\right)$, which completes the induction.

Furthermore, from (2.24) we can deduce that

$$
\begin{equation*}
\bar{\mu} \Psi \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \leq\left\|x_{k}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k+1}^{\delta}-x_{*}\right\|^{2} \tag{2.26}
\end{equation*}
$$

and hence, also

$$
\begin{equation*}
\sum_{k=0}^{k_{*}-1} \bar{\mu} \Psi \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \leq\left\|x_{0}^{\delta}-x_{*}\right\|^{2}-\left\|x_{k_{*}}^{\delta}-x_{*}\right\|^{2} \leq\left\|x_{0}^{\delta}-x_{*}\right\|^{2} \tag{2.27}
\end{equation*}
$$

From this, we get the estimate

$$
\begin{equation*}
\left(\min _{0 \leq k<k_{*}}\left\{\alpha_{k}^{\delta}\right\}\right) k_{*}(\tau \delta)^{2} \leq \sum_{k=0}^{k_{*}-1} \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \leq(\bar{\mu} \Psi)^{-1}\left\|x_{0}^{\delta}-x_{*}\right\|^{2} \tag{2.28}
\end{equation*}
$$

which yields the assertion.
From the above proposition, we get the following simple:

Corollary 2.4. Under the assumptions of Proposition 2.3, we have

$$
\begin{equation*}
k_{*} \leq\left(\min _{0 \leq k<k_{*}}\left\{\alpha_{k}^{\delta}\right\}\right)^{-1} \frac{\left\|x_{0}^{\delta}-x_{*}\right\|^{2}}{\bar{\mu} \Psi(\tau \delta)^{2}} . \tag{2.29}
\end{equation*}
$$

If we are given exact data $y^{\delta}=y$, i.e., if $\delta=0$, then 2.22 implies

$$
\begin{equation*}
\sum_{k=0}^{\infty} \alpha_{k}\left\|y-F\left(z_{k}\right)\right\|^{2}<\infty \tag{2.30}
\end{equation*}
$$

as in this case $k_{*}=\infty$. Note that this only holds if $F\left(z_{k}\right) \neq y$ for all $k \in \mathbb{N}$, since otherwise the sum terminates in a finite number of steps. However, this is not a restriction, since if $F\left(z_{k}\right)=y$ for some k, then a solution is found and the iteration is terminated.

Combining (2.30) together with 2.15), we furthermore get that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k}^{0}\left(\lambda_{k}^{0}+1\right)\left\|x_{k}-x_{k-1}\right\|^{2}<\infty \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\alpha_{k}\right)^{2}\left\|s_{k}\right\|^{2}<\infty \tag{2.32}
\end{equation*}
$$

from which there obviously follows

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \alpha_{k}\left\|y-F\left(z_{k}\right)\right\|^{2}=0, \\
& \lim _{k \rightarrow \infty} \lambda_{k}^{0}\left(\lambda_{k}^{0}+1\right)\left\|x_{k}-x_{k-1}\right\|^{2}=0, \tag{2.33}\\
& \lim _{k \rightarrow \infty}\left(\alpha_{k}\right)^{2}\left\|s_{k}\right\|^{2}=0 .
\end{align*}
$$

If, additionally, α_{k}^{δ} is bounded from below, i.e.,

$$
\begin{equation*}
0<\alpha_{\min }^{\delta}:=\min _{k \in \mathbb{N}}\left\{\alpha_{k}^{\delta}\right\} \tag{2.34}
\end{equation*}
$$

then it even follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|y-F\left(z_{k}\right)\right\|=0 \tag{2.35}
\end{equation*}
$$

If we can show that z_{k} converges as well, then we get convergence of the iteration to a solution of $F(x)=y$. In order to do this, we first have to show a couple of intermediate results. We start by showing that under certain assumptions, the sequence $\left\|z_{k}-x_{*}\right\|$ has a finite limit as $k \rightarrow \infty$.

Proposition 2.5. Let x_{*} be a solution of $F(x)=y$, and let x_{k} be the iterates 1.17) with exact data, i.e., $\delta=0$. Assume that $\left\|x_{k}-x_{*}\right\| \rightarrow \varepsilon$ as $k \rightarrow \infty$, where $\varepsilon \geq 0$ is a constant. If $\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\| \rightarrow 0$ and $\alpha_{k}\left\|s_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$, then there holds

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|z_{k}-x_{*}\right\|=\varepsilon \tag{2.36}
\end{equation*}
$$

Proof. From the definition of the iterates (1.17), we have the inequality

$$
\begin{equation*}
\left\|z_{k}-x_{*}\right\|=\left\|x_{k}-x_{*}+\lambda_{k}^{0}\left(x_{k}-x_{k-1}\right)\right\| \leq\left\|x_{k}-x_{*}\right\|+\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\| \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|=\left\|z_{k}-x_{*}+\alpha_{k} s_{k}\right\| \leq\left\|z_{k}-x_{*}\right\|+\alpha_{k}\left\|s_{k}\right\| \tag{2.38}
\end{equation*}
$$

from which there follows

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\|-\alpha_{k}\left\|s_{k}\right\| \leq\left\|z_{k}-x_{*}\right\| \leq\left\|x_{k}-x_{*}\right\|+\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\| \tag{2.39}
\end{equation*}
$$

Taking the limit as $k \rightarrow \infty$ now yields the assertion.
The following characterisation of the iterates x_{k}^{δ} will be useful later on:
Lemma 2.6. For the iterates of the TPG methods 1.17) there holds

$$
\begin{equation*}
x_{k}^{\delta}=x_{0}+\sum_{i=0}^{k-1} \lambda_{i}^{\delta}\left(x_{i}^{\delta}-x_{i-1}^{\delta}\right)+\sum_{i=0}^{k-1} \alpha_{i}^{\delta} s_{i}^{\delta}, \tag{2.40}
\end{equation*}
$$

as well as

$$
\begin{equation*}
x_{l}^{\delta}-x_{j}^{\delta}=\sum_{i=j}^{l-1} \lambda_{i}^{\delta}\left(x_{i}^{\delta}-x_{i-1}^{\delta}\right)+\sum_{i=j}^{l-1} \alpha_{i}^{\delta} s_{i}^{\delta} \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i}^{\delta}-x_{i-1}^{\delta}=\sum_{m=0}^{i-2}\left(\prod_{n=m+1}^{i-1} \lambda_{n}^{\delta}\right) \alpha_{m}^{\delta} s_{m}^{\delta}+\alpha_{i-1}^{\delta} s_{i-1}^{\delta} \tag{2.42}
\end{equation*}
$$

Proof. The first two of the above statements follow immediately from (1.17). Hence, it remains to prove (2.42), which we do by induction. For $i=1$ the statement follows immediately from (1.17). Assuming now that (2.42) holds for all $1 \leq l \leq i$, we get

$$
\begin{align*}
x_{i+1}^{\delta} & -x_{i}^{\delta} \stackrel{\sqrt{1.17}}{=} \lambda_{i}^{\delta}\left(x_{i}^{\delta}-x_{i-1}^{\delta}\right)+\alpha_{i}^{\delta} s_{i}^{\delta} \\
& =\lambda_{i}^{\delta}\left(\sum_{m=0}^{i-2}\left(\prod_{n=m+1}^{i-1} \lambda_{n}^{\delta}\right) \alpha_{m}^{\delta} s_{m}^{\delta}+\alpha_{i-1}^{\delta} s_{i-1}^{\delta}\right)+\alpha_{i}^{\delta} s_{i}^{\delta} \tag{2.43}\\
& =\sum_{m=0}^{i-1}\left(\prod_{n=m+1}^{i} \lambda_{n}^{\delta}\right) \alpha_{m}^{\delta} s_{m}^{\delta}+\alpha_{i}^{\delta} s_{i}^{\delta},
\end{align*}
$$

which concludes the induction and hence the lemma is shown.
Lemma 2.7. Assume that (2.1) holds, let $x_{*} \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$ be a solution of $F(x)=y$ and let $x_{1}, x_{2} \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$. Then there holds

$$
\begin{equation*}
\left\|F^{\prime}\left(x_{1}\right)\left(x_{*}-x_{2}\right)\right\| \leq 2(1+\eta)\left\|F\left(x_{1}\right)-y\right\|+(1+\eta)\left\|F\left(x_{2}\right)-y\right\| \tag{2.44}
\end{equation*}
$$

Proof. The proof of this lemma was already done in 25 and is re-stated here for the sake of completeness. Using (2.1), it follows that

$$
\begin{align*}
& \left\|F^{\prime}\left(x_{1}\right)\left(x_{*}-x_{2}\right)\right\|=\left\|F^{\prime}\left(x_{1}\right)\left(x_{*}-x_{1}+x_{1}-x_{2}\right)\right\| \\
& \quad \leq\left\|-F\left(x_{*}\right)+F\left(x_{1}\right)+F^{\prime}\left(x_{1}\right)\left(x_{*}-x_{1}\right)-F\left(x_{1}\right)+F\left(x_{*}\right)\right\| \\
& \quad+\left\|F\left(x_{2}\right)-F\left(x_{1}\right)+F^{\prime}\left(x_{1}\right)\left(x_{1}-x_{2}\right)-F\left(x_{2}\right)+F\left(x_{1}\right)\right\| \tag{2.45}\\
& \quad \leq(1+\eta)\left\|F\left(x_{1}\right)-y\right\|+(1+\eta)\left\|F\left(x_{1}\right)-F\left(x_{2}\right)\right\| \\
& \quad \leq 2(1+\eta)\left\|F\left(x_{1}\right)-y\right\|+(1+\eta)\left\|F\left(x_{2}\right)-y\right\|
\end{align*}
$$

which yields the assertion.
In order to prove convergence in the case of exact data in Theorem 2.8 below, we need the following additional assumption on the combination parameters λ_{k}^{0} :

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\|<\infty \tag{2.46}
\end{equation*}
$$

Since under the previous assumptions $\left\|x_{k}-x_{k-1}\right\|$ can be bounded (by 2ρ), it follows that a sufficient condition for 2.46 to hold is given by

$$
\begin{equation*}
\sum_{k=0}^{\infty} \lambda_{k}^{0}<\infty \tag{2.47}
\end{equation*}
$$

For λ_{k}^{δ} defined via (2.20, condition 2.47) is obviously satisfied. However, it is quite a restrictive condition, since it implies $\lambda_{k}^{0} \rightarrow 0$ as $k \rightarrow \infty$. Comparing this with the classical Nesterov combination parameters $\lambda_{k}^{\delta}=(k-1) /(k+\alpha-1)$, which tend to 1 as $k \rightarrow \infty$ even for $\delta=0$, we see that in order to achieve a non-negligible acceleration effect also for $\delta=0$, one has to work with condition (2.46) instead of only the sufficient condition (2.47). In Section 3, we will present an algorithm for choosing λ_{k}^{δ} such that (2.46) is satisfied and the numerical examples presented in Section 4 will show that for this sequence, under a suitable choice of parameters, there holds $\lambda_{k}^{\delta} \rightarrow 1$ as $k \rightarrow \infty$, leading to the desired acceleration effect. Using (2.46), we can now prove the following:

Theorem 2.8. Assume that (2.1) holds and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $k_{*}=k_{*}(0, y)=\infty, \lambda_{k}^{\delta}$ and α_{k}^{δ} satisfy (2.4), (2.34) and 2.46) and assume that (2.15) holds for all $k \in \mathbb{N}$. Then the iterates z_{k} defined as in (1.17) with exact data $y^{\delta}=y$ converge to a solution of $F(x)=y$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then z_{k} converges to x^{\dagger} as $k \rightarrow \infty$.

Proof. This proof closely follows the corresponding proof for Landweber iteration given in [6]. Let x_{*} be a solution of $F(x)=y$ in $\mathcal{B}_{\rho}\left(x_{0}\right)$ and define

$$
\begin{equation*}
e_{k}:=z_{k}-x_{*} . \tag{2.48}
\end{equation*}
$$

From Proposition 2.3 it follows that $\left\|x_{k}-x_{*}\right\|$ converges to some $\varepsilon \geq 0$ and hence, using (2.33) and Proposition 2.5, we can deduce that $\left\|e_{k}\right\|$ converges to this same ε as
well. We are now going to show that e_{k} is a Cauchy sequence. Given $j \geq k$, we choose some integer l between k and j with

$$
\begin{equation*}
\left\|y-F\left(z_{l}\right)\right\| \leq\left\|y-F\left(z_{i}\right)\right\|, \quad \forall k \leq i \leq j \tag{2.49}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|e_{j}-e_{k}\right\| \leq\left\|e_{j}-e_{l}\right\|+\left\|e_{l}-e_{k}\right\| \tag{2.50}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|e_{j}-e_{l}\right\|^{2} & =2\left\langle e_{l}-e_{j}, e_{l}\right\rangle+\left\|e_{j}\right\|^{2}-\left\|e_{l}\right\|^{2} \\
\left\|e_{l}-e_{k}\right\|^{2} & =2\left\langle e_{l}-e_{k}, e_{l}\right\rangle+\left\|e_{k}\right\|^{2}-\left\|e_{l}\right\|^{2} \tag{2.51}
\end{align*}
$$

For $k \rightarrow \infty$, the last two terms on each of the right hand sides of the above equations converge to $\varepsilon^{2}-\varepsilon^{2}=0$. We now show that $\left\langle e_{l}-e_{k}, e_{l}\right\rangle$ and $\left\langle e_{l}-e_{j}, e_{l}\right\rangle$ also tend to 0 as $k \rightarrow \infty$. For this we first consider:

$$
\begin{align*}
& \left|\left\langle e_{l}-e_{k}, e_{l}\right\rangle\right|=\left|\left\langle z_{l}-z_{k}, e_{l}\right\rangle\right|=\left|\left\langle x_{l}-x_{k}+\lambda_{l}^{0}\left(x_{l}-x_{l-1}\right)-\lambda_{k}^{0}\left(x_{k}-x_{k-1}\right), e_{l}\right\rangle\right| \\
& \quad \leq\left|\left\langle x_{l}-x_{k}, e_{l}\right\rangle\right|+\lambda_{l}^{0}\left|\left\langle x_{l}-x_{l-1}, e_{l}\right\rangle\right|+\lambda_{k}^{0}\left|\left\langle x_{k}-x_{k-1}, e_{l}\right\rangle\right| \\
& \quad \leq\left|\left\langle x_{l}-x_{k}, e_{l}\right\rangle\right|+\lambda_{l}^{0}\left\|x_{l}-x_{l-1}\right\|\left\|e_{l}\right\|+\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\|\left\|e_{l}\right\| . \tag{2.52}
\end{align*}
$$

Now, using (2.33) and the fact that $\left\|e_{k}\right\|$ converges to ε, we get that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\lambda_{l}^{0}\left\|x_{l}-x_{l-1}\right\|\left\|e_{l}\right\|+\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\|\left\|e_{l}\right\|\right)=0 \tag{2.53}
\end{equation*}
$$

Hence, it remains to consider

$$
\begin{align*}
\left|\left\langle x_{l}-x_{k}, e_{l}\right\rangle\right| & \stackrel{|2.41|}{=}\left|\left\langle\sum_{i=k}^{l-1} \lambda_{i}^{0}\left(x_{i}-x_{i-1}\right)+\sum_{i=k}^{l-1} \alpha_{i} s_{i}, e_{l}\right\rangle\right| \tag{2.54}\\
& \leq \sum_{i=k}^{l-1} \lambda_{i}^{0}\left|\left\langle x_{i}-x_{i-1}, e_{l}\right\rangle\right|+\sum_{i=k}^{l-1} \alpha_{i}\left|\left\langle s_{i}, e_{l}\right\rangle\right|
\end{align*}
$$

We now consider the above two sums separately, starting with the second one. By Lemma 2.7, we have

$$
\begin{align*}
& \sum_{i=k}^{l-1} \alpha_{i}\left|\left\langle s_{i}, e_{l}\right\rangle\right|=\sum_{i=k}^{l-1} \alpha_{i}\left|\left\langle y-F\left(z_{i}\right), F^{\prime}\left(z_{i}\right)\left(z_{l}-x_{*}\right)\right\rangle\right| \\
& \quad \leq \sum_{i=k}^{l-1} \alpha_{i}\left\|y-F\left(z_{i}\right)\right\|\left\|F^{\prime}\left(z_{i}\right)\left(z_{l}-x_{*}\right)\right\| \\
& \quad \frac{\text { 2.44) }}{\leq} 2(1+\eta) \sum_{i=k}^{l-1} \alpha_{i}\left\|y-F\left(z_{i}\right)\right\|^{2}+(1+\eta) \sum_{i=k}^{l-1} \alpha_{i}\left\|y-F\left(z_{i}\right)\right\|\left\|y-F\left(z_{l}\right)\right\| \\
& \quad \leq 3(1+\eta) \sum_{i=k}^{l-1} \alpha_{i}\left\|y-F\left(z_{i}\right)\right\|^{2} \leq 3(1+\eta) \sum_{i=k}^{\infty} \alpha_{i}\left\|y-F\left(z_{i}\right)\right\|^{2} \tag{2.55}
\end{align*}
$$

where we have used (2.49). From this, it follows by using (2.30) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\sum_{i=k}^{l-1} \alpha_{i}\left|\left\langle s_{i}, e_{l}\right\rangle\right|\right)=0 \tag{2.56}
\end{equation*}
$$

Next we consider

$$
\begin{equation*}
\sum_{i=k}^{l-1} \lambda_{i}^{0}\left|\left\langle x_{i}-x_{i-1}, e_{l}\right\rangle\right| \leq \sum_{i=k}^{l-1} \lambda_{i}^{0}\left\|x_{i}-x_{i-1}\right\|\left\|e_{l}\right\| \leq \sum_{i=k}^{\infty} \lambda_{i}^{0}\left\|x_{i}-x_{i-1}\right\|\left\|e_{l}\right\| \tag{2.57}
\end{equation*}
$$

Since $\left\|e_{l}\right\|$ is bounded, it immediately follows from (2.46) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\sum_{i=k}^{l-1} \lambda_{i}^{0}\left|\left\langle x_{i}-x_{i-1}, e_{l}\right\rangle\right|\right)=0 \tag{2.58}
\end{equation*}
$$

Combining the above estimates, we arrive at $\left|\left\langle x_{l}-x_{k}, e_{l}\right\rangle\right| \rightarrow 0$, from which there follows that $\left|\left\langle e_{l}-e_{k}, e_{l}\right\rangle\right| \rightarrow 0$ as $k \rightarrow \infty$. Since it can similarly be shown that $\left|\left\langle e_{l}-e_{j}, e_{l}\right\rangle\right| \rightarrow 0$ as $k \rightarrow \infty$, it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|e_{j}-e_{k}\right\|=0 \tag{2.59}
\end{equation*}
$$

from which we deduce that e_{k} and hence, also z_{k} is a Cauchy sequence and therefore convergent in the Hilbert space \mathcal{X}. Since $\left\|F\left(z_{k}\right)-y\right\|$ converges to 0 , the limit of z_{k} is a solution of $F(x)=y$.

Now we turn to the second part of the proof. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then by the definition of the iterates (1.17) we have

$$
\begin{aligned}
z_{k+1}-z_{k} & =x_{k+1}+\lambda_{k+1}^{0}\left(x_{k+1}-x_{k}\right)-z_{k}=\alpha_{k} s_{k}+\lambda_{k+1}^{0}\left(x_{k+1}-x_{k}\right) \\
& =\left(1+\lambda_{k+1}^{0}\right) \alpha_{k} s_{k}+\lambda_{k+1}^{0}\left(z_{k}-x_{k}\right)=\left(1+\lambda_{k+1}^{0}\right) \alpha_{k} s_{k}+\lambda_{k+1}^{0} \lambda_{k}^{0}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
z_{k}-z_{0}=\sum_{i=0}^{k-1}\left(z_{i+1}-z_{i}\right)=\sum_{i=0}^{k-1}\left(\left(1+\lambda_{i+1}^{0}\right) \alpha_{i} s_{i}+\lambda_{i+1}^{0} \lambda_{i}^{0}\left(x_{i}-x_{i-1}\right)\right) . \tag{2.60}
\end{equation*}
$$

Since obviously $\left(1+\lambda_{i+1}^{0}\right) \alpha_{i} s_{i} \in \mathcal{R}\left(F^{\prime}\left(z_{i}\right)^{*}\right)$ and since

$$
\begin{equation*}
\mathcal{R}\left(F^{\prime}\left(z_{i}\right)^{*}\right) \subset \mathcal{N}\left(F^{\prime}\left(z_{i}\right)\right)^{\perp} \subset \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \text { for all } i \in \mathbb{N} \tag{2.61}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\sum_{i=0}^{k-1}\left(1+\lambda_{i+1}^{0}\right) \alpha_{i} s_{i} \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \tag{2.62}
\end{equation*}
$$

Similarly as above, it can be seen via using Lemma 2.6 that also

$$
\begin{equation*}
\sum_{i=0}^{k-1} \lambda_{i+1}^{0} \lambda_{i}^{0}\left(x_{i}-x_{i-1}\right) \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \tag{2.63}
\end{equation*}
$$

and we therefore conclude that

$$
\begin{equation*}
z_{k}-z_{0} \in \mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right)^{\perp} \text { for all } k \in \mathbb{N} . \tag{2.64}
\end{equation*}
$$

Since this also holds for the limit of z_{k} and since x^{\dagger} is the unique solution for which this condition holds (cf. Lemma 2.1), this proves that $z_{k} \rightarrow x^{\dagger}$ as $k \rightarrow \infty$.

In the next corollary, we deduce the convergence of x_{k} given the convergence of z_{k}.
Corollary 2.9. Under the assumptions of Theorem 2.8, we get that x_{k} converges to x_{*}, where x_{*} is the limit of z_{k} as $k \rightarrow \infty$.

Proof. The statement follows immediately from

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\| \leq\left\|z_{k}-x_{*}\right\|+\alpha_{k}\left\|s_{k}\right\|, \tag{2.65}
\end{equation*}
$$

together with (2.33).
Next, we show that using the discrepancy principle (2.13) as a stopping rule, our TPG method 1.17 becomes a convergent regularization method, if we additionally assume that λ_{k}^{δ} depends continuously on δ for $\delta \rightarrow 0$.

Theorem 2.10. Assume that (2.1) holds and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the discrepancy principle (2.13), (2.14) and assume that (2.15) holds for all $0 \leq k<k_{*}$. Assume that λ_{k}^{δ} and α_{k}^{δ} satisfy (2.4), (2.34) and (2.46) and that $\lambda_{k}^{\delta} \rightarrow \lambda_{k}^{0}$ as $\delta \rightarrow 0$. Then the iterates $z_{k_{*}}^{\delta}$ defined via (1.17) converge to a solution of $F(x)=y$, as $\delta \rightarrow 0$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then $z_{k_{*}}^{\delta}$ converges to x^{\dagger} as $\delta \rightarrow 0$.

Proof. Again this proof closely follows the corresponding proof for Landweber iteration given in [6]. Let x_{*} be the limit point of z_{k} (and hence, by Corollary 2.9, also of x_{k}) given exact data y and let δ_{n} be a sequence converging to 0 as $n \rightarrow \infty$. Let furthermore $y_{n}:=y^{\delta_{n}}$ be a sequence of noisy data with $\left\|y-y_{n}\right\| \leq \delta_{n}$ and let $k_{n}:=k_{*}\left(\delta_{n}, y_{n}\right)$ be the stopping index determined via the discrepancy principle applied to the pair $\left(\delta_{n}, y_{n}\right)$. There are two cases. First, assume that k is a finite accumulation point of k_{n}. Without loss of generality, we can assume that $k_{n}=k$ for all $n \in \mathbb{N}$. Thus, from the definition of the discrepancy principle, it follows that

$$
\begin{equation*}
\left\|y_{n}-F\left(z_{k}^{\delta_{n}}\right)\right\| \leq \tau \delta_{n} . \tag{2.66}
\end{equation*}
$$

As k is fixed, z_{k}^{δ} depends continuously on the data y^{δ} and we can take the limit $n \rightarrow \infty$ in the above inequality, which yields

$$
\begin{equation*}
z_{k}^{\delta_{n}} \rightarrow z_{k}, \quad F\left(z_{k}^{\delta_{n}}\right) \rightarrow F\left(z_{k}\right)=y, \text { as } n \rightarrow \infty . \tag{2.67}
\end{equation*}
$$

In other words, the k th iterate of Landweber iteration with exact data is a solution of $F(x)=y$ and hence, the iteration terminates with $z_{k}=x_{*}$, and $z_{k_{n}}^{\delta_{n}} \rightarrow x_{*}$ for this subsequence as $\delta_{n} \rightarrow 0$.

For the second case, assume that $k_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For some k and $k_{n}>k+1$, Proposition 2.3 and $0 \leq \lambda_{k}^{\delta} \leq 1$ yield

$$
\begin{align*}
\left\|z_{k_{n}}^{\delta_{n}}-x_{*}\right\| & \leq\left\|x_{k_{n}}^{\delta_{n}}-x_{*}\right\|+\lambda_{k}^{\delta}\left\|x_{k_{n}}^{\delta_{n}}-x_{*}\right\|+\lambda_{k}^{\delta}\left\|x_{k_{n}-1}^{\delta_{n}}-x_{*}\right\| \\
& \leq\left\|x_{k}^{\delta_{n}}-x_{*}\right\|+\lambda_{k}^{\delta}\left\|x_{k}^{\delta_{n}}-x_{*}\right\|+\lambda_{k}^{\delta}\left\|x_{k}^{\delta_{n}}-x_{*}\right\| \tag{2.68}\\
& \leq 3\left\|x_{k}^{\delta_{n}}-x_{*}\right\| \leq 3\left\|x_{k}^{\delta_{n}}-x_{k}\right\|+3\left\|x_{k}-x_{*}\right\| .
\end{align*}
$$

If we fix some $\varepsilon>0$, it follows from Proposition 2.2 and from Corollary 2.9 that we can fix some $k=k(\varepsilon)$ such that $\left\|x_{k}-x_{*}\right\| \leq \varepsilon / 6$. Since, for fixed k, the iterates depend continuously on the data, there is an $n=n(\varepsilon, k)$ such that $\left\|x_{k}^{\delta_{n}}-x_{k}\right\| \leq \varepsilon / 6$ for all $n>n(\varepsilon, k)$. Thus if we choose n sufficiently large, such that also $k_{n}>k+1$, we get that

$$
\begin{equation*}
\left\|z_{k_{n}}^{\delta_{n}}-x_{*}\right\| \leq 3\left\|x_{k}^{\delta_{n}}-x_{*}\right\| \leq 3\left\|x_{k}^{\delta_{n}}-x_{k}\right\|+3\left\|x_{k}-x_{*}\right\| \leq 3 \frac{\varepsilon}{6}+3 \frac{\varepsilon}{6}=\varepsilon \tag{2.69}
\end{equation*}
$$

and therefore $z_{k_{n}}^{\delta_{n}} \rightarrow x_{*}$ as $n \rightarrow \infty$, which shows the first part of the assertion. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then x_{*} can be chosen as $x_{*}=x^{\dagger}$, in which case Theorem 2.8 guarantees convergence of $z_{k} \rightarrow x^{\dagger}$ (and then also $x_{k} \rightarrow x^{\dagger}$). Thus the above arguments apply to that case as well, which yields the assertion.

We can now apply the above result to the TPG method (1.17) with constant stepsize $\alpha_{k}^{\delta}=\omega$ and λ_{k}^{δ} defined via 2.20 . For this, we need the additional assumption

$$
\begin{equation*}
\sup _{x \in \mathcal{B}_{4 \rho}\left(x_{0}\right)}\left\|F^{\prime}(x)\right\| \leq \bar{\omega}<\infty . \tag{2.70}
\end{equation*}
$$

Theorem 2.11. Assume that (2.1) and 2.70) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the discrepancy principle (2.13), (2.14). Assume that $\alpha_{k}^{\delta}=\omega \leq 1 / \bar{\omega}^{2}$, where $\bar{\omega}$ satisfies (2.70) and that λ_{k}^{δ} is defined via (2.20), for some $\mu>1$ and Ψ defined via 2.8). Then the iterates $z_{k_{*}}^{\delta}$ defined via (1.17) converge to a solution of $F(x)=y$, as $\delta \rightarrow 0$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then $z_{k_{*}}^{\delta}$ converges to x^{\dagger} as $\delta \rightarrow 0$.
Proof. Due to $\alpha_{k}^{\delta}=\omega \leq 1 / \bar{\omega}^{2}$ and 2.70, there holds

$$
\begin{equation*}
\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2} \leq\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}, \tag{2.71}
\end{equation*}
$$

and hence, due to the discrepancy principle (2.13) and the definition of λ_{k}^{δ} via (2.20), we get that (2.15) is satisfied for all $0 \leq k<k_{*}$. Obviously, (2.4) and (2.34) hold, λ_{k}^{δ} depends continuously on δ for fixed k and, since $\lambda_{k}^{0}=0$, also (2.46) is trivially satisfied. Hence, Theorem 2.10 is applicable, which immediately yields the desired results.

3 Examples of TPG methods based on the Steepest Descent and the Minimal Error stepsize

In this section, we will introduce two TPG methods 1.17) based on the steepest descent and on the minimal error stepsize and show that, under some assumptions, they lead
to convergent regularization methods. If we again denote

$$
\begin{equation*}
s_{k}^{\delta}:=F^{\prime}\left(z_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(z_{k}^{\delta}\right)\right), \tag{3.1}
\end{equation*}
$$

then the steepest descent stepsize α_{k}^{SD} is defined by

$$
\begin{equation*}
\alpha_{k}^{\mathrm{SD}}:=\alpha_{k}^{\mathrm{SD}}\left(z_{k}^{\delta}\right):=\frac{\left\|s_{k}^{\delta}\right\|^{2}}{\left\|F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta}\right\|^{2}} \tag{3.2}
\end{equation*}
$$

and the minimal error stepsize α_{k}^{ME} is defined by

$$
\begin{equation*}
\alpha_{k}^{\mathrm{ME}}:=\alpha_{k}^{\mathrm{ME}}\left(z_{k}^{\delta}\right):=\frac{\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}}{\left\|s_{k}^{\delta}\right\|^{2}} . \tag{3.3}
\end{equation*}
$$

The choice of the steepest descent stepsize $\alpha_{k}^{\text {SD }}$ is motivated by line-search procedures for optimization methods, where one tries to find an α_{k}^{δ} such that the functional

$$
\begin{equation*}
\frac{1}{2}\left\|F\left(z_{k}^{\delta}+\alpha_{k}^{\delta} s_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \tag{3.4}
\end{equation*}
$$

is minimized. The stepsize α_{k}^{SD} minimizes the linearisation of this functional, i.e.,

$$
\begin{equation*}
\alpha_{k}^{\mathrm{SD}}=\arg \min _{\alpha_{k}^{\delta}} \frac{1}{2}\left\|F\left(z_{k}^{\delta}\right)+\alpha_{k}^{\delta} F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta}-y^{\delta}\right\|^{2} \tag{3.5}
\end{equation*}
$$

As for the minimal error stepsize α_{k}^{ME}, note that in the proof of Proposition 2.2 we showed the following inequality:

$$
\begin{equation*}
\left\|x_{k+1}^{\delta}-x_{*}\right\|^{2} \leq\left\|z_{k}^{\delta}-x_{*}\right\|^{2}-\alpha_{k}^{\delta}\left(\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}-\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2}\right) . \tag{3.6}
\end{equation*}
$$

Now, in order to ensure that $\left\|x_{k+1}^{\delta}-x_{*}\right\| \leq\left\|z_{k}^{\delta}-x_{*}\right\|$, the stepsize α_{k}^{δ} has to satisfy

$$
\begin{equation*}
\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2} \leq\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2}, \tag{3.7}
\end{equation*}
$$

and the choice of $\alpha_{k}^{\delta}=\alpha_{k}^{\mathrm{ME}}$ is the largest stepsize fulfilling that requirement.
In the following proposition we will show that α_{k}^{SD} and α_{k}^{ME} are well defined. The proof is almost completely similar to the one of [14, Proposition 3.20].

Proposition 3.1. Assume that (2.1) holds and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)$. Assume that $x_{k}^{\delta}, x_{k-1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$ for an arbitrary $k \in \mathbb{N} \cup\{0\}$ and

$$
\begin{equation*}
\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|>2 \frac{1+\eta}{1-2 \eta} \delta \tag{3.8}
\end{equation*}
$$

holds. Then $s_{k}^{\delta} \neq 0$ and $F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta} \neq 0$ and consequently, $\alpha_{k}^{S D}$ and $\alpha_{k}^{M E}$ defined via (3.2) and (3.3) are well-defined.

Proof. Since $x_{k}^{\delta}, x_{k-1}^{\delta} \in \mathcal{B}_{\rho}\left(x_{*}\right)$ it follows as in Proposition 2.2 that $z_{k} \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$ and hence (2.1) is applicable. Assume now that $s_{k}^{\delta}=0$. Then we have

$$
\begin{align*}
0= & \left\langle s_{k}^{\delta}, z_{k}^{\delta}-x_{*}\right\rangle=\left\langle F^{\prime}\left(z_{k}^{\delta}\right)^{*}\left(y^{\delta}-F\left(z_{k}^{\delta}\right)\right), z_{k}^{\delta}-x_{*}\right\rangle \\
= & \left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\rangle \\
= & \left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), y^{\delta}-y+y-y^{\delta}+F\left(z_{k}^{\delta}\right)-F\left(z_{k}^{\delta}\right)+F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\rangle \tag{3.9}\\
= & \left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), y^{\delta}-y\right\rangle-\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} \\
& \quad-\left\langle y^{\delta}-F\left(z_{k}^{\delta}\right), F\left(z_{k}^{\delta}\right)-F\left(x_{*}\right)-F^{\prime}\left(z_{k}^{\delta}\right)\left(z_{k}^{\delta}-x_{*}\right)\right\rangle .
\end{align*}
$$

Using (1.2) and (2.1), we get

$$
\begin{align*}
\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} & \leq\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \delta+\eta\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left\|F\left(z_{k}^{\delta}\right)-F\left(x_{*}\right)\right\| \\
& \leq\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \delta+\eta\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left(\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|+\delta\right) \tag{3.10}\\
& =\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\left(\delta+\eta\left(\delta+\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|\right)\right),
\end{align*}
$$

and therefore

$$
\begin{equation*}
\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \leq \frac{1+\eta}{1-\eta} \delta, \tag{3.11}
\end{equation*}
$$

which is a contradiction to (3.8). Hence, $s_{k}^{\delta} \neq 0$.
Now assume that $F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta}=0$. Then obviously $s_{k}^{\delta} \in \mathcal{N}\left(F^{\prime}\left(z_{k}^{\delta}\right)\right)$. By the definition of s_{k}^{δ}, we also have that $s_{k}^{\delta} \in \mathcal{R}\left(F^{\prime}\left(z_{k}^{\delta}\right)^{*}\right) \subset \mathcal{N}\left(F^{\prime}\left(z_{k}^{\delta}\right)\right)^{\perp}$. Hence, we have $s_{k}^{\delta}=0$, which is a contradiction to what we have shown above. Hence, $F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta} \neq 0$ and therefore α_{k}^{SD} and α_{k}^{ME} are well-defined.

We now want to prove that all conditions on the stepsize α_{k}^{δ} used in the previous section also hold for α_{k}^{SD} and α_{k}^{ME}. We start by considering condition (2.34). Assuming (2.70) to hold, it then obviously follows that $\alpha_{k}^{\mathrm{SD}} \geq 1 / \bar{\omega}^{2}$ and $\alpha_{k}^{\mathrm{ME}} \geq 1 / \bar{\omega}^{2}$ and hence, condition (2.34) is satisfied. Now we state another helpful result due to [25]:

Lemma 3.2. For the stepsizes $\alpha_{k}^{\delta}=\alpha_{k}^{S D}, \alpha_{k}^{M E}$ defined via (3.2) and (3.3), respectively, there holds

$$
\begin{equation*}
\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2} \leq\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}, \tag{3.12}
\end{equation*}
$$

where equality holds for $\alpha_{k}^{\delta}=\alpha_{k}^{M E}$ in the above inequality.
Proof. According to its definition, the statement is trivial for α_{k}^{ME}. For α_{k}^{SD}, it follows immediately from

$$
\begin{equation*}
\alpha_{k}^{\mathrm{SD}}\left\|s_{k}^{\delta}\right\|^{2}=\frac{\left\langle F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta}, y^{\delta}-F\left(z_{k}^{\delta}\right)\right\rangle^{2}}{\left\|F^{\prime}\left(z_{k}^{\delta}\right) s_{k}^{\delta}\right\|^{2}} \leq\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2} . \tag{3.13}
\end{equation*}
$$

We now turn back to the very important condition (2.15). Due to Lemma 3.2, if we use $\alpha_{k}^{\delta}=\alpha_{k}^{\mathrm{SD}}$ or $\alpha_{k}^{\delta}=\alpha_{k}^{\mathrm{ME}}$, then a sufficient condition for (2.15) to hold is given by

$$
\begin{equation*}
\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \alpha_{k}^{\delta}\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \tag{3.14}
\end{equation*}
$$

As we previously noted in Section 2, the choice $\lambda_{k}^{\delta}=0$ satisfies this inequality, which, however, corresponds to the classical steepest descent or minimal error method, respectively. Another possibility which, using (2.70), can be derived analogously to (2.20), is given by

$$
\begin{equation*}
\lambda_{k}^{\delta}=\min \left\{-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\Psi(\tau \delta)^{2}}{\mu \bar{\omega}^{2}\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2}}}, 1\right\} . \tag{3.15}
\end{equation*}
$$

Note that this is the same as 2.20 , given that the optimal stepsize $\omega=1 / \bar{\omega}^{2}$ is being used. For λ_{k}^{δ} as in (3.15), we can deduce the following:

Theorem 3.3. Assume that (2.1) and (2.70) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the discrepancy principle (2.13), (2.14). Assume that either $\alpha_{k}^{\delta}=\alpha_{k}^{S D}$ or $\alpha_{k}^{\delta}=\alpha_{k}^{M E}$, defined by (3.2) or (3.3), respectively. Furthermore, let λ_{k}^{δ} be defined via (3.15), for some $\mu>1$, Ψ defined via (2.8) and $\bar{\omega}$ satisfying (2.70. Then the iterates $z_{k_{*}}^{\delta}$ defined via 1.17) converge to a solution of $F(x)=y$, as $\delta \rightarrow 0$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then $z_{k_{*}}^{\delta}$ converges to x^{\dagger} as $\delta \rightarrow 0$.

Proof. From Lemma 3.2, we get that

$$
\begin{equation*}
\alpha_{k}^{\delta}\left\|s_{k}^{\delta}\right\|^{2} \leq\left\|F\left(z_{k}^{\delta}\right)-y^{\delta}\right\|^{2} . \tag{3.16}
\end{equation*}
$$

Together with $\alpha_{k}^{\mathrm{SD}}, \alpha_{k}^{\mathrm{ME}} \geq 1 / \bar{\omega}^{2}$, the statements of the theorem now follow from Theorem 2.10, analogously as in the proof of Theorem 2.11.

As for λ_{k}^{δ} defined via (2.20), for λ_{k}^{δ} defined via (3.15) there also holds $\lambda_{k}^{\delta}=0$ for $\delta=0$. Since this corresponds to classical Landweber iteration, the steepest descent or minimal error method, the acceleration effect due to those choices of λ_{k}^{δ} will decrease for $\delta \rightarrow 0$. Since for small values of δ acceleration is needed most, other choices of λ_{k}^{δ} also have to be considered.

The crucial conditions which a pair $\left(\lambda_{k}^{\delta}, \alpha_{k}^{\delta}\right)$ has to satisfy in order for Theorem 2.10 to be applicable are the conditions (2.15) and (2.46). We have already seen that $\lambda_{k}^{\delta}=0$ and λ_{k}^{δ} defined via either (2.20) or (3.15), and hence, all sequences in between those two, satisfy the coupling condition (2.15). Given a stepsize α_{k}^{δ}, one could think of choosing $\lambda_{k}^{\delta} \leq 1$ as large as possible such that the coupling condition 2.15) is satisfied. However, one also has to guarantee that condition (2.46) is satisfied as well.

One possibility is to choose λ_{k}^{δ} as a subsequence of a summable sequence like $\left(c q^{k}\right)_{k \in \mathbb{N}}$, $0 \leq q<1$, in such a way that (2.15) is satisfied, which, together with the boundedness of $\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|$, guarantees 2.46). Unfortunately, the resulting sequence λ_{k}^{δ} tends to 0
as $k \rightarrow \infty$, which in turn only leads to a negligible acceleration effect. However, notice that for condition (2.46) to be satisfied, it suffices that the sequence $\lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\|$ is summable. Hence, we propose the following strategy:

Given a stepsize α_{k}^{δ}, define the combination parameters λ_{k}^{δ} via

$$
\lambda_{k}^{\delta}= \begin{cases}0, & k=0 \tag{3.17}\\ \min \left\{\frac{q_{k}^{\delta}}{\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|}, 1\right\}, & k \geq 1,\end{cases}
$$

where $\left(q_{k}^{\delta}\right)_{k \in \mathbb{N}}$ is a decreasing sequence depending continuously on δ for fixed k, satisfying

$$
\begin{equation*}
\sum_{k=0}^{\infty} q_{k}^{\delta}<\infty \tag{3.18}
\end{equation*}
$$

and chosen such that condition (2.15) holds. If the sequence $\left(q_{k}^{\delta}\right)_{k \in \mathbb{N}}$ can be chosen in such a way that it converges to 0 fast enough to satisfy (3.18) but slower than $\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|$, the resulting sequence λ_{k}^{δ} will stay away from 0 and possibly even tend towards 1 as $k \rightarrow \infty$.

Finding a sequence $\left(q_{k}^{\delta}\right)_{k \in \mathbb{N}}$ satisfying all the required properties such that the resulting TPG method indeed gives rise to a convergent regularization method and how to compute a viable sequence λ_{k}^{δ} in practise will be the topics of the remainder of this section. First, we will consider the problem of finding a suitable sequence $\left(q_{k}^{\delta}\right)_{k \in \mathbb{N}}$, or alternatively, λ_{k}^{δ}, via what in the following we will call the backtracking search (BTS) algorithm, given by:

Algorithm 3.1. [Backtracking search (BTS) algorithm for $\lambda_{k}^{\delta}, k>1$]

- Given: $x_{k}^{\delta}, x_{k-1}^{\delta}, \Psi, \mu, y^{\delta}, F, q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}, m_{k-1}^{\delta} \in \mathbb{R}$.
- Calculate $\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|$ and define

$$
\begin{equation*}
\beta_{k}^{\delta}(m):=\min \left\{\frac{q(m)}{\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|}, 1\right\} \tag{3.19}
\end{equation*}
$$

- Define the functions

$$
\begin{align*}
\tilde{\lambda}_{k}^{\delta}(m) & :=\beta_{k}^{\delta}\left(m_{k-1}^{\delta}+1+m\right), \\
\tilde{z}_{k}^{\delta}(m) & :=x_{k}^{\delta}+\tilde{\lambda}_{k}^{\delta}(m)\left(x_{k}^{\delta}-x_{k-1}^{\delta}\right), \tag{3.20}\\
\tilde{\alpha}_{k}^{\delta}(m) & :=\alpha_{k}^{\delta}\left(\tilde{z}_{k}^{\delta}(m)\right) .
\end{align*}
$$

- Calculate

$$
\begin{equation*}
\tilde{m}_{k}^{\delta}=\inf \left\{m \geq 0 \left\lvert\, \tilde{\lambda}_{k}^{\delta}(m)\left(\tilde{\lambda}_{k}^{\delta}(m)+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \tilde{\alpha}_{k}^{\delta}(m)\left\|y^{\delta}-F\left(\tilde{z}_{k}^{\delta}(m)\right)\right\|^{2}\right.\right\} \tag{3.21}
\end{equation*}
$$

- Define $\lambda_{k}^{\delta}:=\tilde{\lambda}_{k}^{\delta}\left(\tilde{m}_{k}^{\delta}\right), z_{k}^{\delta}:=\tilde{z}_{k}^{\delta}\left(\tilde{m}_{k}^{\delta}\right)$ and $m_{k}^{\delta}:=m_{k-1}^{\delta}+1+\tilde{m}_{k}^{\delta}$.
- Output: $\lambda_{k}^{\delta}, z_{k}^{\delta}, m_{k}^{\delta}$.

In order to carry out the above algorithm, a function $q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$needs to be specified. In order to prove convergence of our iteration method with λ_{k}^{δ} chosen via Algorithm 3.1, we will have to make the following assumptions on this function:

$$
\begin{equation*}
q\left(m_{1}\right) \leq q\left(m_{2}\right) \quad \forall m_{1}>m_{2}, \quad \sum_{k=0}^{\infty} q(k)<\infty . \tag{3.22}
\end{equation*}
$$

Concerning the calculation of \tilde{m}_{k}^{δ}, note first that it is possible that $\tilde{\alpha}_{k}^{\delta}(m)$ is not welldefined for certain values of m. However, by Proposition 3.1 this can only happen if $\tilde{z}_{k}^{\delta}(m)$ is such that (3.8) holds, i.e., that the stopping criterion 2.13$)$ is satisfied, and we will therefore consider the inequality in (3.21) to be satisfied for those m. Furthermore, if there is no $m \geq 0$ such that the inequality

$$
\begin{equation*}
\tilde{\lambda}_{k}^{\delta}(m)\left(\tilde{\lambda}_{k}^{\delta}(m)+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \tilde{\alpha}_{k}^{\delta}(m)\left\|y^{\delta}-F\left(\tilde{z}_{k}^{\delta}(m)\right)\right\|^{2} \tag{3.23}
\end{equation*}
$$

is satisfied, then $\tilde{m}_{k}^{\delta}=\inf \emptyset=\infty$ and hence $\tilde{\lambda}_{k}^{\delta}\left(\tilde{m}_{k}^{\delta}\right)$ and $\tilde{z}_{k}^{\delta}\left(\tilde{m}_{k}^{\delta}\right)$ have to be understood in the limit sense, i.e.,

$$
\begin{equation*}
\tilde{\lambda}_{k}^{\delta}(\infty):=\lim _{m \rightarrow \infty} \tilde{\lambda}_{k}^{\delta}(m)=0, \quad \tilde{z}_{k}^{\delta}(\infty):=\lim _{m \rightarrow \infty} \tilde{z}_{k}^{\delta}(m)=x_{k}^{\delta} \tag{3.24}
\end{equation*}
$$

However, since by (3.19) and (3.22) there holds $\tilde{\lambda}_{k}^{\delta}(m) \rightarrow 0$ as $m \rightarrow 0$ and since α_{k}^{δ} is bounded away from 0 in this case, $\tilde{m}_{k}^{\delta}=\infty$ can only happen if $\left\|y^{\delta}-F\left(\tilde{z}_{k}^{\delta}(m)\right)\right\| \rightarrow$ 0 as $m \rightarrow \infty$. By the continuity of the involved quantities, this in turn implies $\left\|y^{\delta}-F\left(\tilde{z}_{k}^{\delta}(\infty)\right)\right\|=0$ and hence, due to the discrepancy principle, the TPG method will be terminated with $z_{k}^{\delta}=\tilde{z}_{k}^{\delta}(\infty)$ after the current iteration.

Combining the above considerations, for TPG methods (1.17) combined with the BTS algorithm (3.1) for determining a suitable sequence λ_{k}^{δ} we can now prove the following convergence result:

Theorem 3.4. Assume that (2.1) and (2.70) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let x_{k}^{δ}, z_{k}^{δ} be defined via 1.17) with α_{k}^{δ} being given by either (3.2) or (3.3). Let λ_{k}^{δ} be defined via Algorithm 3.1 with $\lambda_{0}^{\delta}=0, m_{0}^{\delta}=0, \mu>1$, Ψ as in (2.8) and $q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$satisfying (3.22). Let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the discrepancy principle (2.13), (2.14). Then the following statements hold:

1. If $y=y^{\delta}$, i.e., if $\delta=0$, and if $k_{*}=k_{*}(0, y)=\infty$ then the iterates z_{k} and x_{k} converge to a solution of $F(x)=y$ as $k \rightarrow \infty$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then z_{k} and x_{k} converge to x^{\dagger} as $k \rightarrow \infty$.
2. For all $(-1) \leq k<k_{*}$ there holds $\left\|x_{k+1}^{\delta}-x_{*}\right\| \leq\left\|x_{k}^{\delta}-x_{*}\right\|$. Furthermore, if, for fixed k, \tilde{m}_{k}^{δ} defined via (3.21) depends continuously on the data as $\delta \rightarrow 0$ then $z_{k_{*}}^{\delta}$ converges to a solution of $F(x)=y$ as $\delta \rightarrow 0$. If additionally $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset$ $\mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then $z_{k_{*}}^{\delta}$ converges to x^{\dagger} as $\delta \rightarrow 0$.

Proof. From Algorithm 3.1 it is obvious that $m_{k}^{\delta} \geq m_{k-1}^{\delta}+1$ and therefore $m_{k}^{\delta} \geq k$. Using this together with (3.22), we get that

$$
\begin{align*}
\sum_{k=0}^{\infty} \lambda_{k}^{0}\left\|x_{k}-x_{k-1}\right\| & \leq \sum_{k=0}^{\infty} \beta_{k}^{0}\left(m_{k}^{0}\right)\left\|x_{k}-x_{k-1}\right\|=\sum_{k=0}^{\infty} \min \left\{q\left(m_{k}^{0}\right),\left\|x_{k}-x_{k-1}\right\|\right\} \tag{3.25}\\
& \leq \sum_{k=0}^{\infty} q\left(m_{k}^{0}\right) \leq \sum_{k=0}^{\infty} q(k)<\infty
\end{align*}
$$

from which it follows that (2.46) holds. Furthermore, condition (3.14) follows directly from the definition of $\lambda_{k}^{\delta}=\bar{\lambda}_{k}^{\delta}\left(\tilde{m}_{k}^{\delta}\right)$ and due to (3.19), also $0 \leq \lambda_{k}^{\delta} \leq 1$ holds. Together with the observations made above, the first part of this theorem follows immediately from Theorem 2.8 and Corollary 2.9, as does the monotonicity result in the second part of the theorem. Furthermore, if \tilde{m}_{k}^{δ} depends continuously on the data, i.e., if, for fixed $k, \tilde{m}_{k}^{\delta} \rightarrow \tilde{m}_{k}^{0}$ as $\delta \rightarrow 0$, then by the continuity of the involved quantities, also the sequence λ_{k}^{δ} defined via Algorithm 3.1 depends continuously on δ for $\delta \rightarrow 0$ and fixed k. Using this, the remaining statements of the theorem now follow immediately from Theorem 2.10.

Concerning the convergence analysis above, note that we require that \tilde{m}_{k}^{δ} depends continuously on δ as $\delta \rightarrow 0$. Comparing this with the definition 3.21) of \tilde{m}_{k}^{δ}, we see that it is equivalent to requiring that the first point of intersection of the two functions
$f^{\delta}(m):=\tilde{\lambda}_{k}^{\delta}(m)\left(\tilde{\lambda}_{k}^{\delta}(m)+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \quad$ and $\quad g^{\delta}(m):=\frac{\Psi}{\mu} \tilde{\alpha}_{k}^{\delta}(m)\left\|y^{\delta}-F\left(\tilde{z}_{k}^{\delta}(m)\right)\right\|^{2}$
depends continuously on δ as $\delta \rightarrow 0$. Although this might not always necessarily be true due to pathological cases, it is reasonable to expect this to be true in practise.

The BTS algorithm 3.1 has one disadvantage, namely the fact that one has to calculate an infimum for determining \tilde{m}_{k}^{δ}. While this might be possible analytically for very specific problems, in general one cannot hope to be able to resolve the infimum explicitly. In order to avoid having to approximate this infimum numerically via some potentially very costly numerical routine, we introduce a numerically feasible version of the BTS algorithm, which we will call discrete backtracking search (DBTS) algorithm. It is based on the same ideas as the BTS algorithm and takes the following form:

Algorithm 3.2. [Discrete backtracking search (DBTS) algorithm for $\lambda_{k}^{\delta}, k>1$]

- Given: $x_{k}^{\delta}, x_{k-1}^{\delta}, \tau, \Psi, \mu, y^{\delta}, F, q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}, i_{k-1} \in \mathbb{N}, j_{\max } \in \mathbb{N}$.
- Calculate $\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|$ and define

$$
\begin{equation*}
\beta_{k}(i)=\min \left\{\frac{q(i)}{\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|}, 1\right\} \tag{3.26}
\end{equation*}
$$

- For: $j=1 \ldots, j_{\max }$,

Set $\lambda_{k}^{\delta}=\beta_{k}\left(i_{k-1}+j\right)$.
Calculate $z_{k}^{\delta}=x_{k}^{\delta}+\lambda_{k}^{\delta}\left(x_{k}^{\delta}-x_{k-1}^{\delta}\right)$ and $\alpha_{k}^{\delta}=\alpha_{k}^{\delta}\left(z_{k}^{\delta}\right)$.
If: $\left(\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \leq \tau \delta\right)$, $i_{k}=i_{k-1}+j$,

break.

Elseif: $\left(\lambda_{k}^{\delta}\left(\lambda_{k}^{\delta}+1\right)\left\|x_{k}^{\delta}-x_{k-1}^{\delta}\right\|^{2} \leq \frac{\Psi}{\mu} \alpha_{k}^{\delta}\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\|^{2}\right)$,
$i_{k}=i_{k-1}+j$,
break.
Else: $\lambda_{k}^{\delta}=0, i_{k}=i_{k-1}+j_{\max }$.

End For

- Output: $\lambda_{k}^{\delta}, i_{k}$.

The above algorithm is easy to implement and does not require the computation of an infimum. Furthermore, similarly to above we can show a convergence result:

Theorem 3.5. Assume that (2.1) and (2.70) hold and that equation $F(x)=y$ has a solution x_{*} in $\mathcal{B}_{\rho}\left(x_{0}\right)=\mathcal{B}_{\rho}\left(x_{-1}\right)$. Let $x_{k}^{\delta}, z_{k}^{\delta}$ be defined via 1.17) with α_{k}^{δ} being given by either (3.2) or (3.3). Let λ_{k}^{δ} be defined via Algorithm 3.2 with $\lambda_{0}^{\delta}=0, j_{\max } \in \mathbb{N}, \mu>1$, τ as in (2.14), Ψ as in (2.8) and $q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$satisfying (3.22). Let $k_{*}=k_{*}\left(\delta, y^{\delta}\right)$ be chosen according to the discrepancy principle (2.13), 2.14. Then there holds:

1. If $y=y^{\delta}$, i.e., if $\delta=0$, and if $k_{*}=k_{*}(0, y)=\infty$ then the iterates z_{k} and x_{k} converge to a solution of $F(x)=y$ as $k \rightarrow \infty$. If $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset \mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then z_{k} and x_{k} converge to x^{\dagger} as $k \rightarrow \infty$.
2. For all $(-1) \leq k<k_{*}$ there holds $\left\|x_{k+1}^{\delta}-x_{*}\right\| \leq\left\|x_{k}^{\delta}-x_{*}\right\|$. Furthermore, if $k_{*}(0, y)=\infty$ and if for all $k \in \mathbb{N}$ there holds

$$
\begin{equation*}
\lambda_{k}^{0}\left(\lambda_{k}^{0}+1\right)\left\|x_{k}-x_{k-1}\right\|^{2}<\frac{\Psi}{\mu} \alpha_{k}^{0}\left\|y-F\left(z_{k}\right)\right\|^{2} \tag{3.27}
\end{equation*}
$$

then $z_{k_{*}}^{\delta}$ converges to a solution of $F(x)=y$ as $\delta \rightarrow 0$. If additionally $\mathcal{N}\left(F^{\prime}\left(x^{\dagger}\right)\right) \subset$ $\mathcal{N}\left(F^{\prime}(x)\right)$ for all $x \in \mathcal{B}_{4 \rho}\left(x^{\dagger}\right)$, then $z_{k_{*}}^{\delta}$ converges to x^{\dagger} as $\delta \rightarrow 0$.

Proof. The proof of this theorem is analogous to the proof of Theorem 3.4. Note that due to checking whether $\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \leq \tau \delta$, the stepsize α_{k}^{δ} is guaranteed to be well defined during the search procedure and the iteration. Furthermore, the assumption that $k_{*}(0, y)=\infty$ together with (3.27) and the continuity of the involved quantities implies that for fixed $k, \lambda_{k}^{\delta} \rightarrow \lambda_{k}^{0}$ as $\delta \rightarrow 0$.

Note that the analysis carried out above in Theorem 3.4 and Theorem 3.5 also applies to constant stepsizes $\alpha_{k}^{\delta}=\omega$, as long as $\omega \leq 1 / \bar{\omega}^{2}$ with $\bar{\omega}$ satisfying 2.70), since for that choice, as we have already seen in the proof of Theorem 2.11, the results
of Lemma 3.2 hold as well. Furthermore, in this case, the If branch in the DBTS algorithm which checks whether $\left\|y^{\delta}-F\left(z_{k}^{\delta}\right)\right\| \leq \tau \delta$ can be dropped, since the stepsize is now always well-defined. Consequently, also the requirement that $k_{*}(0, y)=\infty$ in the second part of Theorem 3.5 can then be removed. Hence, using a TPG method with a constant stepsize combined with the BTS algorithm for λ_{k}^{δ} gives rise to a convergent regularization method as well.

Note that in order to apply either of the backtracking search algorithms presented above one needs to have an estimate of the same parameters as for ordinary nonlinear Landweber iteration, that is, of δ and η. Whereas in ordinary Landweber iteration η only plays a role in choosing τ, here it also enters into the BTS and DBTS algorithms via Ψ. For linear problems, $\eta=0$ can be chosen and therefore

$$
\begin{equation*}
\Psi=1-2 \tau^{-1}, \quad \text { with } \quad \tau>2 \tag{3.28}
\end{equation*}
$$

If we take for example $\tau=4$, then we get $\Psi=1 / 2$. Note that one would want to have τ as small and Ψ as big as possible. However, since by the above equation τ and Ψ are direct proportional, one has to settle for a compromise when choosing τ. Note also that usually the exact value of η is not known. In this case, a value for η close to 0.5 is chosen in numerical algorithms requiring η explicitly.

4 Numerical Examples

In this section, we numerically demonstrate the acceleration effect of our proposed TPG methods (1.17) compared to their non-accelerated counterparts. We do this by looking at a nonlinear Hammerstein operator and at the 2D inverse problem of single-photonemission computed tomography (SPECT).

4.1 Numerical Example - Nonlinear Hammerstein Operator

As a first example, we consider the nonlinear Hammerstein integral operator

$$
\begin{equation*}
F: H^{1}[0,1] \rightarrow L^{2}[0,1], \quad F(x)(s):=\int_{0}^{s}(x(t))^{3} d t \tag{4.1}
\end{equation*}
$$

which is often used in the literature (see for example $[9,17-19]$) to illustrate convergence conditions, demonstrate convergence rates and show the effects of different stepsizes and acceleration techniques. Importantly, the operator F is Fréchet differentiable and furthermore, if $x \geq \kappa>0$ for all $x \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$ then one can show that there exists a family of bounded linear operators $R_{x}(\tilde{x}): \mathcal{Y} \rightarrow \mathcal{Y}$ and a constant $c>0$ such that

$$
\begin{equation*}
F^{\prime}(x)=R_{x}(\tilde{x}) F^{\prime}(\tilde{x}), \quad\left\|R_{x}(\tilde{x})-I\right\| \leq c\|x-\tilde{x}\| \tag{4.2}
\end{equation*}
$$

for all $x, \tilde{x} \in \mathcal{B}_{4 \rho}\left(x_{0}\right) \subset \mathcal{D}(F)$, which in particular implies that

$$
\begin{equation*}
\left\|F(x)-F(\tilde{x})-F^{\prime}(\tilde{x})(x-\tilde{x})\right\| \leq \frac{c}{2-c\|x-\tilde{x}\|}\|x-\tilde{x}\|\|F(x)-F(\tilde{x})\| \tag{4.3}
\end{equation*}
$$

Hence, if $x^{\dagger} \in \mathcal{B}_{\rho}\left(x_{0}\right)$ satisfies $x^{\dagger} \geq \bar{\kappa}>0$ and if $\rho>0$ is small enough such that both $x \geq \kappa>0$ for all $x \in \mathcal{B}_{4 \rho}\left(x_{0}\right)$ and $6 c \rho<1$ are satisfied, then the nonlinearity condition (2.1) holds with

$$
\begin{equation*}
\eta=\frac{2 c \rho}{1-2 c \rho}<\frac{1}{2} \tag{4.4}
\end{equation*}
$$

Hence, since for this problem the operators $R_{x}(\tilde{x})$ can be given explicitly by (see [9])

$$
\begin{equation*}
R_{x}(\tilde{x})^{*} w=-\left(\frac{\phi^{\prime}(x)}{\phi^{\prime}(\tilde{x})} \int_{0}^{1} w(t) d t\right)^{\prime} \tag{4.5}
\end{equation*}
$$

it is possible to determine an η from (4.4) by deriving an estimate of the constant c in (4.2). Since explicit estimates of this constant are usually not sharp enough, one often tries to numerically compute an estimate for c. However, since we do not require c but only η for our tests, we will numerically estimate η directly from (2.1).

For our tests we use the same setup as in [19], i.e., we assume that $y=F\left(x^{\dagger}\right)$ with

$$
\begin{equation*}
x^{\dagger}(t):=1+10^{-2}\left(7-3 t^{2}+2 t^{3}\right), \tag{4.6}
\end{equation*}
$$

and that $x_{0}(t)=1$. Hence, we have that

$$
\begin{equation*}
x^{\dagger}-x_{0} \in \mathcal{R}\left(F^{\prime}\left(x^{\dagger}\right)^{*}\right) \quad \text { and } \quad \rho=\left\|x^{\dagger}-x_{0}\right\|=\frac{1}{100} \sqrt{\frac{305}{7}} \approx 0.066 \tag{4.7}
\end{equation*}
$$

Numerical calculations show that the constant c in 4.2 is given by $c \approx 3$, which, by (4.4) would imply that $\eta \approx 0.656>\frac{1}{2}$. However, numerically estimating η directly via (2.1) shows that η is actually much smaller, i.e., $\eta \approx 0.4$. Moreover, when using classical Landweber iteration, with or without the steepest descent or the minimal error stepsize, condition (2.1) only has to hold on $\mathcal{B}_{2 \rho}\left(x_{0}\right)$ (see [14]). Estimating η on this set gives $\eta \approx 0.2$, the choice of which leads to strongly improved results also for our TPG methods. Hence, we will use $\eta=0.2$ in all of the numerical tests below.

In order to discretize the problem, we subdivide the interval $[0,1]$ into $n=128$ equally spaced subintervals and replace the operators $F, F^{\prime}(x)$ and $F^{\prime}(x)^{*}$ by finite dimensional approximations defined in the same way as in [17, 19]. The data was created on a finer grid and a random relative data error of 0.001% was added to get y^{δ}.

We now want to compare the TPG methods based on a constant stepsize ω, the steepest descent stepsize α_{k}^{SD} and the minimal error stepsize α_{k}^{ME}, which we introduced in the previous section, with their classical, non-accelerated counterparts. For choosing λ_{k}^{δ}, we will use the Nesterov combination parameter (compare with 1.16) ,

$$
\begin{equation*}
\lambda_{k}^{N}:=\frac{k-1}{k+\alpha-1}, \tag{4.8}
\end{equation*}
$$

where we will only consider the standard choice $\alpha=3$, the sequence of λ_{k}^{δ} defined via the DBTS algorithm 3.2 , which we will denote by λ_{k}^{B}, as well as the sequences given
explicitly by (2.20) and (3.15), which are equivalent, since we will use $\omega=1 / \bar{\omega}^{2}$, and which we will denote by λ_{k}^{E}.

For using the DBTS algorithm, but also for choosing a suitable τ in the discrepancy principle, the approximation for η described above was used. From this, Ψ was calculated via (2.8) and τ was chosen via

$$
\begin{equation*}
\tau=2 \tilde{\tau} \frac{1+\eta}{1-2 \eta} \tag{4.9}
\end{equation*}
$$

where $\tilde{\tau}=1.01$, which ensures that condition (2.14) is satisfied. In the backtracking algorithm for λ_{k}^{B}, we use $j_{\max }=5$ and $\mu=2$. For the function $q: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$, we use $q(m)=1 / m^{1.1}$, which obviously satisfies the necessary condition (3.22). When using a constant stepsize, we have use the scaling parameter $\omega=0.3175$, which is chosen via numerically estimating the constant $\bar{\omega}$ in (2.70) and then taking $\omega=1 / \bar{\omega}^{2}$.

Stepsize	$\lambda_{k}^{\delta}=0$	$\lambda_{k}^{\delta}=\lambda_{k}^{E}$	$\lambda_{k}^{\delta}=\lambda_{k}^{B}$	$\lambda_{k}^{\delta}=\lambda_{k}^{N}$	k_{*}	Time
Steepest Descent	x				125	79 s
Steepest Descent		x			35	22 s
Steepest Descent			x		41	26 s
Steepest Descent				x	14	9 s
Minimal Error	x				7	4 s
Minimal Error		x			183	116 s
Minimal Error			x		192	135 s
Minimal Error				x	78	45 s
Constant, $\omega=0.3175$	x				260	178 s
Constant, $\omega=0.3175$		x			42	29 s
Constant, $\omega=0.3175$			x		48	33 s
Constant, $\omega=0.3175$				x	32	22 s

Table 4.1: Comparison of different stepsizes α_{k}^{δ} and combination parameters λ_{k}^{δ} : Number of iterations k_{*} and total amount of time necessary to satisfy the discrepancy principle. A relative data error of 0.001% was used.

A summary of the results can be found in Table 4.1. For both the constant and the steepest descent stepsize all three non-zero combination parameters λ_{k}^{δ} lead to a considerable decrease in the required number of iterations and computation time to meet the stopping rule. The choices $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ and $\lambda_{k}^{\delta}=\lambda_{k}^{B}$ seem to perform equally well, with the explicit choice $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ requiring slightly less time and iterations in both cases. Furthermore, using the combination parameter $\lambda_{k}^{\delta}=\lambda_{k}^{N}$ requires the least amount of time and iterations, the necessary time being more than halved in the case of the steepest descent stepsize. For the minimal error stepsize, the choice $\lambda_{k}^{\delta}=\lambda_{k}^{N}$ is again the best of all three non-zero combination parameters $\lambda_{k}^{\delta}=0$. However, using $\lambda_{k}^{\delta}=0$, i.e., the pure minimal error method without acceleration, only 7 iterations are
required, making it the best reconstruction method for this example. This fact was already observed in [19], where regardless of the discretization and the noise level, a constant number of iterations was required to meet the stopping rule. No explanation for this could be given in [19] for this pathological case and here we only state that in the numerical example treated in the next section, the choice $\lambda_{k}^{\delta}=\lambda_{k}^{N}$ requires significantly less iterations than the choice $\lambda_{k}^{\delta}=0$ also for the minimal error stepsize..

4.2 Numerical Example - SPECT

In the medical imaging technique of SPECT, one aims at reconstructing a radioactive distribution f, termed activity function, from radiation measurements outside the body, denoted by y. The usual modelling approach connects f and y via the attenuated Radon transform (ATRT), see for example [15], which is given by

$$
\begin{equation*}
y=A(f, \mu)(s, \omega):=\int_{\mathbb{R}} f\left(s \omega^{\perp}+t \omega\right) \exp \left(-\int_{t}^{\infty} \mu\left(s \omega^{\perp}+r \omega\right) d r\right) d t \tag{4.10}
\end{equation*}
$$

where $s \in \mathbb{R}, \omega \in S^{1}$. The function μ is called an attenuation map and is related to the density of different tissues. If μ is known, then reconstructing f from y is a linear problem. However, unless an additional CT (computerized tomography) scan is performed, which is not preferable due to the increased cost of the medical examination, μ is unknown as well. Hence, we face the nonlinear inverse problem of reconstructing the pair (f, μ) from y, or rather, from a noisy version y^{δ} of y.

This inverse problem and its numerical treatment, under various additional conditions like sparsity, has already been extensively studied (see for example [4, 5, 22, 23] and the references therein). Considering the definition space of the ATRT operator, it was shown in [4], that if

$$
\begin{equation*}
\mathcal{D}(A):=H_{0}^{s_{1}}(\Omega) \times H_{0}^{s_{2}}(\Omega) \tag{4.11}
\end{equation*}
$$

where $H_{0}^{s}(\Omega)$ is the classical Sobolev space of order s over the bounded domain Ω with zero boundary conditions, then, assuming that s_{1} and s_{2} are chosen large enough, the operator A is twice continuously Fréchet differentiable with a Lipschitz continuous first derivative. Since one expects some discontinuities in (f, μ), one wants to choose s_{1} and s_{2} as small as possible. In [4] it was shown that it is possible to use $s_{1}>4 / 9$ and $s_{2}=1 / 3$, a choice which also allows a certain amount of non-smoothness of (f, μ).

For our numerical simulations, we used the so-called MCAT-phantom [10], which is depicted in Figure 4.1. As one can see, the simulated activity function f_{*} is concentrated in the heart and the attenuation function μ_{*} models a cut through the thorax. Both functions are given as 80×80 pixel images. The Radon transform, its Fréchet derivative and the adjoint thereof were discretized to work on those pixel images, using 79 angles ω, equally distributed over 360 degrees, and 80 samples for s.

The data y was calculated via $y=A\left(f_{*}, \mu_{*}\right)$, i.e., by applying the discretized version of the attenuated Radon transform to the pair $\left(f_{*}, \mu_{*}\right)$. The resulting sinogram is

Figure 4.1: Activity function f_{*} (left) and attenuation function μ_{*} (right).

Figure 4.2: The generated data $y=A\left(f_{*}, 0\right)$ (left) and $y=A\left(f_{*}, \mu_{*}\right)$ (right).
depicted in Figure 4.2, once for the already shown attenuation function μ_{*} and once for $\mu_{*}=0$. Afterwards, random data error was added in order to arrive at y^{δ}.

As in the previous section, we now want to compare the TPG methods based on a constant stepsize ω, the steepest descent stepsize α_{k}^{SD} and the minimal error stepsize α_{k}^{ME} with their classical, non-accelerated counterparts. Again we use the notation λ_{k}^{E}, λ_{k}^{B} and λ_{k}^{N} to distinguish between the different combination parameters λ_{k}^{δ}.

Concerning the nonlinearity constant η, it is not clear weather a condition like (2.1) holds for SPECT. Unfortunately, this is the case for almost all nonlinear inverse problems of practical importance. However, a value for η is both in the DBTS algorithm and for calculating Ψ and τ. Hence, we used the conservative estimate of $\eta=0.4$ for obtaining the presented results. From this, Ψ was calculated via 2.8 and τ was chosen
via

$$
\begin{equation*}
\tau=2 \tilde{\tau} \frac{1+\eta}{1-2 \eta} \tag{4.12}
\end{equation*}
$$

where this time $\tilde{\tau}=4$ was chosen. The resulting $\tau=56$ might seem rather large but numerical tests show that decreasing τ for example to the canonical choice $\tau=2$ leads to numerical instabilities which make it impossible for any of the methods to decrease the residual to the level of $\tau \delta$. Hence, the choice of τ as stated above seems to be at least of optimal order. Furthermore, as noted in the last paragraph of Section 3, τ should not be chosen too small since otherwise Ψ would become undesirably small. Concerning the remaining parameters, they were all chosen as in the previous section, with the obvious exception of ω, for which the value $\omega=4.7 \cdot 10^{-4}$ was found by numerical calculations.

We now compare the effects of combining different choices of λ_{k}^{δ} with different stepsizes α_{k}^{δ}. For this test, the results of which are presented in Table 4.2, we used a relative data error of $0.25 \%{ }^{2}$. Note first that independently of the chosen stepsize α_{k}^{δ}, using $\lambda_{k}^{\delta}=\lambda_{k}^{N}$ leads to the smallest number of iterations necessary before meeting the stopping rule, with only about one tenth of iterations and computation time required! For $\lambda_{k}^{\delta}=\lambda_{k}^{B}$ defined via the DBTS algorithm, we can see that for the constant stepsize $\omega=10^{-5}$ and the steepest descent stepsize α_{k}^{SD}, although requiring more iterations and computation time, the overall effort is still significantly lower than when not using any acceleration. The bad behaviour of the combination of λ_{k}^{B} with the minimal error stepsize α_{k}^{ME} can best be explained by the fact that using the minimal error stepsize, the residuals are not decreasing monotonously and hence, the DBTS algorithm has difficulties finding a suitable parameter λ_{k}^{B}. As for the choice $\lambda_{k}^{\delta}=\lambda_{k}^{E}$, one can see that in combination with the steepest descent stepsize α_{k}^{SD}, about three times as many iterations are required than when using $\lambda_{k}^{\delta}=\lambda_{k}^{N}$. However, still much less iterations are required than when using no acceleration at all. A similar phenomenon can also be observed for the constant stepsize ω, where the choice $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ can even compete with the choice $\lambda_{k}^{\delta}=\lambda_{k}^{B}$, needing only slightly more iterations but significantly less computation time. As was also the case for the choice $\lambda_{k}^{\delta}=\lambda_{k}^{B}$, the choice $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ behaves badly in combination with the minimal error stepsize α_{k}^{ME}. Again the most likely reason is the non-monotone nature of this stepsize choice.

Since the acceleration effect is due to λ_{k}^{δ}, it makes sense to look at it's evolution over the course of the iteration. The left sub-figure in Figure 4.3 depicts the development of $\lambda_{k}^{E}, \lambda_{k}^{B}$ and λ_{k}^{N} when used in the TPG method with steepest descent stepsize α_{k}^{SD} for the SPECT problem considered above. One can see that in all three cases λ_{k}^{δ} goes to 1 as the iteration progresses, which is the reason for the acceleration effect. Although seemingly going to 1 with growing k, λ_{k}^{B} stays 0 for some of the first iterations and then exhibits a steep jump followed by some small oscillations, before starting to increase monotonously. This can be explained by the backtracking search procedure of the DBTS algorithm, which first has to go through some unsuccessful search cycles before the function $q(m)$

[^2]| Stepsize | $\lambda_{k}^{\delta}=0$ | $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ | $\lambda_{k}^{\delta}=\lambda_{k}^{B}$ | $\lambda_{k}^{\delta}=\lambda_{k}^{N}$ | k_{*} | Time |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| Steepest Descent | x | | | | 3433 | 489 s |
| Steepest Descent | | x | | | 631 | 90 s |
| Steepest Descent | | | x | | 345 | 77 s |
| Steepest Descent | | | | x | 205 | 30 s |
| Minimal Error | x | | | | 2021 | 185 s |
| Minimal Error | | x | | | 6665 | 603 s |
| Minimal Error | | | x | | 6253 | 600 s |
| Minimal Error | | | | x | 288 | 28 s |
| Constant, $\omega=4.7 \cdot 10^{-4}$ | x | | | | 2019 | 186 s |
| Constant, $\omega=4.7 \cdot 10^{-4}$ | | x | | | 474 | 46 s |
| Constant, $\omega=4.7 \cdot 10^{-4}$ | | | x | | 467 | 57 s |
| Constant, $\omega=4.7 \cdot 10^{-4}$ | | | | x | 265 | 26 s |

Table 4.2: Comparison of different stepsizes α_{k}^{δ} and combination parameters λ_{k}^{δ} : Number of iterations k_{*} and total amount of time necessary to satisfy the discrepancy principle. A relative data error of 0.25% was used.
has decreased to the right order of magnitude. Afterwards, a monotonous increase also of λ_{k}^{B} can be seen. A similar phenomenon can also be observed when the DBTS algorithm is applied to the TPG method with constant stepsize ω. In the first iterations, λ_{k}^{B} is zero, then switches between 0 and 1 before it changes to monotonous increase starting from some value in $[0,1]$, after which it again drops to some value in $[0,1]$ and stars yet again to increase monotonously. In combination with the minimal error stepsize, λ_{k}^{B} first exhibits the same pattern as with the steepest descent stepsize α_{k}^{SD} but, after a certain amount of increase, starts to decreases monotonously, which explains why the acceleration effect is lost.

Note that if the function q is chosen such that it decreases too fast, then λ_{k}^{B} will become a decreasing sequence. For example, the function $q(m)=1 / 2^{m}$ often led to a decreasing sequence λ_{k}^{B} in our experiments. Hence, in order to profit from an acceleration effect, one has to choose a slowly decreasing function satisfying (3.22), like $q(m)=1 / m^{1+\alpha}$ with a small $\alpha>0$. Similar restrictions can also be observed for second order methods like the Levenberg-Marquardt or the iteratively regularized Gauss-Newton method.

The right figure in Figure 4.3 depicts the development of the norm of the residuals during the iterations of the TPG methods using the steepest descent stepsize α_{k}^{SD} together with the different choices of λ_{k}^{δ} considered above. Once again, one can clearly see the acceleration effect due to the three considered parameters $\lambda_{k}^{E}, \lambda_{k}^{B}$ and λ_{k}^{N}, which manage to decrease the residual norm much faster than in the case when no acceleration, i.e., $\lambda_{k}^{\delta}=0$, is being used.

Note that the residual norms decrease monotonously, which is also the case for the other stepsizes, except for the case when the minimal error stepsize α_{k}^{ME} is used in

Figure 4.3: Results of using the TPG methods with steepest descent stepsize $\alpha_{k}^{\text {SD }}$ and various choices of λ_{k}^{δ}, using a relative data error of 0.25%. Left: Plot of the values of λ_{k} over the iteration number k. Right: Plot of the residual $\left\|A\left(f_{k}, \mu_{k}\right)-y^{\delta}\right\|$ over the iteration number k. Dashed red line: $\lambda_{k}^{\delta}=\lambda_{k}^{N}$, solid blue line: $\lambda_{k}^{\delta}=\lambda_{k}^{B}$, dash-dotted black line: $\lambda_{k}^{\delta}=\lambda_{k}^{E}$, solid magenta line in the right sub-figure (extending up to the y -axis value 1500): $\lambda_{k}^{\delta}=0$.
combination with either $\lambda_{k}^{\delta}=\lambda_{k}^{E}$ or $\lambda_{k}^{\delta}=0$, in which case oscillations occur.
In Figure 4.4, one can see the results of the reconstruction of the activity and the attenuation function achieved when using the TPG method with steepest descent stepsize $\alpha_{k}^{\text {SD }}$ combined with λ_{k}^{B} for the choices of parameters as above and with a relative data error $\delta=0.25 \%$. One can see that the activity function f_{*} is nicely reconstructed. The attenuation function, however, does not resemble the true attenuation function μ_{*} at all. This phenomenon is common for SPECT and has already been observed in [23]. The reason for this is the high nonlinearity of the problem, leading to non-uniqueness of the solution and therefore, since the reconstruction algorithm selects a solution with minimal distance to $\left(f_{0}, \mu_{0}\right)=(0,0)$, to the reconstruction of μ_{*} as seen in Figure 4.4. Possible remedies already mentioned in 23 are for example a better initial guess or a coupled tomography approach. In any case, the main reason for including μ in the reconstruction is to arrive at reconstructions conforming to the data. Besides, this paper did not aim at improving the reconstruction quality of SPECT, but at showing the acceleration effect of TPG methods of the form (1.17).

5 Conclusion and Outlook

We have proven convergence of general TPG methods of the form (1.17) under classical assumptions for iterative regularization methods for nonlinear ill-posed problems. Afterwards, we have applied the theory to various TPG methods using either the steepest descent, the minimal error or a constant stepsize, together with different choices for the

Figure 4.4: Results of the TPG method using the steepest descent stepsize $\alpha_{k}^{\text {SD }}$ together with $\lambda_{k}^{\delta}=\lambda_{k}^{B}$ for the SPECT example problem with a relative data error of $\delta=0.25 \%$. Activity function $f_{k_{*}}$ (left) and attenuation function $\mu_{k_{*}}$ (right).
combination parameters λ_{k}^{δ}.
Although no analytical results are yet available proving that indeed less iterations are required when using TPG methods (1.17), the numerical simulation results presented above clearly show their advantages in practise. Besides the fact that much fewer iterations are necessary to arrive at suitable solutions, the implementation of TPG methods is exceedingly simple. Furthermore, they requiring hardly more computation time than their non-accelerated counterparts. Due to the numerically demonstrated great reduction of the required number of iterations, TPG methods could serve as a viable alternative to commonly used "fast" iterative methods like the iteratively regularized Gauss-Newton method, especially when dealing with large-scale inverse problems, where the latter ones often become impracticable due to having to solve huge and usually full linear systems in each iteration step.

As a final comment, note that the TPG method (1.17) can also be rewritten in terms of z_{k}^{δ}, leading to

$$
\begin{align*}
z_{k+1}^{\delta} & =\left(1+\lambda_{k+1}^{\delta}\right)\left(z_{k}^{\delta}+\alpha_{k}^{\delta} s_{k}^{\delta}\right)-\lambda_{k+1}^{\delta}\left(z_{k-1}^{\delta}+\alpha_{k-1}^{\delta} s_{k-1}^{\delta}\right) \tag{5.1}\\
& =z_{k}^{\delta}+\lambda_{k+1}^{\delta}\left(z_{k}^{\delta}-z_{k-1}^{\delta}\right)+\left(1+\lambda_{k+1}^{\delta}\right) \alpha_{k}^{\delta} s_{k}^{\delta}-\lambda_{k+1}^{\delta} \alpha_{k-1}^{\delta} s_{k-1}^{\delta},
\end{align*}
$$

and it therefore structurally differs from the iteration methods considered by Scherzer in 25 by the additional term $\lambda_{k+1}^{\delta}\left(z_{k}^{\delta}-z_{k-1}^{\delta}\right)$. However, many of his ideas and arguments for proving convergence of those methods were re-used in the proofs of this paper.

6 Support and Acknowledgements

The authors were partly funded by the Austrian Science Fund (FWF): W1214-N15, project DK8. Furthermore, they would like to thank Dr. Gerhard Hubmer, Dr. Stefan Kindermann and Prof. Dr. Andreas Neubauer for reading early drafts of the manuscript and providing valuable suggestions and insights during discussions of the subject.

References

[1] H. Attouch and J. Peypouquet. The Rate of Convergence of Nesterov's Accelerated Forward-Backward Method is Actually Faster Than $O\left(1 / k^{2}\right)$. SIAM Journal on Optimization, 26(3):1824-1834, 2016.
[2] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
[3] B. Blaschke, A. Neubauer, and O. Scherzer. On convergence rates for the Iteratively regularized Gauss-Newton method. IMA Journal of Numerical Analysis, 17(3):421, 1997.
[4] V. Dicken. Simultaneous activity and attenuation reconstruction in single photon emission computed tomography, a nonlinear ill-posed problem. PhD thesis, Universität Potsdam, 1998.
[5] V. Dicken. A new approach towards simultaneous activity and attenuation reconstruction in emission tomography. Inverse Problems, 15(4):931, 1999.
[6] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers, 1996.
[7] M. Hanke. Accelerated Landweber iterations for the solution of ill-posed equations. Numerische Mathematik, 60(1):341-373, 1991.
[8] M. Hanke. A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems, 13(1):79, 1997.
[9] M. Hanke, A. Neubauer, and O. Scherzer. A convergence analysis of the Landweber iteration fornonlinear ill-posed problems. Numerische Mathematik, 72(1):21-37, 1995.
[10] J. A. Terry and B. M. W. Tsui and J. R. Hendricks and G. T. Gullberg. The design of a mathematical phantom of the upper human torso for use in 3D SPECT imaging research. Proc. 1990 Fall Mtg of the Biomedical Engineering Society (Blacksburg, VA), pages 1467-74, 1990.
[11] Q. Jin. On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems. Numerische Mathematik, 115(2):229-259, 2010.
[12] Q. Jin. Landweber-Kaczmarz method in Banach spaces with inexact inner solvers. Inverse Problems, 32(10):104005, 2016.
[13] Q. Jin and U. Tautenhahn. On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems. Numerische Mathematik, 111(4):509-558, 2009.
[14] B. Kaltenbacher, A. Neubauer, and O. Scherzer. Iterative regularization methods for nonlinear ill-posed problems. Berlin: de Gruyter, 2008.
[15] F. Natterer. The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics, 2001.
[16] Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2):372-376, 1983.
[17] A. Neubauer. On Landweber iteration for nonlinear ill-posed problems in Hilbert scales. Numer. Math., 85(2):309-328, 2000.
[18] A. Neubauer. Some generalizations for Landweber iteration for nonlinear ill-posed problems in Hilbert scales. Journal of Inverse and Ill-posed Problems, 24(4):393406, 2016.
[19] A. Neubauer. A new gradient method for ill-posed problems. 2017. submitted.
[20] A. Neubauer. On Nesterov acceleration for Landweber iteration of linear ill-posed problems. J. Inv. Ill-Posed Problems, 2017. to appear.
[21] R. Ramlau. A modified landweber method for inverse problems. Numerical Functional Analysis and Optimization, 20(1-2):79-98, 1999.
[22] R. Ramlau. TIGRA - an iterative algorithm for regularizing nonlinear ill-posed problems. Inverse Problems, 19(2):433, 2003.
[23] R. Ramlau and G. Teschke. A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints. Numer. Math., 104(2):177-203, 2006.
[24] S. Hubmer and A. Neubauer and R. Ramlau and H. U. Voss. On the parameter estimation problem of Magnetic Resonance Advection Imaging. 2016. submitted.
[25] O. Scherzer. A convergence analysis of a method of steepest descent and a twostep algorothm for nonlinear illposed problems. Numerical Functional Analysis and Optimization, 17(1-2):197-214, 1996.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2016

2016-01 P. Gangl, U. Langer: A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization November 2016. Eds.: B. Jüttler, R. Ramlau
2016-02 C. Hofer: Parallelization of Continuous and Discontinuous Galerkin Dual-Primal Isogeometric Tearing and Interconnecting Methods November 2016. Eds.: U. Langer, W. Zulehner
2016-03 C. Hofer: Analysis of Discontinuous Galerkin Dual-Primal Isogeometric Tearing and Interconnecting Methods November 2016. Eds.: U. Langer, B. Jüttler
2016-04 A. Seiler, B. Jüttler: Adaptive Numerical Quadrature for the Isogeometric Discontinuous Galerkin Method November 2016. Eds.: U. Langer, J. Schicho
2016-05 S. Hubmer, A. Neubauer, R. Ramlau, H. U. Voss: On the Parameter Estimation Problem of Magnetic Resonance Advection Imaging December 2016. Eds.: B. Jüttler, U. Langer
2016-06 S. Hubmer, R. Ramlau: Convergence Analysis of a Two-Point Gradient Method for Nonlinear Ill-Posed Problems December 2016. Eds.: B. Jüttler, U. Langer

2015

2015-01 G. Grasegger, A. Lastra, J. Rafael Sendra, F. Winkler: A Solution Method for Autonomous First-Order Algebraic Partial Differential Equations in Several Variables January 2015. Eds.: U. Langer, J. Schicho

2015-02 P. Gangl, U. Langer, A. Laurain, H. Meftahi, K. Sturm: Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics January 2015. Eds.: B. Jüttler, R. Ramlau
2015-03 C. Fürst, G. Landsmann: Computation of Dimension in Filtered Free Modules by Gröbner Reduction May 2015. Eds.: P. Paule, F. Winkler
2015-04 A. Mantzaflaris, H. Rahkooy, Z. Zafeirakopoulos: Efficient Computation of Multiplicity and Directional Multiplicity of an Isolated Point July 2015. Eds.: B. Buchberger, J. Schicho
2015-05 P. Gangl, S. Amstutz, U. Langer: Topology Optimization of Electric Motor Using Topological Derivative for Nonlinear Magnetostatics July 2015. Eds.: B. Jüttler, R. Ramlau
2015-06 A. Maletzky: Exploring Reduction Ring Theory in Theorema August 2015. Eds.: B. Buchberger, W. Schreiner

The complete list since 2009 can be found at https://www.dk-compmath.jku.at/publications/

Doctoral Program

"Computational Mathematics"

Director:

Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *Johannes Kepler University Linz, Doctoral Program Computational Mathematics, Altenbergerstraße 69, A-4040 Linz, Austria (simon.hubmer@dk-compmath.jku.at)
 ${ }^{\dagger}$ Johannes Kepler University Linz, Institute of Industrial Mathematics, Altenbergerstraße 69, A4040 Linz, Austria (ronny.ramlau@jku.at)
 \ddagger Johann Radon Institute Linz, Altenbergerstraße 69, A-4040 Linz, Austria (ronny.ramlau@ricam.oeaw.ac.at)

[^1]: ${ }^{1}$ This is not necessarily the case for the classical Nesterov Acceleration scheme 1.16), for which convergence can therefore not be proven using the presented framework.

[^2]: ${ }^{2}$ This is a very optimistic estimate for SPECT, since in practice one would expect the relative data error to be upwards of 5%. However, for such a high amount of noise, only a couple of iterations are required to satisfy the stopping criterion (2.13) even for Landweber iteration and hence, no acceleration effect would be observable.

