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IMPORTANCE SAMPLING TECHNIQUES FOR STOCHASTIC

PARTIAL DIFFERENTIAL EQUATIONS

EVELYN BUCKWAR AND ANDREAS THALHAMMER

Abstract. In this work we consider importance sampling techniques for sto-

chastic partial differential equations (SPDE) based on an infinite dimensional
version of the well-known Girsanov theorem. For this we develop construction

techniques for measure transformations that can be used in numerical exper-

iments for variance reduction purposes of the infinite dimensional equations.
The key advantage of the proposed methods is that these techniques are in-

dependent of the (spatial) discretisation of the SPDE and that the difference

in the computational effort between simulating the numerical trajectories for
the standard Monte Carlo estimator and for the importance sampling meth-

ods is only the approximation of a linear, one-dimensional SODE. Besides

the analysis of the infinite dimensional framework, various approximation and
implementation issues are discussed. We conclude by presenting numerical

experiments showing the effectiveness of the proposed techniques due to a
remarkable reduction of the Monte Carlo error.

1. Introduction

In many fields of science, stochastic partial differential equations (SPDEs) are
used to model problems with uncertainties. Since the importance of such SPDE-
based models increases constantly, it is necessary to develop efficient numerical
methods in order to be able to cope with the computational complexity of the
numerical experiments. In many of these applications, the quantities of interest are
the statistics of the underlying solution process at a given time T , i.e. we want to
estimate the quantity E[ϕ(X(T ))] for a sufficiently smooth mapping ϕ : H → B,
where H and B are separable Hilbert spaces and X(T ) denotes the H-valued mild
solution of a semilinear SPDE. Due to the fact that it is in general not possible
to compute the expectation of ϕ(X(T )) explicitly, we have to rely on suitable
estimators. Thus, besides issues concerning the spatial and temporal discretisation
of the SPDE and the approximation of the noise, we have to additionally discretise
the probability space, when we want to estimate the expectation.

The goal of this work is to derive and implement numerical methods that enhance
the efficiency of the standard Monte Carlo estimator given by

E[ϕ(X(T ))] ≈ EM [ϕ(X(T ))] :=
1

M

M∑
i=1

ϕ(X(i)(T )),
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2 E. BUCKWAR AND A. THALHAMMER

where X(i)(T ) are M independent realisations of the mild solution X(T ) defined
in (2.4) below. For the resulting approximation error, also called the Monte Carlo
error, the following result can be found in [4, Lemma 4.1]: For a random variable
Y ∈ L2(Ω;B), i.e. E[‖Y ‖2B ] <∞, the Monte Carlo error can be expressed by

‖E[Y ]− EM [Y ]‖L2(Ω;B) =
1√
M

VarB [Y ]1/2,(1.1)

where the variance in the Hilbert space B is defined as VarB [Y ] := E[‖Y −E[Y ]‖2B ].
Thus, increasing the number of samples M obviously leads to a decrease in the
Monte Carlo error. However, this is not always suitable due to the high computa-
tional cost of the involved numerical realisations and the rather slow convergence
rate of the Monte Carlo estimator (with respect to the number of samples M)
attaining only order O(M−1/2).

Especially, if we are dealing with approximations of mild solutions of SPDEs,
an increase of the sample size is severely limited because of the complexity of the
simulations. Thus, in order to make Monte Carlo estimators more efficient, we apply
appropriate variance reduction techniques. These are Monte Carlo-type methods
using instead of the original quantity of interest Y independent realisations of a

random variable Ỹ satisfying E[Y ] = E[Ỹ ] and VarB [Ỹ ]� VarB [Y ], see e.g. [16, 9]
for an overview of variance reduction techniques in the finite dimensional setting.
In this article, we develop measure transformations of the underlying probability
measure P based on an infinite dimensional version of the Girsanov theorem in
order to reduce the variance of the transformed random variables Ỹ . This variance
reduction technique is called importance sampling and has already been successfully
applied to SODEs, see [16, 14, 1].

Note that importance sampling in the context of variance reduction techniques
for SPDEs has already been treated in the literature, see e.g. [1, 15]. There are also
optimal measure transformations, where optimality has to be understood in the
sense that the corresponding measure transformation leads to a vanishing Monte
Carlo error, see e.g. Section 4.1 of this article and [15] for SPDEs driven by a
finite number of standard Wiener processes. However, in both cases it is highly
non-trivial to compute these optimal measure transformations or at least to find a
sufficiently good approximation of it. Thus, such techniques are not optimal from
a computational point of view.

In this work, we construct families of infinite dimensional measure transforma-
tions that can be used for variance reduction purposes in numerical simulations of
E[ϕ(X(T ))]. These measure transformations are constructed in a way such that
they can easily be implemented and that the computational effort to simulate the
numerical trajectories of the transformed process is just slightly higher than the
cost for simulating the original solution trajectories. Theoretical optimality re-
sults such as the one presented in Section 4.1 are used as guidance for the design
of such families of measure transformations and in particular motivate the use of
path-dependent transformations. As numerical experiments in Section 6 show, the
variance can be significantly reduced by using the considered transformations and
thus, the Monte Carlo error based on the proposed importance sampling techniques
is considerably reduced.

The authors in [1] presented an importance sampling technique based on finite
dimensional considerations: First, the underlying SPDE (the one-dimensional sto-
chastic heat equation) is spatially discretised by using finite differences on a fixed
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spatial mesh and afterwards importance sampling is applied to the resulting system
of SODEs. In contrast, we apply the proposed importance sampling techniques di-
rectly to the infinite dimensional SPDE to reduce the variance of the original quan-
tity of interest. Afterwards any spatial discretisation scheme can be applied to the
transformed equation. This has the big advantage that the importance sampling
method is independent of the chosen spatial discretisation scheme and consequently
we do not have to exploit special structures of the finite dimensional SODE systems.

The flow chart in Figure 1 summarises the importance sampling techniques for
SPDEs driven by infinitely many standard Wiener processes. In this work, we
develop the approach following the bold arrows. The dashed arrows indicate alter-
native methods that have already been treated in the literature.

Besides importance sampling there are also other variance reduction techniques
for SPDEs, e.g. control variates or multilevel Monte Carlo methods. Especially
the latter methods, see e.g. [2, 4], reduce the complexity of estimating E[ϕ(X(T ))]
remarkably and we want to emphasize that these methods could be further enhanced
by a coupling with the proposed importance sampling techniques from this article.

The outline of this paper is as follows: In Section 2 we briefly discuss the general
framework and in Section 3, we recall basic results for measure transformations for
semilinear SPDEs based on the infinite dimensional Girsanov theorem for Q-Wiener
processes. In Section 3.1, we present a method how such measure transformations
can be constructed. We are discussing in Section 4 how these measure transfor-
mations can be used in order to reduce the Monte Carlo error. In an optimal
benchmark setting, we are able to prove the existence of an optimal measure trans-
formation in Section 4.1, for which the Monte Carlo error vanishes completely.
In Section 5, we provide a framework that enables us to couple the importance
sampling techniques with spatial and temporal discretisation schemes. Finally, we
conclude this article by presenting numerical experiments in Section 6, where we
could achieve a remarkable improvement in the efficiency of the standard Monte
Carlo estimator.

X(T ) Xψ(T )

ϕ(Xh(T )) ϕ(Xψ
h (T ))Θ(T )

EM [ϕ(Xh(T ))] EM [ϕ(Xψ
h (T ))Θ(T )]

discretising

in infinite dimensions

Importance sampling

dependent on spatial discretisation

Importance sampling

discretising

MC estimator MC estimator

Figure 1. Overview of importance sampling techniques for sto-
chastic partial differential equations driven by Q-Wiener processes.
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2. Framework

Let (Ω,F , {Ft}t∈[0,T ],P) denote a complete probability space with a filtration
{Ft}t∈[0,T ] satisfying the usual conditions. In this article we consider semilin-
ear stochastic partial differential equations (SPDEs) on a separable Hilbert space
(H, 〈·, ·〉H) given by

dX(t) = [AX(t) + F (X(t))] d t+G(X(t)) dW (t), X(0) = X0.(2.1)

Here A is assumed to be a densely defined, linear, symmetric and positive definite
operator A : dom(A) ⊂ H → H and it is assumed to be the generator of an analytic
semigroup S(t), t ∈ [0, T ]. The domain of the fractional powers of the operator A,

which we denote by Ḣr := dom((−A)r/2), r ∈ (0,∞), endowed with the inner
product

〈·, ·〉r := 〈(−A)r/2·, (−A)r/2·〉H
also form separable Hilbert spaces, for details see [11] and the references therein.

Using this notation, we assume that the initial value satisfies X0 ∈ L2(Ω, Ḣ1),
where for any Hilbert space H

L2(Ω, H) := {v : Ω→ H | v is strongly measurable, ‖v‖2L2(Ω;H) := E[‖v‖2H ] <∞}.

Furthermore, let W be an H-valued Q-Wiener process with covariance operator
Q ∈ L(H) being a symmetric, non-negative definite, trace class operator. We
denote by {ek}k∈N the eigenfunctions of Q, which form an orthonormal basis of
H, see e.g. [11]. Due to the trace class property of the covariance operator, the
corresponding eigenvalues {λk}k∈N are summable, i.e. tr(Q) =

∑∞
k=1 λk < ∞.

Based on these properties the Q-Wiener process can be represented by (see e.g. [7,
18, 13] and the references therein)

W (t) =

∞∑
k=1

√
λkekβk(t),(2.2)

where {βk(t), t ∈ [0, T ]}k∈N is a sequence of independent, real-valued Wiener pro-
cesses. Additionally, sinceQ is non-negative definite, the square-root of the operator
Q is well-defined, i.e. for all φ ∈ H

Q1/2φ =

∞∑
k=1

√
λk〈φ, ek〉Hek(2.3)

exists. In the following part, we denote by Q−1/2 the pseudo-inverse of Q1/2, see
[18, Appendix C]. Using the representation of the square-root operator Q1/2 given
in Equation (2.3), we define the space H0 := Q1/2(H), which together with the
norm | · |0 induced by the inner product

〈φ1, φ2〉0 = 〈Q−1/2φ1, Q
−1/2φ2〉H =

∞∑
k=1

1

λk
〈φ1, ek〉H〈φ2, ek〉H , φ1, φ2 ∈ H0,

forms a separable Hilbert space, see [8], with orthonormal basis {
√
λkek}k∈N.

Moreover, we denote by LHS(H0, H) the space of all Hilbert-Schmidt operators
mapping from H0 to H. Finally, we assume that the drift operator F : H → H
and the diffusion operator G : H → LHS(H0, H) satisfy the following Lipschitz
continuity and linear growth condition, see [4, Assumption 2.2]:
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Assumption 2.1. Let Z = H, Ḣ1. Assume that there exist constants C1, C2 > 0
such that for all φ ∈ Z, φ1, φ2 ∈ H it holds that

‖F (φ)‖Z + ‖G(φ)‖LHS(H0,Z) ≤ C1(1+‖φ‖Z),

‖F (φ1)− F (φ2)‖H + ‖G(φ1)−G(φ2)‖LHS(H0,H) ≤ C1‖φ1 − φ2‖H .

If Assumption 2.1 is fulfilled, then Equation (2.1) has a unique H-valued mild
solution X(t) (see [11, Theorem 2.25]), i.e. there exists an Ft-predictable, H-valued
stochastic process X : [0, T ]→ H such that for all t ∈ [0, T ] it holds P-a.s that

sup
t∈[0,T ]

‖X(t)‖L2(Ω;H) <∞

and

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s)) d s+

∫ t

0

S(t− s)G(X(s)) dW (s).(2.4)

3. Measure transformations for SPDEs

In this section we first recall basic results on measure transformations for SPDEs.
Afterwards we present in Section 3.1 a technique how these measure transforma-
tions can be constructed such that approximations of the involved transformation
operators can be efficiently implemented for numerical simulations. Motivated by
examples of finite dimensional measure transformations for SODE systems, we de-
rive explicit representations of two transformations in infinite dimensions for which
numerical experiments are presented in Section 6.

The considered measure transformations are based on the following infinite di-
mensional version of the Girsanov theorem, see [7, Theorem 10.14]:

Theorem 3.1. Assume that ψ(t), t ∈ [0, T ], is an H0-valued Ft-predictable process
such that the density process

Θ(t) = exp

(∫ t

0

〈ψ(s), dW (s)〉0 −
1

2

∫ t

0

|ψ(s)|20 d s

)
is a martingale. Then, the process

Ŵ (t) = W (t)−
∫ t

0

ψ(s) d s, t ∈ [0, T ](3.1)

is a Q-Wiener process with respect to {Ft}t∈[0,T ] on the probability space (Ω,F , P̂),

where d P̂ = Θ(T ) dP.

If the weight operator ψ(t), t ∈ [0, T ], is chosen appropriately according to The-
orem 3.1, then one can apply the corresponding measure transformation to SPDE

(2.1). Thus, we obtain with respect to the (transformed) probability space (Ω,F , P̂)
the following SPDE

Xψ(t)−X0 =

∫ t

0

[AXψ(s) + F (Xψ(s))] d s+

∫ t

0

G(Xψ(s)) d Ŵ (s)

=

∫ t

0

[AXψ(s) + F (Xψ(s))−G(Xψ(s))ψ(s)] d s+

∫ t

0

G(Xψ(s))dW(s).(3.2)
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Since the coefficients F and G satisfy Assumption 2.1, there exists a unique mild
solution Xψ(t) of the transformed SPDE (3.2) (with respect to the new probability

measure P̂) given by

Xψ(t) = S(t)X0 +

∫ t

0

S(t− s)[F (Xψ(s))−G(Xψ(s))ψ(s)] d s

+

∫ t

0

S(t− s)G(Xψ(s)) dW (s).

(3.3)

Note that Θ(t) can be represented in terms of the sequence of independent,
one-dimensional Wiener processes from the Karhunen-Loève expansion (2.2), i.e.

Θ(t) = exp

( ∞∑
k=1

∫ t

0

1√
λk
〈ψ(s), ek〉H dβk(s)− 1

2

∞∑
k=1

∫ t

0

1

λk
〈ψ(s), ek〉2H d s

)
.

Thus, the density process Θ(t) can be seen as the solution of the one-dimensional
SDE driven by infinitely many independent one-dimensional Wiener processes, i.e.

d Θ(t) = Θ(t)〈ψ(t), dW (t)〉0 = Θ(t)

( ∞∑
k=1

1√
λk
〈ψ(s), ek〉H dβk(t)

)
,

Θ(0) = 1.

(3.4)

Unfortunately, the martingale property of the density process Θ(t) in Theorem
3.1 is not fulfilled for arbitrary choices of ψ(t) since in general Θ(t) is only a super-
martingale and for this reason E[Θ(T )] ≤ 1, see [12, Appendix I]. However, under
the condition

P

(∫ T

0

|ψ(s)|20 d s <∞

)
= 1(3.5)

the density process can be represented by a one-dimensional stochastic exponential,
see [7, Lemma 10.15], given by

Θ(t) = exp

(∫ t

0

|ψ(s)|0 dβ(s)− 1

2

∫ t

0

|ψ(s)|20 d s

)
for t ∈ [0, T ],(3.6)

where β(t), t ∈ [0, T ], denotes a one-dimensional Wiener process. If condition (3.5)
is fulfilled, then it is sufficient to show that the stochastic exponential (3.6) is a mar-
tingale. Due to the fact that the considered stochastic process from Equation (3.6)
is now one-dimensional and real-valued, standard results from finite dimensional
stochastic calculus can be applied. Hence, the martingale property of (3.6) can be
verified e.g. by Novikov’s condition, see e.g. [17, 19],

E
[
exp

(
1

2

∫ t

0

|ψ(s)|20 d s

)]
<∞.(3.7)

3.1. Constructing measure transformations. In this section, we present a
method to construct weight operators ψ(t), t ∈ [0, T ], that fulfil the rather strong
assumptions of the Girsanov theorem for infinite dimensional SDEs driven by Q-
Wiener processes as stated in Theorem 3.1. Recall that a suitable weight operator
ψ has to fulfil that it is H0-valued, it is Ft-predictable and the induced density
process Θ(t) has to be a martingale. The proposed construction method looks as
follows:
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At first, we start by choosing an Ft-predictable process Ψ(t) taking values in H
as an initial guess for the weight operator, where the particular choice of Ψ might
be motivated by already existing finite dimensional examples. In the next step Ψ
is projected onto H0 by using the orthogonal projector PH0

given by

ψ(s) = PH0Ψ(s) =

∞∑
k=1

λk〈Ψ(s), ek〉Hek for all s ∈ [0, T ].(3.8)

Since the density process can be represented by the one-dimensional stochastic
exponential (3.6) under Condition (3.5), we want to construct ψ in a way such that
this condition is fulfilled. A sufficient condition for (3.5) to hold is that the weight
operator is uniformly bounded in the H0-norm, i.e. there exists a constant C0 > 0
such that sups∈[0,T ] |ψ(s)|0 ≤ C0 <∞. If the weight operator is uniformly bounded

then the martingale property of Θ(t) follows directly from Novikov’s condition (3.7).
If we cannot show the uniform boundedness of the weight operator ψ (with respect
to the H0-norm) we have to find a suitable truncation of the initial process Ψ
denoted by Ψ̄ such that there exists a constant C1 > 0 with

sup
k∈N

sup
s∈[0,T ]

|〈Ψ̄(s), ek〉H | ≤ C1 <∞.

Then, we obtain

|ψ(s)|20 =

∞∑
k=1

λk〈Ψ̄(s), ek〉2H ≤ C2
1 tr(Q) <∞.

In the next part we present two examples of such measure transformations that
are not only of theoretical interest but can also been implemented for numerical
experiments, see Section 6. For this, we specify for these two examples the Hilbert
space H to be L2(D), D being a bounded domain. Furthermore, we assume that
the eigenfunctions {ek}k∈N of the covariance operator Q are uniformly bounded by
a constant Ce > 0, i.e. on the bounded spatial domain D there exists a constant
Ce > 0 such that for all j ∈ N it holds that ‖ej‖L∞(D) ≤ Ce < ∞. An example
of an SPDE that fulfils all these assumptions is given e.g. by the one-dimensional
stochastic heat equation with multiplicative noise defined in Section 6.

3.1.1. Time-constant weight operator. The idea of this weight operator is based
on choosing ψ constant in time, which is motivated by the importance sampling
technique presented in [1] in a finite dimensional setting. For this let {ψk}k∈N be
a bounded, real-valued sequence, i.e. there exists a constant M > 0 such that
|ψk| ≤M for all k ∈ N. Then, we define

ψ(s) =

∞∑
k=1

λkψk〈1, ek〉Hek(3.9)

for all s ∈ [0, T ], which corresponds to the generalisation of the case ψk = ψ̄ ∈ R for
all k ∈ N, i.e. the projection of the constant function (that is generally not in H0)
onto H0. The weight operator (3.9) is uniformly bounded in the H0-norm, since it
holds for all k ∈ N that

|〈ψk, ek〉H | = |〈ψk, ek〉L2(D)| ≤ CeM |D|,
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where |D| denotes the volume of the bounded spatial domain D. For this reason,
Condition (3.5) is automatically fulfilled and therefore, the corresponding density
process

Θ(t) = exp

( ∞∑
k=1

√
λkψk〈1, ek〉Hβk(t)− t

2

∞∑
k=1

λkψ
2
k〈1, ek〉2H

)

is a martingale by Novikov’s condition (3.7). Thus, all conditions of Theorem 3.1
are fulfilled and the measure transformation based on the weight operator from
Equation (3.9) can be applied.

3.1.2. Truncated path-dependent weight operator. We want to construct a weight
operator ψ : [0, T ] × H → H0 that also depends on the pathwise behaviour of
the mild solution of the underlying SPDE. Note that such path-dependent weight
operators and the corresponding measure transformations are commonly used for
finite dimensional problems as it is indicated e.g. in [10, 15].

For constructing such path-dependent weight operators we specify in this exam-
ple that the diffusion operator is chosen to be a Nemytskii operator induced by a
Lipschitz continuous function γ : R → R, i.e. (G(u)v)[x] := γ(u(x))v(x) for all
v ∈ H0 and x ∈ D.

For the choice of the initial process Ψ̄, we consider a bounded approximation
Ḡ of the Nemytskii operator G constructed by a bounded Lipschitz continuous
approximation γ̄ (e.g. by truncation) of the corresponding Lipschitz continuous
function γ, i.e. there exists a constant CG > 0 such that γ̄ : R → [−CG, CG].
Note that for diffusion operators that are already induced by a bounded, Lipschitz
continuous function γ, e.g. γ(x) = sin(x), Ḡ could also be chosen as G. Examples
of the construction of such truncated operators Ḡ are presented in Section 6.

Note that the operator Ḡ(φ) is for all φ ∈ H a Hilbert-Schmidt operator mapping
from H0 to H, since

‖Ḡ(φ)‖2LHS(H0,H) =

∞∑
j=1

‖Ḡ(φ)
√
λjej‖2H =

∞∑
j=1

λj

∫
D

|γ̄(φ(x))ej(x)|2 dx

≤ C2
G

∞∑
j=1

λj‖ej‖2H = C2
G tr(Q) <∞.

In the next step, we choose an element η ∈ H0 such that there exists a constant
Cη > 0 with ‖η‖H ≤ Cη and set Ψ̄(s) := G(Xψ(s))η. Since Ψ̄(s) is H-valued, we
have to project G(Xψ(s))η onto H0. Thus, we define the truncated path-dependent
weight operator as

ψ(s) = ψ(s,Xψ(s)) := c

∞∑
k=1

λk〈Ḡ(Xψ(s))η, ek〉Hek,(3.10)

where the scaling parameter c ∈ R is introduced in order to control the intensity
of the measure transformation in numerical experiments, see Section 6. Note that
instead of using a single scaling parameter c one could also introduce a sequence
{ck}k∈N, where each of the elements ck denotes a separate scaling for each of the
summands in (3.10). However, for notational convenience we restrict ourselves to
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the single parameter setting in this article. With this choice, we obtain

|ψ(s,Xψ(s))|20 =

∞∑
k=1

c2

λk

〈 ∞∑
l=1

〈Ḡ(Xψ(s))η,
√
λlel〉H

√
λel, ek

〉2

H

= c2
∞∑
k=1

λk〈Ḡ(Xψ(s))η, ek〉2H

≤ (cCGCη)2 tr(Q) <∞.

Hence, Conditions (3.5) and (3.7) are both fulfilled and for this reason the density
process is a martingale. For the Ft-predictability of the weight operator ψ(t) it
is sufficient to show that the transformed SPDE (3.2) has a unique mild solution

Xψ(t) with respect to the transformed probability measure P̂. This is fulfilled
since F and G both satisfy Assumption 2.1 and for this reason, there exists a
unique Ft-predictable mild solution Xψ(t) to the transformed SPDE (3.2). Thus,
all conditions from Theorem 3.1 are fulfilled and the measure transformation based
on the path-dependent weight operator (3.10) can be applied.

4. Variance reduction by importance sampling

In this section, we consider how we can exploit the measure transformation
introduced by Theorem 3.1 for variance reduction purposes. In the last section,
we presented a technique how to construct the weight operator ψ(t), t ∈ [0, T ], to
obtain a measure transformation satisfying all conditions of Theorem 3.1.

Based on the notation above, let X(T ) denote the (mild) solution of SPDE (2.1)
and let Xψ(T ) be the corresponding (mild) solution of the transformed SPDE (3.2)
based on an appropriate weight operator ψ. Then, due to the Girsanov theorem,
we get

EP[ϕ(X(T ))] = EP̂[ϕ(Xψ(T ))] = EP[ϕ(Xψ(T ))Θ(T )],

where ϕ : H → B and (B, 〈·, ·〉B) denotes a separable Hilbert space. Thus, by us-
ing a Monte Carlo estimator based on independent realisations of ϕ(Xψ(T ))Θ(T )
instead of simulating independent samples of ϕ(X(T )) we obtain an unbiased esti-
mator for E[ϕ(X(T ))]. The goal is now to find a weight operator ψ(t), t ∈ [0, T ],
such that

VarB [ϕ(Xψ(T ))Θ(T )]� VarB [ϕ(X(T ))],

which by Equation (1.1) implies that the Monte Carlo error is reduced.
As it is also indicated in [9] for the finite dimensional setting, importance sam-

pling is a strong tool for variance reduction and the choice of the weight operator
ψ(s), s ∈ [0, T ], is crucial for a successful application of importance sampling. In
particular, one has to be aware of the fact that it is also possible to enlarge the vari-
ance of the underlying random variable dramatically by choosing an inappropriate
weight operator ψ.

For this reason, we proceed as follows: First, we present in Section 4.1 an opti-
mal measure transformation (for a theoretical benchmark problem) such that the
variance of ϕ(Xψ(T ))Θ(T ) vanishes. Afterwards, we discuss how we can use this
optimal measure transformation as guidance for setting up measure transformations
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leading to variance reduction techniques that can be efficiently implemented. Nu-
merical experiments in Section 6 show the effectiveness of the resulting importance
sampling methods.

From a computational point of view, it is also very important to find a balance
between the computational cost of computing the importance sampling technique
and its reduction of the variance. Thus, optimal importance sampling techniques
or at least approximations of such measure transformations might not be suitable
for implementations if the computational cost for computing these measure trans-
formations exceeds the computational complexity of solving the original problem.

4.1. Optimal variance reduction. In this section, we want to optimise the
above importance sampling technique with respect to the weight operator ψ(t), t ∈
[0, T ]. The term optimal has to be understood in the sense that the variance of
ϕ(Xψ(T ))Θ(T ) vanishes for a fixed time point T with respect to the mapping ϕ.
This is summarised in the following definition:

Definition 4.1. The importance sampling weight operator ψ̃ : [0, T ]→ U0 is called
ϕ-optimal with respect to time T if

VarB [ϕ(Xψ̃(T ))Θ(T )] = 0.

Such optimal variance reduction techniques have already been developed for dif-
ferent types of SDEs. In [15, Chapter 4], the authors proposed an importance
sampling technique combined with a control variate approach for (strong solutions
of) parabolic SPDEs that would eliminate the Monte Carlo error completely. How-
ever, this is only possible if the SPDE (2.1) is driven by finitely many standard
Wiener processes. Moreover, the resulting methods require the simulation of an
additional SDE system and of additional Wiener processes.

In this section, we want to find such an optimal importance sampling method
for SPDEs driven by general Q-Wiener processes. The proof for this can be seen
as the infinite dimensional counterpart of the proof presented in [16, Theorem 4.1],
where the optimality result in finite dimensions is shown by using the solution of
the corresponding Kolmogorov backward equation and the Itô formula. However,
the techniques used in the proof of the finite dimensional result cannot be applied
in the full generality to the SPDE setting, since the Itô formula is only applicable
to SPDEs, for which a strong solution exists. Results extending the Itô formula
to mild solutions as presented in [6] cannot be applied in the same manner since
the proof of the optimality result relies on a specific interplay of the solution of the
underlying Kolmogorov backward equation and the Itô formula that is not present
if one applies the mild Itô formula from [6].

In order to prove that there exists a ϕ-optimal measure transformation in a (the-
oretical) benchmark setting we assume here that SPDE (2.1) has a unique strong
solution. For the optimal weight operator ψ(t), t ∈ [0, T ], we have to ensure addi-
tionally that there exists a unique solution to the corresponding Kolmogorov back-
ward equation of SPDE (2.1). For this reason, we have to introduce the following
assumption within this section:

Assumption 4.2. The first and second Fréchet derivatives of F and G are con-
tinuous and bounded and satisfy the two conditions:
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(1) there exists a constant M1 > 0 such that for all x, y ∈ H
‖DF (x)y‖H + ‖DG(x)y‖LHS(H0,H) ≤M1‖y‖H ,

(2) there exists a constant M2 > 0 such that for all x, y, z ∈ H
‖D2F (x)(y, z)‖H + ‖D2G(x)(y, z)‖LHS(H0,H) ≤M2‖y‖H‖z‖H .

Under this additional assumption, we can find a weight operator ψ(t), t ∈ [0, T ],
and therefore also a measure transformation such that the variance of the random
variable ϕ(Xψ̃(T ))Θ(T ) vanishes:

Theorem 4.3. Let X(t) denote the strong solution of SPDE (2.1) with determinis-
tic initial value X0 ∈ H. Furthermore, let ϕ ∈ C2

b (H;R+), i.e. the first and second
Fréchet derivatives are bounded and ϕ(h) > 0 for all h ∈ H \ {0}. Additionally
assume that the coefficients of SPDE (2.1) satisfy Assumptions 2.1 and 4.2. For
all t ∈ [0, T ], let Xψ(t) denote the strong solution of the transformed SPDE (3.2)
based on weight operator ψ(t) ∈ H0 and let u : [0, T ]×H → R denote the solution of
the Kolmogorov backward equation (of SPDE (2.1)) given in Equation (4.2) below.

Then, the choice

ψ̃(s) =

∞∑
k=1

ψ̃k(s,Xψ̃(s))ek

=

∞∑
k=1

− λk

u(s,Xψ̃(s))

〈
∂u

∂x
(s,Xψ̃(s)), G(Xψ̃(s))ek

〉
H

ek

(4.1)

is ϕ-optimal if the resulting density process Θ(t), t ∈ [0, T ], is a martingale.

Proof. Due to Assumptions 2.1 and 4.2, there exists a unique solution u to the
Kolmogorov Backward Equation of SPDE (2.1), see [8, Theorem 3.11]: For all
t ∈ [0, T ] and x ∈ H, u solves

Lu(t, x) =
∂u(t, x)

∂t
+

〈
Ax+ F (x),

∂u(t, x)

∂x

〉
H

+
1

2
tr

(
∂2u(t, x)

∂x2
(G(x)Q1/2)(G(x)Q1/2)∗

)
= 0,

u(T, x) = φ(x).

(4.2)

In the next step, we apply the integration by parts formula from [5, Corollary 2.6.]
to u(t,Xψ(t))Θ(t), i.e.

u(t,Xψ(t))Θ(t) = u(0, X0)Θ0

+

∫ t

0

(
Lu(s,Xψ(s))−

〈
∂u

∂x
(s,Xψ(s)), G(Xψ)(s)ψ(s)

〉
H

)
Θ(s) d s

+

∫ t

0

∞∑
n=1

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))en

〉
H

Θ(s)〈ψ(s), en〉0 d s

+

∫ t

0

u(s,Xψ(s))Θ(s)〈ψ(s), dW (s)〉0

+

∫ t

0

Θ(s)

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s)) dW (s)

〉
H

.

(4.3)
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Note that Lu = 0 since u solves Equation (4.2). In the following part, we have to
show that the remaining deterministic integrals in Equation (4.3) are equal. For
this, recall that en, n ∈ N, is an ONB of H. Since ψ(s), s ∈ [0, T ], is H0-valued, we
get that for all s ∈ [0, T ]

〈ψ(s), en〉0 =

∞∑
k=1

1

λk
〈ψ(s), ek〉H〈ek, en〉H

=
1

λn

〈 ∞∑
`=1

〈ψ(s),
√
λ`e`〉

√
λ`e`, en

〉
H

= 〈ψ(s), en〉H .

Then, by using that H0 ⊂ H,∫ t

0

∞∑
n=1

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))en

〉
H

Θ(s)〈ψ(s), en〉0 d s

=

∫ t

0

∞∑
n=1

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))〈ψ(s), en〉en

〉
H

Θ(s) d s

=

∫ t

0

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))

∞∑
n=1

〈ψ(s), en〉en
〉
H

Θ(s) d s

=

∫ t

0

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))ψ(s)

〉
H

Θ(s) d s.

Thus, the two deterministic integrals in Equation (4.3) are equal and therefore,
the difference between these two integrals vanishes. Consequently, Equation (4.3)
reduces to

u(t,Xψ(t))Θ(t) = u(0, X0)Θ0 +

∫ t

0

u(s,Xψ(s))Θ(s)〈ψ(s), dW (s)〉0

+

∫ t

0

Θ(s)

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s)) dW (s)

〉
H

=: I + II + III.

Note that I is deterministic,

II =

∞∑
k=1

1√
λk

∫ t

0

u(s,Xψ(s))Θ(s) 〈ψ(s), ek〉H dβk(s),

III =

∞∑
k=1

∫ t

0

Θ(s)
√
λk

〈
∂u

∂x
(s,Xψ(s)), G(Xψ(s))ek

〉
H

dβk(s).

Thus, by defining for all k ∈ N and s ∈ [0, T ]

ψ̃k(s,Xψ̃(s)) := −λku(s,Xψ̃(s))−1

〈
∂u

∂x
(s,Xψ̃(s)), G(Xψ̃(s))ek

〉
H

,

the importance sampling weight function

ψ̃(s,Xψ̃(s)) =

∞∑
k=1

ψ̃k(s,Xψ̃(s))ek

is ϕ-optimal at time t = T since for all t ∈ [0, T ] it holds that

u(t,Xψ̃(t))Θ(t) = u(0, X0)Θ0 = u(0, X0)
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is deterministic. This is in particular also valid for time point t = T , at which by

Equation (4.2) u(T,Xψ̃(T ))Θ(T ) coincides with ϕ(Xψ̃(T ))Θ(T ). Consequently, we

get Var[ϕ(Xψ̃(T ))Θ(T )] = 0. �

This optimal measure transformation can now be used as guidance to adjust the
proposed measure transformations from Section 3.1 such that the used importance
sampling technique results in a significant variance reduction. The path-dependent

structure of the optimal weight operator ψ̃ particularly motivates the use of the
path-dependent weight operator defined in Equation (3.10) since this can be inter-
preted as a crude approximation of the optimal choice given by (4.1). In numerical
experiments in Section 6, we examine how to choose the parameter c of the weight
operator (3.10) in order to achieve the best possible variance reduction.

5. Approximation of measure transformations

In this section, we recall approximation properties of spatial and temporal dis-
cretisation techniques and discuss how the importance sampling methods based on
the measure transformations form Section 3.1 can be implemented for numerical
experiments using fully discrete schemes. The advantage of proposed methods is
that the computational complexity of simulating the transformed random variables
and the simulation of the original mild solution process is of the same order. This
is due to the fact that for the final implementation the computation of the density
process Θ(t) reduces for the considered measure transformations to the approxima-
tion of the solution of a one-dimensional SODE driven by finitely many standard
Wiener processes. Hence, the difference in the computational cost of the standard
approach compared to the proposed importance sampling methods is limited to the
(numerical) approximation of a one-dimensional linear SODE.

Since the explicit formula of the mild solution of an SPDE is not known in gen-
eral, we have to additionally approximate its mild solution X(T ) by a (spatially and
temporally) discretised approximation Xh,N , see e.g. [13, 11] for details on strong
and weak numerical approximations of stochastic equations in infinite dimensions.
By using this additional approximation, the overall error of the Monte-Carlo method
can be estimated by, see e.g. [16],

‖E[ϕ(X(T ))]− EM [ϕ(Xh,N )]‖L2(Ω;B)

≤ ‖E[ϕ(X(T ))]− E[ϕ(Xh,N )]‖B︸ ︷︷ ︸
systematic error

+ ‖E[ϕ(Xh,N )]− EM [ϕ(Xh(T ))]‖L2(Ω;B)︸ ︷︷ ︸
Monte Carlo error

= ‖E[ϕ(X(T ))]− E[ϕ(Xh,N )]‖B +
VarB [ϕ(Xh,N )]1/2√

M
.

The following lemma shows that the variance of the approximated mild solution
(2.4) can be estimated by the strong error and the variance of the original quantity of
interest. For the analysis of Var[ϕ(Xh(T ))], we assume that the mapping ϕ : H → B
satisfies a Lipschitz continuity condition, i.e. there exists a constant C > 0 such
that for all φ1, φ2 ∈ H it holds that ‖ϕ(φ1)− ϕ(φ2)‖B ≤ C‖φ1 − φ2‖.

Lemma 5.1. Let ϕ : H → B be Lipschitz continuous. Then, there exists a constant
C > 0 independent of h such that

VarB [ϕ(Xh,N )] ≤ C‖X(T )−Xh,N‖2L2(Ω;H) + 3 VarB [ϕ(X(T ))].
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Proof. By using the triangle inequality and the Lipschitz continuity of ϕ, we get

VarB [ϕ(Xh,N )] = E[‖ϕ(Xh,N )− E[ϕ(Xh,N )]‖2B ]

= E[‖ϕ(Xh,N )± ϕ(Xh,N )± E[ϕ(X(T ))]− E[ϕ(Xh,N )]‖2B ]

≤ 3

(
E[‖ϕ(X(T ))− ϕ(Xh,N )‖2B ] + ‖E[ϕ(X(T ))]− E[ϕ(Xh,N )]‖2B

+ E[‖ϕ(X(T ))− E[ϕ(X(T ))]‖2B ]

)
≤ C‖X(T )−Xh,N‖2L2(Ω;H) + 3 VarB [ϕ(X(T ))].

Thus, the statement is shown. �

Hence the variance of ϕ(Xh,N ) can be estimated in terms of the strong approx-
imation error and the variance of the original quantity of interest ϕ(X(T )).

In the following two sections, we derive importance sampling techniques based on
the infinite dimensional measure transformations from Section 3.1 combined with
different spatial and temporal discretisation, i.e. for the space discretisation we
consider a finite difference method (in Section 5.1) and a Galerkin finite element
method (in Section 5.2). For both spatial discretisation methods, we consider the
backward Euler scheme for the time integration.

5.1. Approximation of the mild solution by finite differences. In this sec-
tion, we consider a finite difference method for approximating the mild solution of
the transformed SPDE (3.2). For simplicity, we consider a one-dimensional setting
on a bounded domain, where we fix a spatial mesh Th with N = 1/h, h > 0, spatial
grid points, i.e.

Th := {x0 < x1 < · · · < xN}.

The operator A is assumed to be a differential operator and its approximation
Ah ∈ R(N+1)×(N+1) is computed by using discrete difference quotients on Th. Then,
we obtain for the finite difference approximation x(t) = [X(t, x0), . . . X(t, xN )]T the
following finite dimensional SODE system

d x(t) = [Ahx(t) + F(x(t)) + G(x(t))ψ(t)] d t+ G(x(t))dW(t) for t ∈ [0, T ],

x(0) = [X0(x0), . . . , X0(xN )]T ,

where W(t) = [W (t, x0), . . . ,W (t, xN )]T , F(x(t)) = [F (X(t, x0)), . . . , F (X(t, xN ))]T ,
and G(x(t))ψ(t) = [G(X(t, x0))ψ(t, x0), . . . , G(X(t, xN ))ψ(t, xN )]T . The result-
ing SODE system can be approximated by using any appropriate time integration
method. For this, we fix a partition θK of the time interval [0, T ] consisting of
(K+ 1) time points with not necessarily equidistant time step sizes δtj = tj − tj−1,
i.e.

θK := {0 = t0 < t1 < · · · < tK = T}.(5.1)

As an example of a time integration method we consider the backward Euler scheme
(or the linearly implicit Euler-Maruyama scheme) which is given by x0 = x(0) and

xj = xj−1 + δtj(Ahxj + F(xj−1) + G(xj−1)ψ(tj−1)) + G(xj−1)∆Wj
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for j = 1, . . . ,K, where xj is an approximation of [X(tj , x0), . . . , X(tj , xN )]T and
∆Wj = W(tj)−W(tj−1).

As already mentioned in the introduction, the authors in [1] already considered
the coupling of finite difference approximations of SPDEs and importance sampling.
At first, they fixed the spatial discretisation of the linear, one-dimensional stochas-
tic heat equation (see Equation (6.1) below) based on finite differences with N
spatial grid points and afterwards an importance sampling technique was applied
to the resulting finite dimensional SODE system. However, the approach in [1]
is equivalent to the truncated infinite dimensional importance sampling technique
from above using the time-constant weight operator from Equation (3.9), i.e. we
use the weight operator ψJ(s), s ∈ [0, T ], defined for all s ∈ [0, T ] by

ψJ(s) := PJ(ψ(s)) =

J∑
k=1

λkψk〈1, ek〉ek,

where J ∈ N is sufficiently large and PJ denotes the orthogonal projector onto
span(e1, . . . , eJ). Thus, for numerical experiments concerning finite difference ap-
proximations of SPDE (2.1) and importance sampling based on the weight operator
from Section 3.1.1 we refer to [1].

5.2. Approximation of the mild solution by Galerkin methods. For simula-
tions of the mild solution (2.4), we use now an approximation based on a Galerkin fi-
nite element method in space. For this, we choose a nested sequence V = (Vh)h∈(0,1]

of finite dimensional subspaces of H satisfying Vh ⊂ Ḣ1 ⊂ H.
Following the approach from [11], we consider the Ritz projection Rh : Ḣ1 → Vh

and the orthogonal projection Ph : H → Vh defined by

〈Rhv, vh〉1 = 〈v, vh〉1 for all v ∈ Ḣ1, vh ∈ Vh,
〈Phv, vh〉H = 〈v, vh〉H for all v ∈ H, vh ∈ Vh

For the convergence analysis of the Galerkin finite element method we need the
following assumption on the orthogonal projectors Rh and Ph:

Assumption 5.2. For the family of finite dimensional subspaces V = (Vh)h∈(0,1],
there exists a constant C > 0 such that for all refinement parameters h ∈ (0, 1] it
holds that

(1) ‖Phv‖1 ≤ C‖v‖1 for all v ∈ Ḣ1,

(2) ‖Rhv − v‖H ≤ Chs‖v‖s for all v ∈ Ḣs with s ∈ {1, 2}.

According to the considered finite dimensional subspace Vh, we define the discrete
operator Ah as the unique operator satisfying

〈−Avh, wh〉H = 〈vh, wh〉1 = 〈−Ahvh, wh〉H
for all vh, wh ∈ Vh. Note that Ah is a symmetric and positive definite operator on
Vh and thus it is also the generator of an analytic semigroup. For this reason, there
exists a unique mild solution Xh(t) of the spatially discretised SPDE (2.1) given by

Xh(t) = Sh(t)PhX0 +

∫ t

0

Sh(t− s)Phf(Xh(s)) d s

+

∫ t

0

Sh(t− s)PhG(Xh(s)) dW (s).

(5.2)
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For a given weight operator ψ(s), s ∈ [0, T ], satisfying the conditions of Theorem
3.1, we can rewrite the transformed mild solution of the semi-discrete problem (5.2)
as

Xψ
h (t) = Sh(t)PhX0 +

∫ t

0

Sh(t− s)PhF (Xψ
h (s)) d s

+

∫ t

0

Sh(t− s)PhG(Xψ
h (s)) d Ŵ (s)

= Sh(t)PhX0 +

∫ t

0

Sh(t− s)Ph[F (Xψ
h (s))−G(Xψ

h (s))ψ(s)] d s

+

∫ t

0

Sh(t− s)PhG(Xψ
h (s)) dW (s).

Thus, by using the density process Θ(t), t ∈ [0, T ], we can also deduce for the
semi-discrete approximation that

E[ϕ(Xh(T ))] = EP̂[ϕ(Xψ
h (T ))] = E[ϕ(Xψ

h (T ))Θ(T )].(5.3)

For a fully discrete approximation of the mild solution we have to additionally
consider a discretisation in time. For this , we choose again the backward Euler
scheme on the time grid θK given in Equation (5.1)

Xh,j = Xh,j−1 + δtj AhXh,j + δtjPhF (Xh,j−1) + PhG(Xh,j−1)∆W j j = 1, . . . ,K,

X0
h = PhX0,

where δtj = tj − tj−1 and ∆W j = W (tj) −W (tj−1) are the Wiener increments.
Now, let δt = maxi δti. Then, by Assumption 2.1 and 5.2, it follows that there
exists a constant independent of h and δt such that, see [11, Theorem 3.14],

‖X(T )−Xh,N‖L2(Ω;H) ≤ C(h+ δt1/2).(5.4)

The following Lemma provides an estimate of the overall error of the standard
Monte Carlo estimator in terms of spatial and temporal refinement parameters and
the variance of the original quantity of interest.

Lemma 5.3. Let ϕ : H → B be Lipschitz continuous. Then, there exists a constant
C > 0 independent of h and δt such that

‖E[ϕ(X(T ))]− EM [ϕ(Xh,N )]‖L2(Ω;B) ≤ C(h+ δt1/2) +

√
3 VarB [ϕ(X(T ))]1/2√

M
.

Proof. Note that

‖E[ϕ(X(T ))]− EM [ϕ(Xh,N )]‖L2(Ω;B) ≤

‖E[ϕ(X(T ))]− E[ϕ(Xh,N )]‖B +
1√
M

VarB [ϕ(Xh,N )]1/2.

Since ϕ is Lipschitz, the first summand can be estimated by the strong approxima-
tion error from (5.4). Finally, by applying Lemma 5.1 and using again the strong
convergence properties from (5.4), the statement is shown. �

Note that in cases where the systematic error is dominated by the Monte Carlo
error a further reduction of the spatial and temporal grid width does not lead to an
improvement in the error bound of Lemma 5.3. Thus, we propose to enhance the
performance of the Monte Carlo simulation by using importance sampling, for which
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we show numerous numerical experiments in Section 6 using the path-dependent
weight operator from Section 3.1.2.

For the implementation of the transformed SPDE, note that the temporal dis-
cretisation of transformed SPDE (3.2) by the backward Euler scheme is given by

Xψ
h,j = Xψ

h,j−1 + δtj(AhX
ψ
h,j) + δtjPh[F (Xψ

h,j−1) +G(Xψ
h,j−1)ψ(tj−1)]

+ PhG(Xψ
h,j−1)∆W j j = 1, . . . ,K,

X0
h = PhX0.

(5.5)

Until now, we have only discussed the discretisation of SPDE (2.1) with respect
to space and time. For an implementation, we have to consider in addition an
appropriate noise approximation, where we truncate the Karhunen-Loève expansion
by using

GJ0(u) = G(u)PJ0 ,(5.6)

where PJ denotes the orthogonal projector onto span(e1, . . . , eJ0). Note that in
order to preserve the convergence rates of the backward Euler scheme, we have to
choose the truncation parameter J0 ∈ N carefully, see e.g. [13, Lemma 10.33] and
[3, Lemma 3.1].

5.3. Approximation of the density process. In this section, we discuss how
to approximate the density process Θ(t), t ∈ [0, T ], derived in Section 3.1. By the
construction of the corresponding weight operators ψ(t), t ∈ [0, T ], the resulting
density processes are the strong solutions of SODEs of the following type:

d Θ(t) = Θ(t)

( ∞∑
k=1

√
λk κk(t) dβk(t)

)
, Θ(0) = 1,(5.7)

where the kernel functions κk(s), s ∈ [0, T ], are bounded, i.e. for all s ∈ [0, T ] and
k ∈ N there exists a constant C > 0 such that κk(s) ≤ C < ∞. Since in general
we cannot compute the infinite series appearing in the density process explicitly,
we introduce a truncation of the corresponding series that preserves the conver-
gence properties of the used numerical method. Thus, we look for an appropriate
truncation index J1 ∈ N such that the truncated version of the SDE (5.7), i.e. for
t ∈ [0, T ] let

d ΘJ1(t) = ΘJ1(t)

(
J1∑
k=1

√
λk κk(t) dβk(t)

)
, ΘJ1(0) = 1,(5.8)

reduces to a one-dimensional linear SDE with autonomous coefficients (for the
transformation based on the time-independent weight operator from Equation (3.9))
or with non-autonomous coefficients (for the path-dependent choice of ψ(t), t ∈
[0, T ] from Equation (3.10)).

The goal is to choose truncation parameter J1 in a way such that the corre-
sponding weak convergence rates of the involved numerical methods are preserved.
In the following lemma we discuss conditions on how to find J1 for an arbitrary
numerical method approximating the mild solution of SPDE (2.1) with given weak
convergence order.
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Lemma 5.4. Assume that for all t ∈ [0, T ] there exists a constant C > 0 such that

‖ϕ(Xψ
h (t))‖L2(Ω;R) ≤ C < ∞ and that ϕ : H → R is sufficiently smooth (accord-

ing to the considered weak convergence order result). Furthermore, the numerical
scheme approximating SPDE (2.1) has given weak convergence order O(hα) (under
the assumption that the time step size δt and the spatial refinement parameter h are
appropriately coupled). Then it holds that the weak convergence order is preserved
if J1 ∈ N is chosen such that

∞∑
k=J1+1

λk = O(h2α).

Proof. First note that

|E[ϕ(X(T ))]−E[ϕ(Xψ
h (T ))ΘJ1(T )]|

= |E[ϕ(X(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]± E[ϕ(Xh(T ))]|

≤ |E[ϕ(X(T ))]− E[ϕ(Xh(T ))]|+ |E[ϕ(Xh(T ))− E[ϕ(Xψ
h (T ))ΘJ1(T )]|.

The first part of the sum corresponds to the weak approximation error and for the
second summand, we obtain by Equation (5.3) that

|E[ϕ(Xh(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]| = |E[ϕ(Xψ

h (T ))(Θ(T )−ΘJ1(T ))]|.

By applying Cauchy-Schwarz inequality and using the assumption that the second

moment of ϕ(Xψ
h (T )) is bounded, we get

|E[ϕ(Xψ
h (T ))(Θ(T )−ΘJ1(T ))]| ≤ ‖ϕ(Xψ

h (T ))‖L2(Ω;R)‖Θ(T )−ΘJ1(T )‖L2(Ω;R)

≤ C‖Θ(T )−ΘJ1(T )‖L2(Ω;R)

Due to the independence of the Wiener processes βk(t), Itô’s isometry and the
boundedness of κ(s) we obtain

‖Θ(T )−ΘJ1(T )‖2L2(Ω;R) = E

( ∞∑
k=J1+1

∫ T

0

√
λkκk(s) dβk(s)

)2


=

∞∑
k=J1+1

λk E

(∫ T

0

κk(s) dβk(s)

)2


=

∞∑
k=J1+1

λk E

[∫ T

0

κk(s)2 d s

]

≤ C
∞∑

k=J1+1

λk.

Thus, we get

|E[ϕ(X(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]|2 ≤ |E[ϕ(X(T ))]− E[ϕ(Xh(T ))]|2 + C

∞∑
k=J1+1

λk.

Finally, the weak convergence order O(hα) is preserved if
∑∞
k=J1+1 λk = O(h2α).

�



IMPORTANCE SAMPLING TECHNIQUES FOR SPDES 19

Until now we have discussed how to choose two different truncation parameters:
First, the truncation parameter J0 for the Karhunen-Loève expansion in Equation
(5.6) that is chosen in a way such that certain convergence properties of the nu-
merical methods are preserved, and second, the truncation parameter J1 for the
approximation of the density process, for which we found a specific selection crite-
ria in terms of the weak convergence properties. Note that both parameters might
be in general different depending on the numerical method of which the proper-
ties have to be preserved. However, we subsequently choose J = max{J0, J1} for
both truncations which essentially means that our simulation results are based on
J independent Wiener processes βk(t), k = 1, . . . , J .

Concerning the implementation of the density process of the two measure trans-
formation examples from Section 3.1, there is a slight difference. The time-constant
weight operator defined in Equation (3.9) leads to an explicitly solvable SODE (5.8)
with solution

ΘJ(t) = exp

(
J∑
k=1

√
λkψk〈1, ek〉Hβk(t)− t

2

J∑
k=1

λkψ
2
k〈1, ek〉2H

)
.

In contrast, the density process Θ(t) induced by the path-dependent weight oper-
ator given in Equation (3.10) is now represented as the solution of a linear one-
dimensional SODE driven by J independent Wiener processes, i.e.

d ΘJ(t) = ΘJ(t)

(
c

J∑
k=1

√
λk〈Ḡ(Xψ(t))η, ek〉H dβk(t)

)
, ΘJ(0) = 1,(5.9)

which can be approximated by using a standard numerical scheme for SDEs such
as e.g. the Euler-Maruyama scheme or the Milstein scheme.

6. Numerical experiments

In this section, we present numerical experiments for the one-dimensional sto-
chastic heat equation with homogeneous Dirichlet boundary conditions on the spa-
tial domain D = [0, 1] given by

dX(t, x) = ∆xX(t, x) d t+G(X(t, x)) dW (t, x),

X(0, x) = sin(πx), for x ∈ D,
X(t, 0) = X(t, 1) = 0, for t ∈ [0, T ],

(6.1)

where the Nemytskii operator G : H → LHS(H0, H) is induced by either γ(x) =
sin(x) (a globally bounded and Lipschitz continuous function) or by γ(x) = σx, σ ∈
R (a globally unbounded but Lipschitz continuous function). Note that the under-
lying Hilbert space is H = L2([0, 1]). Furthermore, we assume that the eigenvalues
of the covariance operator Q (of the Q-Wiener process) W (t), t ∈ [0, T ], are defined
by λk = k−(2r+1+ε) for given regularity parameter r > 0 and ε > 0. Finally, we
assume that Q and the operator A (i.e. the Laplacian) commute.

Here, we consider importance sampling techniques for SPDEs based on the path-
dependent measure transformation from Equation (3.10) with η = e1 ∈ H0. For
the discretisation of space and time, we follow the methods proposed in Section 5.2,
i.e. a standard finite element method using piecewise linear test functions as basis
functions of Vh and for the time integration we use the backward Euler scheme on
an equidistant partition θK of the time interval [0, T ] with time step size δt > 0.
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In Figure 2, we compare the performance of the importance sampling method
with respect to different values of the scaling parameter c ∈ R, where the diffusion
operator is defined as the bounded Nemytskii operator G induced by γ(x) = sin(x).
The functional ϕ : H → R is chosen to be ϕ(h) = ‖h‖2H for all h ∈ H. Note that
c = 0 corresponds to the standard Monte Carlo estimator without using importance
sampling. The approximation of the solution is computed on a coarse spatial grid
consisting of N = 23 grid points and on a partition θK of the time interval [0, 1]
consisting of K = 26 time steps. The regularity parameter controlling the decay of
the eigenvalues of the covariance operator of the Q-Wiener process is chosen to be
r = 2 and ε = 10−5.
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Figure 2. Simulation of E[‖X(1)‖2H ] of the one-dimensional sto-
chastic heat equation (6.1) with diffusion operator G defined as a
Nemytskii operator based on γ(x) = sin(x). Left: Evolution of
Monte Carlo estimators over M using importance sampling based
on path-dependent weight operator from (3.10) with different scal-
ing parameter c. Right: Standard deviation of the simulated real-
isations (M = 105) over different values of scaling parameter c.

As we can see on the left hand side of Figure 2, there are jumps appearing in the
evolution of the standard Monte Carlo estimator (dashed line) due to realisations
that are remarkably larger than the average. This causes severe difficulties for
estimating E[‖X(1)‖2H ] since we are likely to overestimate the mean-square process
right after such jumps. For scaling parameter c < 0 we damp these jumps and
for this reason we are able to reduce the standard deviation (and therefore also
the variance) of the simulated realisations. However if we choose c too small, then
negative jumps in the evolution of the Monte Carlo estimator appear. These jumps
are caused by numerical instabilities in the simulation of Θ(t), which result in
negative realisations of the simulated density process. As a consequence, one has
to choose a scaling parameter c that leads to variance reduction but still guarantees
numerical stability of the involved approximation schemes.

In Figure 3, we consider a realisation of the density process Θ(T ) based on the
path-dependent weight operator given in Equation (3.10) for fixed scaling parameter
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c = −2. As proposed in Section 5 we truncate the infinite series appropriately (due
to the regularity parameter r = 2 it is sufficient to choose the truncation parameter
J = N = 23 according to Lemma 5.4), which leads to the one-dimensional SDE
(5.9) that is approximated by using the standard Euler-Maruyama scheme.
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Figure 3. Left: A realisation of the approximated density process
ΘJ(t), t ∈ [0, 1], given in Equation (5.9) approximated by the stan-
dard Euler-Maruyama scheme. Right: The underlying realisation
of the approximation of the transformed solution Xψ(t), t ∈ [0, 1].

All the simulations in Figure 3 are performed by using K = 28 time steps in order
to observe the path-dependence of Θ(t), t ∈ [0, 1]. After a short time horizon (here
t ≈ 0.5) the solution of SDE (5.9) stays almost constant due to the fact that the
values of the underlying trajectory of Xψ(t) are very small. Thus, the realisation
of the transformed process at the end time point is weighted by a constant that is
mainly dependent on time intervals, where the norm of the transformed process is
large or at least significantly larger than 0. As a consequence of the chosen scaling
of the measure transformation introduced by the parameter c in (3.10), we are
forcing (above c > 0) or damping (above c < 0) the importance of such events for
the Monte Carlo estimator.

In the following part, we consider simulations of SPDE (2.1), where the diffusion
operator G is defined as a Nemytskii operator based on a globally unbounded, but
Lipschitz continuous function γ, i.e. γ(x) = σx, σ ∈ R. Thus, as proposed in
Section 3.1 for the path-dependent measure transformation, we have to derive a
representation of the truncated operator Ḡ in order to guarantee the martingale
property of the corresponding density process Θ(t), t ∈ [0, T ]. This could be done for
Nemytskii operators by approximating the underlying function γ(x) by a bounded
function γ̄ : R → [−CG, CG] as we showed in Section 3.1.2. There are different
possibilities how to achieve this. First, one can truncate γ if its absolute value
exceeds a certain threshold CG > 0, i.e. choose γ̄ as

γc(CG;x) = sign(γ(x)) min(CG, |γ(x)|) for all x ∈ R.(6.2)

The choice of CG depends on typical solution properties, e.g. one could choose
CG such that the majority of the discretised solution is smaller in absolute value
than the chosen constant CG. In Figure 4, we consider the case γ(x) = x and
the bounded function γc is truncated at CG = 1. Further details concerning the
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numerical outcome of the Monte Carlo simulations using the truncated function γc
can be found in Table 1.
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Figure 4. Simulation of E[‖X(1)‖2H ] of the one-dimensional sto-
chastic heat equation (6.1) with diffusion operator G defined as a
Nemytskii operator based on γ(x) = x. Left: Evolution of Monte
Carlo estimators overM using importance sampling based on path-
dependent weight operator from (3.10) with different scaling pa-
rameter c. Right: Standard deviation of the simulated realisations
(M = 105) over different values of scaling parameter c.

According to Figure 4, we are also able to reduce the variance in the case of
a globally unbounded diffusion operator. However, for large and negative scaling
parameter c, i.e. for c being approximately smaller than −2.4, the performance
of the importance sampling method is worse compared to the case of the bounded
diffusion (γ(x) = sin(x)), since the same numerical instabilities as in Figure 2
already appear for choices c ≈ −2.4.

By the same arguments as they were used to derive γc in Equation (6.2), one
could choose γ̄ as a bounded function such that the function γ is approximated well
by γ̄ at typical values of the discretised solution. For instance for linear γ(x) = x
one could consider an approximation by a sigmoid function, e.g. γ̄(x) = erf(x)
(error function).

In Table 1, we compare different numerical tests based on different importance
sampling techniques using the path-dependent density operator from Section 3.1.2.
Each of the 4 tests is based on M = 105 independent realisations. As a measure
of the effectiveness of the importance sampling methods we consider the ratio be-
tween the standard deviation of the transformed processes (SDc) over the standard
deviation (SD0) of the original realisations of ‖X(1)‖2H . This ratio measures the
relative change of the Monte Carlo error using importance sampling (based on scal-
ing parameter c) with respect to the approximation error of the standard Monte
Carlo estimator, i.e. for values SDc/SD0 < 1 the importance sampling method
performs better than the original Monte Carlo simulation and for values c where
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SDc/SD0 > 1 the performance is worse. In Table 1, we see that the proposed
importance sampling techniques can reduce the Monte Carlo error significantly for
specific scaling parameters c. Thus, these results show the efficiency of the pro-
posed methods, since in order to obtain the same accuracy as for the standard
Monte Carlo estimator, one needs Mc = (SDc

SD0
)2M samples.

Table 1. Performance of the importance sampling techniques ap-
plied to SPDE (2.1) with path-dependent measure transformation
from Section 3.1.2 using different scaling parameter c for test func-
tion ϕ(h) = ‖h‖2H , h ∈ H.

Test 1: Test 2:

γ(x) = sin(x) γ(x) = x with γ̄(x) = γc(1;x)

c SDc SDc/SD0 SDc SDc/SD0

1 1.928E-07 1.1607 1.433E-07 1.1143

0 1.661E-07 1 1.286E-07 1

−1 1.303E-07 0.7845 1.067E-07 0.8297

−2 8.897E-08 0.5356 8.362E-08 0.6502

−3 8.210E-08 0.4943 9.111E-08 0.7085

−4 1.662E-07 1.0006 2.069E-07 1.6089

Test 3: Test 4:

γ(x) = x with γ̄(x) = γc(0.5;x) γ(x) = x with γ̄(x) = erf(x)

c SDc SDc/SD0 SDc SDc/SD0

1 2.467E-07 1.1989 2.516E-07 1.1770

0 2.060E-07 1 2.138E-07 1

−1 1.510E-07 0.7332 1.581E-07 0.7395

−2 1.209E-07 0.5870 1.242E-07 0.5810

−3 2.261E-07 1.0977 2.555E-07 1.1948

−4 4.630E-07 2.2481 5.690E-07 2.6611
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Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.


