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Abstract. The Isogeometric Analysis (IgA) of boundary value problems in complex domains often requires
a decomposition of the computational domain into patches such that each of which can be parametrized by
some geometrical mapping. The decomposition can include non-matching parametrizations of the interfaces,
i.e., the interfaces of the adjacent patches may be not identical. The lack of the exact parametrization of the
physical patches can lead to the creation of overlapping regions between the patches. In this case, the whole
error includes two parts: the first part is related to the incorrect geometric representation of the patches
and the second part is related to the approximation properties of the method. In this paper, we analyze
the two errors separately. The study of the error related to the incorrect parametrization of the patches is
treated as a non-consistent error caused by a geometric perturbation of the patches. The second error part
is estimated by following classical IgA error discretization analysis. We present numerical results of a series
of test problems that validate the theoretical estimates.

Key words: Elliptic diffusion problems, Heterogeneous diffusion coefficients, Isogeometric Analysis, Non-
matching parametrized interfaces, overlapping patches, Discontinuous Galerkin methods, consistency error.

1 Introduction

Isogeometric Analysis (IgA) has been introduced in [21] as a new methodology for solving nu-
merically Partial Differential Equations (PDE) considered in complicated domains. The key idea
of the IgA concept is to use the superior finite dimensional spaces, which are used in Computer
Aided Design (CAD), e.g., B-splines, NURBS, for both, the exact representation of the compu-
tational domain Ω and for discretizing the PDE problem. Since this work, many applications of
IgA methodology to several fields have been discussed in several papers, see e.g., the monograph
[7] and the references within and the survey paper [8]. From computational point of view, we can
say that the numerical algorithm for constructing the the B-spline (or NURBS) basis functions
is quite simple and this helps extremely in the production of high order approximate solutions.
Furthermore, IgA offers a particular suitable frame for developing h− p (here p is the B-spline
degree) adaptivity methods with a possible change of the inter-element smoothness, [7]. From
theoretical point of view, the fundamental approximation properties of the B-spline spaces on a
reference domain are discussed in [34] and the approximation properties of the mapped B-spline
(or NURBS) spaces, which indeed are used to discretize the PDE problem, are discussed in
several papers, see e.g., [4], [35],[8], [25].

In realistic applications, it is usually more preferable the computational domain Ω to be de-
composed into a union of non-overlapping patches (subdomains), i.e., Ω = ∪Ni=1Ωi. For example,
when Ω is a domain with complex geometry and different PDE models are used in different
parts of Ω, it is more convenient to consider each of these parts as a separate patch. Each patch
Ωi is viewed as an image of an associated parametrization mapping. These mappings are linear
combinations of basis functions of the B-splines spaces. The vector valued coefficients describe
the shape of the patch and are called control points. There have been presented several segmen-
tation techniques and procedures for splitting complex domains into simpler subdomains and
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defining their control nets, see, e.g., [22], [29], [20]. Usually, one obtains compatible parametriza-
tions of the patches in the sense that the parameterizations of adjacent patches lead to identical
interfaces. Then using the same patch-wise defined B-spline spaces, the discretization of the
PDE model can be completed. If we consider B-spline spaces without continuity requirements
across the interfaces discontinuous Galerkin (dG) techniques (or Nitsche’s type treatment) can
be applied for coupling the local patch-wise discrete problems, see e.g., [3], [33],[28],[25].

However, when the patches have complex topology, it is possible to get a non-conforming
parametrization of the patch interfaces, this means that the patch interfaces are not identical.
More precisely, during the construction of the parametrization of a patch, lets say Ωi, the control
points which are related to an interface may have not appropriately been determined with the
corresponding control points of the adjacent patch Ωj for i 6= j. This results in an IgA patch
decomposition of Ω that can have gap and/or overlapping regions between Ωi and Ωj, see
Fig. 1(b). We call these decompositions non-matching interface IgA parametrizations, or some
times segmentation crimes. If we apply our IgA methodology for solving the PDE problem on
a such decomposition, a direct consequence is that the whole discretization error will include
two (main) parts: the first is coming naturally from the approximation properties of the B-
spline spaces and the second part is coming due to the incorrect representation of the patch
geometry. Furthermore, due to the non-matching interior patch interfaces, a direct application
of the dG numerical fluxes proposed in [25] is not possible, because we can not immediately
estimate the jump of the normal fluxes on the non-matching faces. In our recent papers, [17] and
[19], we developed discontinuous Galerkin IgA (dG IgA) numerical schemes for solving problems
on non-matching interface parametrizations including only gap regions. In particular, as a model
problem, we consider a linear diffusion problem with discontinuous coefficients, lets say ρ, and
we perform an IgA decomposition of Ω compatible with coefficient ρ, i.e., the restriction ρi of ρ
to each Ωi is constant. Then we apply Taylor expansions across the gap width dg, using known
interior patch values of the solution in order to estimate the unknown jumps of the normal fluxes
on the non-matching interfaces. Finally, we used these estimates and the Taylor expansions for
constructing suitable dG numerical fluxes that helped us on the weakly coupling of the local
discrete problems. We showed a priory estimates in the dG-norm, expressed in terms of the
mesh size and the gap width, i.e., O(hr) +O(dg), where r depends on the B-spline degree p and
the regularity of the solution. The gap width dg is a quantity that measures the distance of two
diametrically opposite points on the boundary of the gap region. In [17] and [19], we have shown

that, if dg = O(hp+
1
2 ), the proposed dG IgA scheme has optimal approximation properties.

In [18], we apply the same approach as in [17] and [19], for solving the same PDE problem on
decompositions that can also include simple overlapping regions between two different patches,
lets say Ωi and Ωj. In [18], we did not present separate estimates for the error coming from the
co-appearance of different diffusion coefficients ρi and ρj on the overlapping region Ωi∩Ωj. In this
work, we extend the previous concept to cases of having more general overlapping regions, and
we present an error investigation in a different spirit. In particular, first we consider auxiliary,
also called perturbed, variational problems, which are compatible with the overlapping IgA
representation of the patches. We denote their solutions by u∗. These problems are not consistent
in the sense that the original physical solution u does not satisfy them. Then, we proceed and
discretize the perturbed problems. We treat the whole error, as an error caused by a domain
perturbation. We decompose it into two components. The first is related to the approximation
of the jumps of the solution on the non-matching interfaces. Here we follow the same ideas as
in [17] and [19]. The second error component can be characterized as consistency error. It is
related to the coexistence of different ρi and ρj on the overlapping region Ωi ∩Ωj. The different
diffusion coefficients forces us to discretize two different problems on the overlaps. In other
words, the numerical scheme under consideration produces two different numerical solutions on
the overlapping regions associated with the two different diffusion coefficients. The produced
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numerical solutions have optimal approximation properties associated with u∗, but we can not
directly infer that they can approximate in an optimal way the solution u of the original physical
problem. In the present paper, we first provide an estimate for the consistency error u− u∗ and
then an estimate for the approximation error u − u∗h. Under appropriate assumptions imposed
on the data of the continuous problem, we show that the error ‖∇(u− u∗)‖L2 can be bounded
in terms of the overlapping width do. Then, for the spacial case where do is of order hλ, λ ≥ 1,
we show that the whole approximation error can be estimated in terms of hλ−

1
2 .

We note that IgA decompositions with non-matching interfaces meshes, overlapping regions
even trimmed patches have been considered in many publications. For the communication of
the discrete patch-wise problems, several Nitsche’s type coupling methods involving normal flux
terms have been applied across the interfaces, see e.g., [33],[28],[3],[5] and the references therein.
To the knowledge of the authors, there are no works that analytically discuss estimates for the
error, which is caused by the incorrect representation of the shape of the patches. The purpose
of this work is to present a such error analysis.

Lastly, we mention that, for the solution of PDE problems in complex domains, finite el-
ement methods on overlapping meshes have been proposed, mainly in the frame of Schwarz
alternating method [30],[27], see e.g., [6],[2],[1] and the references therein. In these approaches,
Nitsche’s techniques have been applied on the intersection faces of the overlapping meshes for
coupling the local problems. The main difficulty in these approaches is the computation of the
intersections between the two overlapping meshes, which include cut mesh elements of arbitrary
shape. This may lead to further difficulties on the construction of the finite element spaces on
the intersection regions. The introduction of this methodology into IgA frame described here, is
not easily applicable, because this approach would require the solution of non-linear system for
finding the cut mesh points. The dG IgA approach that is presented in this work seems to be
more flexible and can be easily implemented and generalized even for more realistic problems.

The structure of the paper is as follows: Section 2 presents the PDE model, briefly reviews
the B-spline spaces and describes the case of having non-matching parametrized interfaces with
overlapping regions. Section 3, presents in detail the perturbation problems, the bounds for
the consistency error, the proposed dG IgA scheme and the error analysis. Section 4, includes
several numerical examples that confirm the theoretical estimates. The paper closes with the
Conclusions.

2 The model problem

2.1 Preliminaries

Let Ω be a bounded Lipschitz domain in Rd, d = 2, 3, and let α = (α1, . . . , αd) be a multi-
index of non-negative integers α1, . . . , αd with degree |α| =

∑d
j=1 αj. For any α, we define the

differential operator Dα = Dα1
1 . . . Dαd

d , with Dj = ∂/∂xj, j = 1, . . . , d, and D(0,...,0)φ = φ. For a
non-negative integer m, let Cm(Ω) denote the space of all functions φ : Ω → R, whose partial
derivatives Dαφ of all orders |α| ≤ m are continuous in Ω. Let ` be a non-negative integer. As
usual, L2(Ω) denotes the Sobolev space for which

∫
Ω
|φ(x)|2 dx <∞, endowed with the norm

‖φ‖L2(Ω) =
( ∫

Ω
|φ(x)|2 dx

) 1
2 , and L∞(Ω) denotes the functions that are essentially bounded. Also

H`(Ω) = {φ ∈ L2(Ω) : Dαφ ∈ L2(Ω), for all |α| ≤ `},

denote the standard Sobolev spaces endowed with the following norms

‖φ‖H`(Ω) =
( ∑
0≤|α|≤`

‖Dαφ‖pL2(Ω)

) 1
2 ,
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and by H
1
2 (∂Ω) we denote the trace space of H1(Ω). We identify L2 and H0 and also define the

subspace H1
0 (Ω) and H1

Γ (Ω) of H1(Ω)

H1
0 (Ω) = {φ ∈ H1(Ω) : φ = 0 on ∂Ω}, H1

Γ (Ω) = {φ ∈ H1(Ω) : φ = 0 onΓ ⊂ ∂Ω}.

We recall Hölder’s and Young’s inequalities∣∣∣∣∫
Ω

φ1φ2 dx

∣∣∣∣ ≤ ‖φ1‖L2(Ω)‖φ2‖L2(Ω) and

∣∣∣∣∫
Ω

φ1φ2 dx

∣∣∣∣ ≤ ε

2
‖φ1‖2L2(Ω) +

1

2ε
‖φ2‖2L2(Ω), (2.1)

that hold for all φ1 ∈ L2(Ω) and φ2 ∈ L2(Ω) and for any fixed ε ∈ (0,∞). In addition, we recall
trace and Poincare’s inequalities, [13],

‖φ‖L2(∂Ω) ≤Ctr‖φ‖2L2(Ω)‖φ‖2H1(Ω),

‖φ‖L2(Ω) ≤measRd(Ω) ‖∇φ‖2L2(Ω), for φ ∈ H1
Γ (Ω).

(2.2)

2.2 The elliptic diffusion problem

We shall consider the following elliptic Dirichlet boundary value problem

−div(ρ∇u) = f in Ω and u = uD on ∂Ω (2.3)

as model problem. The weak formulation of the boundary value problem (2.3) reads as follows:
for given source function f ∈ L2(Ω) and Dirichlet data uD ∈ H1/2(∂Ω), the trace space of
H1(Ω), find a function u ∈ H1(Ω) such that u = uD on ∂Ω and the variational identity

a(u, φ) = lf (φ), ∀φ ∈ H1
0 (Ω), (2.4)

is satisfied, where the bilinear form a(·, ·) and the linear form lf (·) are defined by

a(u, φ) =

∫
Ω

ρ∇u∇φ dx and lf (φ) =

∫
Ω

fφ dx, (2.5)

respectively. The given diffusion coefficient ρ ∈ L∞(Ω) is assumed to be uniformly positive and
piecewise (patchwise, see below) constant. These assumptions ensure existence and uniqueness
of the solution due to Lax-Milgram’s lemma. For simplicity, we only consider pure Dirichlet
boundary conditions on ∂Ω. However, the analysis presented in our paper can easily be general-
ized to other constellations of boundary conditions which ensure existence and uniqueness such
as Robin or mixed boundary conditions.

In what follows, positive constants c and C appearing in inequalities are generic constants
which do not depend on the mesh-size h. In many cases, we will indicate on what may the
constants depend for an easier understanding of the proofs. Frequently, we will write a ∼ b
meaning that c a ≤ b ≤ C a.

2.3 Decomposition into patches

In many practical situations, the computational domain Ω has a multipatch representation, i.e.,
it is decomposed into N non-overlapping patches Ω1, Ω2, . . . , ΩN , (also called subdomains):

Ω =
N⋃
i=1

Ωi, with Ωi ∩Ωj = ∅, for i 6= j. (2.6)

We will denote the common interfaces by Fij = ∂Ωi ∩ ∂Ωj, for 1 ≤ i 6= j ≤ N , see Fig. 1(a).
We use the notation TH(Ω) := {Ω1, Ω2, . . . , ΩN} for the decomposition in (2.6). Having (2.6),
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we can independently discretize the problem on the different patches Ωi based on the geometry
of each patch and the regularity properties of the solution. Essentially, the decomposition (2.6)
helps us to consider N local problems posed on each patch, where interface conditions are used
for coupling these local problems. Typically, the interface conditions across each Fij are derived
by a theoretical study of the elliptic problem (2.3) and concern continuity requirements of the
solution, e.g.,

JuK := ui − uj = 0 on Fij, and Jρ∇uK · nFij := (ρi∇ui − ρj∇uj) · nFij = 0 on Fij, (2.7)

where nFij is the unit normal vector on Fij with direction towards Ωj, and ui denote the re-
striction of u to Ωi. Using the decomposition TH(Ω) and the interface conditions (2.7), the
variational equation (2.4) can be rewritten as

N∑
i=1

∫
Ωi

ρi(x)∇u∇φ dx−
∑
Fij

∫
Fij

Jρ∇uφK · nFij dσ =
N∑
i=1

∫
Ωi

fφ dx, for φ ∈ H1
0 (Ω). (2.8)

The dG schemes usually use numerical fluxes on every interface Fij for imposing weakly the
interface conditions (2.7) and for coupling the local problems, see, e.g., [11, 31, 32].
Let ` ≥ 2 be an integer, we define the broken Sobolev space

H`(TH(Ω)) = {u ∈ L2(Ω) : ui = u|Ωi ∈ H`(Ωi), for i = 1, . . . , N}. (2.9)

Assumption 1 We assume that the solution u of (2.4) belongs to V = H1(Ω) ∩ H`(TH(Ω))
with ` ≥ 2.

Remark 1. For cases with high discontinuities of ρ, the solution u of (2.5) does not generally
have the regularity properties of Assumption 1. We study dG IgA methods for these problems
in [25].

2.4 B-spline spaces

In this section, we briefly present the B-spline spaces and the form of the B-spline parametriza-
tions for the physical subdomains. For a better presentation of the B-spline space, we start our
discussion for the one-dimensional case. Then we proceed to higher dimensions. We refer to [7],
[10] and [34] for a more detailed presentation.

Consider, Z = {0 = z1, z2, · · · , zM = 1} to be a partition of I = [0, 1] with Ij = [zj, zj+1], j =
1, · · · ,M − 1 to be the intervals of the partition. Let the integers p and n1 denote the p spline
degree and the number of the B-spline bases. Based on Z, we introduce the knot vector Ξ =
{0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn1+p+1 = 1}, where we allow repetitions of the knots, which are given by
the associated vector M = {m1, · · · ,mM}, that means,

Ξ = {0 = ξ1, · · · ξm1︸ ︷︷ ︸
=z1

, ξm1+1 = · · · = ξm1+m2︸ ︷︷ ︸
=z2

, · · · , ξn1+p+1−mM , · · · , ξn1+p+1 = 1︸ ︷︷ ︸
=zM

}. (2.10)

The B-spline basis functions are defined by the Cox-de Boor formula, see, e.g., [7] and [10],

Bi,p =
x− ξi
ξi+p − ξi

Bi,p−1(x) +
ξi+p+1 − x
ξi+p+1 − ξi+1

Bi+1,p−1(x), (2.11)

with Bi,0(x) =

{
1, if ξi ≤ x ≤ ξi+1,

0, otherwise

We assume that mj ≤ p for all internal knots, which in turn gives that, at zj the B-spline basis
have κj = p−mj continuous derivatives.
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Let us now consider the unit cube Ω̂ = (0, 1)d ⊂ Rd, which we will refer to as the parametric
domain, and let Ωi, i = 1, . . . , N , be a decomposition of Ω as given in (2.6). Let the integers p
and nk denote the given B-spline degree and the number of basis functions of the B-spline space
that will be constructed in xk-direction with k = 1, . . . , d. We introduce the d−dimensional
vector of knots Ξd

i = (Ξ1
i , . . . , Ξ

k
i , . . . , Ξ

d
i ), k = 1, . . . , d, with the particular components given

by Ξk
i = {0 = ξk1 ≤ ξk2 ≤ . . . ≤ ξknk+p+1 = 1}. The components Ξk

i of Ξd
i form a mesh T

(i)

hi,Ω̂
=

{Êm}Mi
m=1 in Ω̂, where Êm are the micro elements and hi is the mesh size, which is defined as

follows. Given a micro element Êm ∈ T (i)

hi,Ω̂
, we set hÊm = diam(Êm) = max

x1,x2∈Êm
‖x1−x2‖d, where

‖.‖d is the Euclidean norm in Rd. The subdomain mesh size hi is defined to be hi = max{hÊm}.
We set h = max

i=1,...,N
{hi}. We refer the reader to [7] for more information about the meaning of

the knot vectors in CAD and IgA.

Assumption 2 The meshes T
(i)

hi,Ω̂
are quasi-uniform, i.e., there exist a constant θ ≥ 1 such that

θ−1 ≤ hÊm/hÊm+1
≤ θ. Also, we assume that hi ∼ hj for 1 ≤ i 6= j ≤ N .

Given the knot vector Ξk
i in every direction k = 1, . . . , d, we construct the associated univariate

B-spline basis, B̂Ξki ,p = {B̂(i)
1,k(x̂k), . . . , B̂

(i)
nk,k

(x̂k)} using the Cox-de Boor recursion formula, see,

e.g., [7] and [10] for more details. On the mesh T
(i)

hi,Ω̂
, we define the multivariate B-spline space

B̂Ξdi ,k
to be the tensor-product of the corresponding univariate B̂Ξki ,p spaces. Accordingly, the B-

spline basis of B̂Ξdi ,k
are defined by the tensor-product of the univariate B-spline basis functions,

that is

B̂Ξdi ,p
= ⊗dk=1B̂Ξki ,p = span{B̂(i)

j (x̂)}n=n1·...·nk·...·nd
j=1 , (2.12)

where each B̂
(i)
j (x̂) has the form

B̂
(i)
j (x̂) =B̂

(i)
j1

(x̂1) · . . . · B̂(i)
jk

(x̂k) · . . . · B̂(i)
jd

(x̂d), with B̂
(i)
jk

(x̂k) ∈ B̂Ξki ,k. (2.13)

In IgA framework, each Ωi is considered as an image of a B-spline, NURBS, etc., parametriza-
tion mapping. Given the B-spline spaces and having defined the control points C

(i)
j , we parametrize

each subdomain Ωi by the mapping

Φi : Ω̂ → Ωi, x = Φi(x̂) =
n∑
j=1

C
(i)
j B̂

(i)
j (x̂) ∈ Ωi, (2.14)

where x̂ = Φ−1i (x), i = 1, . . . , N , cf. [7]. For every Ωi, we construct a mesh T
(i)
hi,Ωi

= {Em}Mi
m=1,

whose vertices are the images of the vertices of the corresponding parametric mesh T
(i)

hi,Ω̂
through

Φi. For each Ωi, i = 1, . . . , N , we construct the B-spline space BΞdi ,k
as

BΞdi ,p
:= {B(i)

j |Ωi : B
(i)
j (x) = B̂

(i)
j ◦Φ−1i (x), for B̂

(i)
j ∈ B̂Ξdi ,p

}. (2.15)

The global B-spline space Vh with components on every BΞdi ,p
is defined by

Vh := BΞd1,p
+ · · ·+ BΞdN ,p

:= V
(1)
h1

+ · · ·+ V
(N)
hN

. (2.16)

Remark 2. The B-spline spaces presented above are referred to the general case ofN subdomains.
As we point out in the previous subsection, the mappings in (2.14) should provide matching
interface parametrizations. Throughout the paper we study the crime case where the mappings
in (2.14) produce non-matching interface parametrizations.

Assumption 3 Assume that every Φi, i = 1, ..., N is sufficiently smooth and there exist con-
stants 0 < c < C such that c ≤ | det JΦi | ≤ C, where JΦi is the Jacobian matrix of Φi.
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Fig. 1. (a) Illustration of a decomposition with matching interface paramtrizations, (b) an IgA decomposition including
overlapping patches in 2d, (c) the locations of the diametrically opposite points on the overlapping boundaries, (d) an IgA
decomposition including overlapping patches in 3d.

2.5 Non-matching parametrized interfaces

For increasing the flexibility of the IgA approach, we see Ω as a union of patches, see (2.6) and
an illustration Fig. 1. In particular, for each patch Ωi, i = 1, · · · , N , we find the control net
and then each patch has its parametrization, i.e., Ωi = Φi(Ω̂), see (2.14). Usually, the control
points, which are related to the patch interfaces Fij, are appropriately matched in order the
parametrizations Φi and Φj of neighboring patches to give the same parametrized interface.
However, in some cases, the control points of the adjacent points, may not be in correct corre-
spondence. This can lead in the case where, the adjoint parametrizations are unable to provide
identical parmetrizations for the (physical common) patch interfaces. We refer to this phenom-
ena as non-matching interface parametrizations. The result of having non-matching interface
parametrizations is the existence of gap and overlapping regions in the multi-patch representa-
tion of the domain. The main problem during the dG IgA procedure for solving the PDE problem
on these type decompositions is the weakness of a direct use of the interface conditions (2.7), for
constructing the numerical fluxes. For this we use appropriately modified dG IgA approaches.
These type of methods have recently been presented in [17] and [19], for decompositions includ-
ing gap regions and in [18] on decompositions with gaps and overlapping regions. In this work,
we focus on the case of having decompositions with overlapping regions. We present a new error
analysis, where the global approximation error is split into two parts. The first is coming by the
approximation properties of the B-splines. The second is further split into a component related
to the construction of artificial interface conditions on overlap boundaries, and into a second
component which is related to a consistency error due to the coexistence of different diffusion
coefficients, lets say ρi and ρj on the overlapping region Ωi ∩ Ωj. The first part error will be
estimated based on known interpolation estimates of the B-spline spaces, see e.g., [4], [8] and
[25]. The second will be estimated following the same steps as in [17], [19] and [18]. For the
estimation of the third error, we will follow ideas of Strang’s Lemma, see [12]. We point out that
the investigation of estimates for the third component error has not been presented in [18].

2.6 Overlapping regions

We now describe decompositions with overlapping regions. To simplify the description and to
explain our ideas, we will consider a decomposition with two patches. Recalling (2.6), we suppose
that there are two so called physical patches Ω1 and Ω2 that form a natural decomposition of Ω
without overlapping regions, i.e.,

Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, with F12 = ∂Ω1 ∩ ∂Ω2, (2.17)
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where F12 is the physical interface. We consider the case where, after constructing the control
nets for the two patches Ω1 and Ω2, the control points which are associated with the common
physical interface F12 do not match appropriately, resulting in that way to non-matching interface
parametrizations. Lets denote Φ∗1 : Ω̂ → Ω∗1 and Φ∗2 : Ω̂ → Ω∗2 , the two produced parametriza-
tions and let Ω∗1 and Ω∗2 be the two patches of the corresponding “in-correct” parametrizations.
We denote the overlapping region by Ωo21, i.e., Ωo21 = Ω∗1∩Ω∗2 , and we assume that Ω = Ω∗1∪Ω∗2 .
We denote the interior boundary faces of the the overlapping region, by Fo12 = ∂Ω∗1 ∩ Ω∗2 and
Fo21 = ∂Ω∗2 ∩ Ω∗1 , which implies that ∂Ωo21 = Fo12 ∪ Fo21. For a function u∗ defined in Ω we
denote the jump of u∗ across the interfaces by Ju∗K|Foij = u∗i − u∗j , where u∗i = u∗|Ω∗i , i = 1, 2 is
the restriction of u to Ω∗i . Finally, let nFoij denote the unit exterior normal vector to Foij, for
i 6= j, i, j = 1, 2. Without loss of generality, we make the following assumptions.

Assumption 4 Let Ω1 and Ω2 be the subdomains of the physical decomposition. Let Ω∗1 and Ω∗2
be the associated patches formed under the incorrect parametrizations Φ∗1 and Φ∗2, respectively.
We assume that:
(a) Ω∗1 and Ω∗2 are quite smooth domains.
(b) The exterior boundary parts of ∂Ω∗1 and ∂Ω∗2 are subsets of ∂Ω.
(c) Ω2 ⊂ Ω∗2 and Ωo21 ∩ ∂Ω = ∅.
(d) Ω1 := Ω∗1 , and the face Fo12 coincides with the physical interface, i.e., Fo12 = F12.
(e) the face Fo21 is a simple face and meaning that it can be described as the set of points (x, y, z)
satisfying the inequalities

0 ≤ x ≤ xMo , 0 ≤ y ≤ ψo2(x), z = z0, (2.18)

where xMo and z0 are fixed real numbers, ψo2 is a given smooth functions, see Figs. 1(b),(c),(d).

To proceed and to build up the auxiliary interface conditions on ∂Ωo21, we need to assign the
points located on Fo12 to the diametrically opposite points located on Fo21. Implicitly this means
to find a convenient form to ψo2 function and for its inverse. We construct a parametrization for
the face Fo21, i.e., a mapping Φo12 : Fo12 → Fo21, of the form

xo1 ∈ Fo12 → Φo12(xo1) := xo2 ∈ Fo21, with Φo12(xo1) = xo1 + ζo(xo1)nFo12 , (2.19)

where ζo is a B-spline and nFo12 is the unit normal vector on Fo12. Note that, we can construct
the B-spline function ζo in (2.19), because the curve Fo21 is a B-spline curve, precisely is the

image of a part of ∂Ω̂ under Φ∗2, see also remarks in [18]. Utilizing the mapping Φo12 given in
(2.19), we can consider each point xo2 ∈ Fo21 as an image by means of Φo12 of a point xo1 ∈ Fo12,
see Fig. 1(c). Finally, we introduce a parameter do, which help us to quantify the width of the
overlapping region Ωo21

do = max
xo1∈Fo12

|xo1 −Φo12(xo1)|. (2.20)

We are interested in overlapping regions, where their width do decreases polynomially in h, i.e.,

do ≤hλ, with some λ ≥ 1. (2.21)

Based on this, we assume that nFo12 ≈ −nFo21 , and define the mapping Φo21 : Fo21 → Fo12 as

Φo21(xo2) = xo1, with Φo12(xo1) = xo2. (2.22)

Essentially, Φo21 will play the role of the inverse of mapping Φo12. For detailed commends about
the assumption nFo12 ≈ −nFo21 and the definition of Φo21, we refer to [17], [19], and [18].
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Remark 3. In view of Assumption 4 and (2.19), we consider the following case: let F12 to be
described as F12 = {(x, y) : 0 ≤ x ≤ 1, y = 0}. Then Fo21 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ ζ0(x)}
with ‖ζ0(x)‖L∞ = do ≤ hλ. Then, the integral of a given function f : Ω → R over Fo21, is

evaluated by
∫
Fo21

f(x, y) ds =
∫ 1

0
f(x, ζ0(x))

√
1 + (ζ

′
0(x))2 dx.

We deduce our results under the following convenient assumption.

Assumption 5 We suppose that there exist an associated refinement of the knot vector Ξd
2, such

that the interface Fo12 can be seen as an image of Φ∗2, i.e., Fo12 is an image under Φ∗2 of a mesh

line of T
(2)

h2,Ω̂
. A schematic illustration is presented in Fig. 2.

Note that the refined knot vector in Assumption 5 is related to the mesh for approximating the
solution of the PDE problem and not to the control net.

    Fo12

 Ω2
* 

Φ
1

*

Ω1
*

Φ
2

*

 

Fig. 2. The interface Fo12 as an image of a parametric mesh-line under the Φ∗2 : Ω̂ → Ω∗2 .

2.7 Φ∗
i -directional derivatives

Following the results presented in [9, 8], we introduce in briefly the derivatives of a function f
defined in Ω, with respect to the coordinate system that is naturally introduced by the mappings

Φ∗i : Ω̂ → Ω∗i , i = 1, 2. Denote gi,j(x) =
[∂Φ∗i,1
∂xj

(Φ∗
−1

i (x)), · · · ,
∂Φ∗i,d
∂xj

(Φ∗
−1

i (x))]. The first order

derivatives are just the directional derivatives with respect to gi,j, i.e.,

∂f(x)

∂gi,j
= ∇f(x) · gi,j(x). (2.23a)

The “one-directional” high-order derivatives are accordingly defined as

∂αif

∂gαii,j
=

∂f

∂gi,j

(
...
( ∂f

∂gi,j

))
︸ ︷︷ ︸

αi−times

. (2.23b)

For multi-direction derivatives, we use the notation

Dα
Φ∗i
f =

∂α1f

∂gn,1
· · · ∂

αdf

∂gn,d
. (2.23c)

In relation to the Dα
Φ∗i
f derivatives, we define the norms and seminorms
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‖f‖2Hα
Φ∗
i
(Ω∗i )

=

α1∑
s1=0

· · ·
αd∑
sd=0

|f |2Hα
Φ∗
i
(Ω∗i )

, |f |2Hα
Φ∗
i
(Ω∗i )

=
∑

E∈T (i)

hi,Ω
∗
i

|f |2Hα
Φ∗
i
(E), (2.24)

where |f |2Hα
Φ∗
i
(E) = ‖Dα

Φ∗i
f‖L2(E).

We introduce the space Hα
Φ∗i

(Ω∗i ) endowed with the norm ‖ · ‖Hα
Φ∗
i
(Ω∗i )

= ‖ · ‖Hα
Φ∗
i
(Ω∗i )

.

3 The patch-wise problems and the modified fluxes

The main goal is to give an estimate for the difference between the solution u defined in (2.4),
computed on the physical decomposition (2.17), and the dG IgA solution u∗h, which is computed
on the incorrect decomposition T ∗H = Ω∗1 ∪Ω∗2 . The incompatibility between the TH and T ∗H and
in particular the overlapping nature of T ∗H causes further difficulties. Namely, the local B-spline
spaces of Vh in (2.16) are defined in correspondence to T ∗H , and therefore on Ωo21 we have two
different B-spline spaces, which will produce two different numerical solutions. Furthermore, on
Ωo21 we have the overlapping of diffusion coefficients ρ1 and ρ2. For example, when we work on
patch Ω∗1 then we prefer setting ρ := ρ1 in Ωo21 and conversely, when we work on Ω∗2 we prefer
setting ρ := ρ2 in Ωo21.

The patch-wise variational problems Let ` ≥ 1 be an integer. Accordingly to the space
definitions (2.9), we introduce the spaces

H`(T ∗H(Ωi)) :={{u∗i }2i=1 : u∗i ∈ H`(Ω∗i ), for i = 1, 2},
H`

0(T ∗H(Ωi)) :={{u∗i }2i=1 : u∗i ∈ H`
0(Ω

∗
i ), for i = 1, 2}.

(3.1)

For simplicity below, instead of writing {v∗i }2i=1 ∈ H`(T ∗H(Ωi)), we will write v∗ ∈ H`(T ∗H(Ωi)).
We recall the shape assumptions for Ω∗1 and Ω∗2 , e.g see Assumption 4. Lets suppose for the
moment that the traces u|Fo21 and u|Fo12 of the exact solution u are known and available. Then
we consider the variational problems: for find u, u∗2 ∈ H1(Ω∗2) such that

u∗1 = uD on ∂Ω∗1 ∩ ∂Ω, andu∗1 = u|Fo12 , a∗1(u∗1, φ1) =l∗1f(φ1), for every φ1 ∈ H1
0 (Ω∗1), (3.2a)

where

a∗1(u
∗
1, φ1) =

∫
Ω∗1

ρ1∇u∗1 · ∇φ1 dx−
∫
Fo12

ρ1∇u∗1 · nFo12φ1 dσ −
∫
∂Ω∗1∩∂Ω

ρ1∇u∗1 · n∂Ω1
φ1 dσ, (3.2b)

l∗1f(φ1) =

∫
Ω∗1

fφ1 dx, (3.2c)

and

u∗2 = uD on ∂Ω∗2 ∩ ∂Ω, andu∗2 = u|Fo21 , a∗2(u∗2, φ2) =l∗2f(φ2), for every φ2 ∈ H1
0 (Ω∗2), (3.2d)

where

a∗2(u
∗
2, φ2) =

∫
Ω∗2

ρ2∇u∗2 · ∇φ2 dx−
∫
Fo21

ρ2∇u∗2φ2 · nFo21 dσ −
∫
∂Ω∗2∩∂Ω

ρ2∇u∗2 · n∂Ω2φ2 dσ, (3.2e)

l∗2f(φ2) =

∫
Ω∗2

fφ2 dx, (3.2f)
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and

uo,2 = uD on ∂Ω∗2 ∩ ∂Ω, anduo,2 = uFo21 , ao,2(u, φ2) =l∗2f(φ2), for every φ2 ∈ H1
0 (Ω∗2), (3.2g)

where

ao,2(uo,2, φ2) =

∫
Ωo21

ρ1∇uo,2 · ∇φ2 dx+

∫
Ω2

ρ2∇uo,2 · ∇φ2 dx (3.2h)

−
∫
Fo21

ρ1∇uo,2 · nFo21φ2 dσ −
∫
∂Ω∗2∩∂Ω

ρ2∇u∗2 · n∂Ω2φ2 dσ,

l∗2f(φ2) =

∫
Ω∗2

fφ2 dx. (3.2i)

Note that the solution u of (2.5) satisfies (3.2a). Also, the restriction of the solution u of (2.5) to
Ω∗2 satisfies the problems (3.2g), i.e., in this sense problem (3.2g) is consistent with (2.5). Thus,
we write below u instead of uo,2. In correspondence with Assumption 1, we make the assumption.

Assumption 6 We suppose that the solutions of (3.2) belong to H`(T ∗H(Ωi)) with ` ≥ 2.

Remark 4. We point out that, we derived the variational problems in (3.2) using the data and
the properties of the solution u of (2.4). The problems in (3.2) can be considered as auxiliary
perturbations of (2.4) compatible to T ∗H . We do not investigate the well posedness of (3.2).

In order to proceed with our analysis, we first define the dG-norm ‖.‖dG associated with T ∗H(Ω).
For all v ∈ V ∗h := H`(T ∗H(Ωi)) + Vh,

‖v‖2dG =
2∑
i=1

(
ρi‖∇vi‖2L2(Ω∗i )

+
ρi
h
‖vi‖2L2(∂Ω∗i ∩∂Ω) +

∑
Foij⊂∂Ω∗i

{ρ}
h
‖vi‖2L2(Foij)

)
, (3.3)

where Foij with 1 ≤ i 6= j ≤ 2 are the interior faces related to overlapping regions, see Fig. 1(b).

3.1 The consistency error.

The restriction of the solution u defined in (2.5) to Ω∗2 does not satisfy the local problem (3.2d).
Comparing the problems (3.2g) and (3.2d), we can roughly say that there is an extra term
−(ρ2 − ρ1)∇u∗2 in Ωo21, which can be characterized as a non consistency term. We derive below
a bound for this term.
Let φ ∈ H1

0 (Ω∗2). By a simple computations on the forms in (3.2), we have that

a∗2(u
∗
2, φh) =

∫
Ωo21

ρ1∇u∗2 · ∇φ dx+

∫
Ω2

ρ2∇u∗2 · ∇φ dx−
∫
∂Ω2∩∂Ω

ρ2∇u∗2 · n∂Ω2φ dσ

−
∫
Fo21

ρ2∇u∗2 · nFo21φ dσ =

∫
Ωo21

(ρ1 − ρ2)∇u∗2 · ∇φ dx+ l∗2f(φ). (3.4)

On the other hand, under the Assumption 1, we immediately have that

ao,2(u, φ2) =

∫
Ωo21

ρ1∇u · ∇φ dx+

∫
Ω2

ρ2∇u · ∇φ dx (3.5)

−
∫
Fo21

ρ1∇u · nFo21φ dσ −
∫
∂Ω∗2∩∂Ω

ρ2∇u · n∂Ω2φ dσ = l∗2f(φ).
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Subtracting (3.5) from (3.4) and using φ|∂Ω∗2 = 0 we obtain∫
Ωo21

ρ1∇(u∗2 − u) · ∇φ dx+

∫
Ω2

ρ2∇(u∗2 − u) · ∇φ dx =

∫
Ωo21

(ρ1 − ρ2)∇u∗2 · ∇φ dx. (3.6)

Applying integration by parts on the right hand side in (3.6) and then setting φ = u∗2 − u, we
derive that∫

Ω∗2

ρ|∇(u∗2 − u)|2 dx = cρ

(
−
∫
Ωo21

ρ2∆u
∗
2(u
∗
2 − u) dx+

∫
Fo12

ρ2∇u∗2 · nFo12(u∗2 − u) dσ
)

≤cρ
(∫

Ωo21

f (u∗2 − u) dx+

∫
Fo12

ρ2∇u∗2 · nFo12(u∗2 − u) dσ
)

(2.1)

≤ cρ‖f‖L2(Ωo21)‖u∗2 − u‖L2(Ωo21) + ‖ρ2∇u∗2‖L2(Fo12)‖u∗2 − u‖L2(Fo12)

(2.2)

≤ cρ‖f‖L2(Ωo21) ‖u∗2 − u‖L2(Ωo21) + ‖ρ2∇u∗2‖L2(Fo12)‖u∗2 − u‖
1
2

L2(Ωo21)
‖u∗2 − u‖

1
2

H1(Ωo21)

(2.2)

≤ c1

(
‖f‖L2(Ωo21) do‖∇(u∗2 − u)‖L2(Ωo21)

+ ‖ρ2∇u∗2‖L2(Fo12) d
1
2
o ‖∇(u∗2 − u)‖

1
2

L2(Ωo21)
(do + 1)‖∇(u∗2 − u)‖

1
2

L2(Ωo21)

≤c2
(
‖f‖L2(Ωo21) + ‖ρ2∇u∗2‖L2(Fo12)

)
d

1
2
o ‖∇(u∗2 − u)‖L2(Ωo21),

(3.7)

where we have used that 0 < do < 1. By (3.7), we can easily obtain that

‖ρ∇(u∗2 − u)‖L2(Ω∗2 )
≤ c2 d

1
2
o

(
‖f‖L2(Ωo21) + ‖ρ2∇u∗2‖L2(Fo12)

)
, (3.8)

and this gives an estimate of the difference between the physical solution u and the perturbed
solution u∗.

Now, let φh ∈ Vh and w ∈ H`≥2(Ω∗2). Utilizing that Jρ∇wK|F12 · n = 0, we rewrite a∗2(·, ·)
defined in (3.2e) in a patch wise way using ao,2(·, ·) defined in (3.2h), as follows

a∗2(w, φh) =

∫
Ωo21

ρ1∇w · ∇φh dx+

∫
Ω2

ρ2∇w · ∇φh dx−
∫
∂Ω2∩∂Ω

ρ2∇w · n∂Ω2φh dσ

−
∫
Fo21

ρ1∇w · nFo21φh dσ −
∫
F12

(ρ1 − ρ2)∇w · nF21φh dσ (3.9)

+

∫
Ωo21

(ρ2 − ρ1)∇w · ∇φh dx−
∫
F12

(ρ2 − ρ1)∇w · nF21 dσ −
∫
Fo21

(ρ2 − ρ1)∇w · nFo21φh dσ

=ao,2(w, φh) + ares(w, φh),

where we defined

ares(w, φh) =

∫
Ωo21

(ρ2 − ρ1)∇w · ∇φh dx−
∫
F12

(ρ2 − ρ1)∇w · nF21 φh dσ (3.10)

−
∫
Fo21

(ρ2 − ρ1)∇w · nFo21φh dσ.

By a simple application of divergence theorem we get

ares(w, φh) =

∫
Ωo21

−div
(
(ρ2 − ρ1)∇w

)
φh dx. (3.11)

Replacing w by u∗2 in (3.9) and (3.11) and then by problem (3.2e), we can infer that

a∗2(u
∗
2, φh) = ao,2(u

∗
2, φh) +

∫
Ωo21

−div
(
(ρ2 − ρ1)∇u∗2

)
φh dx = ao,2(u

∗
2, φh) +

∫
Ωo21

(ρ2 − ρ1)
ρ1

f φh dx.

(3.12)
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Proposition 1. Let φh ∈ Vh. There is a c > 0 dependent on ρ but independent of u and Ωo21

such that

‖φh‖2L2(Ωo21)
≤ cdo h

( ∫
Ω∗2

|∇φh|2 dx+
{ρ}
h

∫
Fo21

φ2
h dσ.

)
(3.13)

Proof. Let v = (0, yφ2
h). Divergence theorem for v on Ωo21 and Remark 3 yield,∫

Ωo21

φ2
h dx+

∫
Ωo21

2yφh ∂yφh dx =

∫
Fo21

yφ2
h dσ. (3.14)

Using that y ≤ do and applying (2.1) in (3.14) we obtain

‖φh‖2L2(Ωo21)
≤
(
ε2
∫
Ωo21

φ2
h dx+

4

ε2

∫
Ωo21

d2o |∇φh|2 dx+ doh
1

h

∫
Fo21

φ2
h dσ

)
(3.15)

Gathering similar terms and choosing ε appropriately small, we get

c1,ε‖φh‖2L2(Ωo21)
≤ c2,εcρ doh

( ∫
Ω∗2

ρ2|∇φh|2 dx+
{ρ}
h

∫
Fo21

φ2
h dσ

)
, (3.16)

where we used that d2o ≤ doh. Rearranging appropriately the constants in (3.16) yields (3.13). �

Corollary 1. Let f ∈ L∞(Ω) and φh ∈ V 2
h . There is a constant c > 0 dependent on Fo21 but

independent of h such that ∫
Ωo21

fφh dx ≤ cdo ‖f‖L∞(Ωo21)‖φh‖dG. (3.17)

Proof. It follows by from the Cauchy-Schwartz inequality that∫
Ωo21

fφh dx ≤ ‖f‖L2(Ωo21)‖φh‖L2(Ωo21) ≤ cFo21d
1
2
o ‖f‖L∞(Ωo21)‖φh‖L2(Ωo21). (3.18)

Using (3.13) in (3.18), the required assertion follows easily. �

Remark 5. Alternatively to the previous analysis, we can use the trace inequality (2.2). Using
(2.2) in (3.15) and applying (2.1), we get

‖φh‖2L2(Ωo21)
≤ ε2‖φh‖2L2(Ωo21)

+
4

ε2
d2o‖∇φh‖2L2(Ωo21)

+ (3.19)

C
(do

2
‖φh‖2L2(Ωo21)

+
do
2
‖φ‖2L2(Ωo21)

+
do
2
‖∇φh‖2L2(Ωo21)

).

Now, choosing in (3.19) ε =
1

4
and mesh size such that Cdo <

1

2
, we can obtain the estimate

‖φh‖2L2(Ωo21)
≤ C0

4

ε2
d2o‖∇φh‖2L2(Ωo21)

. (3.20)

In this case, we can derive (3.17) assuming f ∈ L2(Ω).
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3.2 Modification of the fluxes using Taylor expansions.

Under the assumptions on problems (3.2), and Assumption 6, we can derive interface conditions
similar to (2.7), e.g.,

ρ1∇u∗1 · nFo21 = ρ2∇u∗2 · nFo21 , and (u∗1 − u∗2) = 0, onFo21. (3.21)

Across Fo12, similar interface conditions are not known. Hence, we derive below approximations
of the jumps of the fluxes across Fo12. We use these approximations to appropriately modify the
fluxes in (3.2) in order to couple the local problems (3.2a) and (3.2d).

Let x, y ∈ Ω∗2 and let f ∈ Cm≥2(Ω
∗
2). We recall Taylor’s formula with integral remainder

f(y) =f(x) +∇f(x) · (y − x) +R2f(y + s(x− y)), (3.22a)

f(x) =f(y)−∇f(y) · (y − x) +R2f(x+ s(y − x)), (3.22b)

where R2f(y + s(x − y)) and R2f(x + s(y − x)) are the second order remainder terms defined
by

R2f(y + s(x− y)) =
∑
|α|=2

(y − x)α
2

α!

∫ 1

0

sDαf(y + s(x− y)) ds, (3.23a)

R2f(x+ s(y − x)) =
∑
|α|=2

(x− y)α
2

α!

∫ 1

0

sDαf(x+ s(y − x)) ds. (3.23b)

By (3.22) it follows that

∇f(y) · (y − x) =∇f(x) · (y − x) +
(
R2f(x+ s(y − x)) +R2f(y + s(x− y))

)
, (3.24a)

−f(x) =− f(y) +∇f(x) · (y − x) +R2f(y + s(x− y)). (3.24b)

Let xo1 ∈ Fo12 and xo2 ∈ Fo21 be such that xo1 = Φo21(xo2). These will play the role of the
points x and y in (3.22). Denoting ro12 = xo1 − xo2 and using the assumption that ro12 = −ro21,
see Section 2.6 and (2.19) and (2.22), we obtain that nFo12 =

ro12
|ro12|

= −nFo21 .

For simplifying formulas, let us denote R2u∗xo1 := R2u∗(xo1 + s(xo2 − xo1)) and R2u∗xo2 :=
R2u∗(xo2 + s(xo1 − xo2)). Using the expansions (3.24) and interface conditions (3.21), we can
modify the fluxes in forms given in (3.2b) and (3.2e) as follows,

∫
Fo21

ρ2∇u∗2(xo2) · nFo21φ dσ =

∫
Fo21

1

2

(
ρ2∇u∗2(xo2) · nFo21 + ρ1∇u∗1(xo2) · nFo21

)
φ dσ

=

∫
Fo21

1

2

(
ρ2∇u∗2(xo2) + ρ1∇u∗1(Φo21(xo2)) · nFo21

)
φ+

(
R2u∗xo1 +R2u∗xo2

)
φ dσ

−
∫
Fo21

{ρ}
h

(u∗2(xo2)− u∗2(Φo21(xo2))φ+
{ρ}
h

(
|ro12|∇u∗2(xo2) · nFo21 +R2u∗xo2

)
φ dσ,

(3.25a)

where {ρ} =
1

2
(ρ1 + ρ2) and note that the last integral is equal to zero. Similarly we can have∫

Fo12

ρ1∇u∗1(xo1) · nFo12φ dσ =

∫
Fo12

1

2

(
ρ2∇u∗2(Φo12(xo1)) + ρ1∇u∗1(xo1) · nFo12

)
φ+

(
R2u∗xo2 +R2u∗xo1

)
φ dσ

−
∫
Fo12

{ρ}
h

(u∗2(Φo12(xo1))− u∗1(xo1)φ+
{ρ}
h

(
|ro21|∇u∗1(xo1) · nFo12 +R2u∗xo1

)
φ dσ.

(3.25b)
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3.3 The discrete problem

The global modified form To treat the overlapping nature of the IgA parametrizations, we
consider a global bilinear form a∗(·, ·) formed by the contributions of a∗i (·, ·), i = 1, 2 given in
(3.2a) and (3.2d). We replace the flux forms of a∗i (·, ·) by the flux forms given in (3.25). Let
φh = (φ1h, φ2h) ∈ Vh, by adding a∗1(·, ·) + a∗1(·, ·), we successively get

a∗(u∗, φh) = a∗2(u
∗
2, φh) + a∗1(u

∗
1, φh) =

∫
Ω∗1

ρ1∇u∗1 · ∇φ1h dx+

∫
Ω∗2

ρ2∇u∗2 · ∇φ2h dx

−
∫
∂Ω∗1∩∂Ω

ρ1∇u∗1 · n∂Ω∗1φ1h dσ −
∫
∂Ω∗2∩∂Ω

ρ2∇u∗2 · n∂Ω∗2φ2h dσ

+
ρ1
h

∫
∂Ω∗1∩∂Ω

(u∗1 − uD)φ1h dσ +
ρ2
h

∫
∂Ω∗2∩∂Ω

(u∗2 − uD)φ1h dσ

−
∫
Fo12

1

2

(
ρ2∇u∗2(Φo12(xo1)) + ρ1∇u∗1(xo1)

)
· nFo12 + +

{ρ}
h

(u∗2(Φo12(xo1))− u∗1(xo1)φ1h dσ

−
∫
Fo21

1

2

(
ρ2∇u∗2(xo2) + ρ1∇u∗1(Φo21(xo2))

)
· nFo21 +

{ρ}
h

(u∗2(xo2)− u∗2(Φo21(xo2))φ2h dσ

+

∫
Fo21

(
R2u∗xo1 +R2u∗xo2

)
− {ρ}

h

(
|ro12|∇u∗2(xo2) · nFo21 +R2u∗xo2

)
φ2h dσ

+

∫
Fo12

(
R2u∗xo2 +R2u∗xo1

)
− {ρ}

h

(
|ro21|∇u∗1(xo1) · nFo12 +R2u∗xo1

)
φ1h dσ

=

∫
Ω∗1

fφ1h dx+

∫
Ω∗2

fφ2h dx. (3.26)

Remark 6. The previous form (3.26) is referred to the perturbed solution u∗. Since the exact
solution u hasd the same regularity properties, see Assumption 1, we can derive analogous
formulation as in (3.26) for u. Using (3.2), (3.9), we can show that

a∗1(u, φh) + a∗o,2(u, φh) = a∗(u, φh)− ares(u, φh) =

∫
Ω∗1

fφ1h dx+

∫
Ω∗2

fφ2h dx, (3.27)

The dG IgA scheme. In view of (3.26), we define the forms AΩ∗i (·, ·) : V ∗h ×Vh → R, RΩo21(·, ·) :
V ∗h × Vh → R, and the linear functional and the linear functional lf,Ω∗i : Vh → R by

AΩ∗i (u
∗, φh) =

2∑
i=1

(∫
Ω∗i

ρi∇u∗i · ∇φh dx−
∫
∂Ω∗i ∩∂Ω

ρi∇u∗i · n∂Ω∗i φh dσ (3.28a)

−
∑

Foij⊂∂Ω∗i

∫
Foij

{
ρi∇u∗i

}
· nFoijφh −

η{ρ}
h

(
u∗i − u∗j

)
φh dσ

)
, 1 ≤ i 6= j ≤ 2,

RΩo21(u
∗, φh) =

∫
Fo21

(
R2u∗xo1 +R2u∗xo2

)
− {ρ}

h

(
|ro12|∇u∗2(xo2) · nFo21 +R2u∗xo2

)
φh dσ

+

∫
Fo12

(
R2u∗xo2 +R2u∗xo1

)
− {ρ}

h

(
|ro21|∇u∗1(xo1) · nFo12 +R2u∗xo1

)
φh dσ

lf,Ω∗i (φh) =
N∑
i=1

∫
Ω∗i

fφh dx,

(3.28b)
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where η > 0 is a parameter that is introduced for establishing the coercivity of the resulting dG
bilinear form on the IgA spaces Vh. Based on (3.26) an the forms defined in (3.28) we introduce
the discrete bilinear form Ah(·, ·) : Vh × Vh → R and the linear form Fh : Vh → R as follows

Ah(u
∗
h, φh) = AΩ∗i (u

∗
h, φh) +

2∑
i=1

ηρi
h

∫
∂Ω∗i ∩∂Ω

u∗hφh dσ, (3.29)

Fh(φh) = lf,Ω∗i (φh) +
2∑
i=1

ηρi
h

∫
∂Ω∗i ∩∂Ω

uDφh dσ. (3.30)

Finally, our dG IgA scheme reads as follows: find u∗h ∈ Vh such that

Ah(u
∗
h, φh) = Fh(φh), for all φh ∈ Vh. (3.31)

Remark 7. Based on Remark 6, for the exact solution u it holds that

Ah(u, φh) +RΩo21(u, φh)− ares(u, φh)− Fh(φh) = 0, for φh ∈ Vh. (3.32)

Below, we quote a result that is useful for our later error analysis. For the proof we refer to
[17], [19] and [18].

Lemma 1. Under the assumption (2.21), there exist a positive constants C1 and C2 such that
the estimates

|RΩo21(u, φh)| ≤ C1‖φh‖dG hλ−0.5, |RΩo21(u
∗, φh)| ≤ C2‖φh‖dG hλ−0.5, (3.33)

hold for the solutions u∗ and u, and φh ∈ Vh. The constants C1 and C2 do not depend on h.

Lemma 2. The bilinear form Ah(·, ·) in (3.29) is bounded and elliptic on Vh, i.e., there are
positive constants CM and Cm such that the estimates

Ah(vh, φh) ≤ CM‖vh‖dG‖φh‖dG and Ah(vh, vh) ≥ Cm‖vh‖2dG, (3.34)

hold for all vh, φh ∈ Vh provided that η is sufficiently large.

Lemma 3. Let β = λ − 1

2
. Then there is a constant C = C(η, ρ) ≥ 0 independent of h such

that the estimate

Ah(w, φh) ≤C(η, ρ)
((
‖w‖2dG +

N∑
i=1

h ρi ‖∇wi‖2L2(∂Ω∗i )

) 1
2 +Kohβ

)
‖φh‖dG, (3.35a)

holds for all w ∈ V ∗h and φh ∈ Vh, where Ko = ‖∇w‖L2(∂Ωo21) + ‖
∑
|α|=2

|Dαw|‖L2(Ωo21).

In addition, if v ∈ V , see Assumption 1, then

Ah(v, φh) ≤C1(η, ρ)
((
‖v‖2dG +

2∑
i=1

h ρi ‖∇v‖2L2(∂Ω∗i )

) 1
2 +Ko,vhβ

)
‖φh‖dG, (3.35b)

where C1(η, ρ) and Ko,v have similar form as in (3.35a).
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Proof. The first estimate (3.35a) has been essentially proved in [17] and [19] for the case of
having gap regions. For showing the second estimate, we can follow the same steps. We briefly
mention the basic points. Since v ∈ V the normal traces on the interfaces are well defined.
Applying (2.1), we have

∣∣∣ 2∑
i=1

(∫
Ω∗i

ρi∇v · ∇φh dx
∣∣∣ ≤ ( 2∑

i=1

ρ
1
2
i ‖∇v‖L2(Ω∗i )

)( 2∑
i=1

ρ
1
2
i ‖∇φh‖L2(Ω∗i )

)
. (3.36)

Now, let us first show an estimate for the normal fluxes on Fo21. Using again (2.1), we obtain∣∣∣∑
Fo21

∫
Fo21

1

2

(
ρ2∇v + ρ1∇v(Φo21)

)
· nFo21φh dσ

∣∣∣
≤cρ(ρ2h)

1
2‖∇v‖L2(Fo21)

η{ρ}
h
‖φh‖L2(Fo21) + cρcΦo21(ρ1h)

1
2‖∇v‖L2(Fo12)

η{ρ}
h
‖φh‖L2(Fo21)

≤C
( 2∑
i=1

h ρi ‖∇v‖2L2(∂Ω∗i )

) 1
2

)
‖φh‖dG.

(3.37)

Following the same steps as above, we can show

∣∣∣∑
Fo12

∫
Fo12

1

2

(
ρ2∇v(Φo12) + ρ1∇v

)
· nFo12φh dσ

∣∣∣ ≤ C1

( 2∑
i=1

h ρi ‖∇v‖2L2(∂Ω∗i )

) 1
2

)
‖φh‖dG,

∣∣∣ 2∑
i=1

(∫
∂Ω∗i ∩∂Ω

ρi∇v · n∂Ω∗i φh dσ
∣∣∣ ≤ C2

( 2∑
i=1

h ρi ‖∇v‖2L2(∂Ω∗i )

) 1
2

)
‖φh‖dG,

and
∣∣∣ 2∑
i=1

(η{ρ}
h

∫
Foij

(
v(Φoij)− v

)
φh dσ

)∣∣∣ ≤ C3

∑
Foij⊂∂Ω∗i

{ρ}
h
‖v‖2L2(Foij)

)
.

(3.38)

Gathering together the above inequalities we can show (3.35b). �

3.4 Discretization error analysis

Next, we discuss interpolation estimates that we will use to bound the discretization error. Let a
function v ∈ H`(T ∗H(Ωi)) with ` ≥ 2. Under Assumptions 3, and using the results of [4] and [8],
we can construct an interpolant Πhv such that the interpolation error semi-norm |v−Πhv|H1(Ω∗i )

,
i = 1, 2, is well defined and the following estimate∑

i=1,2

|v −Πhv|H1(Ω∗i )
≤ Chs

∑
i=1,2

‖v‖H`(Ω∗i )
, (3.39)

holds, where s = min(`− 1, p) and C depending on p,Φ∗i , θ but not on h.

Lemma 4. Let v ∈ H`(T ∗H(Ωi)) with ` ≥ 2 and let Πhv be the interpolation operator discussed
above in (3.39). Then there exist constants Ci > 0, i = 1, 2, depending on p, Φ∗i , i = 1, 2 and
the quasi-uniformity of the meshes but not on h such that

(
‖v −Πhv‖2dG +

2∑
i=1

h‖∇(v −Πhv)‖2L2(∂Ω∗i )

) 1
2 ≤

2∑
i=1

Cih
s‖v‖H`(Ω∗i )

, (3.40)

where s = min(`− 1, p).
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Proof. The estimate (3.40) has been essentially proven in [17]. See also Lemma 10 in [25]. �

Theorem 1. Let β = λ − 1

2
and do = hλ with λ ≥ 1. Let u∗ ∈ H`(T ∗H(Ωi)) with ` ≥ 2 be

the solution of problem (3.2), and let u∗h ∈ Vh be the corresponding dG IgA solution of problem
(3.31). Then the error estimate

‖u∗ − u∗h‖dG . hr
( 2∑
i=1

‖u‖H`(Ω∗i )

)
, (3.41)

holds, where r = min(s, β) with s = min(`− 1, p).

Proof. The proof is given in [17] and [19]. �

Remark 8. The proceeding estimate is referred to the case where do is of order O(hλ). If the
width do is fixed, i.e., is not decreased as we refine the meshes, then, using (3.33), we can infer
that the estimate (3.41) will take the form

‖u− u∗h‖dG . hs + do h
− 1

2 , (3.42)

where s = min(`− 1, p), see discussion in [17].

Main error estimate The estimate given in (3.41) concerns the distance between u∗h ∈ Vh
and the solution u∗ ∈ H`(T ∗H(Ωi)) with ` ≥ 2 of the perturbed problem (3.2) defined on T ∗H(Ω).
Based on (3.9) and (3.17), we show that a similar estimate holds for the physical solution u
given by (2.8). Note that, by Assumption 1, we get that the solution u belongs to (H`(Ωo21) ∪
H`(Ω2)) ∩ H1(Ω), with ` ≥ 2, i.e., u /∈ H`(Ω∗2). Thus, first, we need to show an interpolation
estimate similar to (3.39) for u. We utilize the interpolation estimates given in [9] and [8] for
functions u ∈ Hα

Φ(Ω), see (2.24). For simplicity of our analysis, we present the results for the two-
dimensional case, e.g., see Fig. 1(b),(c). Let us introduce the multi-indexes α = (α1, α2) = (`, `)
and γ = (γ1, γ2) with |γ| = 1. Recalling Assumption 3 , Assumption 4 and Assumption 5, we
can deduce that the solution u ∈ Hα

Φ∗2
(Ω∗2) and u ∈ Hα

Φ∗1
(Ω∗1), see Fig. 2. Finally, based on

the interpolation estimates given in [9] and [8], e.g., see Section 4 in [8], we can construct an
interpolant Πhu, such that the estimates

|u−Πhu|H1(Ω∗2 )
≤C2

∑
|γ|=1

|u−Πhu|Hγ
Φ∗2

(Ω∗2 )
≤ C2h

s‖u‖Hα
Φ∗2

(Ω∗2 )
, (3.43a)

|u−Πhu|H1(Ω∗1 )
≤C1

∑
|γ|=1

|u−Πhu|Hγ
Φ∗1

(Ω∗1 )
≤ C1h

s‖u‖Hα
Φ∗1

(Ω∗1 )
, (3.43b)

holds, where s = min(`− 1, p) and C1 and C2 depending on p,Φ∗i , θ but not on h. Having shown
the interpolation estimates (3.43), then, we can follow the same steps as in [17], and [25], and
to derive the interpolation estimate of interest

‖u−Πhu‖2dG,∗ :=
(
‖u−Πhu‖2dG +

2∑
i=1

hρi ‖∇(u−Πhu)‖2L2(∂Ω∗i )

) 1
2

(3.44)

≤
2∑
i=1

Cih
s‖u‖Hα

Φ∗
i
(Ω∗i )

,

where s = min(`− 1, p) and Ci depending on p,Φ∗i , θ, but not on h.
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Theorem 2 (main error estimate). Let the multi-index α = (α1, α2) = (`, `) as above. The
following error estimate holds

‖u− u∗h‖dG ≤ C
(
hs

2∑
i=1

‖u‖Hα
Φ∗
i
(Ω∗i )

+ do‖f‖L2(Ωo21) + hβKo
)
, (3.45)

where β = λ − 1

2
, s = min(` − 1, p), and C depends on the constants in (3.44), (3.35a) and

(3.34).

Proof. Let zh ∈ Vh and let u be the exact solution. By the definition of the discrete dG IgA
scheme in (3.31) and (3.32), we have

Ah(u
∗
h − zh, φh) = Ah(u, φh) +RΩo21(u, φh)− ares(u, φh)− Fh(φh)− Ah(zh, φh) + Fh(φh)

= Ah(u− zh, φh) +RΩo21(u, φh)− ares(u, φh). (3.46)

Setting above φh = u∗h − zh, using the coercivity and boundedness of Ah(·, ·) described in (3.34)
and (3.35b), and using also the bounds in (3.17) and (3.33), we can finally obtain

ce‖u∗h− zh‖2dG ≤ cb‖u− zh‖dG,∗‖u∗h− zh‖dG+ c2do‖f‖L2(Ωo21)‖u∗h− zh‖dG+ c3h
λ− 1

2‖u∗h− zh‖dG.
(3.47)

Setting in (3.47), zh = Πhu, using estimate (3.44), and applying triangle inequality

‖u− u∗h‖dG ≤ ‖u−Πhu‖dG,∗ + ‖Πhu− u∗h‖dG, (3.48)

the desired estimate follows.
�

4 Numerical tests

In this section, we perform several numerical tests with different shapes of overlapping regions as
well as combinations with inhomogeneous diffusion coefficients for two- and three- dimensional
problems. We investigate the order of accuracy of the dG IgA scheme proposed in (3.29). All
examples have been performed using second degree (p = 2) B-spline spaces. We present the
asymptotic behaviour of the error convergence rates for widths do = hλ with λ ∈ {1, 2, 2.5, 3}.
Every example has been solved applying several mesh refinement steps with . . . , hi, hi+1, . . . ,
satisfying Assumption 2. The numerical convergence rates r have been computed by the ratio
r = ln(ei/ei+1)

ln(hi/hi+1)
, i = 1, 2, . . ., where the error ei := ‖u− u∗h‖dG is always computed on the meshes

∪2i=1T
(i)
hi,Ω∗i

. We mention that, in the test cases, we use highly smooth solutions on each patch,

i.e., p + 1 ≤ `, and therefore the order s in (3.41) and (3.45) becomes s = p. The predicted
values of power β, the order s and the expected convergence rate r, for several values of λ, are
displayed in Table 1. In any test case, the overlap regions are artificially created by moving the
control points, which are related to the interfaces Fij, in the direction of nFij or of −nFij .

All tests have been performed in G+SMO [26], which is a generic object-oriented C++ library
for IgA computations, [23, 24]. In Section 3, we developed and provided a rigorous analysis for the
dG IgA method (3.31) which includes a non-symmetric numerical flux. In the materialization of
the method, we utilized the associated symmetrised version the numerical flux, [32]. For solving
the resulting linear system, we use the dG-IETI-DP method presented in [16], see also [14] for
an analysis of the method and [15] for results on parallel scalability.

Although in the analysis, we consider meshes with similar quasi-uniform patch-wise proper-
ties, it is known that the introduction of dG techniques on the subdomain interfaces makes the
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use of non-matching and non-uniform meshes easier, see [25]. Keeping a constant linear relation
between the sizes of the different patch meshes, the approximation properties of the method are
not affected, see [25]. In the examples below, we exploit this advantage of the dG methods and
first solve two-dimensional problems considering non-matching meshes. The convergence rates
are expected to be the same as those displayed in Table 1.

B-spline degree p

Smooth solutions, u ∈ H`≥p+1

do = hλ λ = 1 λ = 2 λ = 2.5 λ = 3

β := 0.5 1.5 2 2.5

s := p p p p

r := 0.5 1.5 min(p, β) min(p, β)

Table 1. The values of the expected rates r as they result from estimate (3.45).

4.1 Two-dimensional numerical examples

The control points with the corresponding knot vectors of the domains given in Example 1-3 are
available under the names yeti_mp2, 12pSquare and bumper as .xml files in G+SMO1.

Example 1: uniform diffusion coefficient ρi = 1, i = 1, . . . , N . The first numerical example is a
simple test case demonstrating the applicability of the proposed technique for constructing the
dG IgA scheme on segmentations including overlaps with general shape. The domain Ω with the
N = 21 subdomains Ω∗i and the initial mesh are shown in Fig. 3(a). We note that we consider
non-matching meshes across the interior interfaces. The Dirichlet boundary condition and the
right hand side f are determined by the exact solution u(x, y) = sin(π(x + 0.4)/6) sin(π(y +
0.3)/3) + x+ y. In this example, we consider the homogeneous diffusion case, i.e., ρi = 1 for all
Ω∗i , i = 1, . . . , N .

We performed four groups of computations, where for every group the maximum size of do
was defined to be O(hλ), with λ ∈ {1, 2, 2.5, 3}. In Fig. 3(b) we present the discrete solution for
d0 = h. Since we are using second-order (p = 2) B-spline space, based on Table 1, we expect
optimal convergence rates for λ = 2.5 and λ = 3. The numerical convergence rates for several
levels of mesh refinement are plotted in Fig. 3(c). They are in very good agreement with the
theoretically predicted estimates given in Theorem 2, see also Table 1. We observe that we have
optimal rates r for the cases where λ ≥ 2.5 and sub-optimal for the rest values of λ.

Example 2: different diffusion coefficients ρ1 6= ρ2. In the second example, we consider a rectan-
gular domain Ω, that is described as a union of N = 12 patches, see Fig. 4(a). Here, we study the
case of having smooth solutions on each Ωi but discontinuous coefficient, i.e., we set ρi = 3π/2
for the patches belonging to half plane x ≤ 0 and we set ρi = 2 for the rest patches according
to the pattern in Fig. 4(a). By this example, we numerically validate the predicted convergence
rates on T ∗H with overlaps, for the case of having smooth solutions and discontinuous coefficient
ρ. The exact solution is given by the formula

u(x, y) =

sin(π(2x+ y)) if x < 0

sin(π(
3π

2
x+ y)) otherwise.

(4.1)

The boundary conditions and the source function f are determined by (4.1). Note that in this
test case, we have JuK|Fij = 0 as well Jρ∇uK|Fij · nFij = 0 for all the interior interfaces Fij.

1 G+SMO: https://www.gs.jku.at/trac/gismo
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Fig. 3. Example 1: (a) The patches Ω∗i with the initial non-matching meshes and the contours of the exact solution. (b)
The contours of the u∗h solution for do = h. (c) The convergence rates for the different values of λ.

The problem has been solved on a sequence of meshes with h0, ..., hi, hi+1, ..., following a

sequential refinement process, i.e., hi+1 =
hi
2

, where we set do = hλi , with λ ∈ {1, 2, 2.5, 3}. For

the numerical tests, we use B-splines of the degree p = 2. Hence, we expect optimal rates for
λ ≥ 2.5. In Fig. 4(b) the approximate solution u∗h is presented on a relative coarse mesh with
do = 0.06. The results of the computed rates are presented in Fig. 4(c). For all test cases, we
can observe that our theoretical results presented in Table 1 are confirmed.
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Fig. 4. Example 2: (a) The overlapping patches Ω∗i and the pattern of diffusion coefficients ρi, (b) The contours of u∗h on
every Ωi computed with d0 = 0.06, (c) The convergence rates for the 4 choices of λ.

4.2 Three-dimensional numerical examples

As a final example, we consider a three-dimensional test. The domain Ω has been constructed by
a straight prolongation to the z-direction of a two dimensional (curved) domain, see Fig. 5(a). The
two physical domains Ω1 and Ω2 have the physical interface F12 consisting of all points (x, y, z)
such that −1 ≤ x ≤ 0, x+ y = 0 and 0 ≤ z ≤ 1, see Fig. 5(a). The knot vector in z-direction is
simply Ξ3

i = {0, 0, 0, 0.5, 1, 1, 1} with i = 1, 2. We solve the problem using matching meshes, as
depicted in Fig. 5(a). The B-spline parametrizations of these domains are constructed by adding
a third component to the control points with the following values {0, 0.5, 1}. The completed knot
vectors Ξk=1,2,3

i=1,2 together with the associated control nets can be found in G+SMO library in
the file bumper.xml. The overlap region is artificially constructed by moving only the interior
control points located at the interface into the normal direction nF12 of the related interface F12.
Due to the fact that the overlap has to be inside of the domain, we have to provide cuts though
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the domain in order to visualize them, cf. Fig. 5(b). The Dirichlet boundary conditions uD and
the right hand side f , see (2.3), are chosen such that the exact solution is

u(x, y, z) =

{
sin(

π

2
(x+ y)) if (x, y) ∈ Ω1,

esin(x+y) if (x, y) ∈ Ω2.
(4.2)

with diffusion coefficient ρ = {1, π/2}. Note that the interfaces conditions (2.7) are satisfied.
The two physical subdomains, the initial matching meshes and the exact solution are illustrated
in Fig. 5(a). We construct an overlap region with do = 0.5 and solve the problem using p = 2 B-

spline functions. In Fig. 5(b), we show the domain meshes T
(i)
hi,Ω∗i

, i = 1, 2, the overlapped meshes

in Ωo12 and we plot the contours of the produced solution u∗h for the interior plane z = 0.5. We
can see that, both faces of ∂Ωo12 are not parallel to the Cartesian axes. Moreover, we point out
that the problem has been solved using non matching meshes on the overlapping interfaces. We
have computed the convergence rates for four different values λ ∈ {1, 2, 2.5, 3} related to the
overlapping region width do = hλ. The results of the computed rates are plotted in Fig. 5(c). We
observe from the plots that the rates r are in agreement with the rates predicted by the theory,
see estimate (3.45) and Table 1.
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Fig. 5. Example 4, Ω ⊂ R3: (a) The physical patches with an initial coarse mesh and the contours of the exact solution,
(b) The contours of u∗h computed on Ω∗1 ∪Ω∗2 with do = 1.5, (c) Convergence rates r for the four values of λ.

5 Conclusions

In this article, we have proposed and analyzed a dG IgA scheme for discretizing linear, second-
order, diffusion problems on IgA patch decompositions with non-matching interface parametriza-
tions, which result to the appearance of overlapping regions. This type of decompositions lead
to the use of different diffusion coefficients on the overlapping patches. Auxiliary problems were
introduced in every patch and dG IgA methodology applied for discretizing these problems. The
normal fluxes on the overlapped interior faces were appropriately modified using Taylor expan-
sions, and these fluxes were further used to construct numerical fluxes in order to couple the
associated discrete dG IgA problems. The method were successfully applied to the discretization
of the diffusion problem in cases with complex overlaps using non-matching grids. A priori error
estimates in the dG-norm were shown in terms of the mesh-size h and the maximum width
do of the overlapping regions. The estimates were confirmed by solving several two- and three-
dimensional test problems with known exact solutions.
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