
Combining Space-Time Multigrid

Techniques with Multilevel Monte

Carlo Methods for SDEs

Martin Neumüller Andreas Thalhammer

DK-Report No. 2017-04 05 2017

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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Combining space-time multigrid techniques with
multilevel Monte Carlo methods for SDEs

Martin Neumüller and Andreas Thalhammer

Abstract In this work we combine multilevel Monte Carlo methods for time-
dependent stochastic differential equations with a space-time multigrid method. The
idea is to use the space-time hierarchy from the multilevel Monte Carlo method also
for the solution process of the arising linear systems. This symbiosis leads to a ro-
bust and parallel method with respect to space, time and probability. We show the
performance of this approach by several numerical experiments which demonstrate
the advantages of this approach.

1 Introduction

Stochastic differential equations (SDEs) have become an invaluable tool for mod-
elling time-dependent problems that are perturbed by random influences. Since the
importance of such models increases constantly, there is a high demand on improv-
ing the efficiency of numerical algorithms for SDEs, especially, if one is interested
in the approximation of E[ϕ(X(T ))], where X(T ) denotes the (mild) solution of an
SDE evaluated at time T .

In this work we focus on approximating E[ϕ(X(T ))] for the solution process
of linear SDEs driven by additive noise. For this we combine space-time multigrid
methods for approximating solutions of time-dependent deterministic differential
equations, see [4] and the references therein, and multilevel Monte Carlo (MLMC)
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methods, see e.g. [5, 6]. Both methods as such are well-known to be parallelizable,
however, the combination of both methods is a completely new approach that en-
ables the full parallelization of the problem in space, time and probability.

The outline of this article is as follows: In the remainder of this section, we
introduce two model problems (the Ornstein-Uhlenbeck process and the stochas-
tic heat equation) together with discretization techniques for these model problems
with respect to space and time. Afterwards, we consider the multilevel Monte Carlo
(MLMC) method for approximating the expectation in Section 2 and we discuss
parallelizable space-time multigrid methods based on the inherited space-time hi-
erarchy of the MLMC estimator in Section 3. Finally, we conclude by presenting
numerical experiments in Section 4.

1.1 Model problems

Let T > 0 and let (Ω ,{Ft}t∈[0,T ],F ,P) be a complete probability space. At first,
we consider a one-dimensional model problem given by the stochastic ordinary dif-
ferential equation (SODE)

du(t)+λu(t)dt = σ dβ (t) for t ∈ (0,T ], (1)
u(0) = u0,

where λ ∈ R+
0 ,σ ,u0 ∈ R and β = (β (t), t ∈ [0,T ]) is a standard Brownian motion.

The solution of this SODE is a special Ornstein-Uhlenbeck process defined by

u(t) = u0e−λ t +σ

∫ t

0
e−λ (t−s) dβ (s), t ∈ [0,T ]. (2)

As second model problem we consider the stochastic heat equation on a bounded
and convex domain D⊂Rd ,d = 1,2,3, with homogeneous Dirichlet boundary con-
ditions. We rewrite the corresponding stochastic partial differential equation (SPDE)
as a stochastic evolution equation on the Hilbert space H = L2(D)

dU(t) = ∆U(t)dt + dW (t) for t ∈ (0,T ], (3)

U(0) =U0 ∈ H2(D)∩H1
0 (D).

Subsequently, we denote by (e j, j ∈ N) the set of eigenfunctions of the Laplace op-
erator−∆ , which forms an orthonormal basis of H. Furthermore, let W = (W (t), t ∈
[0,T ]) be an H-valued Q-Wiener process with a linear, positive definite, symmetric,
trace class covariance operator Q. Then W can be represented as (see e.g. [3, 7])

W (t) =
∞

∑
j=1

√
µ je jβ j(t), (4)
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where (µ j, j ∈ N) denotes the set of eigenvalues of Q satisfying Qe j = µ je j and
(β j, j ∈ N) is a sequence of independent standard Brownian motions.

Then, by [3], there exists a unique, square-integrable mild solution to SPDE (3)

U(t) = S(t)U0 +
∫ t

0
S(t− s)dW (s) for t ∈ [0,T ]. (5)

1.2 Discretization of model problems

In this section, we present fully discrete schemes for approximating the solution
processes from Eq. (2) and Eq. (5). For this we fix an equidistant partition ΘK of the
time interval [0,T ] given by ΘK = {0 = t0 < t1 < · · ·< tK = T}, where for 0≤ j≤K
we choose t j = j∆ t with time step size ∆ t = T/K.

For approximating the solution of the Ornstein-Uhlenbeck process (2), we con-
sider the backward Euler–Maruyama scheme given by the recursion

(1+λ∆ t)u j = u j−1 +σ∆β
j, for 1≤ j ≤ K, (6)

where u0 = u0 and ∆β j = β (t j)−β (t j−1). Rewriting the recursion (6) in a matrix-
vector representation yields

(1+λ∆ t)
−1 (1+λ∆ t)

. . . . . .
−1 (1+λ∆ t)




u1
u2
...

uK

=


σ∆β 1 +u0

σ∆β 2

...
σ∆β K

 . (7)

In this article, we abbreviate this linear system by Lτ u = f(ω), where we use the
ω-dependency in f(ω) to indicate that the right hand side is a random vector.

For the stochastic heat equation we want to obtain a fully discrete approxima-
tion U j

h of the mild solution U(t j), t j ∈ ΘK , where U j
h attains values in a finite-

dimensional subspace Vh ⊂H1
0 (D). Besides an appropriate time integration method,

we apply a discretization scheme in space. For this we consider a standard Galerkin
finite element (FE) discretization based on a regular family (Th,h ∈ (0,1]) of tri-
angulations of D with maximal mesh size h. Then Vh denotes the space of globally
continuous and on Th piecewise linear functions. Furthermore, we denote by Nh the
dimension of Vh. By using the nodal basis functions (φi,1 ≤ i ≤ Nh) ⊂ H1

0 (D), the
fully discrete approximation scheme based on Galerkin finite elements in space and
on the backward Euler–Maruyama scheme in time is given by (see e.g. [2])

(Mh +∆ tKh)U j = MhU j−1 +∆W j for 1≤ j ≤ K, (8)

where ∆W j denotes the vector representation of the FE approximation of the Q-
Wiener increments ∆W j(x) =W (t j,x)−W (t j−1,x),x ∈ D, and for j = 0, . . . ,K,
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U j
h =

Nh

∑
i=1

U j[i]φi,

where U j[i] denotes the ith component of the vector U j ∈ RNh . Here, we denote by
Mh the standard mass matrix and Kh the standard stiffness matrix defined by

Mh[i, j] :=
∫

D
φ j(x)φi(x)dx, Kh[i, j] :=

∫
D

∇φ j(x) ·∇φi(x)dx, for i, j = 1, . . . ,Nh.

Finally, by rewriting the numerical scheme (8) in terms of a matrix-vector formula-
tion we obtain the large linear system

Mh +∆ tKh
−Mh Mh +∆ tKh

. . . . . .
−Mh Mh +∆ tKh




U1
U2
...

UK

=


∆W1 +MhU0

∆W2

...
∆WK

 (9)

that is subsequently abbreviated by Lh,τ U = F(ω).

2 Multilevel Monte Carlo methods

The goal is to approximate E[ϕ(u(T ))] or E[ϕ(U(T ))] for a sufficiently smooth
mapping ϕ : H→ B, where B is a separable Hilbert space B, by using suitable esti-
mators. For Y ∈ L2(Ω ;B) a common way to approximate E[Y ] is to use a standard
Monte Carlo (MC) estimator defined by

EM[Y ] :=
1
M

M

∑
i=1

Y (i),

where (Y (i), i = 1, . . . ,M) are independent realizations of Y . Here, L2(Ω ;B) denotes
the space of strongly measurable random variables Y that satisfy

‖Y‖2
L2(Ω ;B) := E[‖Y‖2

B]< ∞.

Due to the rather slow convergence of the MC estimator of order M−1/2 in the
L2(Ω ;B)-sense, the efficient multilevel Monte Carlo (MLMC) estimator has been
proposed in [5]. For its definition we consider a sequence (Y`, ` ∈ N0) of approxi-
mations of Y ∈ L2(Ω ;B) based on different refinement levels ` ∈ N0. The MLMC
estimator is then given by

EL[YL] :=
L

∑
`=0

EM`
[Y`−Y`−1],

where Y−1 = 0. The L2(Ω ;B)-error of the MLMC estimator satisfies (see [6])
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‖E[Y ]−EL[YL]‖L2(Ω ;B) ≤ ‖E[Y −YL]‖B +

( L

∑
`=0

M−1
` Var[Y`−Y`−1]

)1/2

(10)

where Var[Y ] = E[‖Y −E[Y ]‖2
B] for Y ∈ L2(Ω ;B).

In the following two subsections, we discuss how to choose the number of sam-
ples (M`, ` ∈ N0) and the refinement parameter h and ∆ t in order to guarantee the
convergence of the MLMC estimator.

2.1 Ornstein-Uhlenbeck process

Let u be given in Eq. (2) and for ` ∈ N0 let uK`
be the numerical approximation

of u(T ) based on the backward Euler–Maruyama scheme (6) with respect to the
partition ΘK`

with time step size ∆ t`. Furthermore, let ϕ ∈C2
b(R,R), i.e., ϕ : R→R

is twice continuously differentiable with bounded first and second derivatives. Due
to the additive noise structure of SDE (1) we obtain by results from [8] that

|E[ϕ(u(T ))−ϕ(uKL)]| ≤C∆ tL, Var[ϕ(uK`
)−ϕ(uK`−1)]

1/2 ≤C∆ t`.

Thus, by similar arguments as in [6], if we choose for any ε,CM > 0,

M0 = dCM∆ t−2
L e, M` = dCM∆ t2

` ∆ t−2
L `1+εe for `= 1, . . . ,L, (11)

then ‖E[ϕ(u(T ))]−EL[ϕ(uKL)]‖L2(Ω ;R) = O(∆ tL).

2.2 Stochastic heat equation

Let U be given in Eq. (5) and for ` ∈N0 let UK`
h`

be an approximation of U(T ) based
on the FE backward Euler–Maruyama scheme (8) with respect to the partition ΘK`

and the FE space Vh` . Furthermore, let ϕ ∈C 2
b (H,B), i.e., ϕ : H→B is twice Fréchet

differentiable with bounded first and second Fréchet derivatives. Then by using the
results from [1], we get by choosing ∆ t` = h2

` for any γ ∈ [0,1)

‖E[ϕ(U(T ))−ϕ(UKL
hL

)]‖B ≤Ch2γ

L , Var[ϕ(UK`
h`
)−ϕ(UK`−1

h`−1
)]≤Ch2γ

` .

Thus, by [6], if we choose ∆ t` = h2
` and for any

M0 = dCMh−2γ

L e, M` = dCMh2γ

` h−2γ

L `1+εe for `= 1, . . . ,L. (12)

then ‖E[ϕ(U(T ))]−EL[ϕ(UKL
hL

)]‖L2(Ω ;B) = O(hγ

L).
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3 Space-time multigrid methods

The idea is to use the space-time hierarchy from the MLMC methods discussed in
Sections 2.1 and 2.2 also for a space-time multigrid approach. In detail we use the
space-time multigrid method presented in [4] to solve the linear system (7) and (9)
at once. The advantage is that we can also add parallelization in time direction and
also with respect to the space dimension. So using the space-time hierarchy coming
from the MLMC method for the linear solver we obtain an algorithm which can be
applied in parallel with respect to space, time and probability. For the space-time
multigrid method we use a (inexact) damped block Jacobi smoother, see also [4],
i.e. for the problem (7) we use

u(n+1) = u(n)+αD−1
τ

[
f(ω)−Lτ u(n)

]
for n = 0,1, . . . ,

with the diagonal matrix Dτ := diag(1+λ∆ t). Whereas, for the problem (9) we use
the smoothing iteration

U(n+1) = U(n)+αD−1
h,τ

[
F(ω)−Lh,τ U(n)

]
for n = 0,1, . . . ,

with the block diagonal matrix Dh,τ := diag(Mh +∆ tKh). To speed up the applica-
tion of the smoothing procedure we replace the exact inverse of Dh,τ by applying
one iteration of a multigrid V-cycle with respect to the matrix Mh+∆ tKh. Moreover
we always set the damping parameter to α = 1

2 , see [4] for more details. Choos-
ing ∆ t ≈ h2 leads – in combination with the space-time hierarchy coming from the
MLMC method – to a robust solver which is independent of the number of time
steps K and the time step size ∆ t.

4 Numerical experiments

4.1 Ornstein-Uhlenbeck process

We consider the SODE (1) with λ = 1,σ = 1 and u0 = 1. By choosing T = 1 and
ϕ(x) = x for all x ∈ R we are interested in approximating E[u(T )] = e−T .

For the numerical approximation we consider the backward Euler–Maruyama
scheme from Eq. (6) in the matrix-vector representation Lτ u = f(ω), which is
solved by the time multigrid method described in Section 3. For the approxima-
tion of the expectation we consider a multilevel Monte Carlo estimator based on the
sample size selection from Eq. (11) with ε = 1

2 and CM = 10.
In Table 1, ‖E[u(T )]− EL[uKL ]‖L2(Ω ;R) is approximated by a standard Monte

Carlo estimator given by



Space-time multigrid Monte Carlo methods 7

MS-err =

(
1
M

M

∑
i=1

∣∣∣e−T −EL[uKL ]
(i)
∣∣∣2)1/2

,

where (EL[uKL ]
(i),1≤ i≤M) are independent realizations of the MLMC estimator

EL[uKL ]. For this we choose M = 100 in the numerical experiments from Table 1
and we observe the right convergence rates as predicted by the theory.

Table 1 Numerical test for SODE (1) (Ornstein-Uhlenbeck process).

L time steps realizations level 0 realizations level L MS-err EOC
0 1 10 10 2.61915E-01 -
1 2 40 20 1.39399E-01 0.91
2 4 160 50 6.73215E-02 1.05
3 8 640 80 3.92162E-02 0.78
4 16 2560 110 2.02307E-02 0.95
5 32 10240 140 1.00032E-02 1.02
6 64 40960 180 4.80065E-03 1.06
7 128 163840 220 2.31171E-03 1.05
8 256 655360 270 1.13875E-03 1.02
9 512 2621440 310 5.29684E-04 1.10
10 1024 10485760 360 2.62618E-04 1.01

4.2 Stochastic heat equation

For the stochastic heat equation (3) we consider the one-dimensional case D= (0,1)
with initial value U0(x) = sin(πx). By choosing T = 0.2 and ϕ(v) = v for all v ∈
L2(D), we are interested in approximating E[U(T,x)] = exp(−π2T )sin(πx),x ∈D.

The eigenvalues of the Q-Wiener process are µ j = j−(2r+1+ε) with r = 2 and any
ε > 0, see e.g. [7] for details. For approximating paths of the Q-Wiener process we
truncate the series representation (4) after the first Jh = Nh summands, see e.g. [2].

For the numerical approximation in space and time, we consider the FE Euler–
Maruyama scheme from Eq. (8) on an equidistant mesh with grid width h` = 2−`−1

in the matrix-vector formulation Lh,τ U= F(ω), which is again solved by the space-
time multigrid method described in Section 3. For the approximation of the expec-
tation we consider the MLMC method based on the sample size selection (12) with
ε = 0.5 and CM = 10.

In numerical experiments ‖E[U(T )]− EL[UKL
hL

]‖L2(Ω ;B) is approximated by a
standard Monte Carlo estimator, i.e., we consider

MS-err =

(
1
M

M

∑
i=1

∥∥∥E[U(T )]−EL[UKL
hL

](i)
∥∥∥2

L2(D)

)1/2

,

where (EL[UKL
hL

](i),1≤ i≤M) are independent realizations of the estimator EL[UKL
hL

]
and
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‖E[U(T )]−EL[UKL
hL

](i)‖2
L2(D) =

∫ 1

0

(
exp(−π

2T )sin(πx)−EL[UKL
hL

(x)](i)
)2

dx.

In Table 2 we use M = 100 independent realizations of the MLMC estimator and we
observe the optimal convergence rates as predicted by the theory. Moreover we give
in Table 3 the solving times for one MLMC run for different levels and different
distributions of 512 cores. Here we observe that the best possible setting is given
by a balanced distribution of cores between parallelization in time and paralleliza-
tion of the Monte Carlo estimators. For example for level L = 7 the best possible
setting is given by 8 cores for time parallelization and 64 cores for the Monte Carlo
parallelization.

Table 2 Numerical test for SPDE (1) (stochastic heat equation) – convergence.

L time steps # elements realizations level 0 realizations level L MS-err EOC
0 1 2 10 10 7.83487E-02 -
1 4 4 40 20 3.39860E-02 1.20
2 16 8 160 30 1.29145E-02 1.40
3 64 16 640 60 5.99035E-03 1.11
4 256 32 2560 90 2.71909E-03 1.14
5 1024 64 10240 120 1.39772E-03 0.96
6 4096 128 40960 150 6.89668E-04 1.02
7 16384 256 163840 190 3.41996E-04 1.01

Table 3 Numerical test for SPDE (1) (stochastic heat equation) – computation time with respect
to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32 32 / 16 64 / 8 128 / 4
3 0.04 0.02 0.02 0.02 0.03 0.06 0.1 0.14
4 0.27 0.17 0.12 0.13 0.16 0.26 0.47 0.93
5 2.64 1.51 0.95 1.01 1.17 1.64 2.47 4.41
6 24.12 13.92 13.64 11.47 10.76 12.53 15.88 23.5
7 282.46 157.97 153.41 125.56 127.84 133.6 146.81 178.76
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