
Time-Multipatch Discontinuous

Galerkin Space-Time Isogeometric

Analysis of Parabolic Evolution

Problems

Christoph Hofer Langer Ulrich Neumüller Martin

Toulopoulos Ioannis

DK-Report No. 2017-05 08 2017

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Bert Jüttler
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Abstract. In this paper, we present a new time-multipatch discontinuous Galerkin Isogeometric Analysis
(IgA) technology for solving parabolic initial-boundary problems in space and time simultaneously. We prove
coercivity of the discrete IgA problem with respect to a suitably chosen norm that together with boundedness,
consistency and approximation results yields a priori discretization error estimates in this norm. Furthermore,
we provide efficient parallel generation and parallel multigrid solution technologies, and present first numerical
results on massively parallel computers.
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1 Introduction

Fully discrete schemes for parabolic initial-boundary value problems (IBVP) are usually derived
by discretizing either first in space by means of some spatial discretization method like the fi-
nite element method and then in time by some time-stepping method or vice versa. The former
methods are called vertical methods of lines [58], the latter horizontal methods of lines or Rothe’s
methods [33]. Time-stepping methods are sequential in time. To overcome this curse of sequen-
tiality on massively parallel computers, one needs some smart ideas for the parallelization in
time. Time parallel methods have a long and exciting history that can be found in the very nice
paper [18] on 50 Years of Time Parallel Time Integration. Space-time finite element methods for
parabolic and hyperbolic Partial Differential Equations (PDEs) go back to the 80s and 90s of the
last century [27, 28, 26, 3, 4, 20], and enjoy a real revival during the last couple of years due to the
availability of massively parallel computers with thousands or hundred thousands of cores, see,
e.g., [49], [44], [1], [6], [43], [41], [60], [51], [2], [50], [5], [38], [59] for some resent mathematical
papers related to parabolic problems. Moreover, there are several recent papers on the efficient
use of various space-time methods for solving exciting engineering problems involving moving
computational spatial domains or / and interfaces see, e.g., [8], [56], [53], [54], [55], [57], [29], [30]
and the references therein.

In [35], we were inspired by looking at the time variable t in a parabolic problem as just an-
other variable, say, xd+1 if x1, . . . , xd are the spatial variable, and at the time derivative as a strong
convection in the direction xd+1 that can numerically be treated in a stable way by special dis-
cretization techniques known from convection dominated elliptic convection-diffusion problems,
see, e.g., [52]. The most popular stabilizing method is the Streamline-Upwind Petrov-Galerkin
(SUPG) method introduced in [24]. We have used time-upwind test functions to construct stable
single-patch space-time Isogeometric Analysis (IgA) schemes the discrete bilinear form of which
is coercive (elliptic) on the IgA space with respect to a suitably chosen mesh-dependent energy
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norm. This coercivity (ellipticity) property together with a corresponding boundedness property,
consistency and approximation results for the IgA spaces yields the corresponding a priori dis-
cretization error estimate. A posteriori error estimates that can be used for space-time adaptivity
are derived in [34].

IgA was introduced in [25] as a new discretization methodology for PDE-based models. The
core idea of IgA is to use the same smooth and high-order superior finite dimensional B-spline or
NURBS spaces for parametrizing the computational domain and for approximating the solution
of the PDE model under consideration. IgA approaches have successfully been applied to the
solution of a wide range of linear and nonlinear problems. Their benefits have been highlighted in
many publications, see, e.g., the monograph [13], the survey paper [10] and the references therein.
Although results related to the approximate properties of B-splines and their use for discretizing
PDEs existed before, see, e.g., [48] and [23], the theoretical frame involving the parametrization
mappings has been started in [7], where the authors studied the approximation properties of B-
splines (NURBS) in bent Sobolev spaces. In particular, they showed that the mapped B-splines
have the same approximation order in terms of the mesh size h as the piecewise polynomials of
the same degree p, see also [9], [11], [10] for the generalization of these approximation results.

In this paper, we generalize the results of [35] from the single-patch to time-multipatch dis-
continuous Galerkin (dG) space-time IgA schemes. As in [35], we consider the linear parabolic
IBVP, find u : Q→ R such that

∂tu−∆u = f in Q, u = 0 on Σ, and u = u0 on Σ0, (1.1)

as a typical parabolic model problem posed in the space-time cylinder Q = Ω × [0, T ] = Q∪Σ ∪
Σ0 ∪ ΣT , where ∂t denotes the partial time derivative, ∆ is the Laplace operator, f is a given
source function, u0 are the given initial data, T is the final time, Q = Ω×(0, T ), Σ = ∂Ω×(0, T ),
Σ0 := Ω × {0}, ΣT := Ω × {T}, and Ω ⊂ Rd (d = 1, 2, 3) denotes the spatial computational
domain with the boundary ∂Ω. The spatial domain Ω is supposed to has a singlepatch NURBS
representation as is used in CAD [47]. More precisely, the space-time cylinder Q = ∪Nn=1Qn is
composed of N subcylinders (patches or time slices) Qn = Ω × (tn−1, tn), n = 1, . . . , N , where
0 = t0 < t1 < . . . < tN = T is some subdivision of time interval [0, T ]. The time faces between the
time patches are denoted by Σn = Qn+1∩Qn = Ω×{tn}, where ΣN = ΣT . Every space-time patch

Qn = Φn(Q̂) in the physical domain Q can be represented as the image of the parameter domain

Q̂ = (0, 1)d+1 by means of a sufficiently regular IgA (B-Spline, NURBS etc.) map Φn : Q̂ → Qn

that can be easily constructed from the spatial IgA map from Ω̂ = (0, 1)d to Ω. In particular, each
Qn can have its own mesh defined according to the characteristics of the problem. Therefore, the
IgA spaces Vh0, which we are going to use, are smooth in each time patch Qn, but discontinuous
across the time faces Σn. For stabilizing the time discretization, the method incorporates ideas of
streamline diffusion methodology. The continuity of the patch-wise defined approximate solutions
is ensured by introducing simple “up-wind” jump terms across the interfaces. The jump terms
do not include normal fluxes. This simplifies the error analysis. Moreover, the whole method
can easily be materialized on a parallel platform. We develop a thoroughly theoretical study of
the method. After defining the appropriate discontinuous B-spline spaces and after defining the
related discrete norm, we prove that the produced discrete bilinear form is coercive (elliptic) with
respect to this norm. This property ensures uniqueness and existence of the IgA solution. Based
on this ellipticity result, a related boundedness result and the consistency of the discrete bilinear
form, we can easily estimate the discretization error by the best approximation error with respect
to the discrete norm. With the help of the approximation results from [11] and [10], we derive
discretization error estimates taking into account that the exact solution can exhibit anisotropic
regularity behavior, i.e., different regularity properties with respect to the time and to the space
directions.

Finally, we have to solve one huge linear system Lhuh = fh of IgA equations defining all
control points in space and time all at once. The fast generation and the fast solution of this
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system is an issue. In our case, we can benefit from the special time-multipatch dG structure
of the discretization that leads to a block-bidiagonal system matrix Lh = blockbidiag(−Bi,Ai),
where the block-diagonal matrices Ai, i = 1, . . . , N , and the block-subdiagonal matrices Bi,
i = 2, . . . , N , have tensor product representations. These properties lead to a fast generation of
the matrix Lh. The block-bidiagonal structure of the system matrix Lh enables us to solve the
system sequentially from one space-time patch to the next space-time patch similar to a time
stepping scheme. However, we want to overcome this curse of sequentiality since we want to use
the power of massively parallel computers with hundred or thousands of cores to solve this system
efficiently. Similar to [19], we propose a space-time multigrid method that solves the complete
system Lhuh = fh in parallel. In fact, we use the space-time multigrid method as preconditioner in
a GMRES solver. The numerical results presented in the paper confirm not only our convergence
rate estimates but also show the efficiency of the generation and solver technology proposed in
the paper. The first numerical results for the lowest-order splines can be found in our proceedings
paper [36] where we consider the simplified case of same smoothness of the solution in space and
time.

The remainder of the paper is organized as follows. In Section 2, beside introducing some
notations and preliminaries, the stable time-multipatch dG space-time IgA scheme is derived.
Section 3 provides a complete a priori discretization error analysis, whereas Section 4 gives the
matrix representation of our time-multipatch dG space-time IgA scheme and describes the par-
allel space-time multigrid solver. Finally, we present and discuss some first numerical results in
Section 5, and draw some conclusions in Section 6.

2 The model problem and its stable space-time IgA scheme

2.1 Preliminaries

Let Ω be a bounded Lipschitz domain in Rd, d = 1, 2, or 3, with the boundary Γ = ∂Ω. For
any multi-index α = (α1, . . . , αd) of non-negative integers α1, . . . , αd, we define the differential
operator ∂αx = ∂α1

x1
. . . ∂αd

xd
, with ∂xj = ∂/∂xj, j = 1, . . . , d. For a non-negative integer `, C`(Ω)

denotes the space of all continuous functions v : Ω → R whose partial derivatives ∂αx v of all
orders |α| =

∑d
j=1 αj ≤ ` are continuous in Ω. As usual, L2(Ω) denotes the Lebesgue space for

which
∫
Ω
|v|2 dx <∞, endowed with the norm ‖v‖L2(Ω) =

( ∫
Ω
|v(x)|2 dx

) 1
2
, and L∞(Ω) denotes

the functions that are essentially bounded. We define the standard Sobolev space

H`(Ω) = {v ∈ L2(Ω) : ∂αx v ∈ L2(Ω) for all |α| ≤ `},

endowed with the norm
‖v‖H`(Ω) =

( ∑
0≤|α|≤`

‖∂αx v‖2
L2(Ω)

) 1
2 ,

whereas the trace space of H1(Ω) is denoted by H
1
2 (Γ ). Further, we introduce the subspace

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 onΓ} of all functions v from H1(Ω) with zero traces on Γ . Let

J = (0, T ) with some final time T > 0 be the time interval. For later use, we define the space-time
cylinder Q = Ω × J and its boundary parts Σ = ∂Ω × J , ΣT = Ω × {T} and Σ0 = Ω × {0}
such that ∂Q = Σ ∪Σ0 ∪ΣT , see an illustration in Fig. 1(a). Accordingly to the definition of ∂αx ,
we now define the spatial gradient ∇xv = (∂x1v, . . . , ∂xdv). Let ` and m be positive integers. For
functions defined in the space-time cylinder Q, we define the Sobolev spaces

H`,m(Q) = {v ∈ L2(Q) : ∂αx v ∈ L2(Q) for 0 ≤ |α| ≤ `, and ∂itv ∈ L2(Q), i = 1, ...,m}, (2.1)

and, in particular, the subspaces

H1,0
0 (Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, v = 0 onΣ} and (2.2)
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H1,1
0,0̄

(Q) ={v ∈ L2(Q) : ∇xv ∈ [L2(Q)]d, ∂tv ∈ L2(Q), v = 0 onΣ, v = 0 onΣT}. (2.3)

We equip the above spaces with the norms and seminorms

‖v‖H`,m(Q) =
( ∑
|α|≤`

‖∂(α1,...,αd)
x v‖2

L2(Q) +
m∑

m0=0

‖∂m0
t v‖2

L2(Q)

) 1
2 and (2.4a)

|v|H`,m(Q) =
( ∑
|α|=`

‖∂(α1,...,αd)
x v‖2

L2(Q) + ‖∂mt v‖2
L2(Q)

) 1
2 . (2.4b)

We recall Cauchy - Schwarz and Young’s inequalities∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ‖u‖L2(Ω)‖v‖L2(Ω) and

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ε

2
‖u‖2

L2(Ω) +
1

2ε
‖v‖2

L2(Ω) (2.5)

that hold for all functions u and v from L2(Ω) and for any fixed ε ∈ (0,∞). We also recall
Friedrichs’ inequality that we later need in the form

‖v‖L2(Q) ≤ CΩ‖∇xv‖L2(Q), (2.6)

that holds for all v ∈ H1(Q) with vanishing trace on Σ, see proof of Friedrichs’ inequality in [12].

In what follows, positive constants c and C appearing in inequalities are generic constants
which do not depend on the mesh-size h. In many cases, we will indicate on what may the
constants depend for an easier understanding of the proofs. Frequently, we will write a ∼ b
meaning that c a ≤ b ≤ C a with generic positive constants c and C.

2.2 The model parabolic problem

Using the standard procedure and integration by parts with respect to both x and t, we can easily
derive the following space-time variational formulation of (1.1): find u ∈ H1,0

0 (Q) such that

a(u, v) = l(v) for all v ∈ H1,1
0,0̄

(Q), (2.7)

with the bilinear form

a(u, v) = −
∫
Q

u(x, t)∂tv(x, t) dx dt+

∫
Q

∇xu(x, t) · ∇xv(x, t) dx dt (2.8)

and the linear form

l(v) =

∫
Q

f(x, t)v(x, t) dx dt+

∫
Ω

u0(x)v(x, 0) dx, (2.9)

where the source f ∈ L2(Q) and the initial conditions u0 ∈ L2(Ω) are given.

For simplicity, we only consider homogeneous Dirichlet boundary conditions on Σ. However,
the analysis presented in our paper can easily be generalized to other constellations of boundary
conditions. The space-time variational formulation (2.7) has a unique solution, see, e.g, [31] and
[32]. In these monographs, beside existence and uniqueness results, one can also find useful a
priori estimates and regularity results.

Assumption 2.1 We assume that the solution u of (2.7) belongs to V = H1,0
0 (Q)∩H`,m(Q) with

some ` ≥ 2 and m ≥ 1.
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2.3 B-spline spaces and patch parametrizations

In this section, we briefly present the B-spline spaces and the form of the B-spline parametrizations
for the physical space-time patches (subdomains). We refer to [13], [14] and [48] for a more detailed
introduction to B-splines.

To describe more clearly the basic materials, we start with presenting the B-spline spaces for
the univariate case. Let the integer p denotes the B-spline degree and the integer n1 denotes the
number of the basis functions. Consider, Z = {0 = z1, z2, . . . , zM = 1} to be a partition of [0, 1]
with [zj, zj+1], j = 1, . . . ,M − 1 to be the intervals of the partition. Based on Z, we consider
a knot-vector Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn1+p+1 = 1} and the associated vector of the knot
repetitions M = {m1, . . . ,mM}, this means,

Ξ = {0 = ξ1, . . . ξm1︸ ︷︷ ︸
=z1

, ξm1+1 = . . . = ξm1+m2︸ ︷︷ ︸
=z2

, . . . , ξn1+p+1−mM
, . . . , ξn1+p+1 = 1︸ ︷︷ ︸
=zM

}. (2.10)

We assume that mj ≤ p for all internal knots. The B-spline basis functions are defined by the
Cox-de Boor formula

Bi,p =
x− ξi
ξi+p − ξi

Bi,p−1(x) +
ξi+p+1 − x
ξi+p+1 − ξi+1

Bi+1,p−1(x) (2.11)

where Bi,0(x) = 1 if ξi ≤ x ≤ ξi+1, and 0 otherwise.
The multivariate B-spline spaces can be derived through tensor product procedures of the

univariate spaces. Let us consider the unit cube Q̂ = (0, 1)d+1 ⊂ Rd+1, which we will refer to as
the parametric domain. Following the same steps, let the integers pk and nk, which denote the
given B-spline degree and the number of basis functions of the B-spline space in xk-direction with
k = 1, . . . , d + 1. We introduce the corresponding open-knot vectors Ξk

n = {0 = ξk1 ≤ ξk2 ≤ . . . ≤
ξknk+p+1 = 1}, the vectors Zk and Mk. We associate with each knot vector Ξk the B-spline basis

functions B̂Ξk,pk of degree pk, for k = 1, . . . , d + 1. On the parametric domain Q̂, we define the

tensor-product B-spline space B̂Ξd+1
n ,p = ⊗d+1

k=1B̂Ξk
n,p

, where Ξd+1
n = (Ξ1

n, . . . , Ξ
k
n, . . . , Ξ

d+1
n ),.

The decomposition into space-time patches In practice, it is usually more convenient to
describe the computational domain as a union of subdomains (patches) and to develop a multi-
patch IgA approach. For our case, we will describe the space-time cylinder Q as a union of non-
overlapping space-time patches Q1, Q2, . . . , QN . Consider a partition 0 = t0 < t1 < ... < tN = T
of [0, T ] and let Jn = (tn−1, tn). We define Qn = Ω × Jn and Σn = Qn+1 ∩Qn = Ω × {tn} where
we identify ΣT and ΣN . In that way, we have

Q =
N⋃
n=1

Qn, with Qn+1 ∩Qn = Σn. (2.12)

A schematic illustration for the general case Q ⊂ Rd+1 is presented in Fig. 1(a), for the case of
Q ⊂ R2 in Fig. 1(b), and for Q ⊂ R3 in Fig. 1(c). We proceed below by defining the approximation
B-spline spaces in every Qn as well the corresponding parametrizations.

Let us assume for simplicity that the B-spline degree is the same for all directions and for
all the patches, i.e., pn,k = p for k = 1, . . . , d + 1, and let the integer nk denote the the number
of basis functions of the B-spline space in xk-direction, respectively. For every Qn,n = 1, . . . , N ,
we introduce the (d + 1)−dimensional vector of knots Ξd+1

n = (Ξ1
n, . . . , Ξ

k
n, . . . , Ξ

d+1
n ), with the

particular components given by Ξk
n = {0 = ξk1 ≤ ξk2 ≤ . . . ≤ ξknk+p+1 = 1}. For all the internal

knots, we assume that mk
j ≤ p, with mk

j to be the associated multiplicities. The components Ξk
n

of Ξd+1
n form a mesh T

(n)

hn,Q̂
= {Êm}Mn

m=1 in Q̂, where Êm are the micro elements and hn is the mesh

size, which is defined as follows: given a micro element Êm ∈ T
(n)

hn,Q̂
, we set ĥÊm

= diam(Êm),
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and we define ĥn = max{ĥÊm
}. We set ĥ = max

n=1,...,N
{ĥn}. We refer the reader to [13] for more

information about the meaning of the knot vectors in CAD and IgA.
Given the knot vector Ξk

n in every direction k = 1, . . . , d + 1, we construct the associated

univariate B-spline basis, B̂Ξk
n,p

= {B̂(n)
1,k (x̂k), . . . , B̂

(n)
nk,k

(x̂k)} using the Cox-de Boor recursion

formula (2.11), see, also [13] and [14] for more details. Accordingly, on the mesh T
(n)

hn,Q̂
, the basis

functions of the multivariate B-spline space B̂Ξd+1
n ,p are defined by the tensor-product of the

corresponding univariate B-spline basis functions of B̂Ξk
n,p

spaces, that is

B̂Ξd+1
n ,p = ⊗d+1

k=1B̂Ξk
n,p

= span{B̂(n)
j (x̂)}nB=n1·...·nk·...·nd+1

j=1 , (2.13)

where each B̂
(n)
j (x̂) has the form

B̂
(n)
j (x̂) =B̂

(n)
j1

(x̂1) · . . . · B̂(n)
jk

(x̂k) · . . . · B̂(n)
jd

(x̂d), with B̂
(n)
jk

(x̂k) ∈ B̂Ξk
n,p
. (2.14)

According to the IgA approach, every patch is described as a parametrization mapping by means
of the a B-spline space defined in the in the parametric domain and the control grid. Precisely
for our case, we assume that we are given the net of the control points C

(n)
j related to Qn, and

we parametrize each space-time patch Qn by

Φn : Q̂→ Qn, x = Φn(x̂) =

nB∑
j=1

C
(n)
j B̂

(n)
j (x̂) ∈ Qn, (2.15)

where x̂ = Φ−1
n (x), n = 1, . . . , N , cf. [13]. For every Qn, n = 1, . . . , N , we construct a mesh

T
(n)
hQn ,Qn

= {Em}Mn
m=1, where the elements Em are the images of Êm ∈ T

(n)

hn,Q̂
under Φn, i.e.,

Em = Φn(Êm). Also, for each E ∈ T
(i)
hi,Ωi

, we denote its support extension by Ẽ, where the
support extension is defined to be the interior of the set formed by the union of the supports
of all B-spline functions whose supports intersects E. Accordingly to the parametric mesh, we
denote hEm = diam(Em) and define hQn = max{hEm : Em ∈ T (n)

hQn ,Qn
}, and the global physical

mesh size is h = maxhQn . For n = 1, . . . , N , we construct the B-spline space BΞd+1
n ,p on Qn by

BΞd+1
n ,p := span{B(n)

j |Qn : B
(n)
j (x) = B̂

(n)
j ◦Φ−1

n (x), for j = 1, . . . , nB}. (2.16)

The global B-spline space Vh with components on every BΞd
i ,p

is defined by

Vh := V
(1)
h1
× . . .× V (N)

hN
:= BΞd+1

1 ,p × . . .× BΞd+1
N ,p. (2.17)

Assumption 2.2 The meshes T
(n)

hn,Q̂
are uniform, i.e., for every Ê ∈ T (n)

hn,Q̂
there exist a number

γn > 0 such that γn ≤ ĥn/ρÊ, where ρÊ is the radius of the inscribed circle of Ê.

Remark 2.1. Since the parametrizations Φn, n = 1, . . . , N , are fixed, under the Assumption 2.2,
we have that ĥn ∼ hQn . Thus, below, we will use hn, for denoting any of the mesh sizes, parametric
or physical. For simplicity, we assume that hn ≤ 1 for all n = 1, . . . , N .

The parametrization mappings Φn, n = 1, . . . , N can be considered to be bi-Lipschitz homeomor-
phisms, [10]. For simplifying the analysis, we further consider the following regularity properties
on Φn, n = 1, . . . , N .

Assumption 2.3 Assume that every Φn and Φ−1
n , n = 1, ..., N , are sufficiently smooth, (C1

diffeomorphisms), and there exist constants 0 < c < C such that c ≤ | det JΦn| ≤ C, where JΦn

is the Jacobian matrix of Φn, i.e., JΦn =
∂(Φn,1, . . . ,Φn,d+1)

∂(x̂1, . . . , t̂)
.
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Assumption 2.3 helps on simplifying the form of the constants, which appear in the relations
between the norms of the pull-back solution and the physical relevant solution.

Corollary 2.1. Let the Assumption 2.3 and let u ∈ H`,m(Q) with ` ≥ 2 and m ≥ 1. Then its

pull-back û = u ◦ Φn ∈ H1,1(Q̂) and there exist constants c1 and c2 depending only on Φn and
Φ−1
n and not on u, such that c1‖û‖H1,1(Q̂) ≤ ‖u‖H1,1(Qn) ≤ c2‖û‖H1,1(Q̂).

Σ
0

Σ
T

Rd

Ω

Σ

t

T

Ξ
n
k=1Ξ

n
k=2

Ξ
n
k=3

Q

Q
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Φ
n

Space time 
Cylinder Q

(a)

T

    t

u(x,t)

t
n

t
n+1

   Ω
Σ

n Σ
n+1

u(x,0)

Q
n+1

X

(b)

Ω

T

t

t
n

t
n+1
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Σ
n

Σ
n+1

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

(0,0,0

Q
n+1

(c)

Fig. 1. (a) The decomposition of the space type cylinder Q into space-time patches Qn, together with the mesh in the

parametric domain Q̂ produced by the knot-vectors Ξk
n, (b) The space-time patches Qn with their interfaces and the graph

of u(x, t) for the case of Q ⊂ R2, (c) The space-time patches Qn with their interfaces and the graph of u(x, t) for the case
of Q ⊂ R3.

To keep the notation simple, in what follows, we will use the notation TN(Q) := {Q1, Q2, . . . , QN}
for the decomposition (2.12) and the sup-index n to denote the restrictions to Qn, e.g., un := u|Qn .
We denote the global discontinuous B-spline space and the local continuous patch-wise B-spline
spaces by

V0h ={vh ∈ L2(Q) : vh|Qn ∈ BΞd+1
i ,p(Qn), forn = 1, . . . , N, and vh|Σ = 0}, (2.18a)

V
(n)

0h ={vh ∈ BΞd+1
i ,p(Qn), forn = 1, . . . , N, and vh|Σ = 0}. (2.18b)

Notice that vh ∈ V0h is discontinuous across Σn. We introduce the notation

vnh,+ = lim
ε→0+

vh(tn + ε), vnh,− = lim
ε→0−

vh(tn + ε), JvhKn = vnh,+ − vnh,−, JvhK0 = v0
h,+, (2.19)

where JvhKn denotes the jump of vh across Σn for n ≥ 1, and JvhK0 = v0
h,+ denotes the jump across

Σ0. Decomposition (2.12) helps us to consider N local problems posed on each space-time patch
Qn. In view of (2.19), for a smooth function u we have that JuKn = un+ − un− = 0 forn ≥ 1, and
accordingly define JuK0 = u|Σ0 .

2.4 Stable multipatch space-time dG IgA discretization

Let us consider the space-time patchQn, with the outer normal to ∂Q to be n = (n1, . . . , nd, nd+1) =

(nx, nt). For the being time, we assume that un−1 is known. Let vnh ∈ V
(n)

0h and wnh = vnh+θn hn∂tv
n
h

with some positive parameter θn, that will be defined later. Note that wnh
∣∣
Σ

= 0. Multiplying
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∂tu − ∆u = f by wnh , integrating over Qn, and applying integration by parts, we arrive at the
variational identity

aQn(u, vnh) =

∫
Qn

∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h dx dt (2.20)

−
∫
∂Qn

nx · ∇xu(vnh + θn hn∂tv
n
h) ds+

∫
Σn−1

un−1
+ vn−1

h,+ ds

=

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σn−1

un−1
− vn−1

h,+ ds, for 1 ≤ n ≤ N,

where we used that un−1
− = un−1

+ = un−1 on every Σn. Furthermore, using that nx|Σn = 0, and
wh = 0 on Σ, we have

aQn(u, vnh) =

∫
Qn

∂t u (vnh + θn hn∂tv
n
h) +∇x u · ∇x v

n
h + θn hn∇xu · ∇x∂tv

n
h dx dt (2.21a)

+

∫
Σn−1

JuKn−1 vn−1
h,+ ds =

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt,

for all n = 1, . . . , N . Summing over all Qn, we conclude that

a(u, vh) =
∑N

n=1 aQn(u, vnh) =
∑N

n=1

∫
Qn
f (vnh + θn hn∂tv

n
h) dx dt, (2.21b)

where above the a(·, ·) is considered to be the global bilinear form. Now, the space-time dG IgA
variational scheme for (1.1) can be formulated as follows: Find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (2.22a)

where

ah(uh, vh) =
N∑
n=1

aQn(uh, w
n
h)

=
N∑
n=1

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x u

n
h · ∇x v

n
h + θn hn∇xu

n
h · ∇x∂tv

n
h dx dt

+
N∑
n=2

∫
Σn−1

JuhKn−1 vn−1
h,+ ds+

∫
Σ0

JuhK0v0
h,+ ds,

lh(vh) =
N∑
n=1

∫
Qn

f (vnh + θn hn∂tv
n
h) dx dt+

∫
Σ0

u0 v
0
h,+ ds,

(2.22b)

where J·K is as in (2.19). Below for simplifying the jump expressions, we use the consolidated
expression

∑N
n=1

∫
Σn−1

JuhKn−1 vn−1
h,+ ds.

The classical properties for the discrete bilinear form. We cite a few auxiliary results that
will be used in the error analysis below. For the proofs, we refer to [7], [15], [9], see also discussion
in [37].

Lemma 2.1. Let the patch Qn ∈ TN(Q), and let v ∈ H1(Qn), vh ∈ BΞd+1
n ,p and E ∈ T

(n)
hn,Qn

.
Then there are positive constants Ctr, Cinv,0 and Cinv,1 depending on Φn and the quasi-uniform

properties of T
(n)
hn,Qn

, such that

‖v‖2
L2(∂E) ≤Ctrh−1

n

(
‖v‖L2(E) + hn |v|H1(E)

)2
, (2.23a)

‖vh‖2
L2(∂E) ≤Cinv,0h−1

n ‖vh‖2
L2(E), (2.23b)

‖∇vh‖2
L2(E) ≤Cinv,1h−2

n ‖vh‖2
L2(E). (2.23c)
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By the inequalities (2.23), we can easily infer that

‖∂tvh‖2
L2(∂E) ≤ Cinv,1h

−2
n ‖vh‖2

L2(E), and ‖∂t∂xivh‖2
L2(∂E) ≤ Cinv,1h

−2
n ‖∂xivh‖2

L2(E). (2.24)

Motivated by (2.22b), we define the norm on V0h

‖v‖dG =
( N∑
n=1

(
‖∇xv‖2

L2(Qn) + θn hn ‖∂tv‖2
L2(Qn) +

1

2
‖JvKn−1‖2

L2(Σn−1)

)
+

1

2
‖v‖2

L2(ΣN )

) 1
2
. (2.25)

Lemma 2.2. The discrete bilinear form ah(·, ·) defined in (2.22b) is V0h-elliptic, i.e., holds

ah(vh, vh) ≥ Ce‖vh‖2
dG, for vh ∈ V0h, (2.26)

where Ce = 1
2

for θn ≤ C−2
inv,0.

Proof. Using Green’s formula

∫
Qn

∂tvh vh + vh ∂tvh dx dt =

∫
∂Qn

ntv
2
h ds, we obtain the identity

∫
Qn

∂tvh vh =
1

2

∫
Qn

∂t v
2
h dx dt =

1

2

∫
Σn

(vh,−)2 ds− 1

2

∫
Σn−1

(vh,+)2 ds. (2.27)

The definition of aQn and identity (2.27) yield

aQn(vh, vh) =

∫
Qn

1

2
∂tv

2
h + θnhn(∂tvh)

2 + |∇xvh|2 +
θnhn

2
∂t|∇xvh|2 dx dt+

∫
Σn−1

JvhKn−1vn−1
h,+ ds

=

∫
Qn

θnhn(∂tvh)
2 + |∇xvh|2 dx dt+

∫
∂Qn

θnhn
2
|∇xvh|2nt

+

∫
Σn−1

(
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+ −

1

2
(vn−1
h,+ )2

)
ds+

1

2

∫
Σn

(vnh,−)2 ds

=θnhn‖∂tvh‖2
L2(Qn) + ‖∇xvh‖2

L2(Qn) +
θnhn

2

(
‖∇xvh‖2

L2(Σn) − ‖∇xvh‖2
L2(Σn−1)

)
+

∫
Σn−1

(
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+ −

1

2
(vn−1
h,+ )2

)
ds+

1

2

∫
Σn

(vnh,−)2 ds

≥θnhn‖∂tvh‖2
L2(Qn) + ‖∇xvh‖2

L2(Qn) −
θnhn

2
‖∇xvh‖2

L2(Σn−1)

+

∫
Σn−1

(1

2
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+

)
ds+

1

2

∫
Σn

(vnh,−)2 ds

≥θnhn‖∂tvh‖2
L2(Qn) +

(
1−

θnC
2
inv,0

2

)
‖∇xvh‖2

L2(Qn)

+

∫
Σn−1

(1

2
(vn−1
h,+ )2 − vn−1

h,− vn−1
h,+

)
ds+

1

2

∫
Σn

(vnh,−)2 ds, (2.28)

where we have used (2.23) at the last step in (2.28). Summing over all Qn, and using (2.19), we
obtain

ah(vh, vh) =
N∑
n=1

aQn(vh, vh) ≥
N∑
n=1

θnhn‖∂tvh‖2
L2(Qn) +

(
1−

θnC
2
inv,0

2

)
‖∇xvh‖2

L2(Qn)

+
N∑
n=1

1

2
‖JvhKn−1‖2

L2(Σn−1) +
1

2
‖vNh,−‖2

L2(ΣN ).

Choosing 0 < θn ≤ C−2
inv,0 the result follows easily by setting Ce = 1

2
. �
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Remark 2.2 (a-priori bound). Using the discrete solution uh as test function in (2.22a), the in-
equalities defined in (2.5) and (2.6) yield

Ce‖uh‖2
dG ≤ ah(uh, uh) ≤

∣∣lh(uh)∣∣ ≤ ∣∣∣ N∑
n=1

∫
Qn

f (unh + θnhn∂tu
n
h) dx dt

∣∣∣+
∣∣∣ ∫

Σ0

u0 u
0
h,+ ds

∣∣∣
≤‖f‖L2(Q)

( N∑
n=1

‖unh‖2
L2(Qn)

) 1
2 +

N∑
n=1

(θnhn)
1
2‖f‖L2(Qn) (θnhn)

1
2‖∂tunh‖L2(Qn) + ‖u0‖L2(Σ0)‖u0

h,+‖L2(Σ0)

≤‖f‖L2(Q)

( N∑
n=1

CΩ‖∇xu
n
h‖2

L2(Qn)

) 1
2

+ θmaxh‖f‖L2(Q)

( N∑
n=1

θnhn‖∂tunh‖2
L2(Qn)

) 1
2

+
√

2‖u0‖L2(Σ0)‖uh‖DG

≤
√

2cstab

(
‖f‖L2(Q) + ‖u0‖L2(Σ0)

)
‖uh‖dG,

(2.29)

where h = maxn{hn}, and cstabl depends on the constants in (2.6) and on θmax = maxn{θn}. By
(2.29), we can immediately get the a-priori bound ‖uh‖dG ≤ C

(
‖f‖L2(Q) + ‖u0‖L2(Σ0)

)
.

Later, in the discretization error analysis, we need continuity properties for ah(·, ·). Let V and
V0h are the spaces defined in Assumption 2.1 and in (2.18). We define the space V0h,∗ = V + V0h

endowed with the norm

‖v‖dG,∗ =
(
‖v‖2

dG +
N∑
n=1

(θnhn)−1‖v‖2
L2(Qn) +

N∑
n=2

‖vn−1
− ‖2

L2(Σn−1)

) 1
2
. (2.30)

Lemma 2.3. Let u ∈ V0h,∗. Then for vh ∈ V0h holds

ah(u, vh) ≤ cb‖u‖dG,∗‖vh‖dG, (2.31)

where cb = max(Cinv,1 θmax, 2) with θmax = maxn{θn} ≤ C−2
inv,0.

Proof. We recall (2.19) and JuK0 = u|Σ0 . For the first and the interface jump terms of ah, we use
(2.27) and (2.5) and obtain

N∑
n=1

(∫
Qn

∂tu vh dx dt+

∫
Σn−1

JuKn−1 vn−1
h,+ ds

)
=−

N∑
n=1

∫
Qn

u ∂tvh dx dt+
N∑
n=1

(∫
Σn

u vh ds−
∫
Σn−1

u vh ds+

∫
Σn−1

JuKn−1 vn−1
h,+ ds

)
≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2) 1
2

+
N∑
n=2

∫
Σn−1

(vn−1
h,− − v

n−1
h,+ )un−1

− ds+

∫
ΣN

vnh,−u
n
− ds

≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2) 1
2

+
( N∑
n=2

‖vn−1
h,− − v

n−1
h,+ ‖

2
L2(Σn−1)

) 1
2
( N∑
n=2

‖un−1
− ‖2

L2(Σn−1)

) 1
2

+ ‖uN−‖L2(ΣN )‖vNh,−‖L2(ΣN )

≤
( N∑
n=1

(θnhn)−1
(∫

Qn

u2 dx dt
)2) 1

2
( N∑
n=1

θnhn

(∫
Qn

∂tv
2
h dx dt

)2) 1
2

+
√

2
(1

2

N∑
n=1

‖JvhKn−1‖2
L2(Σn−1) +

1

2
‖vNh ‖2

L2(ΣN )

) 1
2
√

2
( N∑
n=2

‖un−1
− ‖2

L2(Σn−1) +
1

2
‖uN−‖2

L2(ΣN )

) 1
2
.

(2.32)
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For the second term, an application of Cauchy-Schwartz yields

N∑
n=1

∫
Qn

(θnhn)
1
2∂tu (θnhn)

1
2∂tvh dx dt+

N∑
n=1

∫
Qn

∇xu · ∇xvh dx dt (2.33)

≤
( N∑
n=1

θnhn‖∂tu‖2
L2(Qn)

) 1
2
( N∑
n=1

θnhn‖∂tvh‖2
L2(Qn)

) 1
2

+
( N∑
n=1

‖∇xu‖2
L2(Qn)

) 1
2
( N∑
n=1

‖∇xvh‖2
L2(Qn)

) 1
2
.

For the last term, we apply Cauchy-Schwartz and inverse inequalities to show

N∑
n=1

∫
Qn

∇xu · (θnhn)∇x∂tvh dx dt ≤
( N∑
n=1

‖∇xu‖2
L2(Qn)

) 1
2
( N∑
n=1

(θnhn)2

d∑
i=1

∫
Qn

(∂t∂xivh)
2 dx dt

) 1
2

≤
( N∑
n=1

‖∇xu‖2
L2(Qn)

) 1
2
( N∑
n=1

(θnhn)2Cinv,1h
−2
n

d∑
i=1

∫
Qn

(∂xivh)
2 dx dt

) 1
2

(2.34)

≤Cinv,1θmax
( N∑
n=1

‖∇xu‖2
L2(Qn)

) 1
2
( N∑
n=1

‖∇xvh‖L2(Qn)

) 1
2
,

where θmax = maxn{θn} ≤ C−2
inv,0. Gathering together the bounds (2.32), (2.33) and (2.34) and

setting cb = max(Cinv,1 θmax, 2) yields the desired result. �

Lemma 2.4. Let Assumption 2.1 and let uh ∈ V0h be the dG IgA solution of (2.22a). Then

ah(u− uh, vh) = 0, for vh ∈ V0h. (2.35)

Proof. Let vh ∈ V0h. Since u ∈ V and wh = (vh + θnhn∂tvh)|Σ = 0 then
∫
Σn−1

JunKvh ds = 0, for

2 ≤ n ≤ N . Moreover, u satisfies (2.21b). Comparing (2.21) and (2.22), we can infer (2.35). �

3 A priori discretization error analysis

Based on the quasi-interpolation estimates presented in [7],[10], see also [48] and [37], we construct

below quasi-interpolants Π
(n)
h : H`,m(Qn)→ BΞd+1

i ,p(Qn), for n = 1, . . . , N , suitable for providing

anisotropic interpolation estimates. Utilizing these estimates, we show the desirable anisotropic
error estimates at the end of this section.

3.1 Multivariate quasi interpolants in Q̂

Let Z = {0 = z1, z2, . . . , zM = 1} be a partition of I = (0, 1) with Ij = (zj, zj+1), j = 1, . . . ,M−1
to be the intervals of the partition and with mesh size h = maxj{|Īj|}. Based on Z, we consider
a knot-vector Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 = 1} and the associated vector of the knot
multiplicities M = {m1, . . . ,mM}. Let the integers s, ` be such that 0 ≤ s ≤ ` ≤ p + 1 and let
f ∈ H`(I). Based on the quasi-interpolation estimates presented in [48], [10], we can construct a

quasi-interpolant Π̂h : H`(I)→ B̂Ξ,p(I), such that the following interpolation estimate holds true

|f − Π̂hf |Hs(I) ≤ Ch`−s ‖f‖H`(I), (3.1)

where the constant C > 0 depends on p and uniformity parameters of the partition. The previ-
ous construction of the univariate quasi-interpolation can be extended to the multi-dimensional
case by applying tensor-product construction procedures as those presented in Section 2.3. For
example, let f ∈ H`(Q̂) with ` ≥ 1, and for k = 1, . . . , d + 1, let Π̂Ξk

n
be the corresponding k-th
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univariate quasi-interpolant onto B̂Ξk
n
. We construct the multi-dimensional B-spline interpolant

Π̂Ξd+1
n

as

Π̂Ξd+1
n
f = ⊗d+1

k=1Π̂Ξk
n
f. (3.2)

The general quasi-interpolation properties of the produced multivariate B-spline interpolants are
inherited by the corresponding properties of the univariate interpolants. We refer to [48], [7] and
[10], for a comprehensive analysis for constructing tensor-product B-spline interpolants.

3.2 Anisotropic quasi-interpolation in space-time patches Qn

Let f ∈ H`,m(Q), with ` ≥ 2 and m ≥ 1, and as usual we denote by fn = f |Qn , for n = 1, . . . , N its

restriction on the space-time patches. Further, we denote by f̂n = f ◦Φn its pull-back function. We
note that f̂n in general does not inherit the regularity of f but rather belongs to a bent-Sobolev
space

H`(Q̂) = H`1(I)⊗ . . .⊗H`d(I)⊗H`d+1(I), (3.3)

that allows less regularity across the microelement interfaces, where in (3.3),H`i(I), i = 1, . . . , d+
1 are the corresponding univariate bent-Sobolev spaces, [7, 10]. For showing the anisotropic quasi-
interpolation estimates of interest, we have been strongly inspired by the results presented in [11]
and in [10], which are suitable for anisotropic meshes. The generalization here is that we give
anisotropic interpolation estimates that follow the anisotropic regularity of the solution. In the
spirit of (3.2), we define in Q̂, the interpolant Π̂Ξd+1

n
f̂n of the pull-back f̂n. For simplicity, we

shall write Π̂
(n)
h instead of Π̂Ξd+1

n
. Accordingly, we define in the space-time patches Q̂n the quasi-

interpolant of fn as Π
(n)
h fn =

(
Π̂

(n)
h f̂n

)
◦Φ−1

n . By extension, we can define the global interpolant

Πh : H`,m(Q) → Vh as, (Πhf)|Qn = Π
(n)
h fn, see e.g., [10]. Before giving estimates on how well

Π̂
(n)
h f approximates f ∈ H`,m(Q), some terminology is required.

We recall by Section 2.1 the definition of the differential operator D(α,m), that is,

D(α,m)f := D(α1,...,αd,m)f =
∂α1 . . . ∂αd∂m

∂xα1
1 . . . ∂xαd

d ∂t
m
f. (3.4)

In order to derive the anisotropic estimate, we need to introduce the derivatives with respect to
the coordinate system that is naturally introduced by the mappings Φn : Q̂ → Qn, see (2.15).
We note again that, the mappings Φn are constructed on relatively coarse meshes and are highly
smooth (polynomials) on the microelements of those meshes.

We recall that the columns of the Jacobian matrix of Φn, see (2.15) and Assumption 2.3, have
the form [∂Φn,1

∂x̂i
, . . . ,

∂Φn,d
∂x̂i

,
∂Φn,d+1

∂x̂i

]>
=
[∂Φn,1
∂x̂i

, . . . ,
∂Φn,d
∂x̂i

, 0]>, (3.5)

where we have used above that
∂Φn,d+1

∂x̂i
= 0 for i = 1, . . . , d, which easily follows by the tensor-

product constructing properties of each Φn. Denote gn,i(x, t) =
[
∂Φn,1

∂x̂i
(Φ−1

n (x, t)), . . . ,
∂Φn,d

∂x̂i
(Φ−1

n (x, t)), 0
]
.

We introduce the derivatives of f with respect to the spatial Φn coordinates. The first derivatives
are just the directional derivatives with respect to gn,i for i = 1, . . . , d, i.e.,

∂f(x, t)

∂gn,1
=∇f(x, t) · gn,1(x, t),

...

∂f(x, t)

∂gn,d
=∇f(x, t) · gn,d(x, t).

(3.6a)
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The “one-directional” high-order derivatives are defined accordingly as

∂αif

∂gαi
n,i

=
∂

∂gn,i

(
...
( ∂f

∂gn,i

))
︸ ︷︷ ︸

αi−times

. (3.6b)

Let the multi-index α = (α1, . . . , αd) be defined as in Section 2.1. In dealing with multi-direction
derivatives, we introduce the notation

xα,q =xα1
1 , . . . , x

αd
d , x

q
d+1, with x ∈ Rd+1, q ∈ N0, (3.7a)

Dα
Φn
f =

∂α1

∂gα1
n,1

. . .
∂αdf

∂gαd
n,d

, Dα,q
Φn
f =

∂α1

∂gα1
n,1

. . .
∂αdf

∂gαd
n,d

∂αqf

∂gqn,d+1

. (3.7b)

In relation to the Dα,q
Φn
f derivatives, we define the norms and seminorms

‖f‖2
Hα,q

Φn
(Qn) =

α1∑
s1=0

. . .

αd∑
sd=0

q∑
sd+1=0

|f |2Hα,q
Φn

(Qn),

|f |2Hα,q
Φn

(Qn) =
∑

E∈T (n)
hn,Qn

|f |2Hα,q
Φn

(E),
(3.8)

where

|f |2Hα,q
Φn

(E) =‖Dα,q
Φn
f‖L2(E).

We introduce the space Hα,q
Φn

(Qn) endowed with the norm ‖ · ‖Hα,q
Φn

(Qn) = ‖ · ‖Hα,q
Φn

(Qn). Below, we

show the relation between the gn,i directional derivative norms and norms of the usual partial
derivatives.

Proposition 3.1. Let f : Q → R be a smooth function and let the Assumption 2.3 and the
multi-index α such that |α| = 1. For all E ∈ T (n)

hn,Qn
we have the relations

‖Dαf‖L2(E) ∼
∑
|α|=1 ‖D

α,0
Φn
f‖L2(E), (3.9a)

‖f‖H`,m(E) ∼
∑
|α|=1‖f‖H`α,m

Φn
(E), (3.9b)

where the associated constants depend on p, γ, gn,i and Φn.

Proof. The inequalities (3.9) follow by definition (3.8) and (3.6). �

Assumption 3.1 For simplicity, we assume that p+ 1 ≥ max(`,m), cf. Assumption 2.1.

Theorem 3.1. Let the multi-index α such that |α| = 1. Let the Assumptions 2.2, 2.3 and 3.1

hold and let E ∈ T (n)
hn,Qn

and Ẽ be its support extension. Furthermore, let f ∈ H`,m(Qn) with ` ≥ 2
and m ≥ 1. Then, the quasi-interpolation estimates(∑

E∈T (n)
hn,Qn

|∇x(f −Π(n)
h f)|2L2(E)

) 1
2 ≤Cx

(
h`−1
n + hmn

)
‖f‖H`,m(Qn), (3.10a)(∑

E∈T (n)
hn,Qn

|∂t(f −Π(n)
h f)|2L2(E)

) 1
2 ≤Ct

(
h`n + hm−1

n

)
‖f‖H`,m(Qn), (3.10b)(∑

E∈T (n)
hn,Qn

|f −Π(n)
h f |2L2(E)

) 1
2 ≤C0

(
h`n + hmn

)
‖f‖H`,m(Qn), (3.10c)

holds, with Cx, Ct and C0 depending only on d, p, γ,gn,i and Φn.
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Proof. We noted above that the last component of gn,i is equal to zero. This implies that the

derivatives ∂f(x,t)
∂gn,i

, see (3.6), do not include terms like ∂f
∂t

. Since f ∈ H`,m(Q), we have that

f ∈ H`α,0
Φn

(Qn) ∩ H0,m
Φn

(Qn), where α is a multi-index with d-components such that |α| = 1.
Making use of the interpolation results presented in [10], see Theorem 4.18, we have

‖Dα,0
Φn

(f −Π(n)
h f)‖L2(E) ≤ c1

(
h`−1
n + hmn

)∑
|α|=1‖f‖H`α,m

Φn
(Ẽ). (3.11)

Using (3.9) and (3.11), we can derive the following interpolation estimate

‖∇x(f −Π(n)
h f)‖L2(E) ≤ c2

∑
|α|=1‖D

α,0
Φn

(f −Π(n)
h f)‖L2(E) ≤ c3

(
h`−1
n + hmn

)
‖f‖H`,m(Ẽ), (3.12)

with c2 and c3 depending on d, p, γ,Φn. In (3.12) summing over all E ∈ T (n)
hn,Qn

, we have that∑
E

‖∇x(f −Π(n)
h f)‖2

L2(E) ≤c4

(
h`−1
n + hmn

)2 ∑
E

‖f‖H`,m(Ẽ),

≤c5

(
h`−1
n + hmn

)2 ∑
E

∑
E′∈Ẽ

‖f‖H`,m(E′) (3.13)

where c4 and c5 depend on the constant c3. Now, we observe that the last double sum in (3.13) con-

sists of repeated element norm terms as ‖f‖H`,m(E). More precisely, for every element E ∈ T (n)
hn,Qn

,
the related norm term ‖f‖H`,m(E) appears as many times in (3.13) as the number of the extension

supports Ẽ, lets say ENb,Ẽ, where the element E belongs. By the constructing nature of B-splines,
ENb,Ẽ depends on the underlying B-spline degree and the knot repetitions mi, i.e., the smoothness
of B-splines across the microelement interfaces. Setting Emax,Ẽ = max

E∈T (n)
hn,Qn

{ENb,Ẽ}, inequality

(3.13) gives

∑
E

‖∇x(f −Π(n)
h f)‖2

L2(E) ≤c5Emax,Ẽ

(
h`−1
n + hmn

)2

‖f‖H`,m(E) (3.14)

≤C2
x

(
h`−1
n + hmn

)2

‖f‖H`,m(Qn),

and estimate (3.10a) follows. Following similar procedure, we can show the estimates (3.10b) and
(3.10c). �

Proposition 3.2. Let ` ≥ 2 and m ≥ 1 be integers and let f ∈ H`,m(Q). Let the Assumptions
2.2, 2.3 and 3.1 hold, furthermore let Πn

hf be the corresponding quasi-interpolant defined above.
Then there exist constants C∗i , i = 1, 2 independent of f and h but dependent on the constants of
(2.23) and on (3.10) such that

‖f −Π(n)
h f‖L2(∂Qn) ≤ C∗1

(
h
`− 1

2
n + h

m− 1
2

n

)
‖f‖H`,m(Qn), (3.15a)

‖f −Πhf‖dG,∗ ≤ C∗2
(
h`−1 + hm−

1
2

)
‖f‖H`,m(Q). (3.15b)

Proof. Using the trace inequalities given in (2.23) and then (3.10), we have that

‖f −Π(n)
h f‖2

L2(∂Qn) ≤ Ctr

(
h−1
n

(
‖f −Π(n)

h f‖2
L2(Qn) + hn ‖∇f −∇Π(n)

h f‖2
L2(Qn)

))
≤ C∗1 (h

2(`− 1
2

)
n + h

2(m− 1
2

)
n )‖f‖2

H`,m(Qn). (3.16)

Recalling the definition of ‖ · ‖dG,∗ and using again the estimates (3.10) and (3.15a), we obtain
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‖f −Πhf‖2
dG,∗ =

( N∑
n=1

(
‖∇xf −Π(n)

h f‖2
L2(Qn) + θ h ‖∂tf −Π(n)

h f‖2
L2(Qn)+

1

2
‖J(f −Πhf)n−1K‖2

L2(Σn−1)

)
+

1

2
‖f −Π(N)

h f‖2
L2(ΣN )

)
+

N∑
n=1

(θnh)−1‖f −Π(n)
h f‖2

L2(Qn) +
N∑
n=2

‖(f −Π(n−1)
h f)n−1

− ‖2
L2(Σn−1)

≤
N∑
n=1

(
C0,n (h2(`−1)

n + h
2(m− 1

2
)

n ) +C1,n (h
2(`− 1

2
)

n + h
2(m− 1

2
)

n ) +C2,n(θn hn)−1(h2`
n + h2m

n )
)
‖f‖2

H`,m(Qn)

≤
N∑
n=1

(
(C0,n + C1,n + C2,n)

(
h2(`−1)
n + θnh

2`−1
n + h2m−1

n + θnh
2m−1
n

)
‖f‖2

H`,m(Qn)

≤ C∗2(h2(`−1) + h2(m− 1
2

)) ‖f‖2
H`,m(Q), (3.17)

where a reduction of the terms h`−1 and h`−
1
2 have been performed. This completes the proof of

(3.15b). �

Theorem 3.2. Let u and uh solve (2.7) and (2.22a), respectively. and uh solve (2.22a).
Under Assumption 2.1, there exist a c > 0, independent of h such that

‖u− uh‖dG ≤ c(h`−1 + hm−
1
2 ) ‖u‖H`,m(Ω), (3.18)

Moreover, if 1 ≤ m < ` ≤ p+ 1

‖u− uh‖dG ≤ chm−
1
2‖u‖2

H`,m(Ω). (3.19)

Proof. Using the properties of bilinear form ah(·, ·), i.e., V0h ellipticity and the boundedness, as
well as the consistency (2.35), we can obtain

‖uh−Πhu‖2
dG ≤ c1ah(uh−Πhu, uh−Πhu) = ah(u−Πhu, uh−Πhu) ≤ c2‖u−Πhu‖dG,∗‖uh−Πhu‖dG.

(3.20)

Hence, applying triangle inequality ‖u− uh‖dG ≤ ‖u−Πhu‖dG,∗ + ‖uh −Πhu‖dG, we can derive

‖u− uh‖dG ≤ c‖u−Πhu‖dG,∗. (3.21)

Utilizing the estimate (3.15) in (3.21) yields (3.18). Estimate (3.19) is a direct result of (3.18). �

Remark 3.1. We remark that for the case of highly smooth solutions, i.e., p+ 1 ≤ min(`,m), the
estimate (3.18) takes the form

‖u− uh‖dG ≤ c hp ‖u‖H`,m(Ω). (3.22)

4 Matrix representation and space-time multigrid

We recall the discrete variational problem given in (2.22a), where we want to find uh ∈ V0h such
that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h,

with V0h := V
(1)
h × . . .× V (N)

h and

ah(uh, vh) =
N∑
n=1

aQn(unh, v
n
h),
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where the local bilinear form for each space-time patch n = 1, . . . , N is given by

aQn(unh, v
n
h) =

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x u

n
h · ∇x(v

n
h + θn hn∂tv

n
h) dx dt+

∫
Σn−1

JuhKn−1 vn−1
h,+ ds

=

∫
Qn

∂t u
n
h (vnh + θn hn∂tv

n
h) +∇x u

n
h · ∇x(v

n
h + θn hn∂tv

n
h) dx dt+

∫
Σn−1

un−1
h,+ vn−1

h,+ ds

−
∫
Σn−1

un−1
h,− v

n−1
h,+ ds

=: bQn(unh, v
n
h)−

∫
Σn−1

un−1
h,− v

n−1
h,+ ds.

For the local spaces V
(n)
h , n = 1, . . . , N , we now introduce the basis functions

V
(n)
h = span{ϕnj }Nn

j=1,

and we obtain from the discrete problem (2.22a) the linear system

Lhuh :=


A1

−B2 A2

. . . . . .

−BN AN



u1

u2
...
uN

 =


f 1

f 2
...
fN

 =: fh, (4.1)

with the matrices

An[i, j] := bQn(ϕnj , ϕ
n
i ) for i, j = 1, . . . , Nn

on the diagonal for n = 1, . . . , N , and the matrices

Bn[i, k] :=

∫
Σn−1

ϕn−1
k,− ϕ

n−1
i,+ ds for k = 1, . . . , Nn−1 and i = 1, . . . , Nn.

on the lower off diagonal for n = 2, . . . , N . Moreover, the right hand sides are given by

fn[i] := lh(ϕ
n
i ), i = 1, . . . , Nn,

for n = 1, . . . , N . The linear system (4.1) can be solved by solving the local space-time problems
sequentially from one space-time patch to the next space-time patch, i.e., like a time stepping
scheme

Anun = fn + Bnun−1 for n = 2, . . . , N.

In this work, we will solve the linear system (4.1) by using a space-time multigrid approach
similar to that one proposed in [19]. In particular, we use an (inexact) damped Jacobi scheme as
smoother, i.e.,

uk+1
h = ukh + ωD−1

h

[
fh − Lhu

k
h

]
for k = 1, 2, . . . ,

where we use the block diagonal matrix Dh := diag{An}Nn=1 and the damping parameter ω =
1

2
,

see also [19]. We speed up the application of the smoothing iteration by replacing the exact inverse
of Dh by some appropriate approximation. In detail, we will apply one iteration of an algebraic
multigrid solver (hypre [17, 16]) with respect to the diagonal matrices An, n = 1, . . . , N , i.e. for
each single space-time patch Qn. For the single patch case this type of solvers where successfully
used in [35]. For the space-time multigrid approach, we construct a space-time hierarchy by
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always combining two space-time patches to one coarser space-time patch, where we always apply
standard coarsening in time and space direction. We then have all the components available for
setting up a standard multigrid V-cycle. The advantage is that this method is fully parallel with
respect to space and time, since we use an additive smoother in time direction and apply standard
parallel solvers in space direction. Moreover, we will use one iteration of this space-time multigrid
V-cycle as a preconditioner for the GMRES method.

If the IgA maps Φn : Q̂→ Qn, n = 1, . . . , N , preserve the tensor product structure of the IgA
basis functions ϕni , we can use this information to save assembling time and storage costs for the
linear system (4.1). In this case we can write the basis functions ϕni in the form

ϕni (x, t) = φnix(x)ψnit(t) with ix ∈ {1, . . . , Nn,x} and it ∈ {1, . . . , Nn,t},

with Nn = Nn,xNn,t. Using this representation, we can write the matrices An, n = 1, . . . , N as

An = Mn,x ⊗Kn,t + Kn,x ⊗Mn,t,

with the standard mass and stiffness matrices with respect to space

Mn,x[ix, jx] :=

∫
Ω

φnjxφ
n
ix dx, Kx[ix, jx] :=

∫
Ω

∇xφ
n
jx · ∇xφ

n
ix dx,

where ix, jx = 1, . . . , Nn,x and corresponding matrices with respect to time

Kn,t[it, jt] :=

∫ tn

tn−1

∂tψ
n
jt(ψ

n
it + θnhn∂tψ

n
it) dt+ ψnjt(tn−1)ψnit(tn−1),

Mn,t[it, jt] :=

∫ tn

tn−1

ψnjt(ψ
n
it + θnhn∂tψ

n
it) dt,

with it, jt = 1, . . . , Nn,t. The matrices on the off diagonal Bn, n = 2, . . . , N , can be written in the
form

Bn := M̃n,x ⊗Nn,t,

with the matrices

M̃n,x[ix, kx] :=

∫
Ω

φn−1
kx

φnix dx and Nn,t[it, kt] := ψn−1
kt

(tn−1)ψnit(tn−1),

where ix = 1, . . . , Nn,x, kx = 1, . . . , Nn−1,x, it = 1, . . . , Nn,t and kt = 1, . . . , Nn−1,t.

5 Numerical examples

In the following, we present numerical examples supporting the theory developed in this paper.
In Section 5.1, we verify the a-priori error estimate from Theorem 3.2 for higher order B-Splines.
In Section 5.2, we show the parallel performance of the space-time solver given in Section 4.

5.1 Convergence studies

In this example, the problem is considered on the two dimensional space-time cylinder Q =
Ω× (0, 4) with Ω = (0, 1). We choose homogeneous boundary conditions and the source function

f(x, t) = π sin(πx)(
1

2
cos(

π

2
(t+ 1)) + π sin(

π

2
(t+ 1))).
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Hence, the exact solution is given by

u(x, t) = sin(πx) sin(
π

2
(t+ 1)). (5.1)

The space-time cylinder Q is decomposed into four space-time patches Qn = Ω× (tn−1, tn) where
{t0, t1, t2, t3, t4} = {0, 1, 2, 3, 4}, see Fig. 2(a). The problem has been solved on a sequence of
meshes with h0, ..., hi, hi+1, ..., with hi = 2−i. According to Fig. 2(a), the mesh on Q1 and Q3

has one additional refinement. We discretize the problem using B-Splines of degree p = {2, 3, 4}.
Throughout all tests, θn is chosen to be 1 for all patches. The final linear system (4.1) is solved by
means of a direct solver, where use used the PARDISO 5.0.0 Solver Project [46, 45]. The algorithm
is realized in the isogeometric open source C++ library G+SMO [39]. The solution uh on a coarse
mesh with h = 0.25 is visualized in Fig. 2(a). The error in the dG-norm and the convergence
rates are presented in Table 1 and plotted in Fig. 2(b).

(a)

10-2 10-1 100

meshsize h

10-12

10-10

10-8

10-6

10-4

10-2

100

e
r
r
o
r
in

d
G
-n
o
r
m

‖
·
‖
d
G

p=2

p=3

p=4

O(h2)

O(h3)

O(h4)

(b)

Fig. 2. (a) The solution uh on Q having non-matching meshes across the interface after two uniform refinements of the
initial mesh. (b) Convergence plots for polynomial degrees p = {2, 3, 4}.

p = 2 p = 3 p = 4
refinement error eoc error eoc error eoc

0 2.85633E-02 - 3.85617E-02 - 9.18731E-03 -
1 5.68232E-02 2.33 7.15551E-03 2.43 7.87619E-04 3.54
2 1.34212E-02 2.08 8.11296E-04 3.14 4.62549E-05 4.09
3 3.30721E-03 2.02 9.84754E-05 3.04 2.90675E-06 3.99
4 8.23704E-04 2.01 1.22142E-05 3.01 1.84067E-07 3.98
5 2.05716E-04 2.00 1.52376E-06 3.00 1.16139E-08 3.99
6 5.14138E-05 2.00 1.90375E-07 3.00 7.29917E-10 3.99
7 1.28522E-05 2.00 2.37936E-08 3.00 4.85647E-11 3.91

Table 1. Error in the dG-norm and convergence rate for B-Spline degree 2, 3 and 4.



Time dG space-time IgA of parabolic problems 19

We observe that the obtained convergence rates coincide with the theoretically predicted rates
from Theorem 3.2 for smooth solutions u. To be more precise, we observe ‖u−uh‖dG behaves like
O(hp), where p is the B-Spline degree.

5.2 Parallel solver studies

Here we apply the parallel multigrid solver that was introduced in Section 4 to solve the arising
linear systems for the case p = 1, i.e., for lowest order splines. In detail, we consider the simulation
time T = 1 and the computational domain Ω ⊂ R3 given by the control points

{(0, 0, 0)>, (1, 0, 0)>, (1, 1, 0)>, (0, 1, 0)>, (−1

4
,−1

4
, 1)>, (1, 0, 1)>, (1, 1, 1)>, (−1

4
,
5

4
, 1)>},

see also Figure 3.

Fig. 3. Computational spatial domain Ω decomposed into 4096 elements (left) and distributed over 32 processors (right).
The numerical solution given in Table 2 is plotted at t = 0.5.

For the initial space-time, mesh we use one space-time patch (N = 1) which is decomposed
into 64 elements in space and 8 elements wrt time. We then apply uniform refinement wrt to
space, and, at the same time, we increase the number of space-time patches by a factor of two,
i.e. uniform refinement in space and time. Throughout all computations we use the parameter
θn = 0.2 for all space-time patches. Moreover, we assemble the linear systems and apply the
parallel space-time multigrid solver, discussed in Section 4, as a preconditioner for the GMRES
method. For the problem in space, we make use of the software library MFEM [40], where the
AMG library hypre is used as parallel solver in space. For the time parallelization, we use the
software developed in [19]. For all examples, we stop the GMRES method until a relative residual
error of 10−12 is reached. In Table 2, we present the numerical results for the manufactured
solution

u(x, t) = sin(πx1) sin(πx2) sin(πx3) sin(πt),

which is regular. For this example, we observe the optimal convergence rates in the dG-norm,
which is predicted by the theory given in Theorem 3.2. For the L2(Q)-norm, we also obtain the
optimal rates. Furthermore, we also obtain quite small iteration numbers for the preconditioned
GMRES method. In Table 2, we denote the number of cores which are used for the hypre AMG
solver and the number of cores which are used for the time parallelization by cx and ct, respectively.
Hence, we use cxct cores overall. Finally, we can solve a linear system consisting of 9 777 365 568
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N dof per patch overall dof ||u− uh||L2(Q) eoc ‖u− uh‖dG eoc cx ct cores iter time [s]

1 1 125 1 125 2.41829E-02 - 3.56223E-01 - 1 1 1 1 0.03
2 6 561 13 122 6.27531E-03 1.95 1.77477E-01 1.01 1 2 2 13 1.87
4 44 217 176 868 1.58802E-03 1.98 8.86255E-02 1.00 1 4 4 15 21.47
8 323 433 2 587 464 3.98310E-04 2.00 4.42868E-02 1.00 4 8 32 15 100.48
16 2 471 625 39 546 000 9.96216E-05 2.00 2.21376E-02 1.00 32 16 512 17 94.32
32 19 320 201 618 246 432 2.49008E-05 2.00 1.10675E-02 1.00 256 32 8192 17 162.90
64 152 771 337 9 777 365 568 6.22393E-06 2.00 5.53340E-03 1.00 2048 64 131072 17 211.33

Table 2. Convergence results in the L2(Q)-norm and dG-norm for a regular solution as well as iteration numbers and
solving times for the parallel space-time multigrid preconditioned GMRES method.

unknowns in less than 4 minutes. We also observe a reasonable weak parallel efficiency of at least
75%, which is mainly affected by the efficiency of the parallel AMG solver hypre.

In Table 3, we give the convergence rates for the manufactured solution

u(x, t) = sin(πx1) sin(πx2) sin(πx3)(1− t)α ∈ Hs,α+ 1
2
−ε(Q)

for α = 0.75, for an arbitrary s ≥ 2 and for an arbitrary small ε > 0, which has lower regularity
wrt time, see also [43]. By Theorem 3.2, the asymptotic convergence rate wrt h is then (almost)
given by 0.75. In Table 3, we observe a convergence rate of one, since we are still in the pre-
asymptotic range. For the L2(Q)-error, we obtain a reduced convergence rate, which will be 1.25
in the asymptotic range. We also observe that the solver is not effected at all by the regularity of
the solution.

N dof per patch overall dof ||u− uh||L2(Q) eoc ‖u− uh‖dG eoc cx ct cores iter time [s]

1 1 125 1 125 1.96957E-02 - 3.15855E-01 - 1 1 1 1 0.03
2 6 561 13 122 5.06642E-03 1.96 1.58494E-01 0.99 1 2 2 13 1.86
4 44 217 176 868 1.27969E-03 1.99 7.92759E-02 1.00 1 4 4 15 21.46
8 323 433 2 587 464 3.24639E-04 1.98 3.96365E-02 1.00 4 8 32 15 100.49
16 2 471 625 39 546 000 8.44577E-05 1.94 1.98187E-02 1.00 32 16 512 17 94.35
32 19 320 201 618 246 432 2.33578E-05 1.85 9.91105E-03 1.00 256 32 8192 17 163.01
64 152 771 337 9 777 365 568 7.20492E-06 1.70 4.95723E-03 1.00 2048 64 131072 17 211.47

Table 3. Convergence results in the L2(Q)-norm and dG-norm for a low regularity solution as well as iteration numbers
and solving times for the parallel space-time multigrid preconditioned GMRES method.

In the next example, we use a different manufactured solution

u(x, t) = cos(βx1) cos(βx2) cos(βx3)(1− t)α ∈ Hs,α+ 1
2
−ε(Q)

for α = 0.75 and β = 0.3, for an arbitrary s ≥ 2, and for an arbitrary small ε > 0, which has the
same regularity as the solution from the previous example. In Table 4, we observe the expected
convergence rates predicted by Theorem 3.2.

All parallel computations have been performed on the cluster Vulcan BlueGene/Q at Liver-
more, U.S.A.

6 Conclusions

We have presented and analyzed a time-multipatch discontinuous Galerkin space-time IgA method
for solving initial-boundary value problems for linear parabolic partial differential equations. The
method proposed uses discontinuous Galerkin techniques with time-upwind fluxes for establishing
the communication of the discrete solution across the time patch interfaces. Furthermore, time-
upwind diffusion techniques was used for stabilizing the time discretization within each patch.
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N dof per patch overall dof ||u− uh||L2(Q) eoc ‖u− uh‖dG eoc cx ct cores iter time [s]

1 1 125 1 125 7.10407E-03 - 1.58022E-02 - 1 1 1 1 0.03
2 6 561 13 122 2.66063E-03 1.42 8.88627E-03 0.83 1 2 2 13 2.00
4 44 217 176 868 1.00177E-03 1.41 5.41668E-03 0.71 1 4 4 15 21.48
8 323 433 2 587 464 3.78976E-04 1.40 3.33881E-03 0.70 4 8 32 15 100.57
16 2 471 625 39 546 000 1.44246E-04 1.39 2.05545E-03 0.70 32 16 512 17 94.43
32 19 320 201 618 246 432 5.53509E-05 1.38 1.25859E-03 0.71 256 32 8192 17 171.83
64 152 771 337 9 777 365 568 2.14541E-05 1.37 7.65921E-04 0.72 2048 64 131072 17 211.49

Table 4. Convergence results in the L2(Q)-norm and dG-norm for a low regularity solution as well as iteration numbers
and solving times for the parallel space-time multigrid preconditioned GMRES method.

A complete discretization error analysis was developed in a suitable energy norm including the
case where the solution can exhibit different regularity behavior with respect the space and
time directions. The convergence rate estimates were confirmed by numerical experiments. We
proposed fast techniques for generating and solving the huge system of IgA equations on massively
parallel computers. The parallel experiments were performed for a 3d spatial domain Ω yielding
a 4d space-time cylinder Q = Ω × (0, T ) but only for the case p = 1 where the IgA coincides
with the FEM. In this paper, we always assumed that the spatial computational domain Ω has
a singlepatch representation. The multipatch representation of Ω, which is more important in
practice, in connection with dG coupling in space [37] and Dual-Primal IsogEometric Tearing
and Interconnection (IETI-DP) solution techniques [22, 21] is work in progress. This approach is
quite flexible with respect to the adaption of the discretization to the behavior of the solution.
At the same, it allows a fast generation and solution of the system of IgA equations due to the
fact that the local space-time patches into which the space-time cylinder Q is decomposed have
still tensor product structure. A complete unstructured decomposition of the space-time cylinder
Q into patches, which was considered in [42], loses this structure, and, therefore, an efficient
implementation is cumbersome.
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2016-06 S. Hubmer, R. Ramlau: Convergence Analysis of a Two-Point Gradient Method for Nonlinear

Ill-Posed Problems December 2016. Eds.: B. Jüttler, U. Langer
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