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Bert Jüttler
Ulrich Langer
Manuel Kauers
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Silviu Radu

Communicated by: Ulrich Langer
Evelyn Buckwar

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



A FULLY PARALLELIZABLE SPACE-TIME MULTILEVEL MONTE
CARLO METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS

WITH ADDITIVE NOISE∗

MARTIN NEUMÜLLER† AND ANDREAS THALHAMMER‡

Abstract. In this work a combination of parallelizable space-time multigrid methods for deter-
ministic parabolic partial differential equations with multilevel Monte Carlo methods for stochastic
differential equations with additive noise is developed. Instead of applying the backward Euler–
Maruyama scheme sequentially for every time step, the basic idea for the considered space-time
method is to solve a large linear system at once, for which a parallelizable multigrid algorithm is
constructed that inherits the space-time hierarchy of the multilevel Monte Carlo method. Over-
all this results in a fully parallelizable algorithm with respect to space, time and probability. As
model problems for the numerical testing of the proposed method serve in finite dimensions the
Ornstein-Uhlenbeck process and in infinite dimensions the stochastic heat equation in 2 and 3 space
dimensions.
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1. Introduction. In many fields of science, stochastic differential equations
(SDEs) are commonly used to model time-dependent problems that are perturbed
under random influences. Since the solution to SDEs can rarely be computed ana-
lytically, the numerical analysis of stochastic ordinary differential equations (SODEs)
and stochastic partial differential equations (SPDEs) has gained a lot of attention
over the last decades. In this work we focus on the approximation of E[ϕ(X(T ))],
where X(T ) denotes the (mild or strong) solution of a linear SDE with additive noise
evaluated at a terminal time T > 0.

A standard way to approximate E[ϕ(X(T ))] is to use Monte Carlo estimators
that are based on independent realizations of the quantity of interest ϕ(X̂(T )), where
X̂(t), t ∈ [0, T ], denotes a numerical approximation of the solution X(t), t ∈ [0, T ].
The corresponding approximation error of such Monte Carlo simulation methods de-
composes into the systematic error induced by the weak convergence error of the
considered numerical scheme and into the Monte Carlo error, see e.g. [16]. Since the
Monte Carlo error converges in the root mean-square error only withO(M−1/2), where
M denotes the number of independent realizations used in the Monte Carlo estimator,
see [4], one needs in order to obtain a certain accuracy ε > 0 in total M = O(ε2)
numerical realizations. This is rather computationally expensive, especially, if one
considers the numerical approximation of SPDEs or high-dimensional SODEs, where
the simulation of a single trajectory as such is already a computationally demanding
task.

In order to improve the efficiency of standard Monte Carlo estimators, the mul-
tilevel Monte Carlo (MLMC) method can be applied to reduce the computational
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complexity of approximating E[ϕ(X(T ))], see [11] for an extensive overview of a large
range of applications of the MLMC method. The basic idea is to use instead of a
numerical approximation with respect to a single refinement level, a whole collection
of approximations on different refinement levels with increasing accuracy and compu-
tational cost, see e.g. in [10, 11] for details on the MLMC method for SODEs and in
[3, 4, 13] for details on its applications to SPDEs.

High performance computers have a large number of cores in the present days,
which allow to solve larger and larger problems. Since (multilevel) Monte Carlo es-
timators consist of a linear combination of independent samples of the considered
random variable, Monte Carlo methods are known to be easily parallelizable. A
further parallelization of numerical methods for the approximation of solution trajec-
tories can be exploited in order to reduce the overall computation time. This could
be e.g. achieved by using (semi-)implicit time stepping schemes to SPDEs (such as
the backward Euler–Maruyama scheme) in combination with a spatial discretization
(by e.g. using a standard finite element method), where efficiently parallelizable meth-
ods are applied in every time step sequentially to solve the arising linear systems in
parallel. Another possibility to add parallelization is given by the time direction. In
fact parallelization in time has become a very interesting topic of research in the past
years, see [8] for a historical overview of different parallel-in-time methods. Space-
time multigrid methods have shown to be very efficient and robust methods [12, 6, 9]
for solving parabolic problems, which will be considered in this work. First results on
time-parallel algorithms for stochastic ordinary differential equations using Parareal
can be found in [2].

The idea in this work is to combine the MLMC method with space-time multigrid
methods by using the space-time hierarchy coming from the MLMC estimator also
for solving the arising linear systems. This work is an extension of [17], where the
stochastic heat equation is only in the one-dimensional case considered.

The outline of this article is as follows: In Section 2, we introduce two model
problems (the Ornstein-Uhlenbeck process and the stochastic heat equation in various
space dimensions) together with discretization techniques for these model problems
with respect to space and time. Afterwards, we consider the multilevel Monte Carlo
(MLMC) method for approximating the expectation in Section 3 and we discuss par-
allelizable space-time multigrid methods based on the inherited space-time hierarchy
of the MLMC estimator in Section 4. We present in Section 5 numerical experiments
for the model problems that illustrate the parallelization and convergence properties
of the proposed numerical method. Finally, we summarize the obtained results in
Section 6.

2. Model problems. Let T > 0 and let (Ω, {Ft}t∈[0,T ],F ,P) be a complete
probability space. At first, we consider a one-dimensional model problem given by
the stochastic ordinary differential equation (SODE)

du(t) + λu(t) dt = σ dβ(t) for t ∈ (0, T ],(1)

u(0) = u0,

where λ ∈ R+
0 , σ, u0 ∈ R and β = (β(t), t ∈ [0, T ]) is a standard Brownian motion.

The solution of this SODE is a special Ornstein-Uhlenbeck process defined by

u(t) = u0e
−λt + σ

∫ t

0

e−λ(t−s) dβ(s), t ∈ [0, T ].(2)
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As second model problem we consider the stochastic heat equation on a bounded
and convex domain D ⊂ Rd, d = 1, 2, 3, with homogeneous Dirichlet boundary condi-
tions. If d = 2 then D is assumed to be polygonal and if d = 3, then the domain D
is polyhedral.

We rewrite the stochastic partial differential equation (SPDE) as a stochastic
evolution equation on the Hilbert space H = L2(D)

dU(t) = AU(t) dt+GdW (t) for t ∈ (0, T ],(3)

U(0) = U0 ∈ D(A),

where G ∈ L(U ;H) and Av = ∆xv for v ∈ D(A). It is a well-known result that the
operator A is the generator of an analytic semigroup (S(t), t ∈ [0, T ]). Subsequently,
we denote by (ej , j ∈ N) the set of eigenfunctions of the differential operator A, which
forms an orthonormal basis of H.

Let U be a separable Hilbert space. Then we assume that W = (W (t), t ∈ [0, T ])
is a U -valued Q-Wiener process with a linear, positive definite, symmetric, trace class
covariance operator Q. By results from e.g. [5, 15], W can be represented as

W (t) =

∞∑
j=1

√
µjfjβj(t),(4)

where (µj , j ∈ N) denotes the set of eigenvalues of Q with corresponding eigenfunc-
tions (fj , j ∈ N) satisfying Qfj = µjfj and (βj , j ∈ N) is a sequence of independent
standard Brownian motions.

Then, by [5], there exists a unique, square-integrable mild solution to SPDE (3)

U(t) = S(t)U0 +

∫ t

0

S(t− s)GdW (s) for t ∈ [0, T ].(5)

2.1. Discretization of model problems. In this section, we present fully dis-
crete schemes for approximating the solution processes from Eq. (2) and Eq. (5). For
this we fix an equidistant partition ΘK of the time interval [0, T ] given by

ΘK = {0 = t0 < t1 < · · · < tK = T},

where tj = j∆t for 0 ≤ j ≤ K with time step size ∆t = T/K.

Discretization of the Ornstein–Uhlenbeck process. For the approxima-
tion of the strong solution of SODE (1), we consider the backward Euler–Maruyama
scheme given by

(1 + λ∆t)uj = uj−1 + σ∆βj , for 1 ≤ j ≤ K,
u0 = u0,

(6)

where the Brownian increments are given by ∆βj = β(tj)−β(tj−1). By rewriting the
recursion (6) in a matrix-vector representation we obtain the following linear system

(1 + λ∆t)
−1 (1 + λ∆t)

. . .
. . .

−1 (1 + λ∆t)




u1

u2

...
uK

 =


σ∆β1 + u0

σ∆β2

...
σ∆βK

 ,(7)
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that is abbreviated in this article by

Lτu = f(ω),

where we use the ω-dependency in f(ω) to indicate that the right hand side is a
random vector.

Discretization of the stochastic heat equation. For approximating the mild
solution (5) of the stochastic heat equation (3) we consider a standard Galerkin finite
element (FE) discretization based on a regular family (Th, h ∈ (0, 1]) of triangulations
of D = (0, 1)d, d = 2, 3, with maximal mesh size h. Hence we want to find a fully
discrete approximation U jh of the mild solution U(tj), tj ∈ ΘK , where U jh attains
values in a finite-dimensional subspace Vh ⊂ D((−A)1/2) ⊂ H given by the space of
globally continuous and on Th piecewise linear functions. By using the nodal basis
functions (φi, 1 ≤ i ≤ Nh), where Nh ∈ N denotes the dimension of Vh, the fully
discrete approximation scheme based on Galerkin finite elements in space and on the
backward Euler–Maruyama scheme in time is given by (see e.g. [3])

(Mh + ∆tKh)Uj = MhUj−1 + ∆Wj for 1 ≤ j ≤ K,(8)

where ∆Wj denotes the vector representation of the FE approximation of the Q-
Wiener increments G∆W j(x) = GW (tj ,x)−GW (tj−1,x),x ∈ D, and

U jh =

Nh∑
i=1

Uj [i]φi,

where j = 0, . . . ,K and Uj [i] denotes the ith component of the vector Uj ∈ RNh .
Here, we denote by Mh the standard mass matrix and Kh the standard stiffness
matrix given by

Mh[i, j] :=

∫
D

φj(x)φi(x) dx,

Kh[i, j] :=

∫
D

∇φj(x) · ∇φi(x) dx,

for i, j = 1, . . . , Nh. Finally, by rewriting the numerical scheme (8) in a matrix-vector
formulation we obtain the large linear system

Bh
−Mh Bh

. . .
. . .

−Mh Bh




U1

U2

...
UK

 =


∆W1 +MhU0

∆W2

...
∆WK

 ,(9)

where Bh = Mh + ∆tKh. Subsequently we abbreviate the linear system (9) by

Lh,τU = F(ω).

Simulation of Q-Wiener increments. By truncating the Karhunen–Loéve
expansion (4) of the Q-Wiener process one can simulate the Q-Wiener increments
(∆W i, i = 1, . . . ,K) by defining for J ∈ N

∆JW i(x) =

J∑
j=1

√
µjfj(x)∆βij , for x ∈ D(10)
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where ∆βij = βj(ti)−βj(ti−1). In order to preserve the convergence properties of the
backward Euler scheme (8), the truncation parameter J has to be in general coupled
to the dimension of the FE space Vh and to the decay rate of the eigenvalues of Q,
see e.g. [3, 15].

In general the evaluation of the sum in Eq. (10) is computationally expensive -
especially for high-dimensional spaces Vh. However, specific structural properties of
the eigenvalues (fj , j ∈ N) can be exploited to speed up the simulation of the right
hand side F(ω). For the choice of fj being the eigenvalues of the Laplace operator
endowed with periodic boundary conditions on D = (0, 1)d, d = 2, 3, only a single fast
Fourier transform (FFT) is needed to get two independent realizations of the right
hand side F(ω) on an equidistant grid, see [14, 15]. This has also been implemented in
Section 5 for the numerical studies of the stochastic heat equation in higher dimensions
(i.e., D ⊂ Rd, d = 2, 3), where for the FFT computations the C++-library FFTW3,
[7], has been used in the numerical experiments. Furthermore, we want to emphasize
that the evaluation of the FFT can also be performed in parallel.

3. Multilevel Monte Carlo methods. The goal is to approximate E[ϕ(u(T ))]
or E[ϕ(U(T ))] for a sufficiently smooth mapping ϕ : H → B, where B is a separable
Hilbert space, by using suitable estimators. For Y ∈ L2(Ω;B) a common way to
approximate E[Y ] is to use a standard Monte Carlo (MC) estimator defined by

EM [Y ] :=
1

M

M∑
i=1

Y (i),

where (Y (i), i = 1, . . . ,M) are independent realizations of Y . Here, L2(Ω;B) denotes
the space of strongly measurable random variables Y that satisfy

‖Y ‖2L2(Ω;B) := E[‖Y ‖2B ] <∞.

Due to the rather slow convergence of the MC estimator of order M−1/2 in the
L2(Ω;B)-sense, see e.g. [4], the efficient multilevel Monte Carlo (MLMC) estimator
has been proposed in [10]. For its definition we consider a sequence (Y`, ` ∈ N0) of
approximations of the random variable Y ∈ L2(Ω;B) based on different refinement
levels ` ∈ N0 with increasing accuracy and also with increasing computational cost.
The MLMC estimator is then given by

EL[YL] :=

L∑
`=0

EM`
[Y` − Y`−1],

where Y−1 = 0. The L2(Ω;B)-error of the MLMC estimator satisfies (see [13])

‖E[Y ]− EL[YL]‖L2(Ω;B) ≤ ‖E[Y − YL]‖B +

( L∑
`=0

M−1
` Var[Y` − Y`−1]

)1/2

(11)

where Var[Y ] = E[‖Y − E[Y ]‖2B ] for Y ∈ L2(Ω;B).

3.1. Parameter selection for model problems. We now discuss how to
choose the number of samples (M`, ` ∈ N0) and the refinement parameters h` and
∆t` in order to guarantee the convergence of the MLMC estimator.
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Ornstein-Uhlenbeck process. Let u be given in Eq. (2) and for ` ∈ N0 let
uK`

be the numerical approximation of u(T ) based on the backward Euler–Maruyama
scheme (6) with respect to the partition ΘK`

with time step size ∆t`. Furthermore,
let ϕ ∈ C2

b (R,R), i.e., ϕ : R → R is twice continuously differentiable with bounded
first and second derivatives. Due to the additive noise structure of SDE (1) we obtain
by results from [16] that

|E[ϕ(u(T ))− ϕ(uKL
)]| ≤ C∆tL,

Var[ϕ(uK`
)− ϕ(uK`−1

)]1/2 ≤ C∆t`.

Thus, by similar arguments as in [13, 17], if we choose for any ε, CM > 0,

M0 = dCM∆t−2
L e,

M` = dCM∆t2`∆t
−2
L `1+εe for ` = 1, . . . , L,

(12)

then

E[ϕ(u(T ))]− EL[ϕ(uKL
)]‖L2(Ω;R) = O(∆tL).

Stochastic heat equation. Let U be given in Eq. (5) and for ` ∈ N0 let UK`

h`

be an approximation of U(T ) based on the FE backward Euler–Maruyama scheme
(8) with respect to the partition ΘK`

and the FE space Vh`
. Furthermore, let ϕ ∈

C2
b (H,B), i.e., ϕ : H → B is twice Fréchet differentiable with bounded first and second

Fréchet derivatives. Then by using the results from [1], we get by choosing ∆t` = h2
`

for any γ ∈ [0, 1)

‖E[ϕ(U(T ))− ϕ(UKL

hL
)]‖B ≤ Ch2γ

L ,

Var[ϕ(UK`

h`
)− ϕ(U

K`−1

h`−1
)] ≤ Ch2γ

` .

Thus, by [13, 17], if we choose ∆t` = h2
` and for any ε, CM > 0,

M0 = dCMh−2γ
L e,

M` = dCMh2γ
` h
−2γ
L `1+εe for ` = 1, . . . , L,

(13)

then

‖E[ϕ(U(T ))]− EL[ϕ(UKL

hL
)]‖L2(Ω;B) = O(hγL).

4. Space-time multigrid methods. We combine the MLMC method with
a space-time multigrid method by using the hierarchy obtained from the MLMC
estimator (see Section 3.1) also for the solution process for the arising linear systems.
In detail we will apply the space-time multigrid method presented in [9] to solve the
linear system (7) and (9) at once. This will allow parallelization in time direction
and for the linear system (9) it is also possible to add parallelization with respect to
the space dimension. Overall by re-using the hierarchy from the MLMC method for
the solution process this will result in a method which is fully parallel with respect to
space, time and probability. The key ingridient is a parallel smoothing iteration which
is used in the space-time multigrid method. Here we will use an (inexact) damped
block Jacobi smoother, see also [9], i.e. for the problem (7) we use

u(n+1) = u(n) + αD−1
τ

[
f(ω)− Lτu(n)

]
for n = 0, 1, . . . ,
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with the diagonal matrix Dτ := diag(1 + λ∆t). Whereas, for the problem (9) we use
the smoothing iteration

U(n+1) = U(n) + αD−1
h,τ

[
F(ω)− Lh,τU(n)

]
for n = 0, 1, . . . ,

with the block diagonal matrix Dh,τ := diag(Bh). To speed up the application of the
smoothing procedure we replace the exact inverse of Dh,τ by applying one iteration
of a multigrid V-cycle with respect to the matrix Bh. For the relaxation parameter
we choose α = 1

2 . For the restriction and prolongation operators we will use the same
operators as for the MLMC method. We refer the reader to [9] for more details, where
this space-time multigrid method has been analyzed in detail. Overall by choosing
∆t ≈ h2 we obtain a fully parallel and robust solver which is independent of the
number of time steps K and the time step size ∆t.

5. Numerical experiments. In this section we present numerical experiments
for the Ornstein–Uhlenbeck process (Section 5.1) and for the stochastic heat equation
on D = (0, 1)d, d = 2, 3, (Section 5.2). All results were computed on the RADON1
cluster (a distributed memory cluster with 1088 CPU Cores, 8.7TB Memory; con-
sisting of 64 compute nodes each with two 8-core Intel Haswell processors ”Xeon
E5-2630v3”, 2.4Ghz and 128 GB of memory).

5.1. Ornstein-Uhlenbeck process. We consider the SODE (1) with λ = 1, σ =
1, T = 1 and u0 = 1. We want to approximate E[ϕj(u(T ))], j = 1, 2, where ϕ1(x) = x
and ϕ2(x) = x2. For both test cases the solution can be computed analytically, where

E[ϕ1(u(T ))] = E[u(T )] = e−T

and

E[ϕ2(u(T ))] = E[u2(T )] =
1 + e−2T

2
.

For the numerical approximation we consider the backward Euler–Maruyama
scheme from Eq. (6) in the matrix-vector representation Lτu = f(ω), which is solved
by the time multigrid method described in Section 4. For the approximation of the
expectation we consider a multilevel Monte Carlo estimator based on the sample size
selection from Eq. (12) with ε = 1

2 and CM = 10.
In Table 1, we consider the root mean-square errors of the MLMC method with

respect to ϕj , j = 1, 2, where ‖E[ϕ1(u(T ))] − EL[ϕ1(uKL
)]‖L2(Ω;R) is approximated

by a standard Monte Carlo estimator given by

RMS-err1(L) =

(
1

M

M∑
i=1

∣∣∣E[u(T )]− EL[uKL
](i)
∣∣∣2)1/2

,

and ‖E[ϕ2(u(T ))]− EL[ϕ2(uKL
)]‖L2(Ω;R) is approximated by

RMS-err2(L) =

(
1

M

M∑
i=1

∣∣∣E[u2(T )]− EL[u2
KL

](i)
∣∣∣2)1/2

.

Here (EL[ϕj(uKL
)](i), 1 ≤ i ≤ M) are independent realizations of the MLMC esti-

mator EL[ϕj(uKL
)]. For the Monte Carlo simulations we choose M = 100 in the
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numerical experiments from Table 1. The experimental order of convergence (EOC)
of the root mean-square error is computed by

EOCi(L) =
log(RMS-erri(L))− log(RMS-erri(L− 1))

log(∆tL)− log(∆tL−1)
, i = 1, 2.

In Table 1 we observe for both text function ϕi, i = 1, 2, the right convergence be-
haviour as predicted by the theory.

Table 1
Numerical test for SODE (1) (Ornstein-Uhlenbeck process) - convergence.

L KL M0 ML RMS-err1(L) EOC1(L) RMS-err2(L) EOC2(L)
0 1 10 10 2.03312E-1 - 1.93142E-1 -
1 2 40 20 1.16614E-1 0.80 1.10059E-1 0.81
2 4 160 50 6.15999E-2 0.92 5.87172E-2 0.91
3 8 640 80 2.99257E-2 1.04 3.06077E-2 0.94
4 16 2560 110 1.52328E-2 0.97 1.70489E-2 0.84
5 32 10240 140 7.75317E-3 0.97 8.50822E-3 1.00
6 64 40960 180 3.71647E-3 1.06 4.33203E-3 0.97
7 128 163840 220 1.81249E-3 1.04 2.27805E-3 0.93
8 256 655360 270 9.65028E-4 0.91 1.26140E-3 0.85
9 512 2621440 310 4.48929E-4 1.10 6.26638E-4 1.01
10 1024 10485760 360 1.96168E-4 1.19 3.42444E-4 0.87

5.2. Stochastic heat equation. For the stochastic heat equation (3) we con-
sider the domain D = (0, 1)d, d = 2, 3, and the initial value

U0(x) =

d∏
i=1

sin(πxi) for x ∈ D.

By choosing T = 0.1 and ϕ(v) = v for all v ∈ L2(D), we are interested in approxi-
mating

E[U(T,x)] = exp(−dπ2T )

d∏
i=1

sin(πxi), for x ∈ D.

For the numerical approximation in space and time, we consider the FE Euler–
Maruyama scheme from Eq. (8) on an equidistant spatial triangulation in the matrix-
vector formulation Lh,τU = F(ω), which is again solved by the space-time multigrid
method described in Section 4. For the approximation of the expectation we consider
the MLMC method based on the sample size selection (13) with ε = 1

2 and CM = 10.

In numerical experiments the root mean-square error ‖E[U(T )]−EL[UKL

hL
]‖L2(Ω;B)

is approximated by a standard Monte Carlo estimator, i.e., we consider

RMS-err(L) =

(
1

M

M∑
i=1

∥∥∥E[U(T )]− EL[UKL

hL
](i)
∥∥∥2

L2(D)

)1/2

,

where (EL[UKL

hL
](i), 1 ≤ i ≤M) are independent realizations of the estimator EL[UKL

hL
]

and

‖E[U(T )]− EL[UKL

hL
](i)‖2L2(D) =

∫
D

∣∣∣E[U(T,x)]− EL[UKL

hL
(x)](i)

∣∣∣2 dx.



SPACE-TIME MULTILEVEL MONTE CARLO METHODS 9

The experimental order of convergence (EOC) of the root mean-square error is now
computed by

EOC(L) =
log(RMS-err(L))− log(RMS-err(L− 1))

log(hL)− log(hL−1)
.

In this section we consider the stochastic heat equation (3) in 2D and 3D, i.e., let
D = (0, 1)d, d = 2, 3. In order to apply the FFT-based simulation techniques of the
Q-Wiener increments described in Section 2.1 we consider here the specific choice of
eigenvalues

µk = exp(−ia|k|2),

where k = (k1, . . . , kd)
T ∈ Zd, a = 2 and i denotes the imaginary unit, see [15] for

details. The corresponding eigenfunctions fk are given by

fk(x) = exp(2πi〈k,x〉) for x ∈ D.

For approximating realizations of the Q-Wiener increments we consider the following
truncation of Eq. (4): For J = (J1, . . . , Jd)

T ∈ Nd define

∆JW i(x) =
∑
k∈Zd,

−J1/2<|k1|≤J1/2,
...,

−Jd/2<|kd|≤Jd/2

√
µkfk(x)∆β̃ik, for x ∈ D.

Here the increments ∆β̃ik = ∆βi,real
k +i∆βi,imag

k are complex, where the real and imagi-

nary parts consist of independent, real-valued Brownian increments ∆βi,real
k ,∆βi,imag

k ,
see [15]. In the numerical experiments below we choose Ji = Nh, i = 1, 2, 3.

In Tables 2 and 4 we use M = 100 realizations of the MLMC estimator to approx-
imate the L2(Ω;H)-error by a Monte Carlo simulation for the 2D and 3D stochastic
heat equation. The experimental outcome illustrates for both test cases that the
predicted convergence order γ ≈ 1 is attained.

In Tables 3 and 5 we measure the computation times for one run of the MLMC
estimator, where we consider different distributions of 512 cores with respect to solv-
ing the linear system Lh,τU = F(ω) in parallel or for parallelizing the involved Monte
Carlo estimators. In the considered numerical experiments we obtain that a balanced
distribution of cores for the parallelization in time and for the parallelization of the
Monte Carlo estimators yields the best computation time. For instance for the nu-
merical experiments in the case d = 2 at level L = 6 the best setting is given by 128
cores for the time parallelization and only 4 cores for the Monte Carlo simulations
(844.61 sec.). Overall, this results in an approximately 19-times faster solving time
than for a straightforward parallelization of the MLMC estimator (16278.1 sec.).

6. Conclusions. In this work we combined a space-time multigrid technique for
simulating trajectories of the solution process of the Ornstein–Uhlenbeck process and
the stochastic heat equation on D = (0, 1)d, d = 2, 3, with a multilevel Monte Carlo
estimator to approximate E[ϕ(u(T ))] and E[ϕ(U(T ))], respectively. This combination
leads to a fully parallelizable method with respect to space, time and probability.

Special emphasis was laid on constructing the MLMC estimator in such a way that
the root mean-square errors converge with order 1 (with respect to the time step size
∆tL for the Ornstein–Uhlenbeck process and with respect to the spatial refinement
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Table 2
Numerical test for SPDE (3) (stochastic heat equation in 2D) – convergence.

L KL NhL
DOF (ST) M0 ML RMS-err(L) EOC(L)

1 4 1 4 40 20 3.72225E-02 -
2 16 9 144 160 30 1.85333E-02 1.01
3 64 49 3136 640 60 9.49312E-03 0.97
4 256 225 57600 2560 90 4.65968E-03 1.03
5 1024 961 984064 10240 120 2.10172E-03 1.15
6 4096 3969 16257024 40960 150 1.03803E-03 1.02

Table 3
Numerical test for SPDE (3) (stochastic heat equation in 2D) – computation time with respect

to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32
1 0.07 0.08 0.05 0.07 0.07
2 0.17 0.05 0.08 0.13 0.06
3 0.40 0.22 0.14 0.12 0.13
4 6.92 3.59 1.94 1.84 1.56
5 115.53 69.83 35.30 34.94 35.31
6 16278.10 7993.41 6310.75 3081.63 1575.11

cores time / cores Monte Carlo
L 32 / 16 64 / 8 128 / 4 256 / 2 512 / 1
1 0.00 0.03 0.03 0.01 0.06
2 0.05 0.03 0.09 0.13 0.17
3 0.14 0.22 0.42 0.70 1.50
4 1.69 2.07 2.81 5.01 10.11
5 34.44 34.68 39.93 50.37 103.75
6 1154.21 953.59 844.61 978.95 1168.93

parameter hL for the stochastic heat equation). For this the number of numerical
realizations (M`, ` = 0, . . . , L) for the MLMC estimator could be precomputed. In
all considered numerical experiments the convergence results could be numerically
observed.

For the stochastic heat equation, the robustness of the proposed space-time multi-
grid solver is guaranteed by [9], since we were using the space-time hierarchy of the
MLMC estimator also for the backward Euler–Maruyama approximation of the nu-
merical trajectories, where the space-time coupling satisfies ∆t`/h

2
` ≈ 1 on all consid-

ered levels ` = 1, . . . , L.
Furthermore, we investigated the optimal distribution of 512 cores with respect

to solving the linear system of the space-time formulation and the parallelization of
the involved Monte Carlo estimators. In the presented numerical experiments on the
stochastic heat equation it turned out that a balanced distribution of cores between
parallelization in time and parallelization of the MLMC estimator provides the best
computation times.
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Reduction May 2015. Eds.: P. Paule, F. Winkler

2015-04 A. Mantzaflaris, H. Rahkooy, Z. Zafeirakopoulos: Efficient Computation of Multiplicity and

Directional Multiplicity of an Isolated Point July 2015. Eds.: B. Buchberger, J. Schicho

2015-05 P. Gangl, S. Amstutz, U. Langer: Topology Optimization of Electric Motor Using Topological

Derivative for Nonlinear Magnetostatics July 2015. Eds.: B. Jüttler, R. Ramlau
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