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Bert Jüttler

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



Space-time Finite Element Methods
for Parabolic Initial-Boundary Problems

with Variable Coefficients

Andreas Schafelner
Institute for Computational Mathematics, Linz

September 22, 2017

Abstract

We introduce a conforming space-time finite element method for
the numerical solution of parabolic initial-boundary value problems
with variable, possibly discontinuous diffusion coefficients. Discontin-
uous diffusion coefficients allow the treatment of moving interfaces.
We show stability of the method and an a priori error estimates, in-
cluding the case of local stabilizations which are important for adap-
tivity. The performed numerical tests validate the theoretical results.

1 Introduction

When we deal with physical problems, for instance, diffusion problems, heat-
conduction problems, or simulations of electrical machines, the governing
partial differential equations (PDEs) are often of parabolic type. Thus, the
development of numerical schemes to solve parabolic equations is of great
importance. The standard approach for solving parabolic PDEs is usually
some kind of time-stepping method, with semi-discretization in the spatial
variables. Another approach would be to first discretize with respect to time
and then perform a discretization in the spatial variables. This approach is
called Rothe’s method. A more recent and alternative approach consists in a
full space-time discretization at once by treating time just as another space
variable, i.e., we solve a problem with one dimension more. The basic steps
for these methods can be summarized in the following way:

1. Line Variational Formulation and Vertical Method of Lines:
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• multiply the PDE by an appropriate test-function v(x),

• integrate over the spatial computational domain Ω,

• use integration by parts on the highest order spatial derivative,

• discretize first in space by some spatial discretization like finite
element method (FEM), and then solve the resulting first-order
system of ordinary differential equations in time with an appro-
priate time-stepping method, e.g., a Runge-Kutta method.

2. Line Variational Formulation and Horizontal Method of Lines (Rothe’s
method):

• multiply by the PDE an appropriate test-function v(x),

• integrate over the spatial computational domain Ω,

• use integration by parts on the highest order spatial derivative,

• discretize first in time by some time-stepping method like the im-
plicit Euler scheme, and then discretize the resulting sequence
of elliptic problems by means of an appropriate discretization
method like the FEM.

3. Space-time Variational Formulation:

• multiply the PDE by an appropriate test-function v(x, t),

• integrate over the space-time domain (cylinder) Q = Ω× (0, T ),

• use integration by parts, e.g. on the highest order spatial deriva-
tive and/or the temporal derivative,

• discretize in space and time simultaneously, e.g., by space-time
FEM or Isogeometric Analysis (IgA), and solve the resulting linear
system by an efficient solver.

In this paper, we will focus on the latter approach. The motivation behind
this is that, for elliptic problems, there exist plenty of efficient and, most
important, parallel solving methods. If we would be able to derive a sta-
ble discrete bilinear form, for which we can prove coercivity (ellipticity) in
some mesh-dependent norm in the space-time FE-space, then we can solve
the space-time problem fully in parallel. Another reason for the space-time
approach is that we are not restricted to a special structure of the mesh. This
means that we can apply adaptive mesh refinement both in space and time
simultaneously. Last but not least, we can easily deal with moving interfaces
and domains, where the coefficients of the PDE and/or the spatial domain
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Ωt depend on the time as well. Under certain assumptions imposed on the
movement, we can transform the time dependent spatial domain to a fixed
spatial domain via a change of variables (see [12, Chapter III, §1]).
The standard discretization techniques, namely the vertical method of lines
and Rothe’s method, and their properties are well investigated, see [25] and
[13], respectively. However, their sequential structure complicates the paral-
lel solution of the resulting discretized problem, the development of efficient
space-time adaptive methods, as well as the treatment of moving interfaces
and spatial domains. The application of a space-time finite element scheme
has already a long history, see e.g. [6, 9]. However, the analysis of the
equivalent operator equations was done more recently, see, e.g. [21, 27, 15].
Another popular approach are time-parallel multigrid methods [7]. Most of
the more recent space-time finite element methods use discontinuous Galerkin
methods, at least in time, see, e.g., [16, 17, 18, 24], and the references given
therein. But also conforming space-time methods have been developed, e.g.,
Steinbach introduced a stable Petrov-Galerkin method [22], and Toulopoulos
uses bubble functions to stabilise a Galerkin method [26]. In the context
of using Isogeometric Analysis as space-time discretization method, Langer,
Moore and Neumüller [14] proposed a space-time method for parabolic evo-
lution equations.
The main aim of this paper is to generalize the results for a space-time
scheme proposed by Langer, Moore and Neumüller in [14], where the au-
thors use IgA for the discretization, to the case of moving interfaces, i.e.,
t-dependent, discontinuous diffusion coefficients and the possibility to chose
local (element-wise) stabilisations of the form vh + θEhE∂tvh depending on
the mesh-size hE of an element E from the finite element mesh. Instead
of IgA, we will use a conforming finite element method (FEM) to discretize
the parabolic initial-boundary value problem, which we specify in the follow-
ing. Let Q = QT := Ω × (0, T ) be the space-time cylinder, with Ω ⊂ Rd,
d ∈ {1, 2, 3}, being a sufficiently smooth and bounded spatial domain, and
T > 0 being the final time. Furthermore, let Σ := ∂Ω× (0, T ), Σ0 := Ω×{0}
and ΣT := Ω × {T} such that ∂Q = Σ ∪ Σ0 ∪ ΣT . Then we consider the
following model problem that can formally be written as follows: Given f ,
g, ν and u0, find u such that (s.t.)

∂u

∂t
(x, t)− divx(ν(x, t)∇xu(x, t)) =f(x, t), (x, t) ∈ Q, (1.1)

u(x, t) =g(x, t) = 0, (x, t) ∈ Σ, (1.2)

u(x, 0) =u0(x) = 0, x ∈ Ω, (1.3)

where the diffusion coefficient (reluctivity in electromagnetics) ν is a given
uniformly positive and bounded coefficient. The dependence of ν not only
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on space but also on time enables us to model moving interfaces. Note that
we do not require ν to be smooth. In fact, we will admit discontinuities for
ν. For simplicity, we assume homogeneous Dirichlet boundary and initial
conditions.
The paper is structured in the following way: In Section 2, we will con-
sider the existence and uniqueness of a weak solution to the parabolic initial
boundary value problem (1.1)-(1.3). In Section 3, we will derive a stable
discrete variational formulation and the space-time finite element scheme.
Moreover, we will derive an a priori error estimate. In Section 4, we present
the test cases for which we have performed the numerical studies, whereas,
in Section 5, we discuss the numerical results. Section 6 contains conclusions
and outlook on the future work.

2 The Space-time variational formulation

Before we proceed in deriving a stable finite-element scheme to solve the
parabolic initial-boundary value problem (1.1)-(1.3), we have to ensure the
existence and uniqueness of a solution, and, moreover, to which class the
solution belongs. For this, we use the theory presented by Ladyžhenskaya
in [12, p.116ff], restricted to our model problem. But first let us define the
proper spaces.

Definition 1. Let L2(QT ) be space of square integrable functions in the
space-time domainQT . Then we define the following Sobolev (Hilbert) spaces

H1
0 (QT ) = W 1

2,0(QT ) := {u ∈ L2(QT ) : ∇u ∈ L2(QT ) ∧ u|Σ = 0},
H1,0(QT ) = W 1,0

2 (QT ) := {u ∈ L2(QT ) : ∇xu ∈ L2(QT )},
H̊1,0(QT ) = W̊ 1,0

2 (QT ) := {u ∈ H1,0(QT ) : u|Σ = 0},

equipped with the usual scalar products and norms, as well as the Banach
space

V2(QT ) := {u ∈ H1,0(QT ) : |u|QT <∞},

with subspaces

V̊2(QT ) := {u ∈ H̊1,0(QT ) : |u|QT <∞},
V 1,0

2 (QT ) := {u ∈ V2(QT ) : lim
∆t→0

‖u(·, t+ ∆t)− u(·, t)‖L2(Ω) = 0, uniformly on [0, T ]},

V̊ 1,0
2 (QT ) := V 1,0

2 (QT ) ∩ H̊1,0(QT ),

4



where the norm | · |QT is defined by

|u|Qt := max
0≤τ≤t

‖u(·, τ)‖L2(Ω) + ‖∇xu‖Qt . (2.1)

Here, the appearing differential operators are defined as follows:

∇ = (∇x,∇t)
T , ∇x = (∂x1 , . . . , ∂xd)

T and ∇t = (∂t).

Now let us consider the model problem: Find u s.t.

Mu ≡ ∂tu− div(ν∇xu) = f in QT , (2.2)

u = 0 on Σ, u = ϕ on Σ0, (2.3)

with given data

ϕ ∈ L2(Ω) and f ∈ L2,1(QT ) := {v :

∫ T

0

‖v(·, t)‖L2(Ω) dt <∞}, (2.4)

and a uniformly bounded coefficient

0 < ν ≤ ν(x, t) ≤ ν, for almost all (x, t) ∈ QT , (2.5)

where ν and ν = const. > 0. To show now the existence of a weak solution in
an appropriate function space, we use Galerkin’s method. We formally start
with multiplying the PDE by the solution u and integrate over the truncated
space-time domain Qt = Ω× (0, t), t ∈ (0, T ), i.e.,∫

Qt
Mu · u dxdt =

∫
Qt
f u dxdt. (2.6)

Using integration by parts, the homogeneous boundary condition on the lat-
eral boundary Σ and ~nx = 0 on Σ0 ∪ Σt, where Σt := Ω× {t}, we obtain∫

Qt
Mu · u dxdt =

∫
Qt
∂tuu− divx(ν(x, t)∇xu) dxdt =∫

Qt

1

2
∂t(u

2) dxdt+

∫
Qt
ν(x, t)|∇xu|2 dxdt,

for the left hand side of (2.6). Now we use Gauss’ theorem and the fact that
nt ≡ 0 on Σ to get rid of the time derivative and we obtain the following
identity

1

2
‖u(·, t)‖2

L2(Ω)+

∫
Qt
ν(x, t)|∇xu|2 dxdt =

1

2
‖u(·, 0)‖2

L2(Ω)+

∫
Qt
f u dxdt. (2.7)
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We call (2.7) energy balance equation. From this equation, we will derive a
bound for u in some specific norm | · |Qt . First, we estimate the left hand
side (lhs) of (2.7) from below by

1

2
‖u(·, t)‖2

L2(Ω) +

∫
Qt
ν(x, t)|∇xu|2 dxdt ≥ 1

2
‖u(·, t)‖2

L2(Ω) + ν

∫
Qt
|∇xu|2 dxdt,

and the right hand side (rhs) of (2.7) from above by

1

2
‖u(·, 0)‖2

L2(Ω) +

∫
Qt
f u dxdt =

1

2
‖u(·, 0)‖2

L2(Ω) +

∫ t

0

∫
Ω

f(x, τ)u(x, τ) dx dτ

≤ 1

2
‖u(·, 0)‖2

L2(Ω) +

∫ t

0

‖f(·, τ)‖L2(Ω)‖u(·, τ)‖L2(Ω) dτ

≤ 1

2
‖u(·, 0)‖2

L2(Ω) +

∫ t

0

‖f(·, τ)‖L2(Ω) max
σ∈[0,t]

‖u(·, σ)‖L2(Ω) dτ

≤ 1

2
‖u(·, 0)‖2

L2(Ω) + ‖f‖2,1,Qt max
τ∈[0,t]

‖u(·, τ)‖L2(Ω).

Combining these two estimates gives us

1

2
‖u(·, t)‖2

L2(Ω) + ν‖∇xu‖2
Qt ≤ ‖u(·, 0)‖2

L2(Ω) + max
0≤τ≤t

‖u(·, τ)‖L2(Ω)‖f‖2,1,Qt .

(2.8)
Denoting max0≤τ≤t ‖u(·, τ)‖L2(Ω) by y(t) and multiplying (2.8) by 2, we ob-
tain

‖u(·, t)‖2
L2(Ω) + 2ν‖∇xu‖2

Qt ≤ y(t)‖u(·, 0)‖L2(Ω) + 2y(t)‖f‖2,1,Qt = j(t),

where we used the estimate ‖u(·, 0)‖2
L2(Ω) ≤ max0≤τ≤t ‖u(·, τ)‖L2(Ω)‖u(·, 0)‖L2(Ω).

From this, we deduce two inequalities, i.e,

y(t)2 ≤ j(t) and ‖∇xu‖2
Qt ≤ (2ν)−1j(t). (2.9)

The second estimate can easily be verified, whereas the first one is obtained
by estimating the lhs from below by ‖u(·, t)‖2

L2(Ω). This expression holds for

any τ ∈ [0, t], hence it holds also for the maximum. However, the only terms
in j(t) depending on t are y(t), where we already take a maximum over [0, t].
Thus, the first expression of (2.9) follows. We now take the square-root of
both expressions in (2.9) and add them up to obtain

|u|Qt := y(t) + ‖∇xu‖Qt ≤ (1 +
1

2ν
)−1/2|u|1/2Qt (‖u(·, 0)‖L2(Ω) + 2‖f‖2,1,Qt)

1/2.

(2.10)
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We bring similar terms on the same side and take the square on each side of
the inequality. Thus we have obtained an upper bound for |u|Qt in the form

|u|Qt ≤ (1 +
1

2ν
)−1(‖u(·, 0)‖L2(Ω) + 2‖f‖2,1,Qt) =: cF(t), (2.11)

which holds for any t ∈ [0, T ]. However, this bound requires a solution where
point evaluation with respect to (wrt ) time is well defined. Before we proof
that our problem (2.2) has such a weak solution, we have to introduce a
suitable definition of the weak solution.

Definition 2. A function u ∈ H̊1,0(QT ) is called a generalized (weak) solu-
tion in H1,0(QT ) of the parabolic inital-boundary value problem (2.2) - (2.3)
if it satisfies the identity

M(u, v) ≡
∫
QT
−u∂tv+ ν(x, t)∇xu∇xv dxdt

=

∫
Ω

ϕv(·, 0) dx+

∫
QT
fv dxdt,

(2.12)

for all v ∈ Ĥ1
0 (QT ) := {v ∈ H1

0 (QT ) : v = 0 on ΣT}.

To proof solvability of (2.2) in this class, i.e. solvability of (2.12), we will
use Galerkin’s method. Let {ϕj} be a L2-orthonormal fundamental system

in W̊ 1
2 (Ω). In (2.2), we substitute u with an appropriate test function uN ,

multiply the obtained equation by each ϕj for j = 1, . . . , N and integrate
wrt x over Ω. We use integration by parts in the principle term, and obtain
a system of N equations

(∂tu
N , ϕj) + (ν(·, t)∇xu,∇xϕj) = (f, ϕj), (2.13)

where (., .) = (., .)L2(Ω) is the standard L2(Ω) scalar product. In (2.13), we ex-

press uN with the fundamental system {ϕj}, i.e., uN(x, t) :=
∑N

j=1 c
N
j (t)ϕj(x).

We can rewrite (2.13) wrt the coefficient functions ci(t) = cNi (t),

N∑
j=1

d

dt
cj(t) (ϕj, ϕi)︸ ︷︷ ︸

δij

+
N∑
j=1

cj(t)(ν(·, t)∇xϕj,∇xϕi) = (f(., t), ϕi), for i = 1, ..., N,

(2.14)
with the initial condition

N∑
j=1

cj(0)(ϕj, ϕi) = (ϕ, ϕi), (2.15)
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that is nothing but the L2-projection to span{ϕ1, . . . , ϕN}. This system
is a system of N linear ordinary differential equations with principal terms
d
dt
ci(t) and bounded coefficient functions in front of the zero-order terms

ci(t). This system has a unique solution of absolutely continuous functions
cN1 (t), . . . , cNN(t) (see [8, IX, 60.2]), which uniquely define the approximate
solution uN . Now, we want to derive a bound for the series uN . To do
so, we first multiply each equation in (2.13) with the corresponding solution
coefficient cNl (t), l = 1, . . . , N and sum these equations up from 1 to N . We
proceed by integrating this sum over (0, t) and obtain an equation of the
form (2.7) for uN , i.e.,

1

2
‖uN(·, t)‖2

L2(Ω) +

∫
Qt
ν(x, t)|∇xu

N | dxdt =
1

2
‖uN(·, 0)‖2

L2(Ω) +

∫
Qt
f uN dxdt.

(2.16)
We can derive a bound for |uN |QT from (2.16) in the same manner as we did
for |u|QT from (2.7), i.e.,

|uN |Qt ≤ c
(
‖uN(·, 0)‖L2(Ω) + 2‖f‖2,1,Qt

)
.

Furthermore, we know the upper bound ‖uN(·, 0)‖L2(Ω) ≤ ‖ϕ‖L2(Ω). There-
fore, we obtain the bound

|uN |QT ≤ c̃, (2.17)

where c̃ is a constant independent of N . Hence the sequence {uN} is a
bounded sequence in the Hilbert space L2(QT ). This can easily be deduced
from (2.17) and Definition 1. Hilbert spaces are reflexive spaces. Thus,
{uN} has a weakly convergent subsequence {uNk}. The same holds true
for its derivatives {∇xu

N} with {∇xu
Nk}. Therefore, {uNk} and {∇xu

Nk}
converge weakly to some unique element u ∈ H̊1,0(QT ). Is this u the desired
generalized (weak) solution of our model problem (2.2) - (2.3)? Let us again
multiply (2.13) by some arbitrary absolutely continuous functions dl(t) with
d
dt
dl ∈ L2(0, T ), with dl(T ) = 0. We sum the obtained equations up from

1 to N , integrate over the interval (0, T ) and perform integration by parts
with respect to time. The resulting equation is∫

QT
−uN ∂tΦ + ν(x, t)∇xu

N∇xΦ dxdt =

∫
Ω

uNΦ|t=0 dx+

∫
QT
f Φ dxdt,

(2.18)

for Φ(x, t) =
∑N

k=1 dk(t)ϕk(x). The set of all such functions Φ with the
desired properties of dl is denoted by MN . The superset

⋃∞
p=1 Mp is dense in

Ĥ1
0 (QT ) (see [12]). We fix a Φ ∈Mp and take the limit of (2.18) for Nk ≥ p,
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i.e.,∫
QT
−uNk ∂tΦ︸ ︷︷ ︸
→u ∂tΦ

+ν(x, t)∇xu
N∇xΦ︸ ︷︷ ︸

→∇xu∇xΦ

dxdt =

∫
Ω

uNΦ|t=0︸ ︷︷ ︸
→ϕΦ|t=0

dx+

∫
QT
f Φ dxdt.

(2.19)

We obtain exactly the definition of a generalized (weak) solution (2.12), with
v = Φ ∈ M. As these union of all such spaces is dense in Ĥ1

0 (QT ), the
equation (2.19) holds for any v ∈ Ĥ1

0 (QT ). Thus u is indeed a generalized
solution of our model problem (2.2) - (2.3). We gather these results in the
following theorem.

Theorem 3 ([12, Chapter III, Thm. 3.1]). Under the conditions (2.4) and
(2.5), the problem (2.2)-(2.3) has at least one generalized (weak) solution in
H̊1,0(QT ), as defined in Definition 2.

Proof. Follows from the derivation above.

We know now that at least one solution u exists, but is this solution
unique? To prove this, we will make again use of the results presented by
Ladyžhenskaya in [12, Chapter III,§2]. First, we consider our generalized
solution u as a generalized solution in L2(QT ) of the problem

∂tu−∆u = f̃ + divx(F ) in QT , (2.20)

u|t=0 = φ(x) for x ∈ Ω, u|Σ = 0, (2.21)

with f̃ ≡ f and F i = ν(x, t)∇xu−∇xu. Hence, by [12, Chapter III, Thm. 2.2
& Thm. 2.3], it follows that u(x, t) is a generalized solution of (2.20) - (2.21)
in V̊ 1,0

2 (QT ). By this, we can define a new class of generalised solutions.

Definition 4 ([12, Chapter III]). A generalised solution u ∈ H̊1,0 of (2.2)
- (2.3) is a called a generalized solution of (2.2) - (2.3) in V̊ 1,0

2 (QT ), if u ∈
V̊ 1,0

2 (QT ) and it fulfils the energy-balance equation (2.7) and the identity∫
Ω

u(x, t)v(x, t) dx−
∫

Ω

ϕv(x, 0) dx

+

∫
Qt
−u∂tv + ν∇xu∇xv dxdt =

∫
Qt
f v dxdt,

(2.22)

for all v ∈ H1
0 (QT ) and any t ∈ (0, T ).
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We will show uniqueness of the problem (2.2) - (2.3) in H1,0(QT ) as usual
by contradiction. Let u1 6= u2 ∈ H̊1,0(QT ) be two generalised solutions of
(2.2) - (2.3), then the difference u := u1 − u2 is also a generalised solution
of (2.2) - (2.3), but with homogeneous initial data and zero right hand side.
Moreover, by what we have shown above, it is also a generalised solution in
V̊ 1,0

2 (QT ), so it satisfies (2.7) with zero right hand side. If it satisfies (2.7), we
have shown that its norm |u|QT is subject to the bound (2.11), but also with
zero right hand side. We obtain u = u1− u2 ≡ 0, which is a contradiction to
our assumption u1 6= u2. Moreover, the operator B, which assigns each tuple
(f, ϕ) its generalised solution in V̊ 1,0

2 (QT ) is linear and the energy balance
equation (2.7) can be obtained from the identity (2.22) (see [12]). We can
summarise the results in the following theorem.

Theorem 5 ([12, Chapter III, Thm. 3.2]). If the assumptions (2.4) and
(2.5) are fulfilled, then any generalised solution of (2.2)-(2.3) in H̊1,0(QT ) is
the generalised solution in V̊ 1,0

2 (QT ) and it is unique in H̊1,0(QT ).

Corollary 6. If the assumptions (2.4) and (2.5) hold, then there exists a
unique generalized solution u ∈ H̊1,0(QT ) ∩ V̊ 1,0

2 (QT ) to the problem (2.2) -
(2.3).

3 The Space-time finite element scheme

From the previous section, we know that there exists a unique generalized
solution of the initial-boundary value problem (1.1) in H̊1,0(Q)∩V̊ 1,0

2 (Q). The
goal of this section is to derive a stable space-time finite element scheme with
a coercive (elliptic) discrete bilinear form, and, therefore, to ensure existence
and uniqueness of a finite element solution. Similar to Langer, Moore and
Neumüller in [14], we use special time-upwind test functions that are locally
scaled in our case. First, we need a regular triangulation Th of our space-time
domain Q (for details, see e.g. [1, 3]). We formally define this triangulation
as

Th := {E : E ⊂ Q, E open} (3.1)

with the properties

Q =
⋃
E∈Th

E and E ∩ E ′ = ∅ for E 6= E ′ ∈ Th. (3.2)

On each of these elements E, we define individual time upwind test functions

vh,t(x, t) := vh(x, t) + θEhE∂tvh(x, t), for all (x, t) ∈ E, (3.3)
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where θE is a positive parameter that will be defined later, and hE :=
diam(E). Here, vh is some test function from a standard conforming finite
element space V0h, e.g., V0h = {v ∈ C(Q) : v|E ∈ Pp ⊂ Qp} that is considered
in this paper. From now on, unless specified otherwise, all functions depend
on both space and time variables. So, we can omit the arguments. In this
section we will make use of the following spaces:

V0 = H1,1
0,0 (Q) := {u ∈ L2(Q) : ∇xu ∈ L2(Q), ∂tu ∈ L2(Q) and u|Σ∪Σ0 = 0},

(3.4)

H2,1
0,0 (Th) := {v ∈ H1,1

0,0 (Q) : v|E ∈ H2,1(E), ∀E ∈ Th}, (3.5)

W 1
∞(Th) := {v ∈ L∞(Q) : v|E ∈ W 1

∞(E),∀E ∈ Th}. (3.6)

We assume that ν ∈ W 1
∞(Th) and that the PDE has a sufficiently smooth

solution u, e.g., u ∈ H2,1
0,0 (Th). Then we proceed in the usual manner, i.e., we

first multiply the PDE (1.1) by our space-time test function vh,t, and then
integrate over a single element E, obtaining∫

E

(∂tu− divx(ν∇xu))vh,t d(x, t) =

∫
E

f vh,t d(x, t).

Summing up over all elements and applying integration by parts on the prin-
ciple term, we obtain∑

E∈Th

∫
E

∂tu vh,t + ν∇xu∇xvh,t d(x, t)−
∫
∂E

ν∇xu · ~nxvh,t ds(x,t) =

∑
E∈Th

∫
E

∂tuvh + θEhE∂tu∂tvh + ν∇xu∇xvh + θEhEν∇xu∇x(∂tvh) d(x, t)

−
∫
∂E

ν∇xu · ~nxvh + θEhEν∇xu · ~nx∂tvh ds(x,t),

for the left hand side, while the right hand side remains unchanged. For the
exact solution u of (1.1), we know that the fluxes have to be continuous, i.e.,
let E and E ′ be two adjacent elements, then

(ν∇xu · ~nx)|E = (ν∇xu · ~nx)|E′ . (3.7)

From this, we know that one part of the boundary terms vanishes from all
inner edges, i.e. we obtain∑

E∈Th

∫
E

∂tu vh + θEhE∂tu∂tvh + ν∇xu∇xvh + θEhEν∇xu∇x(∂tvh) d(x, t)

11



−
∑
E∈Th

∂E∩∂Q6=∅

∫
∂E

ν∇xu · ~nxvh ds(x,t) −
∑
E∈Th

∫
∂E

νθEhE∇xu · ~nx∂tvh ds(x,t)

=
∑
E∈Th

∫
E

f(vh + θEhE∂tvh) d(x, t).

We require vh to be zero on Σ, and know that ~nx vanishes on Σ0 and ΣT .
Therefore, the first boundary term completely disappears from our equation,
and we obtain∑
E∈Th

∫
E

[∂tuvh + θEhE∂tu∂tvh + ν∇xu∇xvh + θEhEν∇xu∇x(∂tvh)] d(x, t)

−
∑
E∈Th

∫
∂E

νθEhE∇xu · ~nx∂tvh ds(x,t) =
∑
E∈Th

∫
E

f(vh + θEhE∂tvh) d(x, t).

We now arrived at the consistency identity for (1.1)

ah(u, vh) = lh(vh), ∀vh ∈ V0h, (3.8)

that holds for a sufficiently smooth solution u, e.g., u ∈ H2,1
0,0 (Th), where

ah(u, vh) :=
∑
E∈Th

∫
E

∂tu vh + θEhE ∂tu ∂tvh d(x, t)

+

∫
E

ν∇xu · ∇xvh + θEhE ν∇xu · ∇x(∂tvh) d(x, t) (3.9)

−
∫
∂E

θEhE ν∇xu · ~nx ∂tvh ds(x,t),

lh(vh) :=
∑
E∈Th

∫
E

f (vh + θEhE∂tvh) d(x, t), (3.10)

with given ν ∈ W 1
∞(Th) and f ∈ L2(Q).

Remark 7. We can derive an equivalent scheme to (3.9). In particular, we
perform the same steps as above, but instead of applying integration by parts
on both principal terms, we only apply it to the first principal term and keep
the second. Hence we obtain another consistency identity for (1.1)

ãh(u, vh) = lh(vh), ∀vh ∈ V0h,

that holds for a sufficiently smooth solution u, e.g., u ∈ H2,1
0,0 (Th), where

ãh(u, vh) :=
∑
E∈Th

∫
E

∂tu vh + θEhE ∂tu ∂tvh d(x, t)

12



+

∫
E

ν∇xu · ∇xvh + θEhE divx(ν∇xu)∂tvh d(x, t)

with given ν ∈ W 1
∞(Th) and f ∈ L2(Q), and lh as in (3.10).

Remark 8. If the test functions vh ∈ V0h are continuous and piecewise linear
(p = 1), then the term in (3.9) containing ∇x(∂tvh) vanishes in all elements
E ∈ Th, since it only contains mixed second order derivatives.

Now we look for a Galerkin approximation uh ∈ V0h to the generalized
solution u of our initial boundary value problem (1.1)-(1.3) using the varia-
tional identity (3.8), i.e., find uh ∈ V0h such that

ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (3.11)

with ah and lh as defined above by (3.9) and (3.10), respectively. In Sec-
tion 2, we already showed existence and uniqueness of a weak solution to
the initial-boundary value problem (1.1)-(1.3). However, our discrete vari-
ational problem (3.11) is of a different form. Thus, we have to investigate
the stability of the space-time finite element scheme. More precisely, we will
even show ellipticity of the bilinear form ah(·, ·) : V0h × V0h → R wrt the
mesh-dependent norm

‖vh‖2
h :=

∑
E∈Th

[
‖ν1/2∇xvh‖2

L2(E) + θEhE‖∂tvh‖2
L2(E)

]
+

1

2
‖vh‖2

L2(ΣT ). (3.12)

For the following derivations, we assume that our triangulation Th of Q is
shape regular such that the local approximation error estimates are available,
[1, 3]. The triangulation Th of Q is called quasi-uniform, if there exists a
constant cu such that

hE ≤ h ≤ cuhE, for all E ∈ Th, (3.13)

where h = maxE∈Th hE. Moreover, we introduce localised bounds for our
coefficient function ν, i.e.,

νE ≤ ν(x, t) ≤ νE, for almost all (x, t) ∈ E and for all E ∈ Th, (3.14)

where νE and νE = const. > 0. In the following, we need some inverse
inequalities for functions from finite element spaces.

Lemma 9. There exist generic positive constants cI,1 and cI,2, such that

‖vh‖L2(∂E) ≤ cI,1h
−1/2
E ‖vh‖L2(E), (3.15)

‖∇vh‖L2(E) ≤ cI,2h
−1
E ‖vh‖L2(E) (3.16)

for all vh ∈ V0h and for all E ∈ Th.
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Proof. For (3.15), see e.g. [19, 4], and for (3.16) see e.g. [1, 3, 4].

From ∇ = (∇x, ∂t)
T and (3.16), we can immediately deduce

‖∂tvh‖L2(E) ≤ cI,2h
−1
E ‖vh‖L2(E). (3.17)

The above inequalities hold for the standard norms. However, we will also
need such a result in some scaled norm.

Lemma 10. Let ν ∈ W 1
∞(Th) be a given uniformly positive function. Then

‖v‖2
Lν2(E) =

∫
E

ν(x, t) |v(x, t)|2 d(x, t)

is a norm and there holds the inverse estimate

‖∂tvh‖Lν2(E) ≤ ‖∇vh‖Lν2(E) ≤ cI,νh
−1
E ‖vh‖Lν2(E), (3.18)

for all vh ∈ V0h and for all E ∈ Th.

Proof. If ν = νE = const > 0 on E, then (3.18) is nothing else than the
classical inverse inequality (3.16). In general, we can at least assume that
(3.14) holds. Using (3.14) and (3.16), we obtain

‖∇vh‖Lν2(E) ≤
√
νE‖∇vh‖L2(E) ≤

√
νEcI,2h

−1
E ‖vh‖L2(E)

≤
(
νE
νE

)1/2

cI,2︸ ︷︷ ︸
=:cI,ν

h−1
E ‖vh‖Lν2(E)

It is clear that in 1 ≤ νE/νE is close to 1 in practical applications.

Below, we will need the estimate

‖∂t∂xivh‖Lν2(E) ≤ cI,νh
−1
E ‖∂xivh‖Lν2(E), (3.19)

which obviously holds for all vh ∈ V0h and for all E ∈ Th. Moreover, we need
the following inverse inequality.

Lemma 11. Let ν ∈ W 1
∞(Th) be a given uniformly positive function. Let

Wh|E := {wh : wh = ∇xvh, vh ∈ V0h|E}. Then there holds the inverse esti-
mate

‖ divx(νwh)‖L2(E) ≤ cI,3h
−1
E ‖νwh‖L2(E),∀wh ∈ Wh|E, (3.20)

where cI,3 is a positive constant, independent of hE.
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Proof. First, we know that V0h|E is a finite space spanned by the local shape
functions {p(i)}i∈ωE . Hence the space Wh|E is also finite and spanned by
the generating system {∇xp

(i)}i∈ωE . Moreover, for a fixed ν, each prod-
uct zh := ν wh can be represented by means of a non-necessary unique lin-
ear combination {ν∇xp

(i)}i∈ωE on E. We denote this space by Zh(E) :=
spani∈ωE{ν∇xp

(i)}. Using Cauchy’s inequality, we obtain

‖ divx zh‖2
L2(E) =

∫
E

| divx zh|2 d(x, t) =

∫
E

|
d∑
i=1

∂xizh,i|2 d(x, t)

≤ d

∫
E

d∑
i=1

|∂xizh,i|2 d(x, t) = d
d∑
i=1

‖∂xizh,i‖2
L2(E),

for all zh ∈ Zh(E). Now, by a simple scaling argument, we can estimate each
element in the sum and obtain

d
d∑
i=1

‖∂xizh,i‖2
L2(E) ≤ d

d∑
i=1

C2h−2
E ‖zh,i‖

2
L2(E)

= dC2h−2
E ‖zh‖

2
L2(E).

Indeed, transforming to the reference triangle, using the norm equivalence
on finite dimensional spaces, and transforming back to E, we obtain

‖∂xizh,i‖2
L2(E) ≤ ‖∇zh,i‖2

L2(E) =

∫
E

|∇zh,i|2 d(x, t)

≤ chd+1
E

∫
∆

|∇ẑh,i|2d(ξ, τ) ≤ chd+1
E h−2

E

∫
∆

|∇̂ẑh,i|2d(ξ, τ)

≤ Ch−2
E

∫
E

|zh,i|2 d(x, t) = Ch−2
E ‖zh,i‖L2(E).

Taking the square root and setting cI,3 := C
√
d closes the proof.

Lemma 11 gives information how the two norms involved scale wrt the
mesh-size hE. However, the estimate (3.20) is not sharp wrt the constant.

Lemma 12. Let the assumptions of Lemma 11 hold. Then

‖ divx(νwh)‖L2(E) ≤ copt‖νwh‖L2(E),∀wh ∈ Wh|E (3.21)

with c2
opt = sup06=zh∈Zh(E)

‖ divx(zh)‖2
L2(E)

‖zh‖2L2(E)

.
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Proof. From Lemma 11 we know that there must be a constant c such that

‖ divx(zh)‖L2(E) ≤ c‖zh‖L2(E) ∀zh ∈ Zh(E).

With the assumption zh 6= 0 we can rewrite the inequality above as

‖ divx(zh)‖2
L2(E)

‖zh‖2
L2(E)

≤ c2.

Now we immediately see that the optimal value for c is nothing else than the
supremum of the expression on left hand side, i.e.,

c2
opt := sup

06=zh∈Zh(E)

‖ divx(zh)‖2
L2(E)

‖zh‖2
L2(E)

.

What remains is to ensure that this supremum is finite. We start by identify-
ing the kernel of ‖ν∇x · ‖L2(E). Using the notation of the proof of Lemma 11,
we know

0 =‖zh‖L2(E) = ‖
∑
i∈ωE

ziq
(i)‖L2(E)

=‖
∑
i∈ωE

ziν∇xp
(i)‖L2(E) = ‖ν∇x

∑
i∈ωE

zip
(i)

︸ ︷︷ ︸
=ϕ

‖L2(E).

This identity holds if and only if ∇xϕ ≡ 0, i.e., if ϕ = ϕ(t). Now let
ϕ ∈ ker ‖ν∇x · ‖L2(E). Then we immediately deduce that

‖ divx(zh)‖L2(E) = ‖ divx(ν∇x

∑
i∈ωE

zip
(i))‖L2(E) = ‖ divx(ν∇xϕ︸︷︷︸

=0

‖L2(E) = 0,

i.e., ker ‖ν∇x · ‖L2(E) ⊂ ker ‖ divx(ν∇x·)‖L2(E).

Remark 13. Note that the constant copt in Lemma 12 is not only optimal
but also computeable. Let zh ∈ Zh(E), then by definition we have

zh(x, t) =
∑
j∈ω̃E

z̃j q̃
(j).

Here we assume that the {q̃(j)}j∈ω̃E form a basis of Zh(E). Moreover, we
know

‖zh‖2
L2(E) = (zh, zh)L2(E) and ‖ divx zh‖2

L2(E) = (divx zh, divx zh)L2(E)︸ ︷︷ ︸
=:b(zh,zh)

.
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As our space Zh(E) is finite, we can further rewrite these scalar products.
Let yh, zh ∈ Zh(E), then

(yh, zh)L2(E) =
∑
i∈ω̃E

(yh, q̃
(i))L2(E)z̃i =

∑
i,j∈ω̃E

ỹj(q̃
(j), q̃(i))L2(E)z̃i.

This can be interpreted as

(yh, zh)L2(E) = (Mhy, z)`2 , with (Mh)ij = (q̃(j), q̃(i))L2(E),

where y and z are the vector of coefficients wrt the basis. By the same argu-
ment we obtain

b(yh, zh) = (Bhy, z)`2 , with (Bh)ij = b(q̃(j), q̃(i))L2(E).

Combining the above identities, we get with NE = |ωE|

c2
opt = sup

0 6=zh∈Zh(E)

‖ divx(zh)‖2
L2(E)

‖zh‖2
L2(QT )(E)

= sup
z∈RNE

(Bhz, z)`2
(Mhz, z)`2

. (3.22)

Hence, c2
opt is the largest eigenvalue of the generalised eigenvalue problem

Bhz = λMhz.

Now, we are able to proof the following lemma.

Lemma 14. There exits a constant µa such that

ah(vh, vh) ≥ µa‖vh‖2
h, ∀vh ∈ V0h, (3.23)

with µa = minE∈Th
{

1 − cI,3

√
νEθE
4hE

}
≥ 1

2
for θE ≤ hE

c2I,3νE
, i.e., µa = 1

2
for

θE = hE
c2I,3νE

.

Proof. We first do integration by parts at the last term, obtaining

ah(vh, vh) =
∑
E∈Th

∫
E

1

2
∂t(v

2
h) + θEhE(∂tvh)

2 + ν|∇xvh|2 d(x, t)

+

∫
E

θEhE ν∇xvh∇x∂tvh d(x, t)−
∫
∂E

θEhE ν∇xvh~nx ∂tvh ds(x,t)

=
∑
E∈Th

∫
E

1

2
∂t(v

2
h) d(x, t) + θEhE‖∂tvh‖2

L2(E) +

∫
E

ν|∇xvh|2 d(x, t)

−
∫
E

θEhE divx(ν∇xvh)∂tvh d(x, t)
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Now using Gauss’ theorem and the facts that vh is continuous across the
element boundary and that nt = 0 on Σ, we obtain

ah(vh, vh) =
∑
E∈Th

∫
∂E

1

2
v2
hnt ds(x,t) + θEhE‖∂tvh‖2

L2(E)

+

∫
E

ν|∇xvh|2 − θEhE divx(ν∇xvh)∂tvh d(x, t)

=
1

2

(
‖vh‖2

L2(ΣT ) − ‖vh‖2
L2(Σ0)

)
+
∑
E∈Th

θEhE‖∂tvh‖2
L2(E)

+

∫
E

ν|∇xvh|2 − θEhE divx(ν∇xvh)∂tvh d(x, t)

The first, second and third term already appear in the definition of our mesh-
dependent norm (3.12). What remains is to estimate the last term. Using
the Cauchy-Schwarz inequality, Lemma 11 and a scaled Young’s inequality,
we arrive at the estimates

|θEhE
∫
E

divx(ν∇xvh)∂tvh d(x, t)| ≤ θEhE ‖ divx(ν∇xvh)‖L2(E)‖∂tvh‖L2(E)

≤ θEhE cI,3h
−1
E ‖ν∇xvh‖L2(E)h

−1/2
E h

1/2
E ‖∂tvh‖L2(E)

≤ cI,3
(ενEθE

2hE
‖∇xvh‖2

Lν2(E) +
1

2ε
θEhE‖∂tvh‖2

L2(E)

)
.

Using this estimate in the equality above and the fact that vh = 0 on Σ0, we
get

ah(vh, vh) ≥
1

2
‖vh‖2

L2(ΣT ) +
∑
E∈Th

[(
1− cI,3

2ε

)
θEhE‖∂tvh‖2

L2(E)

+
(
1− εcI,3νEθE

2hE

)
‖∇xvh‖2

Lν2(E)

]
.

Now we choose ε =
√
hE/(θEνE) and obtain

ah(vh, vh) ≥ min
E∈Th

(
1− cI,3

√
θE νE
4hE

)
×
( ∑
E∈Th

[
‖∇xvh‖2

Lν2(E) + θEhE‖∂tvh‖2
L2(E)

]
+

1

2
‖vh‖2

L2(ΣT )

)
≥ µa‖vh‖2

h,

which concludes the first part of the proof. The second assertion can be
shown by a simple calculation, i.e.,

1− cI,3
√
θE νE
4hE

≥ 1

2
⇔ cI,3

√
θE νE
4hE

≤ 1

2
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⇔ c2
I,3

θE νE
hE

≤ 1

⇔ θE ≤
hE

νE c2
I,3

.

Remark 15. The above proof does hold for any polynomial degree p ≥ 1 of
vh and any fixed, uniformly positive ν ∈ L∞(Q). However, for the special
case p = 1 and ν|E = const, the above proof is trivial, since

∂t(∇xvh) ≡ 0 and ν|E∆xvh ≡ 0.

Hence, there holds the identity

ah(vh, vh) =
∑
E∈Th

∫
E

∂tvh vh + θEhE(∂tvh)
2 + ν|∇xvh|2 d(x, t)

=
∑
E∈Th

1

2

∫
∂E

v2
hnt ds(x,t) + θEhE‖∂tvh‖2

L2(E)‖∇xvh‖2
Lν2(E)

=‖vh‖2
h,

i.e., µa = 1. Moreover, we immediately deduce that for this special case,
the choice of θE has no influence on the ellipticity of the space-time finite
element method.

Remark 16. An alternative approach to the proof of Lemma 14 consists of
not applying integration by parts on the last two terms of (3.9), but instead
estimate

θEhE

∫
E

ν∇xvh∇x(∂tvh) d(x, t) and θEhE

∫
∂E

ν∇xvh~nx ∂tvh ds(x,t)

separately.

Lemma 14 already ensures uniqueness of the finite element solution uh ∈
V0h. Furthermore, since we use the same trial- and test-space V0h, and this
space is finite dimensional, uniqueness implies existence of finite element
solution uh ∈ V0h of (3.8).
For the special case of uniform meshes and uniform θ, i.e., hE = h and
θE = θ for all E ∈ Th, and and ν ≡ 1, a proof for ellipticity with a mesh-
independent constant was done by Langer et.al.[14]. For a second special
case, where θE vanishes, i.e., θE = θ = 0 for all E ∈ Th, Steinbach in [22] has
shown existence and uniqueness of both the continuous and discrete version
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of (3.8). In addition, both papers include also a priori error estimates, where
Steinbach’s estimate is based on a discrete inf-sup condition.
To show an a priori error estimate wrt the mesh dependent norm (3.12),
we need to show that our bilinear form ah(·, ·) is uniformly bounded on
V0h,∗ × V0h, where V0h,∗ = H1,0

0 (Q) ∩H2(Th) + V0h with the norm

‖v‖2
h,∗ =‖v‖2

h +
∑
E∈Th

[
(θEhE)−1‖v‖2

L2(E) + θEhE|v|2H2(E)

]
=

1

2
‖v‖2

L2(ΣT ) +
∑
E∈Th

[
θEhE‖∂tv‖2

L2(E) + ‖∇xv‖2
Lν2(E)

+ (θEhE)−1‖v‖2
L2(E) + θEhE|v|2H2(E)

]
(3.24)

Moreover, we will make use of the following scaled trace inequality.

Lemma 17. There exists a positive constants cTr > 0 such that

‖v‖2
L2(∂E) ≤ 2c2

Trh
−1
E

(
‖v‖2

L2(E) + h2
E‖∇v‖2

L2(E)

)
(3.25)

for all v ∈ H1(E),∀E ∈ Th.

Proof. See e.g. [19].

Lemma 18. The discrete bilinear form ah(·, ·) is uniformly bounded on
V0h,∗ × V0h, i.e.,

|ah(u, vh)| ≤ µb‖u‖h,∗ ‖vh‖h, (3.26)

where µb = maxE∈Th
{

2(1 + θEh
−1
E c2

Tr
ν2E
νE

), 2c2
Trν

2
E, 2 + c2

I,1, 1 + (cI,νθE)2
}1/2

that is bounded provided that θE = O(hE).

Proof. We will estimate the bilinear form (3.9) term by term. For the first
term, since V0h ⊂ H1,1

0,0 (Q), we can apply integration by parts and the Cauchy-
Schwarz inequality, and obtain∑
E∈Th

∫
E

∂tuvh d(x, t) =
∑
E∈Th

[
−
∫
E

u∂tvh d(x, t) +

∫
∂E

untvh ds(x,t)

]
≤
∑
E∈Th

[(
(θEhE)−1‖u‖2

L2(E)

)1/2(
(θEhE‖∂tvh‖2

L2(E)

)1/2]
+
(
‖u‖2

L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
.

For the second and third term, applying the Cauchy-Schwarz inequality for
each term of the sum yields

θEhE

∫
E

∂tu∂tvh d(x, t) ≤
(
θEhE‖∂tu‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2
,
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∫
E

ν∇xu∇xvh d(x, t) ≤
(
‖∇xu‖2

Lν2(E)

)1/2(‖∇xvh‖2
Lν2(E)

)1/2
,

respectively. For the fourth term, we use again Cauchy-Schwarz’ inequality,
the inverse estimate (3.19), and obtain

θEhE

∫
E

ν∇xu∇x(∂tvh) d(x, t) ≤
(
‖∇xu‖2

Lν2(E)

)1/2(
(θEhE)2‖∂t∇xvh‖2

Lν2(E)

)1/2

=
(
‖∇xu‖2

Lν2(E)

)1/2(
(θEhE)2

d∑
i=1

‖∂t(∂xivh)‖2
Lν2(E)

)1/2

≤
(
‖∇xu‖2

Lν2(E)

)1/2(
(θEhE)2

d∑
i=1

c2
I,νh

−2
E ‖∂xivh‖

2
Lν2(E)

)1/2

=
(
‖∇xu‖2

Lν2(E)

)1/2(
(cI,νθE)2‖∇xvh‖2

Lν2(E)

)1/2
.

For the last term, we apply Cauchy-Schwarz and the trace inequalities (3.17)
and (3.25), and get

θEhE

∫
∂E

ν∇xu~nx∂tvh ds(x,t) ≤
(
θEν

2
E‖∇xu‖2

L2(∂E)

)1/2(
θEh

2
E‖∂tvh‖2

L2(∂E)

)1/2

≤
(
2θEν

2
Ec

2
Trh

−1
E

[
‖∇xu‖2

L2(E) + h2
E

d∑
i=1

‖∇∂xiu‖2
L2(E)

])1/2

×
(
θEhEc

2
I,1‖∂tvh‖2

L2(E)

)1/2

≤
(

2θEc
2
Tr

ν2
E

νE
h−1
E ‖∇xu‖2

Lν2(E) + 2c2
Trν

2
EθEhE|u|2H2(E)

)1/2

×
(
c2
I,1θEhE‖∂tvh‖2

L2(E)

)1/2

.

Now we combine the above terms, apply Cauchy’s inequality and gather all
similar items, i.e.,

|ah(u, vh)| ≤
(
‖u‖2

L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2

+
∑
E∈Th

[(
(θEhE)−1‖u‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2

+
(
θEhE‖∂tu‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2

+
(
‖∇xu‖2

Lν2(E)

)1/2(‖∇xvh‖2
Lν2(E)

)1/2

+
(
‖∇xu‖2

Lν2(E)

)1/2(
(cI,νθE)2‖∇xvh‖2

Lν2(E)

)1/2
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+
(
2θEc

2
Tr

νE
νE
h−1
E ‖∇xu‖2

Lν2(E) + 2c2
TrθEνEhE|u|2H2(E)

)1/2

×
(
c2
I,1θEhE‖∂tvh‖2

L2(E)

)1/2
]

≤
(
‖u‖2

L2(ΣT ) +
∑
E∈Th

[
θEhE‖∂tu‖2

L2(E) + 2(1 + θEc
2
Tr

ν2
E

νE
h−1
E )‖∇xu‖2

Lν2(E)

+ (θEhE)−1‖u‖2
L2(E) + 2c2

Trν
2
EθEhE|u|2H2(E)

])1/2

×
(
‖vh‖2

L2(ΣT ) +
∑
E∈Th

[
(2 + c2

I,1)θEhE‖∂tvh‖2
L2(E)

+
(
1 + (cI,1θE)2

)
‖∇xvh‖2

Lν2(E)

])1/2

≤max
E∈Th

{
2(1 + θEh

−1
E c2

Tr

ν2
E

νE
), 2c2

Trν
2
E, 2 + c2

I,1, 1 + (cI,νθE)2
}1/2

︸ ︷︷ ︸
=:µb

‖u‖h,∗‖vh‖h.

Choosing now θE = O(hE) ensures the boundedness of the constant µb.

Remark 19. Choosing θE as in Lemma 14, i.e., θE = hE/(c
2
I,3νE), we obtain

µa = 1/2 and µb = maxE∈Th
{

2(1 +
νEc

2
Tr

νEc
2
I,3

), 2c2
Trν

2
E, 2 + c2

I,1, 1 + (
cI,νhE
c2I,3νE

)2
}1/2

.

Remark 20. As in Remark 15, we can provide a simplified estimate for the
special case p = 1 and ν|E = νE = const. The first three terms can be
estimated as in the above proof. The fourth term completely vanishes, since
∇x(∂tvh) = 0. For the fifth term, we use the fact that ∂tvh = const, Gauss’
theorem and the Cauchy-Schwarz inequality, obtaining

θEhE

∫
∂E

νE∇xu · ~nx∂tvh ds(x,t) = θEhEνE∂tvh

∫
∂E

∇xu · ~nx ds(x,t)

= θEhEνE∂tvh

∫
E

divx(∇xu) d(x, t)

= θEhEνE

∫
E

∆xu∂tvh d(x, t)

≤
(
θEhEν

2
E‖∆xu‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2
.

Gathering the terms from the proof and the above estimate, we obtain

|ah(u, vh)| ≤
(
‖u‖2

L2(ΣT )

)1/2(‖vh‖2
L2(ΣT )

)1/2
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+
∑
E∈Th

[(
(θEhE)−1‖u‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2

+
(
θEhE‖∂tu‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2

+
(
‖∇xu‖2

Lν2(E)

)1/2(‖∇xvh‖2
Lν2(E)

)1/2

+
(
θEν

2
E‖∆xu‖2

L2(E)

)1/2(
θEhE‖∂tvh‖2

L2(E)

)1/2

≤
(
‖u‖2

L2(ΣT ) +
∑
E∈Th

[
θEhE‖∂tu‖2

L2(E) + ‖∇xu‖2
Lν2(E)

+ (θEhE)−1‖u‖2
L2(E) + ν2

EθEhE‖∆xu‖L2(E)

])1/2

×
(
‖vh‖2

L2(ΣT )

+
∑
E∈Th

[
3θEhE‖∂tvh‖2

L2(E) + ‖∇xvh‖2
Lν2(E)

])1/2

≤max
E∈Th
{3, ν2

E}1/2‖u‖h,∗∗‖vh‖h.

We immediately deduce that this new constant µ̃b = maxE∈Th{3, ν2
E}1/2 is

also independent of hE.

To obtain a priori error estimates wrt to the mesh dependent norm (3.12),
we need interpolation error estimates for finite elements wrt (3.24), which we
summarise in the next Lemmata. Moreover, we need the broken Sobolev
space

Hs(Th) := {v ∈ L2(Q) : v|E ∈ Hs(E)}, (3.27)

equipped with the broken Sobolev (semi-)norm

|v|2Hs(Th) :=
∑
E∈Th

|v|2Hs(E) and ‖v‖2
Hs(Th) :=

∑
E∈Th

‖v‖2
Hs(E), (3.28)

where s is some positive integer. For further details on such spaces, we refer
to [4, 19].

Lemma 21. Let s and k be positive integers with s ∈ [2, p + 1] and k >
(d + 1)/2, respectively. Let v ∈ V0 ∩Hk(Q) ∩Hs(Th). Then there exists an
interpolation operator Πh, mapping from V0 ∩Hk(Q) to V0h, such that

‖v − Πhv‖L2(E) ≤ Chs+1
E |v|Hs(E), (3.29)
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‖∇(v − Πhv)‖L2(E) ≤ ChsE|v|Hs(E), (3.30)

|v − Πhv|H2(E) ≤ Chs−1
E |v|Hs(E), (3.31)

where C is some generic constant independent of v. Here, p denotes the
polynomial degree of the finite element basis functions.

Proof. See e.g. [2, Theorem 4.4.4] or [3, Theorem 3.1.6].

Lemma 22. Let the assumptions of Lemma 21 hold. Then the following
interpolation error estimates hold:

‖v − Πhv‖L2(ΣT ) ≤ c1

(∑
E∈Th

∂E∩ΣT 6=∅

h2s−1
E |v|2Hs(E)

)1/2
, (3.32)

‖v − Πhv‖h ≤ c2

( ∑
E∈Th

h
2(s−1)
E |v|Hs(E)

)1/2
, (3.33)

‖v − Πhv‖h,∗ ≤ c3

( ∑
E∈Th

h
2(s−1)
E |v|Hs(E)

)1/2
. (3.34)

The constants c1, c2, c3 do not depend on hE or v, provided that θE = O(hE).

Proof. We start with the first estimate (3.32). We use the scaled trace in-
equality (3.25), and the interpolation error estimates (3.29) and (3.30), ob-
taining

‖v − Πhv‖2
L2(ΣT ) =

∑
E∈Th

∂E∩ΣT 6=∅

‖v − Πhv‖2
L2(∂E∩ΣT ) ≤

∑
E∈Th

∂E∩ΣT 6=∅

‖v − Πhv‖2
L2(∂E)

≤
∑
E∈Th

∂E∩ΣT 6=∅

[
2c2
Trh

−1
E (‖v − Πhv‖2

L2(E) + h2
E‖∇(v − Πhv)‖2

L2(E))
]

≤c2
Tr

∑
E∈Th

∂E∩ΣT 6=∅

[
C2h2s−1

E |v|2Hs(E) + C2h2s−1
E |v|2Hs(E)

]
≤c2

Tr C
2
∑
E∈Th

∂E∩ΣT 6=∅

[h2s−1
E |v|Hs(E)].

For (3.33), we use definition (3.12), assumption (3.14), the interpolation error
estimate (3.30), and the above estimate (3.32), and obtain

‖v − Πhv‖2
h =

∑
E∈Th

[
θEhE‖∂t(v − Πhv)‖2

L2(E) + ‖∇x(v − Πhv)‖2
Lν2(E)

]
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+
1

2
‖v − Πhv‖2

L2(ΣT )

≤
∑
E∈Th

[
θEC

2h
2(s−1)
E |v|2Hs(E) + νEC

2h
2(s−1)
E |v|2Hs(E)

]
+

1

2
c2

1

∑
E∈Th

h2s−1
E |v|2Hs(E)

≤
∑
E∈Th

[
(C2θEhE + νEC

2 + c2
1hE)h

2(s−1)
E |v|2Hs(E)

]
.

For the last estimate (3.34), we use definition (3.24), the above estimate
(3.33), and the interpolation error estimate (3.31), obtaining

‖v − Πhv‖2
h,∗ =‖v − Πhv‖2

h +
∑
E∈Th

[
(θEhE)−1‖v − Πhv‖2

L2(E) + θEhE|v − Πhv|2H2(E)

]
≤
∑
E∈Th

[
c2

2h
2(s−1)
E |v|2Hs(E) + C2θ−1

E h2s−1
E |v|2Hs(E) + C2θEhEh

2(s−2)
E |v|2Hs(E)

]
≤
∑
E∈Th

(
c2

2 + hEθ
−1
E C2 + θEh

−1
E C2

)
h

2(s−1)
E |v|2Hs(E).

The special choice θE = O(hE) ensures that the constant c3 is independent
of hE.

Remark 23. The strong assumption v ∈ Hk(Q) with k > (d+1)/2 is needed
for the interpolation error estimates for the Lagrange interpolation operator.
However, in practical application this requirement is too restrictive. How-
ever, in such a practical application, the space-time cylinder Q =

⋃M
i=1Qi

can be split into subdomains Qi, which correspond e.g. to different ma-
terials. On each such subdomain Qi, we can assume some regularity for
v ∈ Hs(T (Q)) := {v ∈ L2(Q) : v|Qi ∈ Hs(Qi), for all i = 1, . . . ,M} with
some s > 1. For a similar case, Duan et.al. [5] have shown an interpolation
error estimate of the form

‖∇(v − Ihv)‖L2(Q) ≤ Chs−1

M∑
i=1

‖v‖Hs(Qi),

where Ih is a special quasi-interpolation operator.

Now we can formulate the following a priori estimate for the error.

Theorem 24. Let s and k be positive integers with s ∈ [2, p + 1] and k >
(d + 1)/2. Furthermore, let u ∈ V0 ∩Hk(Q) ∩Hs(Th) be the exact solution,
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and uh ∈ V0h the solution of the finite element scheme (3.11). Then there
holds the a priori error estimate

‖u− uh‖h ≤ c

( ∑
E∈Th

h
2(s−1)
E |u|2Hs(E)

)1/2

. (3.35)

Proof. First, we know from the consistency identity (3.8) that ah(u, vh) =
lh(vh), and, since uh is the approximate solution of (3.11), that ah(uh, vh) =
lh(vh). Hence we have Galerkin orthogonality for our bilinear form ah(·, ·),
i.e.

ah(u− uh, vh) = 0, ∀vh ∈ V0h. (3.36)

We start with the triangle inequality for the discretization error, i.e.,

‖u− uh‖h ≤ ‖u− Πhu‖h + ‖Πhu− uh‖h.

We continue by estimating the second term. Using the ellipticity proved in
Lemma 14, the Galerkin orthogonality and the generalised boundedness from
Lemma 18, we obtain

µa‖Πhu− uh‖2
h ≤ ah(Πhu− uh,Πhu− uh) = ah(Πhu− u,Πhu− uh)
≤ µb‖Πhu− u‖h,∗‖Πhu− uh‖h.

We insert this estimate in the triangle inequality above, use the interpolation
error estimates (3.33) and (3.34), and obtain

‖u− uh‖h ≤ ‖u− Πhu‖h +
µb
µa
‖Πhu− u‖h,∗

≤ c2

( ∑
E∈Th

h
2(s−1)
E |u|2Hs(E)

)1/2
+ c3

µb
µa

( ∑
E∈Th

h
2(s−1)
E |u|2Hs(E)

)1/2

≤
(
c2 + c3

µb
µa

)( ∑
E∈Th

h
2(s−1)
E |u|2Hs(E)

)1/2
,

which proves the estimate (3.35) with c = c2 + c3(µb/µa).

Now we proceed with solving the discrete variational problem (3.11) that
is nothing but a huge system of linear algebraic equations. Indeed, let {p(i) :
i ∈ Ih} be some basis of V0h, where Ih is some index set, which we will
specify later. Then we can express the approximate solution uh in terms of
this basis, i.e. uh(x, t) =

∑
i∈Ih ui p

(i)(x, t). Furthermore, each basis function
is a valid test function. Thus, we obtain Nh equations from (3.11),

ah(uh, p
(i)) = lh(p

(i)), for all i ∈ Ih, (3.37)
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where Nh = |Ih| is the dimension of V0h. Now we replace uh by its basis
representation, which yields∑

j∈Ih

ui ah(p
(j), p(i))︸ ︷︷ ︸

=:(Kij)

= lh(p
(i))︸ ︷︷ ︸

=:(fi)

, for all i ∈ Ih. (3.38)

We can rewrite this system in terms of a system of linear algebraic equations

Khuh = fh, (3.39)

where Kh = (Kij), uh = (ui) and fh = (fi). The system matrix is non-
symmetric, but positive definite due to Lemma 14. Indeed,

(Khvh,vh) = ah(vh, vh) ≥ µa‖vh‖2
h > 0 (3.40)

for all V0h 3 vh ↔ vh ∈ RNh : vh 6= 0. The linear system (3.39) can be solved
efficiently and most important in parallel by either a sparse direct solver (e.g
sparse LU-factorisation) or an iterative solver (e.g., preconditioned GMRES).
But how to construct such a basis {p(i)} of V0h? We need again the regular
triangulation Th of our space-time domain Q, which we already introduced
in (3.1). We now define shape functions and the corresponding function set
F(E). This function set is either a subspace or equal to the following function
spaces

Pk := {
∑
|α|≤k

cαx
α : cα ∈ R},

Qk := {
∑
αi≤k

cαx
α : i = 1, . . . , d+ 1, cα ∈ R}.

Furthermore, we need some degrees of freedom, denoted by l(E,α), which are
functionals in the dual space F(E)∗ of F(E). If these functionals span the
whole dual space, i.e. they are a basis, or, equivalently, have the interpolation
property

l(E,α)(v) = cα, for v ∈ F(E),

then we can uniquely determine all coefficients of v ∈ F(E) on an element
E. In particular, we choose the point evaluations as our degrees of freedom,
i.e., let v ∈ F(E), then

l(E,α)(v) = v(x(E,α)), α ∈ AE, (3.41)
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where x(E,α) ∈ E is called node and AE is a set of local indices. With this
triple (E,F(E), {l(E,α)}), which is called a finite element, we now define a
local nodal basis of shape functions, i.e.,

{p(E,α) : p(E,α) ∈ F(E), α ∈ AE}, (3.42)

with the property l(E,α)(p(E,β)) = δαβ.
Now we can define a global set of nodes {x(i) : i ∈ Ih}, and if x(i) ∈ E,
then x(i) = x(E,α) for some α. Furthermore, we need a global set of degrees
of freedom {l(i) : i ∈ Ih}, where l(i) = l(E,α) on E, and a global nodal basis
{p(i) : i ∈ Ih}, with l(i)(p(j)) = δij and p(i) = p(E,α) on E. Then this global
nodal basis spans our discrete function space V0h = span{p(i) : i ∈ Ih}.
From now on, we restrict ourselves to triangular elements E and the poly-
nomial space P1. Hence, we have three degrees of freedom for p(i) ∈ P1,
which we will determine by point evaluation in the three corner points of the
triangle E. To efficiently compute the entries in Kh and fh, we observe that
the nodal basis functions p(i) have only local support, which will result in a
sparse matrix Kh. Therefore, we can write each entry as

(Kh)ij =

{
0, if Bij = Bi ∩Bj = ∅,∑

E∈Bij ah,e(p
(j), p(i)), else

,

(fh)i =
∑
E∈Bi

lh,e(p
(i)),

where Bi = {E ∈ Th : x(i) ∈ E} is the neighbourhood of a node x(i) and

ah,e(uh, vh) :=

∫
E

∂tuh vh + θEhE ∂tuh ∂tvh d(x, t)

+

∫
E

ν∇xuh · ∇xvh + θEhE ν∇xuh · ∇x(∂tvh) d(x, t)

(3.43)

−
∫
∂E

θEhE ν∇xuh · ~nx vh ds(x,t),

lh,e(vh) :=

∫
E

f (vh + θEhE∂tvh) d(x, t), (3.44)

are the integrals over one element.
In order to compute the entries of Kh, we will assemble the stiffness matrix
Kh and the load vector fh element-wise, i.e., on each element E, we have to

identify i ↔ α and j ↔ β, so we obtain the local element matrix K
(E)
h and

the element load vector f
(E)
h , with

(K
(E)
h )αβ = ah,e(p

(E,β), p(E,α)), and (f
(E)
h )α = lh,e(p

(E,α)).
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In order to avoid the computation of the coefficients of p(E,α) on each element,
we will instead transform the arbitrary triangle E to a canonical triangle, the
so called reference triangle ∆, with

∆ := {(ξ1, ξ2) : ξ1 + ξ2 ≤ 1 ∧ ξ1, ξ2 ≥ 0}.

For our finite elements, it is sufficient to do this transformation via an affine
mapping XE, which is defined as

ξ 7→ XE(ξ) := x(E,1) +

(
x

(E,2)
1 − x(E,1)

1 x
(E,3)
1 − x(E,1)

1

x
(E,2)
1 − x(E,1)

2 x
(E,3)
2 − x(E,1)

2

)
︸ ︷︷ ︸

JE

ξ.

On the reference triangle ∆, the shape functions p(α) can be easily computed,
i.e.,

p(1)(ξ) = 1− ξ1 − ξ2, p(2) = ξ1, and p(3) = ξ2.

We then obtain the shape functions on an arbitrary element E via the inverse
mapping X−1

E , i.e.,
p(E,α) = p(α) ◦X−1

E . (3.45)

Hence, we can compute the element matrices K
(E)
h and element load vectors

f
(E)
h by transforming the integrals to the reference element ∆. The trans-

formed integrals can now be approximated by some quadrature rule. In par-
ticular, we used the first three point rule from [23, Table 4.1]. If we now per-

form these calculations for each element E, and add the entries of K
(E)
h and

f
(E)
h to the corresponding entries of Kh and fh, respectively, we have fully

assembled our linear system (3.39). Note that as our bilinear form ah(., .) is
non-symmetric, the stiffness matrix Kh is also non-symmetric. However, so
far, we do not have incorporated the initial- and boundary-conditions. First
of all, we deduce that the initial condition (1.3) can be seen as a Dirichlet
boundary condition for the space time cylinder Q. Since we consider only
homogeneous initial and boundary values, this incorporation can be easily
achieved. We first identify all vertices which are on the Dirichlet boundary.
Let us denote the set of indices of such vertices by Īh. Then, for each i ∈ Īh,
we set

fi = 0, Kij = 0 for j ∈ Īh \ {i}, and Kii = 1.

For further details on the incorporation of boundary conditions, we refer to
e.g. [10].
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4 Implementation

To validate our theoretical results from Section 3, we performed some nu-
merical experiments. Let Ω := (0, 1) and Q := Ω× (0, 1) = (0, 1)2. We want
to solve the initial boundary value problem (1.1)-(1.3) with homogeneous
boundary and initial conditions,

∂tu(x, t)− ∂x(ν(x, t)∂xu(x, t)) = f(x, t), (x, t) ∈ (0, 1)2, (4.1)

u(x, 0) = 0, x ∈ [0, 1], (4.2)

u(0, t) = u(1, t) = 0, t ∈ (0, 1), (4.3)

and ν being piecewise positive constant, and

f(x, t) := π sin(πx) (cos(πt) + π sin(πx)) .

For the case ν ≡ 1, we know that the exact solution is

u(x, t) = sin(πx) sin(πt). (4.4)

Thus, for this case, we can easily compute convergence rates. But if ν has
jumps, we do not know the exact solution. Hence, we have to replace the
exact solution by an approximate solution computed on a fine grid, see Sec-
tion 5 for details.
The FEM was implemented in our C++ code SpaceTimeFEM++. The linear
system (3.39) was solved by means of the direct solver PARDISO 5.0.0, see
[11]. Until now, the PARDISO solver for non-symmetric matrices is only par-
allelized by the use of OpenMP (shared memory) instead of MPI (distributed
memory).

5 Numerical Results

The numerical experiments presented in this section were performed on the
RADON11 high performance computing cluster at RICAM, Linz. Due to the
nature of our linear system and the used solver, we could not use the full
potential of the hardware. The initial meshing was done with NETGEN (see
[20]) and the finer meshes were obtained by a subsequent uniform refinement
procedure. We measured the absolute error in both the L2- and the mesh-
dependent norm (3.12), i.e., we computed ‖u−uh‖L2(Q) and ‖u−uh‖h, where
u and uh denote the exact and approximate solutions, respectively. In each
graph, we also include the expected convergence rate, i.e., O(hp) for the
mesh-dependent norm (3.12) and O(hp+1) for the L2-norm.

1https://www.ricam.oeaw.ac.at/hpc/
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5.1 Constant θE

For the experiments in this section, we will choose a θE = θ and perform
a series of uniform refinements without changing the θE. Moreover, for this
subsection, we restrict ourselves to linear basis functions, i.e., p = 1. Thus,
we expect convergence rates of O(h) for the mesh-dependent norm (3.12) and
O(h2) for the L2-norm, provided that our solution has high enough regularity.
Furthermore, we expect that the convergence rates for the ‖ · ‖h-norm are
not influenced by θ.

5.1.1 Constant coefficient case

For our first test case, let ν(x, t) ≡ 1, ∀(x, t) ∈ Q, and let the exact solution
be given by

u(x, t) = sin(πx) sin(πt). (5.1)

The coarsest mesh has 132 degrees of freedom (dofs), see Fig. 1, whereas the
finest one has 29 108 225 dofs.

Figure 1: Initial mesh with 132 vertices.

We can see in Fig. 2 that θ directly influences the convergence rates
in the L2-norm, with linear convergence for θ = 0.1 and almost quadratic
convergence for θ = 10−5. The same does not hold for the mesh-dependent
norm ‖ . ‖h, as we can see in Fig. 3. Instead, we observe almost no change in
both the absolute error and the convergence rate. But what if we examine
the parts of the ‖ · ‖h-norm seperately? For the spatial derivative part, we
observe that it matches the behaviour of the full norm. The L2-norm of the
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error on the top of the space-time cylinder matches the behaviour of the full
L2-norm. However, for the temporal derivative part, we only get reduced
convergence rates, c.f. Fig. 4. This is due to the scaling wrt the mesh-size
hE in front of the term.
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Figure 2: This plot shows the influence
of θE on the L2-norm for ν ≡ 1.
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Figure 3: This plot shows the influence
of θE on the ‖ · ‖h-norm for ν ≡ 1.
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Figure 4: This plot shows the influence of θE on ‖∂t(u−uh)‖L2(Q) in the ‖·‖h-norm
for ν ≡ 1.

32



5.1.2 Jumps only in space

Figure 5: A sketch of the domain with jumps only in space and the initial mesh.

In our second test case, we now allow a jumping coefficient ν, but restrict
this jumps to be only in space, as illustrated in Fig. 5. Therefore, ν is defined
as

ν(x, t) :=

{
ν1, for (x, t) ∈ Q1 ∪Q3,

ν2, for (x, t) ∈ Q2.

Due to this discontinuity, we do not know the exact solution. Instead we
choose the solution on a very fine mesh as our new ”exact” solution and
compared it against the solutions on the coarser meshes. As a consequence,
we have to treat the obtained convergence rates with caution, as the coarser
solutions naturally converge to the finest solution. We can observe this effect
directly in the following plots, as all of them will have steeper descent for
the highest number of dofs. The coarsest computational domain consists of
121 vertices and the mesh for the ”exact” solution has 26 224 146 dofs. The
finest mesh for which we obtain convergence rates has 6 558 711 dofs in total.
For the values of ν1 and ν2, we always chose ν1 = 1 and ν2 ∈ {10, 100, 1000}.
We start with ν2 = 10. In Fig. 6 and Fig. 7, we observe a different behaviour
as in the uniform case. For a discontinuous ν, we observe that θ now has
influence on the absolute error in the ‖ · ‖h-norm. Furthermore, any value of
θ less than θ = 0.01 yields almost the same convergence rates for both the
L2- and the ‖ · ‖h-norm. However, a possible reason for this might be that
our number of dofs is just not high enough (see Section 6), because if we
compare the plot for θ = 0.01 in Fig. 2 with the one in Fig. 6, they seem to
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Figure 6: This plot shows the influence
of θE on the L2-norm for ν2 = 10.
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Figure 7: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 10.

have a similar behaviour.
If we increase the height of the discontinuity by a factor of 10, i.e., ν2 = 100,
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Figure 8: This plot shows the influence
of θE on the L2-norm for ν2 = 100.
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Figure 9: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 100.

we observe in Fig. 8 and Fig. 9, that the values smaller than θ = 0.1 yield
almost the same convergence rates as the limit case θ = 0.

This effect is even stronger if we increase the jump height once again by a
factor of 10. For ν2 = 1000, the parameter θ has even less influence on both
norms than before, as you can observe in Fig. 10 and Fig. 11.
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Figure 10: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 11: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 1000.

5.1.3 Jumps in space and time

Figure 12: A sketch of the domain with jumps both in space and time and the
corresponding initial mesh.

For our third test case, the jumps happen not only in space, but also in time,
as illustrated in Fig. 12. Again, we define ν as

ν(x, t) =

{
ν1, for (x, t) ∈ Q1 ∪Q3,

ν2, for (x, t) ∈ Q2.

As in the second test case, we do not know a exact solution. Hence, we obtain
error behaviour and convergence rates as before. The choice of the diffusion
coefficient ν remains almost the same, i.e., ν1 = 1 and ν2 ∈ {10, 100, 1000, 4000}.
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Figure 13: This plot shows the influence
of θE on the L2-norm for ν2 = 10.

10−6

10−5

10−4

10−3

10−2

10−1

102 103 104 105 106 107

dofs

θE = 0
θE = 10−1

θE = 10−2

θE = 10−3

θE = 10−4

θE = 10−5

O(h)

Figure 14: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 10.

We start again with ν2 = 10 and observe that θ has more influence than in
the second test case, c.f. Fig. 6 and Fig. 13. Moreover, if we compare it
with the L2-plot of the uniform case, we observe a very similar behaviour.
For the ‖ · ‖h-norm, θ has again direct influence and the plot has analogous
behaviour as before (see Fig. 14). We continue with ν2 = 100. Here, the plot
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Figure 15: This plot shows the influence
of θE on the L2-norm for ν2 = 100.
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Figure 16: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 100.

of the L2-norm has much similarity to the second test case with ν2 = 10.
The same holds for the ‖ · ‖h-norm. For this geometry, θ seems to have much
more influence on the error rates as in second test case. We can observe this
for ν2 = 1000, as the error rates for θ = 0.1 is still distinguishable from the
other θs and, for a high number of dofs, this difference is very clear, as we
can see in Fig. 17 and Fig. 18. So what happens if we increase the height of
the discontinuity once again? Let now ν2 = 4000. Then, our parameter θ has
little to no influence on the absolute error. Only for the highest number of
vertices, we can clearly distinguish between θ = 0.1 and the smaller θs (see
Fig. 19 and Fig. 20).
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Figure 17: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 18: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 1000.
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Figure 19: This plot shows the influence
of θE on the L2-norm for ν2 = 4000.
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Figure 20: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 4000.
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5.1.4 Jumps in space and time with change of direction

Figure 21: A sketch of the domain with jumps both in space and time and a change
in direction and the initial mesh.

For the fourth and last test case, we allow now domains where the disconti-
nuity changes its direction, as in Fig. 21. This is typically for the case of a
so-called line motor. We use the same definition for ν as before, i.e.,

ν(x, t) =

{
ν1, for (x, t) ∈ Q1 ∪Q3,

ν2, for (x, t) ∈ Q2.

The exact solution is again not available, hence we use the same procedure
for convergence rates as in the second and third test case. The values for ν1

and ν2 remain ν1 = 1 and ν2 ∈ {10, 100, 1000}. The initial mesh consists of
165 vertices, the mesh for our ”exact” solution has 37 758 977 dofs and the
last solution for which we obtain convergence rates has 9 442 305 vertices.

Now let ν2 = 10. In contrast to the previous two test cases, we observe
an significant difference in the behaviour of the L2- and ‖ ·‖h-norm (compare
Fig. 22 and Fig. 23). For the L2-norm, we observe that for all the θ less
than θ = 0.01, the errors have little difference, while the error for θ = 0.1 is
greater. The ‖ · ‖h-norm behaves interestingly, as for the coarsest mesh, we
can differ between θ = 0.1 and θ ≤ 0.01, but as the meshes become finer,
all plot lines merge and then the difference is almost negligible. For higher
discontinuities, i.e. ν2 ∈ {100, 1000}, the error behaves exactly in the same
manner, so ν seems to have very little influence for this type of geometry.
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Figure 22: This plot shows the influence
of θE on the L2-norm for ν2 = 10.
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Figure 23: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 10.
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Figure 24: This plot shows the influence
of θE on the L2-norm for ν2 = 10.
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Figure 25: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 100.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

102 103 104 105 106 107

dofs

θE = 0
θE = 10−1

θE = 10−2

θE = 10−3

θE = 10−4

θE = 10−5

O(h2)

Figure 26: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 27: This plot shows the influence
of θE on the ‖.‖h-norm for ν2 = 1000.
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5.2 Variable θE

For the experiments in this section, we now allow different θE for each ele-
ment. In particular, we test for the case θE = hE, for all E ∈ Th to validate
our theoretical results. As we have seen from the experiments in the previous
section, in the case of linear shape functions, i.e., p = 1, the influence of θE
on the convergence rates is almost negligible. Therefore we performed the
same four experiments as in the section before, but also with quadratic shape
functions, i.e., p = 2.

5.2.1 Constant coefficient case
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Figure 28: This plot shows the influence
of θE on the L2-norm for ν ≡ 1.
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Figure 29: This plot shows the influence
of θE on the ‖ · ‖h-norm for ν ≡ 1.

For the constant coefficient case, we immediately observe that the choice
θE = O(hE) is crucial in order to obtain optimal rates, i.e., O(h2) for the
mesh-dependent norm (3.12), and O(h3) for the L2-norm, c.f. Fig. 28 and
29.
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Figure 30: This plot shows the influence
of θE = hE on ‖∂t(u − uh)‖L2(Q) in the
‖ · ‖h-norm for ν ≡ 1.
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Figure 31: This plot shows the influence
of θE = 0.5 on ‖∂t(u − uh)‖L2(Q) in the
‖ · ‖h-norm for ν ≡ 1.
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We again examined the temporal part ‖∂t(u− uh)‖L2(Q) separately, com-
paring our almost uniform mesh with a real uniform mesh, i.e., hE = h for
all E ∈ Th. Moreover, we also included the rates for linear shape functions
(p = 1). For θE = hE, we observe that for p = 1, the actual rates are
better than expected, whereas for p = 2, the results confirm the theory (c.f.
Fig. 30). For a fixed θE = 0.5 however, the rates for p = 1 validate the
theory, but for p = 2, the observed rates are worse than the predicted ones,
c.f. Fig. 31.

5.2.2 Jumps only in space
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Figure 32: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 33: This plot shows the influence
of θE on the ‖ · ‖h-norm for ν2 = 1000.

For the second experiment, we now have a diffusion coefficient which does
depend on the spatial variable, i.e.,

ν =

{
1, for x ∈ (0, 0.4) ∪ (0.6, 1),

1000, else.

In this case, we see that the scheme is even more susceptible to the choice
of θE. If we compare the rates with the constant coefficient case, we note
that for θE = 0.5 for all E ∈ Th, we do not get any convergence, c.f. Fig. 32
and 33. Additionally, we do not get optimal rates even for θE = hE, which
is most likely due to a loss in regularity of the solution.
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5.2.3 Jumps in space and time
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Figure 34: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 35: This plot shows the influence
of θE on the ‖ · ‖h-norm for ν2 = 1000.

If we now admit that the discontinuity also depends on t, i.e.,

ν(x, t) =

{
1, for (x, t) ∈ Q1 ∪Q3,

1000, for (x, t) ∈ Q2,

the effect of a fixed θE becomes even worse. The magnitude of the absolute
errors is now of order 1040. Hence, we excluded this choice of θE in the plots.
As in the previous case, we loose the optimal rates, even for θE = 0, c.f.
Fig. 36 and 37.

5.2.4 Jumps in space and time with change of direction
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Figure 36: This plot shows the influence
of θE on the L2-norm for ν2 = 1000.
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Figure 37: This plot shows the influence
of θE on the ‖ · ‖h-norm for ν2 = 1000.

In the last test case, where the lines of discontinuity change their direction,
we again excluded the plots for θE = 0.5 for all E ∈ Th, as the magnitude was
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to high. As for the convergence rates for θE = hE and θE = 0, we observe
that in both cases, we loose the full convergence rates, c.f. Fig. 36 and 37
due to the reduced regularity of the solution.

6 Conclusions and Future Work

In this paper, following [12], we first showed that the parabolic initial bound-
ary value problem (1.1)-(1.3) has a unique, generalized solution in H̊1,0(Q),
that even belongs to V̊ 1,0

2 (Q). We proceeded by deriving a stable space-
time finite element scheme (3.8), for which we showed coercivity (ellipticity)
and boundedness, as well as an a priori error estimate with optimal rates.
However, these optimal rates come with a price, i.e., we have to choose
θE = O(hE) for all E ∈ Th. We performed a numerical experiment for
Q = (0, 1)2 and a constant diffusion coefficient ν = const > 0, with a highly
smooth solution. More numerical experiments were performed for a discon-
tinuous diffusion coefficient. All numerical experiments yielded the expected
results.
In future work, we could try to derive some a priori error-estimate for the
L2-norm, which was always studied numerically in our experiments in Sec-
tion 5. Moreover, one could develop an a posteriori error estimator, which
would enable us to use adaptive mesh refinement, leading to a space-time
Adaptive Finite Element Method (AFEM). We mention that our scheme is
prepared for AFEM, since we allow local mesh-sizes hE for E ∈ Th under the
condition of shape regularity of the element E. This will help in analysing
problems with a discontinuous diffusion coefficient ν. Then we can improve
the solver for the huge algebraic linear system. We can switch from a sparse
direct solver to a AMG-preconditioned GMRES-method, as was done in [14],
which would enable us to reach a higher number of dofs, as well as the treat-
ment of 2D and even 3D problems. We can then combine the space-time
AFEM with Nested Iterations, which drastically reduces the solving time.
The main future goal is the application to nonlinear parabolic problems and
eddy current problems, which typically arise in electrical engineering.

43



References

[1] Braess, D. Finite Elemente; Theorie, schnelle Löser und Anwendun-
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