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Abstract

Modern ground based telescopes like the planned Extremely Large Telescope

(ELT) depend heavily on Adaptive Optics (AO) systems to correct for atmospheric

turbulence. Even though AO correction is used, the quality of astronomical images

still is degraded due to the time delay stemming from the wavefront sensor (WFS)

integration time and adjustment of the deformable mirror(s) (DM). This results in a

blur which can be mathematically described by a convolution of the original image

with the point spread function (PSF).

In this paper, we present an algorithm for SCAO PSF reconstruction adapted to

the needs of ELTs in a storage efficient way. In particular, the classical PSF recon-

struction algorithm from [21] is changed in several points to give a more accurate

estimate for the post-AO PSF. Bilinear splines are used as basis functions in order

to minimize the computational effort.

Results obtained in an end-to-end simulation tool show qualitatively good recon-

struction of the PSF compared to the PSF calculated directly from the simulated

incoming wavefront. Furthermore, the used algorithm has a reasonable run time

and memory consumption.

1 Introduction

In ground-based astronomy, the observed image Io can be described as a convolution of

the true image I and the so called point spread function (PSF), i.e.,

Io = I(x) ∗ PSF(x− y).
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The PSF of an astronomical observation through a ground-based telescope depends on

the geometry of the telescope and the atmospheric turbulence above the telescope. Mod-

ern ground-based telescopes reduce the effect of the turbulent atmosphere by Adaptive

Optics (AO) systems. However, still residual turbulences remain uncorrected. The goal

is to reconstruct the PSF from data acquired by the wavefront sensors (WFS) and the

commands applied to the deformable mirror(s) (DM) after the image has been obtained.

The purpose of this paper is to describe an algorithm for PSF reconstruction in Single-

Conjugate Adaptive Optics (SCAO). The PSF of an astronomical image varies with the

position in the observed field. As AO corrected images still suffer from the time delay

due to the wavefront sensor integration time and adjustment of the deformable mirror(s),

the aim is to improve the image quality with deconvolution algorithms where the knowl-

edge of the PSF is required. Furthermore, the PSF can be used to extract estimates for

parameters which determine the quality of an astronomical image, e.g., Strehl ratio or

Encircled Energy.

PSF reconstruction is based on the WFS data, which is acquired at a frequency of 500

to 3000 Hz. Saving the measured data and performing calculations in a post-processing

step will result in an enormous amount of data as the image exposure time ranges from

one second to several minutes. In addition, a reconstructed PSF can be used a measure

for quality evaluation of the observed image. If the field of view is larger than around

10”, knowledge of the PSF in different directions is required, as then the PSF is spatially

varying within the field of view.

One major drawback of the upcoming extremely large telescopes (ELT), such as the Eu-

ropean ELT, is the relatively coarse resolution of the WFS. This results in a large part of

unknown higher order terms of the wavefront. However, the coarse resolution of the WFS

becomes necessary due to the faint stars serving as guide stars (GS). Choosing a higher

resolution of the WFS would result in having a too low singal to noise ratio in the WFS

measurements.

We propose an algorithm for SCAO PSF reconstruction adapted to the needs of ELTs

in a storage efficient way. In particular, we adopt the classical PSF reconstruction al-

gorithm from [21], by using a 4D structure function instead of a 2D structure function

as well as bilinear basis functions [13, 22]. For bilinear basis functions the higher order

aberrations of the atmosphere, i.e., the parts that are not sensed by the WFS, cannot

be represented on the same grid as the DM shape. Thus, the higher order terms are

simulated and the respective structure functions calculated on a finer grid. Please not

that higher order aberrations can only be estimated from simulations as they are not
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available even for real telescope data. Furthermore, a model of the noise influencing the

measurements has to be available. All proposed steps are done for closed loop AO systems.

Our approach is in contrast to other proposed methods such as [9], which takes a maxi-

mum likelihood approach for the used covariance matrices, or [17], where only open loop

data is taken into account and a fine resolution WF is created by combining measure-

ments from different timesteps. Some of the algorithms were already successfully tested

on sky on various telescopes [15, 14, 10, 6, 16]. Algorithms for PSF reconstruction in

SCAO suffer from anisoplanatism. An approach to overcome these difficulties has been

presented in [4, 1]. It can be combined with our algorithm in order to obtain PSFs for

each point in the field of view. In [5] an `1− `2 model for PSF reconstruction is proposed

to create high resolution phase gradients from subsequent WFS frames and obtain an

estimate of the instantaneous PSF when no AO correction is used. As pointed out in

[7], prior to the reconstruction algorithms the PSF of a reference star was measured from

a separate observation directly before or after the science observation and then used for

deconvolution algorithms. However, this approach implicitly uses the strong assumptions

that the atmospheric conditions are sufficiently stable and that the flux and intensity on

the WFS is the same for the PSF reference star and the target’s guide star.

In the following Section, we recall the original algorithm from [21] and highlight some

of its limits for reconstructing the PSF from WFS data. We present our new approach

in Section 3. Section 4 shows results obtained with ESO’s end-to-end simulation tool

Octopus.

2 PSF reconstruction for SCAO

In order to have a good understanding of existing algorithms, we review Véran’s algorithm,

first presented in [21].

2.1 Reconstructing the PSF from WFS data: Véran’s algorithm

The instantaneous optical transfer function (OTF), denoted by B, in the near field ap-

proximation for a monochromatic image at wavelength λ is given in [21] as

B(ρ/λ, t) =
1

S

∫
P
P (x)P (x + ρ)exp (iφ(x, t)) exp (−iφ(x + ρ, t)) dx, (1)

where S is the area of the telescope aperture and φ is the residual phase after the AO

correction. The normalization ensures that the PSF has unit energy. Note that the depen-

dence on the wavelength λ is implicit through the relation between phase φ and wavefront
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ϕ as φ(x, t) = 2π
λ
ϕ(x, t). Averaging the instantaneous OTF over the integration time in-

terval gives the long exposure OTF.

Furthermore, assuming that the corrected phase at any position on the pupil has a Gaus-

sian statistics and the integration time is long enough, so that the statistical average

can be substituted by the temporal average, leads to the following expression of the long

exposure OTF:

B(ρ/λ) = 〈B(ρ/λ, t)〉t =
1

S

∫
P
P (x)P (x + ρ)exp

(
−1

2
Dφ(x,ρ)

)
dx, (2)

where the structure function of the residual incoming phase is

Dφ(x,ρ) = 〈|φ(x, t)− φ(x + ρ, t)|2〉t,

with 〈·〉t the temporal average of a function. Then, one can obtain the long exposure PSF

by applying the Fourier transform to the long exposure OTF, keeping the wavelength λ

fixed, i.e.,

PSF(u) = F(B(ρ/λ)). (3)

It is suggested in [21] to replace Dφ(x,ρ) by its mean over x, i.e.,

D̄φ(ρ) =

∫
P P (x)P (x + ρ)Dφ(x,ρ)dx∫

P P (x)P (x + ρ)dx
, (4)

which is equivalent to assuming that the disperion in x is small enough that the expo-

nential of the mean can be approximated by the mean of the exponential and leads to an

under-estimation of the OTF since the exponential is a convex function. This simplifies

the calculations now as only averaging over two-dimensional functions is required. Fur-

thermore, with the orthogonal splitting of the residual incoming phase into a component

in the space spanned by the mirror modes φ‖ and into a higher order component φ⊥, i.e.,

φ = φ‖ + φ⊥,

D̄φ(ρ) = D̄φ‖(ρ) + D̄φ⊥(ρ) (5)

+ 2

∫
P P (x)P (x + ρ)〈[φ‖(x, t)− φ‖(x + ρ, t)][φ⊥(x, t)− φ⊥(x + ρ, t)]〉tdx∫

P P (x)P (x + ρ)dx
,

where the last (cross) term is neglected although it is not rigorously zero due to potential

correlation through the remaining error. With these simplifications we get

B(ρ/λ) = exp

(
−1

2
D̄φ‖(ρ)

)
︸ ︷︷ ︸

B‖(ρ/λ)

exp

(
−1

2
D̄φ⊥(ρ)

)
︸ ︷︷ ︸

B⊥(ρ/λ)

∫
P
P (x)P (x + ρ)dx︸ ︷︷ ︸

Btel(ρ/λ)

, (6)
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where D̄φ‖ and D̄φ⊥ are defined as in (4).

Now these three parts can be reconstructed separately: B‖ can be estimated from control

loop AO data, B⊥ can be estimated from simulated data only and Btel is given analytically.

The first two terms clearly depend on the seeing conditions of the current observation.

Therefore an algorithm to estimate the seeing from AO loop data was developed. The

quantity B⊥ has to be simulated only once and can then be scaled to the current observing

conditions.

To be able to compute D̄φ‖(ρ) fast, Véran introduced functions Uij(ρ) that depend on

the possible mirror modes and can be precomputed numerically. For the remaining cal-

culation only the time averaged covariances of the WFS data are needed. As the original

algorithm was proposed for Zernike polynomials, this method turned out to give good

results, but still was time and memory consuming. Therefore, [11] diagonalized Véran’s

approach using so called Vii-functions, where an eigenvalue decomposition of the com-

puted covariance matrix is needed, which gives a speed up for certain basis functions.

For the computation of D̄φ⊥(ρ), a Monte Carlo method is proposed, where the high

order components of randomly generated phase screens with Kolmogorov or Van Karman

statistics are extracted and then using a temporal and spatial average for the structure

function.

2.2 Limits of PSF reconstruction from WFS data

Clearly the accuracy of PSF reconstruction from WFS data is limited by the hardware

of the telescope. Due to the coarse resolution of the WFS, the part of φ‖ has its limit at

the WFS cut off frequency and thus gives only a rather coarse estimate for the structure

function.

As the WFS are not perfect devices, it holds that Γφ⊥ 6= 0, where Γ is the Shack-Hartmann

WFS operator, that maps incoming wavefronts to measurements. This influences the re-

constructed wavefronts and/or atmospheric layers and as a result changes Dφ‖ slightly. In

addition to that there is some measurement noise in Γφ, leading to further changes in the

structure function. The latter one can be modeled and thus corrected if one has a good

knowledge on the WFS.

For good estimates of Dφ⊥ , the seeing parameter r0 (or D/r0) is needed for the calcula-

tion of φ⊥ and for estimating the influence of Γφ⊥ on the PSF. A good estimate can be

obtained by using, e.g., the iterative procedure from [21, Section 3.2.3].
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When going on sky with a PSF reconstruction algorithm, one has to adjust for non-

common path aberrations, as the optical path to the WFS and the science camera are

not the same. In the algorithm above this means that Btel is not only calculated from the

pupil function, but can be calibrated in form of a static PSF as the non-common path

aberrations are static. Note that the adjustments necessary to compensate for this effect

can be obtained via calibration as the non-common path aberrations are static at much

longer time scales than atmospheric aberrations.

3 Novel approach to PSF reconstruction for SCAO

Since the proposal of Véran’s algorithm in [21], computational power and available mem-

ory increased, therefore some adjustments of the algorithm to improve the quality are

possible in feasible computational time. In particular it was never demonstrated that

Zernike polynomials as basis functions are an appropriate choice for modern deformable

mirrors with completely different influence functions. Furthermore, the required compu-

tational power for Zernike polynomials is rather high due to their global support, which

results in full and dense matrices. We want to use basis functions with local support

in order to reduce the computational complexity and to be able to account for the four

dimensionality of the structure function.

3.1 Updating PSF reconstruction for SCAO

We start from (2), i.e.,

B(ρ/λ) =
1

S

∫
R2

P (x)P (x + ρ)e−
1
2
Dφ(x,ρ) dx,

where Dφ(x,ρ) = 〈|φ(x, t)−φ(x+ρ, t)|2〉, and make some adjustments. The exact calcula-

tion of B(ρ/λ) requires averaging four dimensional functions, which seemed computation-

ally too demanding when Véran developed his algorithm and thus proposed to interchange

spatial average and the exponential function to overcome this problem. Nowadays this

simplification can be partly dropped, as these computations are possible in reasonable

time even on a laptop as shown, e.g., in [12].

As a starting point of our approach, we split φ into a part seen by the WFS (and thus

corrected by the DM in the following time step), called φ‖, and a part orthogonal to the

DM modes, called φ⊥. Clearly, φ = φ‖ + φ⊥ and thus

Dφ(x,ρ) = Dφ‖(x,ρ)+Dφ⊥(x,ρ)+2〈[φ‖(x, t)−φ‖(x+ρ, t)][φ⊥(x, t)−φ⊥(x+ρ, t)]〉t. (7)
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Note that in [21] this splitting was made after interchanging spatial average and the ex-

ponential.

The last term is a cross term between differences of two orthogonal terms and is not rig-

orously zero because φ‖ and φ⊥ may be correlated through the remaining error. However,

according to [21] it can be assumed that it is negligible. Thus, the OTF can be rewritten

as

B(ρ/λ) =
1

S

∫
P
P (x)P (x + ρ)exp

(
−1

2
Dφ‖(x,ρ)

)
exp

(
−1

2
Dφ⊥(x,ρ)

)
dx. (8)

The orthogonal part of the residual phase cannot be measured from the actual on sky data,

but only simulated offline by using sophisticated atmospheric models. Therefore, using

one realization of φ⊥ for the calculation of Dφ⊥(x,ρ) gives no meaningful contribution

and we follow partly the suggestion of [21] to replace it by D̄φ⊥(ρ), its mean over the

variable x given by

D̄φ⊥(ρ) =

∫
P P (x)P (x + ρ)exp

(
−1

2
Dφ⊥(x,ρ)

)
dx∫

P P (x)P (x + ρ)dx
,

so that (2) simplifies to

B(ρ/λ) =
1

S
exp

(
−1

2
D̄φ⊥(ρ)

)∫
P
P (x)P (x + ρ)exp

(
−1

2
Dφ‖(x,ρ)

)
dx, (9)

which is a product of two independent terms. The first term can be estimated only from

simulation, as φ⊥ is not available on sky and the second term has to be calculated on the fly

from closed loop AO measurements. Note that, when using the original method from [21],

also the structure function of φ‖ is averaged over x, which results in three independent

components: the OTF of the telescope in absence of turbulence, the contribution of

the mirror component and the contribution of the higher order phase. In our approach

however, the first two components are combined into one.

3.2 Changing the basis functions

As Zernike polynomials have global support, the calculations in the Uij-algorithm re-

quires the assembling of full matrices, which leads to increased memory consumption and

computational power. Due to the high degrees of freedom for the future ELTs this is not

feasible. In particular, if one considers the use of linear influence functions for future DMs,

one could think of using, e.g., bilinear splines as basis functions for the Uij-algorithm as

proposed in [13]. This change leads to a sparse representation of the needed matrices for

the mirror part, but the higher order terms cannot be represented well as the coefficients

correspond to the evaluation of the wavefront in the actuator positions, which should not
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contain a higher order part, when correcting the atmosphere perfectly.

To overcome this problem, we use a finer resolution of the wavefronts for the estimation

of the higher order parts. As a drawback this results in higher memory consumption

and slower computations. Since the higher order components φ⊥ are precomputed and

appropriately scaled to current observation conditions, this is not a crucial issue with

modern computers.

3.3 Using wavefronts instead of WFS measurements

In the original algorithm from [21], the WFS measurements were used as a starting point

and all calculations were based directly on the WFS measurements. However, the struc-

ture function of an AO run, Dφ, is directly related to the incoming wavefronts. As the

incoming wavefronts are reconstructed to obtain the shape of the DM, we propose to use

these reconstructions directly for the estimation of Dφ.

For an SCAO system, commonly matrix-vector-multiplication (MVM) is used for the re-

construction process. Recently, matrix free algorithms, such as CuReD [24, 19, 20], HWR

[2], both tested on sky [3], and FinECuReD [18, 23], were introduced. Thus, starting

from reconstructed wavefronts instead of WFS measurements does not increase the com-

putational complexity. Certain effects such as sensor noise still have to be modeled on

measurement level and then transferred onto the wavefront level, but these are computa-

tions which can be done prior to the AO and PSF reconstruction run and therefore have

no effect on the run time.

4 Numerical results

In this section we present some further details on the estimation of the structure function

of the higher order components of the incoming phase D̄φ⊥ as well as symmetry consider-

ations which are used reduce memory consumption during run time. Furthermore, results

for PSF reconstruction in an SCAO system are shown for different guide star flux and the

influence of reduced input data is investigated.

4.1 High order components of the incoming phase

In order to reconstruct the PSF properly we need to have an estimate for D̄φ⊥ . This

estimate can only be obtained by simulation, in our case using OCTOPUS. As a fea-

ture, OCTOPUS provides the possibility to save incoming phase screens and the residual

screens after AO correction. The same procedure is possible for computed DM updates
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and also for the actual DM shapes.

In a naive approach, one would use the residual phase screens φresn after AO correction,

which already gives reasonable results. However, due to the time lag of the AO system

φresn , where n indicates the time step in simulation, still contains the information used for

φDMn+1, the DM update at time step n+ 1, which is clearly a part of φ‖ and not of φ⊥. To

eliminate this influence, we use for the calculation of D̄φ⊥ the following formula

φ⊥,n = φresn + φDMn+1,

using the fact that the DM update has the opposite sign of the incoming phase as it

corrects for these distortions. Note that this means that φ⊥,n is not only the projection

on the perpendicular space of the DM influence functions, but also contains the recon-

struction error in the space of DM influence functions. This leads to a dependence of φ⊥,n

on the reconstruction quality and thus on the photon flux from the guide star.

In order to avoid temporal correlation in D̄φ⊥ , we perform the temporal average not over

every φ⊥,n, but take only every 5th of these residual phases. Additionally, we downsam-

ple the residual phase to bigger pixel size as otherwise calculating the structure function

would be computationally too heavy. In this downsampling procedure, the choice of the

basis functions for numerical implementation plays a crucial role. If one wants to choose

a basis built up by bilinear splines, calculating D̄φ⊥ on the same grid as the DM updates

(and WFS measurements) will not be successful. The main reason for this is that a DM

with linear influence functions is able to perfectly correct for bilinear splines. Thus a finer

grid for the calculation of φ⊥,n, and therefore D̄φ⊥ is needed. Results are provided for

pixel sizes δx = 1
k
dDM , with k = 2, 4, 8, where dDM is the spacing of the DM actuators,

and in our simulations also the size of one WFS subaperture.

Note, that the c2n-profile used for the simulation is not changing and will in reality not

perfectly match with the one during observation.

The orthogonal part of the phase φ⊥ is simulated with a photon flux of 1000 pho-

tons/subaperture/frame. We use two seconds of real time for estimating the structure

function of the orthogonal part D̄φ⊥ , but take only every 10th time frame to reduce tem-

poral correlation. OCTOPUS has a parameter called turbulent seed, defining the starting

point for the generation of atmospheric layers in a pseudo-random way. In order to avoid

an unrealistic setting, we take different values of turbulent seed for estimating D̄φ⊥ and the

on-the-fly computation for estimating Dφ‖ . In particular, this prevents that D̄φ⊥ and Dφ‖

match perfectly for the used atmosphere. However, using the same atmospheric profile

still is a very optimistic approach.
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4.2 Setting for numerical simulations

To verify that the proposed algorithm works well, we tested it in ESO’s end-to-end simu-

lation tool OCTOPUS for a planned ELT SCAO setting using WFS data from one NGS

observed with a 74× 74 SH-WFS running at wavelength λ = 0.7 µm and a science wave-

length λ = 2.2 µm. The decision for using OCTOPUS is based on the quest for a simula-

tion tool where one can extract the generated incoming wavefront to get a reference PSF

calculated directly from the wavefront residual after the DM correction. Such a reference

PSF is needed in order to compare the reconstructed PSF to the true solution of the re-

construction problem. OCTOPUS can directly provide such PSFs for specified directions.

The atmosphere used for the tests is the proprietary ELT ESO atmosphere with 10 layers

and a seeing r0 = 12.1 cm at 500 nm. To get a better view on the effects of guide stars

with different brightness on the PSF, the tests are performed for different photon flux

from the NGS, but during one test run the flux is fixed. The photon flux varies for all

tests between 100 and 1000 photons/subaperture/time frame. We do not consider noise

coming from the detector read out and the incoming photons. Each simulation represents

two seconds of real time, i.e., 1000 time steps of the simulation are performed with an

WFS integration time of 2 ms. An overview of the simulated system is presented in

Table 1. Note that the WFS setting stems from a preliminary design for the METIS

instrument at the ELT, but a similar setting is also planned for the MICADO instrument.

For reconstructing the incoming wavefront, and thus controlling the DM, CuReD (cf, [24,

19]) is used.

Telescope diameter 37 m

central obstruction 10.36 m

1 NGS Shack-Hartmann WFS 74× 74 subapertures

WFS wavelength λ 0.7 µm

WFS integration time 2 ms

1 DM at height 0 m closed loop

DM actuator spacing 0.5 m

science wavelength λ 2.2 µm

Simulation time 2 s real time (1000 time steps)

Table 1: Description of the simulated SCAO system

4.3 Numerical results for high photon flux

We investigate the high flux case with nph = 1000, i.e., 1000 photons reach each subaper-

ture in every time step in the setting of Table 1. In Figure 1, we compare cuts through
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the x-axis of the PSF reconstructed by our algorithm and the PSF calculated by ESO’s

OCTOPUS simulation tool. The latter one is a reference as it is calculated directly from

the simulated atmosphere and averaged over time. However, both PSFs are in the plane

of the WFS and not in the plane of the science image, but still at the science wavelength

of 2.2 µm. This means that the simulation does not account for non common path errors

of the system. Furthermore, also effects of the telescope, such as jitter, are not simulated.

A good agreement between the reconstructed and the true PSF can be seen in the core,

whereas the wings are overestimated in the reconstructed version and show a different

structure. These differences are not crucial as most energy is in the core and the values

decay fast with increasing distance to the center. The overestimation of the wings is a

drawback of the coarse spatial resolution of the reconstructed phase φ‖ and also of the

orthogonal part φ⊥.

Figure 1: Comparison of the true PSF (blue) and the reconstructed PSF (red) for nph =

1000, cut through the main diagonal.

For many scientists the center of the PSF is of most interest, therefore we show a zoom in

Figure 2 to highlight the differences between the reconstructed and the true PSF. From

the PSF several parameters can be deduced, for example the Strehl ratio. As the Strehl

ratio relates the peaks of the seeing limited PSF and the diffraction limited PSF, dividing

the peak of the reconstructed PSF by the peak of the true PSF gives the accuracy of the

Strehl ratio, i.e.,

|SRtrue − SRrec|
SRtrue

,

where SRtrue and SRrec are the Strehl ratios calculated from the true and the recon-

structed PSF, respectively. Note, that without particular tuning of the loop gain, the
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used AO control algorithm, CuReD [24, 19], reaches a Strehl ratio of 77.9%. In our com-

putations, we find that the peak (and thus the Strehl ratio) is underestimated by 3.2%,

i.e., our reconstructed PSF suggests a Strehl ratio of only 75.4%.

Figure 2: Zoom to the center of the true PSF (blue) and the reconstructed PSF (red) for

nph = 1000, cut through the main diagonal.

4.3.1 Influence of the resolution of φ⊥

As described in Section 4.1, φ⊥ and the corresponding structure function can only be

obtained from simulations. Therefore the quest for a suitable spatial resolution of φ⊥

arises. This resolution should not be too coarse on the one hand, meaning that this would

not give more details than the WFS data themselves. On the other hand, a too fine

resolution leads to enormous consumption of memory and computational power. From

the fact that a phase φ and its PSF are related through the Fourier transform, one

can deduce a relation between the spatial resolution of φ, δx, given in m/pixel, and the

resolution of PSF , δω, in radians, as

Npix · δx · δω = 2π,

where Npix is the number of pixels in OT F , or similarly PSF , along one axis. This is an

elementary consideration of the fact that quantities appearing in the exponential have to

be dimensionless. Translating δx from units m/pixel to 1/pixel, introduces a factor 2π/λ,

being then wavelength dependent. For obtaining a resolution in mas one has to divide

by 4.85 · 10−9, which is the conversion factor between radians and mas.
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Using the above formula, one can see that refining δx does not lead to a finer resolution

δω, as with such a refinement also Npix increases by the same factor. Thus a finer δx cor-

responds to adding parts in the wings of the PSF . We demonstrate this fact in Figure 3,

comparing the resolution PSFs for (δx)1 = 0.25 m, (δx)2 = 0.125 m and (δx)3 = 0.0625 m.

It is clearly visible, that the wings of the PSF are resolved further outside. Also in the

part already resolved with (δx)1 an improvement is visible as for (δx)2 and (δx)3 the re-

constructed PSF shows less overestimation (see Figure 4). This is a result of the fact, that

the PSFs are normalized in L2 in order to be energy preserving in image (de-)convolution.

Figure 3: Comparison of the true PSF (blue), the reconstructed PSF with δx = 0.25 m

(red), δx = 0.125 m (yellow) and δx = 0.0625 m (purple) for nph = 1000, cut through the

main diagonal.

Again, we compare the peaks of the true and the reconstructed PSFs. For (δx)1, the peak

is underestimated by 3.3% and, for (δx)2, the underestimation reduces to 3%. For (δx)3,

we get another gain to 2.7%.

Note that the resolution of φ‖ is always limited by the size of the WFS subapertures.

Therefore, the corresponding OT F‖ has to be interpolated onto the finer grid used in the

simulations for φ⊥ in order to obtain the correct dimensions. This interpolation is done

linearly with the in-built MATLAB-function interp2.

4.3.2 Influence of 2D and 4D structure function

In Section 3.1, we modified the PSF reconstruction for SCAO by using a 4D structure

function Dφ‖(x, ρ) instead of the 2D version used in Véran’s algorithm. We now want to
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Figure 4: Zoom to the center of the comparison of the true PSF (blue), the reconstructed

PSF with δx = 0.25 m (red), δx = 0.125 m (yellow) and δx = 0.0625 m (purple) for

nph = 1000, cut through the main diagonal.

compare the effect of using these two different versions of the structure function. Clearly,

the 4D version is computationally more demanding, but still can be computed in reason-

able time on a modern computer.

The result when using the above high flux setting, with a spatial resolution of δx = 0.25 m,

is shown in Figure 5. We found that the reconstruction of the PSF core is slightly im-

proved when using the 4D structure function instead of the 2D, but the decay in the

wings shows some rapid drops from 10−6 to 10−10 before rising again. The decay in the

wings is not as expected and the reason are computational instabilities as the values in

the structure function are close to machine precision. However, comparing the Strehl ra-

tios leads to an improvement from an error of 3.3% with the 2D structure function to an

error of 2% error with the 4D structure function. Zooming into the center (see Figure 6)

highlights another improvement in the first PSF ring, which is less overestimated using a

4D structure function.

We also investigated the impact of using the two different versions of the structure function

for δx = 0.125 m. The results are similar, therefore we omit additional figures. The error

in the Strehl ratio is 3% for the 2D structure function and only 1.7% for the 4D structure

function. Using δx = 0.0625 m, there is little improvement in the error for the 2D version

to 2.7%, and the error in the Strehl ratio reduces to 1.5% for the 4D structure function.

In Figure 7 we display a comparison of the 4D structure function calculated with different

resolutions δx.
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Figure 5: Comparison of the true PSF (blue), the reconstructed PSF with a 2D structure

function (red) and 4D structure function (yellow) for nph = 1000, cut through the main

diagonal.

Figure 6: Zoom to the center of the comparison of the true PSF (blue), the reconstructed

PSF with δx = 0.25 m using a 2D structure function (red) and a 4D structure function

(yellow) for nph = 1000, cut through the main diagonal.
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Figure 7: Zoom to the center of the comparison of the true PSF (blue), the reconstructed

PSF using the 4D structure function with δx = 0.25 m (red), δx = 0.125 m (yellow) and

δx = 0.0625 m (purple) for nph = 1000, cut through the main diagonal.

4.4 Numerical results for low photon flux

In the previous subsections we considered a fixed physical setup and varied some com-

putational parameters. In real observations also the physical setup, mainly the photon

flux coming from the guide star, will vary from one observation to another. In particular,

certain observations will require the use of faint guide stars. Therefore, the proposed

algorithm should give reliable results also for lower photon flux.

The telescope and simulation setup remains as in Table 1. For this section we also fix

the photon flux to 1000 photons/subaperture/frame in the simulation of D̄φ⊥ and test

both versions, the 2D and the 4D structure function, for φ‖. Furthermore, the c2n-profile

remains constant. Note that using a higher photon flux in the simulation part will result

in higher errors as this neglects that with decreasing photon flux also the quality of the

AO control decreases. However, performing simulations for all levels of photon flux at

different resolutions will result in extensive computations.

Figure 8 shows the reconstructed PSF and the true PSF for nph = 500. The Strehl ratio

calculated from OCTOPUS is 77.4%. As in the high flux case, the difference between the

true and the reconstructed PSF is small and the Strehl ratio is estimated very well. Using

a 4D structure function the error in the Strehl ratio decreases from 3.6% for δx = 0.25 m

to 3% for δx = 0.0625 m, in the 4D version, and is thus in the same regime as for the

high flux case. Using the 2D structure function gives a quality loss compared to the high
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flux case and results in errors for the Strehl ratio ranging from 4% for δx = 0.25 m to

3.5% for δx = 0.0625 m.

Figure 8: Zoom to the center of the comparison of the true PSF (blue) and the recon-

structed PSF with δx = 0.25 m (red), δx = 0.125 m (yellow) and δx = 0.0625 m (purple)

for nph = 500, cut through the main diagonal.

Reducing the flux further to nph = 100 gives the results displayed in Figure 9 and a drop

of the Strehl ratio to 73%. For our simulation setting, we obtain an error in Strehl ratio

of 8.7% for δx = 0.25 m and 8.2% for δx = 0.0625 m. When using the 2D structure

function, the increase of the error compared to higher flux is smaller as the error in the

Strehl ratio lies between 4.1% and 4.6% for the different discretizations. This might be an

effect from using a simulation with high flux for the calculation of D̄φ⊥ , as this structure

function depends also on the reconstruction quality of φ‖ (see Section 4.1).

5 Conclusion and outlook

In this work we presented an algorithm for PSF reconstruction in an SCAO system for the

upcoming generation of ELTs. In contrast to Véran’s algorithm, our approach is based

on wavefronts rather than on measurements and uses the 4D structure function. First

simulations show qualitatively good reconstruction of the PSF compared to the PSF cal-

culated directly from the simulated incoming wavefront. Furthermore, the used algorithm

has a reasonable run time and memory consumption.
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Figure 9: Zoom to the center of the comparison of the true PSF (blue) and the recon-

structed PSF with a 2D structure function for δx = 0.25 m (red), δx = 0.125 m (yellow)

and δx = 0.0625 m (purple) for nph = 100, cut through the main diagonal.

The algorithm can be further improved by a more accurate model for the noise covariance

used in Dφ‖ .

Future goals, are to develop a version of the proposed algorithm which can be used for

PSF reconstruction in a multi-conjugate adaptive optics (MCAO) system, where PSF

knowledge across the whole field of view is required an can be obtained using measure-

ments from all GS.

Additionally, we want to use the reconstructed PSFs as input in a blind deconvolution

algorithm for image improvement, which can be done after the observation on the tele-

scope. Such an approach leads to a further improvement of the quality of the reconstructed

PSF and simultaneously improves the quality of the observed image. First results for a

simplified setting can be found, e.g., in [8].
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