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Projective and affine symmetries and equivalences of

rational and polynomial surfaces

Michael Hauer, Bert Jüttler, Josef Schicho

Institute of Applied Geometry / Research Institute for Symbolic Computation, Johannes Kepler
University, Altenberger Str. 69, 4040 Linz, Austria

Abstract

It is known, that proper parameterizations of rational curves in reduced form are
unique up to bilinear reparameterizations, i.e., projective transformations of its pa-
rameter domain. This observation has been used in a series of papers by Alcázar
et al. to formulate algorithms for detecting Euclidean equivalences and symme-
tries as well as similarities. We generalize this approach to projective equivalences
of rationally parametrized surfaces. More precisely, we observe that a birational
base-point free parameterization of a surface is unique up to projective transfor-
mations of the domain. Furthermore, we use this insight to find all projective
equivalences between two given surfaces. In particular, we formulate a polynomial
system of equations whose solutions specify the projective equivalences, i.e., the
reparameterizations associated with them.

Furthermore, we investigate how this system simplifies for the special case of
affine equivalences for polynomial surfaces and how we can use our method to
detect projective symmetries of surfaces. Moreover, it can be used for classifying
the generic cases of quadratic surfaces.

Keywords: projective equivalences, symmetry detection, rational surface,
polynomial system, linear reparameterization

1. Introduction

The detection of symmetries and equivalences of geometric objects is of interest
in the fields of Computer Graphics, Computer Vision and Pattern Recognition
and here several types of input data have been considered. On the one hand, for
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(Bert Jüttler), josef.schicho@risc.jku.at (Josef Schicho)

Corresponding author, phone +43732 2468 4085

1



discrete input data (point sets, polygons and meshes) the detection is well under-
stood and several efficient algorithms are available. Exact and also approximate
congruences and symmetries of point sets, polygons and polytopes were studied in
Computational Geometry, see e.g. Alt et al. (1988); Huang and Cohen (1996). In
recent years, research in Geometry Processing has focused on efficient algorithms
for finding approximate congruences and symmetries of large point sets generated
by 3D scans. The interested reader may consult the survey article by Mitra et al.
(2013) for further information.

On the other hand, the computation of symmetries and equivalences of algebraic
curves, in particular of rational ones, experienced an increase of interest in the last
years. These curves (and also surfaces) are important in geometric modeling, i.e.,
they are often used as a standard representation.

Using the implicit representation of planar curves, Lebmeir and Richter-Gebert
(2008) formulated a method for detecting congruences and symmetries. For curves
of genus at least 2, Hess (2004) described an algorithm for computing abstract
isomorphisms (i.e., not necessarily projective ones) between algebraic curves based
on their function fields. This algorithm is implemented in the computer algebra
system Magma (Bosma et al., 1997).

A substantial number of publications deals with the case of parametric curves.
Most of these methods make use of Lemma 4.17 by Sendra et al. (2008), which
states that two proper parameterizations of the same rational curve are correlated
by a linear rational reparameterization.

Recently Alcázar and his co-authors (Alcázar, 2014; Alcázar et al., 2014a,b,
2015; Alcázar et al., 2016) published a series of papers on the detection of Eu-
clidean equivalences and similarities of rationally parametrized planar and space
curves. The first two publications make use of a coefficient-based method in the
complex plane, whereas the latter ones employ invariants from differential geom-
etry, such as the curvature and the torsion (possibly scaled for the detection of
similarities). Sánchez-Reyes (2015) used the Bernstein-Bézier basis to detect sym-
metries of polynomial curves using the control points.

Most of these publications concentrate on Euclidean and similarity transforma-
tions. In an earlier paper (Hauer and Jüttler, 2017), we proposed an approach
that deals with the general group of projective transformations for rationally
parametrized curves and considers Euclidean, similarity and affine transformations
as special cases. In the present article we generalize this approach to surfaces.

Symmetries in the sense of biregular automorphisms of algebraic surfaces are
well understood theoretically, see Koitabashi (1988); Zhang (2001). In the con-
text of algebraic geometry, one considers nonsingular surfaces in projective spaces
of arbitrary dimension; for surfaces in projective 3-space, which often have self-
intersections and other singular curves, one may (theoretically) use the existence
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of a canonical resolution process that can be used to prove that the projective
automorphism group of a singular surface in 3-space is a subgroup of the group of
abstract automorphisms of its resolution. This approach, however, does not make
it easy to compute projective symmetries or to decide projective equivalence. For
this reason, we concentrate on parametric surfaces with known parametrization.

A first approach to symmetries of parametric surfaces has been presented by
Alcázar and Hermoso (2016), dealing with involutions of polynomially parametrized
surfaces. There, the goal is to find involutions in the Euclidean group preserving
the given surface.

The method described in our earlier paper Hauer and Jüttler (2017), which is
devoted to the curve case, is based on Lemma 4.17 by Sendra et al. (2008). In the
present work we show that this result admits a generalization to proper birational
and base-point-free parametrizations of the same surface (Theorem 4). Unless
stated otherwise we consider the field of real numbers, i.e., all coefficients of the
surfaces and all variables describing the transformation and reparameterization
are given as real numbers. Note that our results are valid for other fields (such
as complex numbers) as well, but in applications the real case is more interesting
and we restrict ourselves to it. The generalization from surfaces to varieties of
arbitrary dimension is possible as well, but for the sake of simplicity we restrict
ourselves to surfaces. Besides, the practical interest in volumes and objects of even
higher dimensions is less explicit.

The remainder of the paper is organized as follows. In Section 2 we fix our
notation and recall some geometric and algebraic concepts. Section 3 is dedicated
to the generalization of the Lemma about reparameterizations to surfaces and we
investigate how these reparameterizations act on the coefficients. In Section 4 we
derive the method for detecting projective equivalences of rational surfaces. The
detection of affine equivalences of polynomial surfaces is discussed as a special case.
The following two sections provide examples and applications of our method, first
to quadratically parametrized surfaces and then to higher degree ones. Finally we
conclude the paper in Section 7 and discuss possibilities for future work.

2. Rational surfaces

We consider two-dimensional surfaces in the Euclidean d-space Ēd, which has
been projectively closed (indicated by the bar) by adding points at infinity. Its
points are represented by homogeneous coordinate vectors

x = (x0 : x1 : · · · : xd)T ∈ Rd+1\{(0, . . . , 0)}.

Linearly dependent pairs of homogeneous coordinate vectors represent the same
point, and this relation will be denoted by '. More precisely, we write x ' y if
and only if there exists µ 6= 0 such that x = µy.
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Homogeneous coordinate vectors with x0 = 0 represent points at infinity, and
the collection of these points forms the hyperplane at infinity. All other points can
be represented by Cartesian coordinates x = (x1, . . . , xd)

T = (x1/x0, . . . , xd/x0)T .
Note that we use bold characters whenever we have a vector or a vector valued
function.

We employ multi-indices (identified by bold font) consisting of three indices,

i = (i0, i1, i2).

We also use the notations

|i| = i0 + i1 + i2, In = {i ∈ N3
0 | |i| = n}, ti = ti00 t

i1
1 t

i2
2

and the multinomial coefficients(
|i|
i

)
:=

|i|!
i0!i1!i2!

.

In the remainder of the paper we investigate two surfaces S and S ′ ⊂ Ēd of
degree n, which are considered as point sets. Both surfaces are given by birational
base-point free parameterizations that map the projective plane to the surface,
i.e.,

p : P 2(R)→ S ⊂ Ēd, t 7→ p(t) = (p0(t) : p1(t) : · · · : pd(t))T ,

where
pk(t) =

∑
i∈In

ck,it
i for k = 0, . . . , d (1)

are homogeneous polynomials of degree n in the parameter t = (t0, t1, t2) that
do not possess a common root over C and analogously for p′. Note that the
assumptions regarding birationality and base points are satisfied in the generic
case, i.e., when considering surfaces with randomly generated coefficients. The
surfaces are defined by

(
n+2

2

)
coefficient vectors

ci = (c0,i, c1,i, . . . , cd,i)
T , i ∈ In.

The parameterization and coefficients of the second surface S ′ are denoted by p′

and c′i, respectively. We will assume that neither of the two surfaces is contained
in a hyperplane, in particular, that

(
n+2

2

)
> d. Consequently the coefficient matrix

C = (ci)i∈In (2)

(and similarly the coefficient matrix C ′ of S ′) has rank d+ 1.
We start with a lemma about the equivalence of the parameterizations.
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Lemma 1. Two rational base-point free parameterizations p(t) and p′(t) of a
surface are equivalent, i.e. p(t) ' p′(t) holds for all t ∈ P 2(R), if and only if
there exists a non-zero constant µ such that

ci = µc′i, i ∈ In.

Proof. The equivalence of the parameterization of the two surfaces implies that
there exists a rational function

µ(t) =
µ1(t)

µ0(t)
=
p0(t)

p′0(t)
=
p1(t)

p′1(t)
= · · · = pd(t)

p′d(t)

where µ0 are µ1 are relatively prime polynomials, such that p(t) = µ(t)p′(t).
Consequently, the two rational surfaces satisfy

µ0(t)p(t) = µ1(t)p′(t).

This function is indeed a constant as

µ0| gcd(p′0, p
′
1, . . . , p

′
d)︸ ︷︷ ︸

=1

and µ1| gcd(p0, p1, . . . , pd)︸ ︷︷ ︸
=1

,

since the parameterizations are base-point free.
The proof of the other implication is obvious.

For any surface S ⊂ Ēd, we define the graded coordinate ring R := G(S) as the
quotient ring of the polynomial ring R[x0, . . . , xd] modulo the vanishing ideal of S.
The grading by degree induces a decomposition into real subspaces R = ⊗i∈NRi

such that Ri ·Rj ⊂ Ri+j for all i, j > 0, the homogeneous parts.
The Hilbert function m 7→ dim(Rm) is “eventually polynomial”, which means

there is a polynomial H ∈ Q[m] whose value coincides with the value of the Hilbert
function for all sufficiently large m. For instance, the Hilbert function of a surface
of degree n in P 3 is equal to the polynomial

(
m+3

3

)
−
(
m+3−n

3

)
, for m ≥ n− 3.

For any integral domain R, the integral closure R̄ is defined as the subset of its
fraction field that satisfies an algebraic equation with leading coefficient 1 and all
other coefficients in R. In particular R itself is contained in R̄. If R is a graded ring,
then its integral closure is generated by homogeneous fractions, i.e., by quotients of
homogeneous elements. Therefore the integral closure of a graded ring is naturally
graded, and the grading extends the grading of R. If the graded integral closure
G(S) is isomorphic to the graded coordinate ring of another surface S̃ of the same
degree then S̃ is also called a “projective normalization” of S.

Example. Let S ⊂ Ē3 be defined by the parameterization

(t0 : t1 : t2) 7→ (x0 : x1 : x2 : x3) = (t0t2 : t21 : t1t2 : t20).
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Its vanishing ideal is generated by the equation x2
0x1 − x2

2x3. So, G(S) is the
quotient algebra of R[x0, x1, x2, x3] by the ideal generated by x2

0x1 − x2
2x3. The

integral closure G(S) is generated by the classes of x0, x1, x2, x3 and by the fraction
x4 := x2x3

x0
= x0x1

x2
which fulfils the integral equation x2

4−x1x3 = 0. It is isomorphic
to the quotient ring of R[x0, x1, x2, x3, x4] by the ideal generated by the polynomials
x2

4 − x1x3, x0x4 − x2x3, x0x1 − x2x4 and which also contains the original equation
x2

0x1−x2
2x3. The surface S̃ ⊂ Ē4 defined by the equations x2

4−x1x3 = x0x4−x2x3 =
x0x1 − x2x4 = 0 is a projective normalization.

In general, the ring G(S) need not be isomorphic to the coordinate ring of a
surface in projective space: it is possible that not all its generators have degree 1.
But we will show in Section 3 that surfaces with a base-point free and birational
parameterization do have a projective normalization in projective space.

Any parameterization of p : P 2 → S of degree n induces a ring homomorphism
p∗ : G(S) → G(P 2), where G(P 2) = R[t0, t1, t2] is the graded coordinate ring of
P 2. It maps x0, . . . , xd to p0, . . . , pd. The map maps homogeneous elements to
homogeneous elements, but the degree gets multiplied by n.

The ring homomorphism p∗ can be extended to its integral closure. Because
G(P 2) is already integrally closed, this gives a ring homomorphism G(S)→ G(P 2),
denoted also by p∗.

Example continued. The ring homomorphism p∗ for the surface in the previous
example maps x0 to t0t2, x1 to t21, x2 to t1t2, and x3 to t20. The image of the new

element x4 is
t0t2t21
t1t2

= t0t1.

3. Reparameterizations

In this section we will show that two proper birational and base-point-free pa-
rameterizations of the same rational surface are correlated by a linear rational
reparameterization (Theorem 4). The main point is to show the reparametriza-
tion obtained by composing one parametrization with the inverse of the second,
which is a priori only birational, is actually biregular.

The Veronese surface Vn ∈ P
n(n+3)

2 is defined by a parameterization of degree n
consisting of all powers of t of degree n (there are

(
n+2

2

)
= n(n+3)

2
+1 of them), i.e.,

pk(i) = ti, k(i) is a numbering of In.

Its graded coordinate ring is isomorphic to the subring Gn(P 2) of G(P 2) generated
by all homogeneous elements of degree divisible by n. We will show below that the
Veronese surface is a projective normalization of any surface that has a birational
base-point free parameterization.

We need another concept from elimination theory: for three general homoge-
neous polynomials f0, f1, f2 ∈ R[t0, t1, t2] of the same degree m, the “Macaulay
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resultant” Mf0,f1,f2 is defined as a polynomial in the 3
(
m+2

2

)
coefficients of f0, f1, f2.

Its total degree is 3m2, but there are various other homogenity properties. Here
we need that it is weighted homogeneous where the weight of each coefficient is
the exponent of t0 in the corresponding power products. The main property of
the Macaulay resultant is that it vanishes if and only if f0, f1, f2 have a nontrivial
common zero.

Lemma 2. If p is a birational base-point free parameterization, then the image of
G(S) under p∗ : G(S)→ G(P 2) is the subring Gn(P 2).

Proof. Let R := p∗(G(S)). Because p∗ multiplies the degree by n, it follows that
R ⊂ Gn(P 2).

For the converse, we first show that Gn(P 2) is contained in the fraction field
of R. Birationality means that there exists a rational inverse (x0 : · · · : xd) →
(g0(x0, . . . , xd) : g1(x0, . . . , xd) : g2(x0, . . . , xd)), with g0, g1, g2 ∈ G(S), which we
can assume to be homogeneous, of degree, say, M . Because composition with
the inverse is the identity, there exists a polynomial h ∈ R[t0, t1, t2] such that
p∗(gi) = tih for i = 0, 1, 2. (The degree of h must be Mn−1.) For any polynomial
f ∈ R[t0, t1, t2] of degree n, the fraction f/p0 is in the fraction field of R, because

f

p0

=
f(ht0, ht1, ht2)

p0(ht0, ht1, ht2)
=

p∗(f(g0, g1, g2))

p∗(p0(g0, g1, g2))
.

Therefore f is in the fraction field of R.
In order to show that any element in Gn(P 2) satisfies an integral equation over

R, we show (slightly stronger) that t0, t1, and t2 satisfy an integral equation. This
is sufficient, because it is well-known and also easy to prove that if a and b satisfy
integral equations, then so do their sum a+ b and their product ab. First, we find
three polynomials q0, q1, q2 in the linear span L of p0, . . . , pd without any nontrivial
common zero. We choose q0 := p0. Then we choose q1 among p1, . . . , pd relatively
prime to p0 – this is possible because otherwise all pi, i = 0, . . . , d, would have a
common factor. Note that q0 and q1 have finitely many common zeroes (namely
n2 when counted with multiplicities). For any intersection point x, the subspace
of all polynomials in L vanishing at x is proper (of codimension 1). So we choose
q2 outside the union of all these finitely many subspaces.

Let y0, y1, y2 be three new variables. Let M0 be the Macaulay-resultant of the
three polynomials q0(s0t0, s1, s2)−y0s

n
0 , q1(s0t0, s1, s2)−y1s

n
0 , q2(s0t0, s1, s2)−y2s

n
0 ,

considered as homogeneous polynomials in s0, s1, s2 of degree n. It is a polynomial
in y0, y1, y2, t0, weighted homogeneous of degree n2 where the weight of t0 is 1 and
the weights of y0, y1, y2 are n. Because q0, q1, q2 do not have any common zeroes,
M0(0, 0, 0, 1) 6= 0. After division by this coefficient, we get an integral equation for
t0 of degree n2 with coefficients in R[y0, y1, y2]. Now M0(p0, p1, p2, tn) = 0 because
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apparently q0(s0t0, s1, s2)−p0s
n
0 , q1(s0t0, s1, s2)−p1s

n
0 , q2(s0t0, s1, s2)−p2s

n
0 do have

a common zero (s0 : s1 : s2) := (t0 : t1 : t2). Hence after substituting y0, y1, y2 by
p0, p1, p2, we get an integral equation for t0 with coefficients in R. Similarly, t1 and
t2 satisfy such integral equations. It follows that Gn(P 2) ⊂ R.

The Veronese surface Vn is isomorphic to P 2 as an algebraic variety: the bira-
tional parameterization vn : P 2 → Vn given by the power functions

t 7→ (xi)i∈In = (ti)i∈In

has the inverse

(xi)i∈In 7→ t = (x(a+1,b,c) : x(a,b+1,c) : x(a,b,c+1))

for any non-negative integers a, b, c such that a + b + c = n − 1. Both vn and
(vn)−1 are everywhere defined, hence they provide an isomorphism in the category
of algebraic varieties.

We need to investigate the degree-preserving ring automorphisms of Gn(P 2)
fixing R elementwise (also called graded R-automorphisms). Examples of such
automorphisms are “substitution automorphisms” obtained by substituting for
t0, t1, t2 three linear independent linear forms.

Lemma 3. Any graded R-automorphism of Gn(P 2) is a substitution automor-
phism.

Proof. Any graded R-automorphism induces a birational map a : Vn → Vn that is
everywhere defined (even more, an automorphism of Vn as an algebraic variety).
Then the birational map b := (vn)−1 ◦ a ◦ vn : P 2 → P 2 is also everywhere
defined. Then b, as a rational map from P 2 to itself, can be defined by a triple of
polynomials (b0, b1, b2) ∈ G(P 2), homogeneous of the same degree m. Because the
map is everywhere defined, the three polynomials do not have a nontrivial common
zero. Then the preimage of a generic point is the intersection of two generic linear
combinations of b0, b1, b2. This is a union of m2 points. But the map is birational,
hence m2 = 1 and the map b is linear.

Theorem 4. Let p,p′ : P 2 → S be two parameterizations of degree n of the
same surface S ⊂ P d. Assume that both parameterizations are base-point free and
birational. Then there exists a linear reparameterization r : P 2 → P 2 such that
p′ = p ◦ r.

Proof. By Lemma 2, the parameterizations induce two ring isomorphisms p∗, p′∗ :
G(S)→ Gn(P 2). The ring automorphism p′∗◦(p∗)−1 : Gn(P 2)→ Gn(P 2) preserves
the degree, hence it is a substitution automorphism by Lemma 3. The linear
substitution r : P 2 → P 2 inducing p′∗ ◦ (p∗)−1 then satisfies the desired equality
p′ = p ◦ r.
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We represent this linear reparameterization r by a transformation matrix α

r(t) =

α00 α01 α02

α10 α11 α12

α20 α21 α22


︸ ︷︷ ︸

=α

t =

α00t0 + α01t1 + α02t2
α10t0 + α11t1 + α12t2
α20t0 + α21t1 + α22t2

 .

Finally, we investigate the influence of such a reparameterization on the coefficients
of a triangular surface. The following lemma states that the coefficients of the
reparametrized surface are given as a linear combination of the coefficients of the
original one, where the reparameterization determines the influence of the linear
factors.

Lemma 5. The reparametrized surface

p̂(t) = (p ◦ r)(t) =
∑
j∈In

ĉj(α)tj

has the coefficients

ĉj(α) =
∑
i∈In

ci
∑

(|k|,|`|,|m|)=i
k+`+m=j

(
|k|
k

)(
|`|
`

)(
|m|
m

)
αk000α

`0
10α

m0
20 α

k1
01α

`1
11α

m1
21 α

k2
02α

`2
12α

m2
22 . (3)

Proof. A computation gives that

(p ◦ r)(t) =
∑
i∈In

ci (α00t0 + α01t1 + α02t2)i0(α10t0 + α11t1 + α12t2)i1

(α20t0 + α21t1 + α22t2)i2

=
∑
i∈In

ci

∑
|k|=i0

(
i0
k

)
αk000t

k0
0 α

k1
01t

k1
1 α

k2
02t

k2
2

∑
|`|=i1

(
i1
`

)
α`010t

`0
0 α

`1
11t

`1
1 α

`2
12t

`2
2


 ∑
|m|=i2

(
i2
m

)
αm0

20 t
m0
0 αm1

21 t
m1
1 αm2

22 t
m2
2



=
∑
i∈In

ci
∑

(|k|,|`|,|m|)=i

(
i0
k

)(
i1
`

)(
i2
m

)
αk000α

`0
10α

m0
20 α

k1
01α

`1
11α

m1
21 α

k2
02α

`2
12α

m2
22

tk0+`0+m0
0 tk1+`1+m1

1 tk2+`2+m2
2
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=
∑
i∈In

ci
∑
j∈In

tj
∑

(|k|,|`|,|m|)=i
k+`+m=j

(
i0
k

)(
i1
`

)(
i2
m

)
αk000α

`0
10α

m0
20 α

k1
01α

`1
11α

m1
21 α

k2
02α

`2
12α

m2
22

=
∑
j∈In

tj
∑
i∈In

ci
∑

(|k|,|`|,|m|)=i
k+`+m=j

(
|k|
k

)(
|`|
`

)(
|m|
m

)
αk000α

`0
10α

m0
20 α

k1
01α

`1
11α

m1
21 α

k2
02α

`2
12α

m2
22

Comparing the coefficients confirms (3).

4. Equivalences

Recall that using homogeneous coordinates allows to represent any regular pro-
jective transformation f by a matrix multiplication

f : Ēd → Ēd : x 7→ f(x) = Mx,

where M = (mij)i,j=0,...,d is a non-singular real matrix. If

m00 6= 0 and m01 = · · · = m0d = 0, (4)

then f is an affine transformation. If additionally the matrix

A =

(
mij

m00

)
i,j=1,...,d

,

is orthogonal ATA = I, we have an Euclidean transformation, i.e., the composition
of a rotation, a translation and possibly a reflection. If ATA = λI with λ ∈ R+,
some additional scaling may be involved, and A describes a similarity transforma-
tion. All these transformations are special cases of projective transformations. We
consider pairs of surfaces, that are related by projective transformations.

Two surfaces S and S ′ ⊂ Ēd are said to be projectively/affinely equivalent if
there exists a regular projective/affine transformation f such that S ′ = f(S).
Furthermore, S is said to possess a projective/affine symmetry if there exists a
regular projective/affine transformation f , different from the identity, such that
S = f(S).

If S ′ is projectively equivalent to S, then S is also projectively equivalent to
S ′, as the projective transformation f is assumed to be regular. Moreover, each
surface is projectively equivalent to itself by the identity map. The transitivity
of the relation is implied by the group structure of regular projective mappings.
Therefore, the projective equivalence defines an equivalence relation.

We identify projective equivalences of surfaces by analyzing whether the matrices
defined by the coefficients are related by a projective transformation. Furthermore
we investigate the special case of affine equivalences of polynomial surfaces.
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4.1. Projective equivalences

Proposition 6. Let S and S ′ be rational surfaces of total degree n such that(
n+2

2

)
> d. Let them be given by birational base-point free parameterizations p(t)

and p′(t), which are defined by their coefficient matrices C and C ′ of rank d+1, see
Equation (2). The two surfaces are projectively equivalent if and only if there exists
a regular projective transformation matrix M and a projective transformation α of
the real plane, such that C and C ′ satisfy

MC ′ = Ĉ(α). (5)

Proof. On the one hand, the conditions (5) imply that the two surfaces are pro-
jectively equivalent. On the other hand, we consider two projectively equivalent
surfaces S ′ and S. There exists a projective transformation f with the matrix M
such that

f(S ′) = S.
We define q(t) = Mp′(t). Consequently q(t) and p(t) are two birational base-
point free parameterizations of the same surface S. According to Theorem 4 there
is a linear rational reparameterization r(t) – and hence an associated projective
transformation α – such that

q(t) ' (p ◦ r)(t). (6)

Thus using the Equations (1) and (6) and Lemma 5 we obtain that∑
i∈In

Mc′it
i = Mp′(t) = q(t) ' (p ◦ r)(t) =

∑
i∈In

ĉi(α)ti.

comparing the coefficients and using Lemma 1 gives

MC ′ ' Ĉ(α).

Finally we put the constant µ of the homogeneous coordinates into M which
confirms Equation (5).

Hence in order to detect projective equivalences of two surfaces we have to solve
Equation (5). Unfortunately it is impracticable to solve this system directly, as
even for small degree (n = 2) surfaces in space (d = 3) the computation of the
corresponding Gröbner basis takes quite long and the size of the coefficients grows
very fast. Also other standard methods do not lead to acceptable computation
times of solving this polynomial system in (d+ 1)2 + 9 unknowns in M and α.

We observe that the system (5) has a special structure, i.e., it is linear in the
unknowns of M and the right hand side are homogeneous polynomials of degree
n in α. We rewrite this equation in order to eliminate the unknowns in M and to
obtain a system of polynomial equations of degree n in the unknowns α.

11



Proposition 7. Let S and S ′ be as in Proposition 6. Let

b` = (b`i)i∈In , ` = 1, . . . ,

(
n+ 2

2

)
− d− 1

be basis vectors spanning the kernel of C ′.
The two surfaces are projectively equivalent if and only if there is a linear repa-

rameterization determined by a regular matrix α such that∑
i∈In

ĉk,i(α)b`i = 0, k = 0, . . . , d ` = 1, . . . ,

(
n+ 2

2

)
− d− 1 (7)

is satisfied, where the coefficients ĉk,i(α) are given in (3).

Proof. The coefficient matrix C ′ has rank d + 1, hence its kernel has dimension(
n+2

2

)
− d − 1. This confirms the existence of the kernel basis vectors. We show

that the Equation (7) is equivalent to the condition (5).
First, Equation (5) ensures that the kernel of the matrix C ′ is contained in the

kernel of the matrix Ĉ(α) and this proves (7).
For the other direction we have that Equation (7) implies that the kernel of Ĉ(α)

contains the kernel of C ′. This implies that the space spanned by the row vectors
of Ĉ(α) is contained in the space spanned by the row vectors of C ′, since these
spaces are the orthogonal complement of the kernels. This proves the existence
of the matrix M in (5). Its regularity is implied by the regularity of α and the
assumption on the coefficient matrices which ensure that both Ĉ(α) and C ′ have
rank d+ 1.

To ensure the regularity of α we add the unknown u and the equation

det(α)u = 1 (8)

to our system. As the reparameterization of the parameter domain, which is
the projective plane, is only given up to a non-zero multiplicative constant we
normalize α by setting the first nonzero coefficient in the first row to 1, which
leads to 3 cases.

We solve the system (7), (8) for the different normalizations. These systems
consist of (d + 1)

((
n+2

2

)
− d− 1

)
+ 1 equations in at most 9 unknowns for α and

u. Solving these systems is the most time-consuming part of our method.
For any reparameterization α the corresponding projective transformation M is

obtained simply by solving the linear system of equations

Mc′i(`) = ĉi(`)(α), ` = 0, . . . , d,

12



for the (d + 1)2 unknown elements of M , where we can choose any d + 1 linear
independent coefficient vectors c′

i(`)
. Here the computational effort is negligible.

The specific type of the equivalence can be found by investigating the properties
of the transformation matrix M . More precisely, it is an affine equivalence if the
elements satisfy

m0i = 0, for i = 1, . . . , d.

It is a similarity (or even a congruence transformation) if additionally the condition

ATA = λI with A =
(mij

m00

)
i,j=1,...,d

is fulfilled, where I is the d× d identity matrix (and the factor even satisfies λ = 1
for congruence transformations).

When applied to pairs (S,S) of identical surfaces, the method allows us to
identify all projective symmetries. This includes all affine or Euclidean symmetries,
which are found by analyzing the properties of the corresponding transformation
matrix M , analogously to the discussion above. In the case of symmetry detection
the identity is always a solution of the system.

Remark 8. In the numerical examples we tried several computer algebra systems
for computing the Gröbner basis and solving the system, i.e. we implemented
our method in Singular 4-0-2 (Decker et al., 2015), Mathematica R© Version 11
(Wolfram Research, Inc., 2017) and MapleTM 2017 (Maplesoft, 2011 – 2017). We
obtained the best results by computing the Gröbner basis in Maple, which uses the
C library MGb, and solving the emerging system with Mathematica. The MGb
library takes advantage of the fact that our system is sparse and well structured,
i.e., it is homogeneous of degree n in the non constant parts.

4.2. Affine equivalences

If we are not looking for projective equivalences, but for affine ones, we add
additional equations, which reduce the computation time.

Corollary 9. Let S and S ′ be as in Proposition 6. If S and S ′ are two affinely
equivalent rational surfaces, there is a linear reparameterization, given by the ma-
trix α such that (7), (8) and

ωc′0,i = ĉ0,i(α), i ∈ In, (9)

with ω 6= 0 ∈ R, are satisfied.

Proof. We note that as M is a regular affine transformation we have m00 6= 0
and m0k = 0 for k = 1, . . . , d. Hence the first row of Equation (5) gives (9) with
ω = m00.

13



Table 1: Specifications of the polynomial systems

# systems # equations # unknowns

proj. equivalence of rational surfaces 3
[(n+2

2

)
− d− 1

]
(d+ 1) + 1 9/8/7

aff. equivalence of rational surfaces 3
[(n+2

2

)
− d− 1

]
(d+ 1) +

(n+2
2

)
+ 1 10/9/8

aff. equivalence of polynomial surfaces 1
[(n+2

2

)
− d− 1

]
(d+ 1) + 1 7

In this case considering only polynomial surfaces reduces the number of un-
knowns as two of the entries of the reparameterization matrix α equal zero.

Proposition 10. Let S and S ′ be as in Proposition 6. If S and S ′ are two affinely
equivalent polynomial surfaces the reparameterization is an affine linear parameter
transformation, i.e. α01 = α02 = 0.

Proof. As both surfaces are polynomial c0,(n,0,0) 6= 0 6= c′0,(n,0,0) and all other co-
efficients of the first row in the matrices C and C ′ are equal to 0. Hence by
Equation (3) and Corollary 9 we have for i = (0, n, 0)

0 = m00c
′
0,(0,n,0) = ĉ0,(0,n,0) = c0,(n,0,0)α

n
01

and analogously for i = (0, 0, n)

0 = m00c
′
0,(0,0,n) = ĉ0,(0,0,n) = c0,(n,0,0)α

n
02,

which confirms the statement.

We note that the conditions in Equation (9) are automatically fulfilled for affinely
invariant polynomial surfaces. In particular for i = (n, 0, 0) we have

ωc′0,i = αn00c0,i

which is satisfied by a suitable choice of ω and in all other equations both sides of
the equation evaluate to zero.

Consequently for the special case of affine equivalences of polynomial surfaces
we only have to consider one normalization, i.e. α00 = 1 and α01 = α02 = 0. Hence
the number of unknowns decreases from 9 to 7 and it also leads to simplifications in
Equation (3). The system we solve consists similarly to the projective rational case
of the equations (7) and (8). We summarize the specifications of the polynomial
systems in Table 1.

5. Application to quadratically parametrizable surfaces

The computation time presented in the following two sections refer to our imple-
mentation using Maple to compute the Gröbner basis and Mathematica for solving
the emerging system, see Remark 8. All computations were performed on an Intel
Core i7 PC, with 3.4 GHz and 32 GB RAM.
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Σ1 Σ2 Σ3

Figure 1: The general cases of quadratic rational surfaces

Table 2: Projective classification of 100 randomly generated surfaces with coefficients |c(k,i)| ≤
100

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 not equivalent to Σ1, . . . ,Σ6

27 12 61 0 0 0 0

5.1. Projective equivalences of rational surfaces

Nondegenerated quadratically parameterizable surfaces in space can be classified
over the real numbers into 12 projective equivalence classes. Three of them belong
to the well known and thouroughly studied quadrics, i.e., there exist the three
projective classes of oval quadrics, ring quadrics and cones. The remaining nine
classes were discussed in Coffman et al. (1996) who also give a normal form for
each class. Degen (1994) proposed a different approach for classifying triangular
surfaces by identifying them as projections of the Veronese surface from P 5(R)
into P 3(R). We follow the notation by Coffman et al. (1996) and denote these
surfaces by Σ1 to Σ9. The implicit equations of the surfaces Σ1 to Σ6 are quartic,
and the parameterizations are base-point free. In contrast to this, the quadrics
and the surfaces Σ7, Σ8 and Σ9 have implicit equations of lower degrees and their
parameterizations are not base-point free.

In our first experimentwe want to confirm experimentally that the generic cases
are the first three. In order to do that, we randomly generate 100 parameterizations
of quadratic surfaces by randomly choosing integer coefficients with an absolute
value less then 100, i.e., |c(k,i)| ≤ 100. We then check whether they belong to one
of the classes Σ1 to Σ6. If they are not equivalent to one of these classes they
either possess a base-point or they are contained in a hyperplane.

We present our results in Table 2, which show that Σ1, Σ2 and Σ3 are the
generic cases as none of the other classes occured. Hence, for the general case
our algorithm provides a simple alternative method to classify a given surface.
Moreover, we obtain the reparameterizations and projective transformations that
transform the input surface into the normal form.

The second question we want to adress is how many projective symmetries

15



Table 3: Number of projective symmetries (including the identity)

Ex. # real symmetries/equivalences # complex symmetries/equivalences

Σ1 24 24

Σ2 8 24

Σ3 4 24

Σ4 ∞ ∞
Σ5 ∞ ∞
Σ6 ∞ ∞

Σ1 + Σ2 0 24

Σ1 + Σ3 0 24

Σ2 + Σ3 0 24

Σ4 + Σ5 0 ∞

the surfaces, that fulfil our assumptions, possess and whether further symmetries
within one class (or equivalences between the classes) exist if we also allow complex
solutions. We applied our method for symmetry detection on the normal forms of
Σ1 to Σ6 and every solution describes a projective symmetry. In the upper part of
Table 3 we list the number of symmetries. The general cases Σ1 to Σ3 possess a
discrete number of symmetries, whereas the solutions for Σ4 to Σ6 depend on one
parameter and hence there are infinitely many of them.

Coffman et al. (1996) already mentioned that Σ1, Σ2 and Σ3 belong to the same
class if one considers complex projective transformations, and so do Σ4 and Σ5.
We could verify this as well, see the lower part in Table 3. We did not find any
further relations of different classes.

Due to the known classification we have two different ways of detecting equiv-
alences of two surfaces. Firstly, one may apply our method directly to the two
surfaces. Secondly, one may classify both surfaces and check whether they belong
to the same class.

It is interesting to analyze which of the two approaches is faster, and how this
depends on the size of the coefficients. To investigate this question we generated
again surfaces with random coefficients smaller than some given constant, |c(k,i)| <
CSize. For creating random surfaces that possess equivalences we applied a ran-
dom reparameterization and transformation on these surfaces. The result of this
experiment is given in Table 4.

According to these experimental results, it is faster to classify the surfaces and
then to compute the equivalences directly, in particular as the coefficient size is
increased. Due to the simplicity of the normal forms also the equations from
our polynomial system are much simpler and this explains this behaviour. The
transformation can be obtained by a suitable composition of the transformation
into the normal form of the first surface and the inverse of this transformation of
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Table 4: Loglog-plot of the computation time (in sec.) of Gröbner basis for projective equivalences
of quadratic rational surfaces with random values.

1 10 100 1000 104

0.5

1

5

10

CSize

s
e
c

CSize 1 10 100 1000 10000

symmetry 3.8× 10−1 3.2× 100 7.3× 100 1.5× 101 2.5× 101

equivalence 5.0× 10−1 3.5× 100 9.8× 100 1.9× 101 3.0× 101

classification 2.4× 10−1 6.9× 10−1 1.3× 100 2.0× 100 3.0× 100

3-3-1c 3-3-2b

Figure 2: The general cases of quadratic polynomial surfaces

the second curve. Computing this inverse is alway possible, as all transformation
matrices are regular.

5.2. Affine equivalences of polynomial surfaces

Peters and Reif (1998) provided a complete catalogue of all quadratic polynomial
surfaces in n-space with respect to affine transformations and they describe a sim-
ple method for affinely classifying quadratic polynomial surfaces by investigating
affine invariants of the surface. In particular,

• the rank of the linear and the quadratic coefficient matrix,

• the singular set of the surface,
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• the set of all possible types of conic sections when intersecting with a hyper-
plane and

• the set of different types of preimages of hyperplanes which intersect the
singular set

are invariant and together they are sufficient to classify all quadratic polynomial
surfaces into 42 equivalence classes. 12 of them are birational and base-point free,
see Table 5.

Table 5: Number of affine classes of quadratic parameterizable surfaces

space dimension 0 1 2 3 4 5 total

# classes 1 5 15 15 5 1 42

# base-point free classes 0 0 0 7 4 1 12

Again we are interested in the number of symmetries for those 12 surfaces that
fulfil our assumptions. For the surfaces in three-dimensional space we additionally
investigate to which projective class these affine classes belong.

Table 6 summarizes our results and specifies the parameterization of these sur-
faces. Here we follow the notation of Peters and Reif (1998). Note, that by setting
t0 = 1 we obtain the usual polynomial representation, as for all parameterizations
the 0-th coordinate equals t20. For surfaces in 3-dimensional space there are two
classes (the types 3-3-1c and 3-3-2b) that possess a discrete number of symmetries
and these classes are affinely equivalent over the complex numbers. Similarly the
types 3-2-1a and 3-2-3 are affinely equivalent over the complex numbers, but they
possess a 1-parametric family of symmetries as also do the other types in 3 space.
In higher dimensions there is always an infinite number of symmetries, see Table 6.

Similar to the rational case, we are again interested in the generic cases. For
space dimensions 3 and 4 we randomly generated 100 instances of coefficients with
an absolute value smaller than 100 and investigate which classes are obtained. It
turns out that in 3-dimensional space the types 3-3-1c and 3-3-2b are the generic
ones, see Table 7. These surfaces possess a finite number of symmetries only, while
the remaining types are “more symmetric”. For surfaces in 4 space all of the 100
randomly generated surfaces belonged to type 4-3-1b.

Finally we apply our method to randomly generated surfaces and compare the
results of directly detecting symmetries and equivalences with classifying the ran-
domly generated surfaces, see Table 8. The computational results in this table refer
to the 7 classes of surfaces in 3-dimensional space. Interestingly one sees, that even
for coefficients of larger size, the time for solving our system increases moderately
and that in the affine case, in contrast to the projective one, classifying the surfaces
does not provide an advantage over directly computing the equivalences. However,
any of the two approaches can be solved within a few milliseconds.
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Table 6: Number of the affine symmetries (including the identity)

Type dim. parameterization proj. class. # real symmetries # complex symmetries

3-2-1a 3 (t20, t
2
1, t

2
2, t0t1 + t0t2) Σ5 ∞ (1-par) ∞ (1-par)

3-2-1c 3 (t20, t
2
1, t

2
2 + t0t1, t0t2) Σ6 ∞ (1-par) ∞ (1-par)

3-2-3 3 (t20, t
2
1 − t22, t1t2, t0t1) Σ4 ∞ (1-par) ∞ (1-par)

3-3-1b 3 (t20, t
2
1, t

2
2, t1t2 + t0t1) Σ5 ∞ (1-par) ∞ (1-par)

3-3-1c 3 (t20, t
2
1, t

2
2, t0t1 + t0t2 + t1t2) Σ1 6 6

3-3-2a 3 (t20, t
2
1, t

2
2 + t0t1, t1t2) Σ6 ∞ (1-par) ∞ (1-par)

3-3-2b 3 (t20, t
2
1, t

2
2 + t0t1, t1t2 − t0t2) Σ3 2 6

4-2-1 4 (t20, t
2
1, t

2
2, t0t1, t0t2) ∞ (4-par) ∞ (4-par)

4-2-3 4 (t20, t
2
1 − t22, t1t2, t0t1, t0t2) ∞ (4-par) ∞ (4-par)

4-3-1a 4 (t20, t
2
1, t

2
2, t1t2, t0t1) ∞ (3-par) ∞ (3-par)

4-3-1b 4 (t20, t
2
1 + t0t2, t22, t1t2, t0t1) ∞ (2-par) ∞ (2-par)

5-3 5 (t20, t
2
1, t

2
2, t1t2, t0t1, t0t2) ∞ (6-par) ∞ (6-par)

Table 7: Affine classification of 100 polynomial surfaces with random coefficients |c(k,i)| ≤ 100

3-2-1a 3-2-1c 3-2-3 3-3-1b 3-3-1c 3-3-2a 3-3-2b not classified

0 0 0 0 52 0 48 0

Table 8: Computation time (in sec.) of the Gröbner basis for affine equivalences of quadratic
polynomial surfaces with random values.

100 104 106 108

0.01

0.02

0.05

0.10

CSize

s
e
c

CSize 101 103 105 107 109

symmetry 9.0× 10−3 1.7× 10−2 2.7× 10−2 4.5× 10−2 6.0× 10−2

equivalence 1.0× 10−2 2.4× 10−2 4.0× 10−2 5.3× 10−2 7.1× 10−2

classification 3.1× 10−2 7.3× 10−2 7.2× 10−2 9.5× 10−2 1.5× 10−1

19



Figure 3: Rational degree 3 surfaces: projectively transformed Enneper (left), surface with 6
symmetries (right)

6. Higher order examples

6.1. Projective and affine equivalences of rational surfaces

As a first example, we consider the cubic surface given by the parameterization

p(t) =


30t30 + 3t20t2 + 3t21t2 − t32
30t20t1 − 10t31 + 30t1t

2
2

30t20t2 + 30t21t2 − 10t32
30t0t

2
1 − 30t0t

2
2

 ,

see Fig. 3 (left), which we obtained by applying a projective transformation to the
Enneper surface. For this example, it takes 0.018 seconds to compute the Gröbner
basis in Maple. Solving the system confirms that the surface possesses eight real
projective symmetries, two of which are even Euclidean symmetries, where one of
them is the identity.

As another cubic example (Fig. 3 right) we consider the surface defined by the
parameterization

p(t) =


t0t1t2

t20t1 + 3t0t
2
1 + 3t31 + t0t1t2 + 3t21t2 + t1t

2
2

t20t2 + t0t1t2 + t21t2 + 3t0t
2
2 + 3t1t

2
2 + 3t32

3t30 + 3t20t1 + t0t
2
1 + 3t20t2 + t0t1t2 + t0t

2
2

 .

The computation of the Gröbner basis takes 0.1 seconds. Solving the system
reveals that the surface possesses six real symmetries (including the identity) which
are all Euclidean ones. Moreover, we used our approach to confirm that the two
examples are not projectively equivalent. The computation of the Gröbner basis
of the associated polynomial system took 0.071 seconds.

After applying our method to quadratic and cubic surfaces, we now explore
whether it is still feasible for higher degree examples. In addition, we take the
possible sparsity of the coefficient matrix into account.
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Table 9: Computation time (in sec.) of Gröbner basis for projective symmetries

Degree

PZC
80% 70% 60% 50% 40% 0%

2 9.0× 10−3 7.5× 10−2 2.8× 10−2 3.6× 100 6.5× 100 7.6× 100

3 1.6× 10−2 6.0× 10−2 7.0× 10−2 1.6× 10−1 1.6× 10−1 1.6× 10−1

4 2.0× 10−2 5.8× 10−2 1.5× 100 2.6× 100 2.7× 100 2.7× 100

5 3.4× 10−2 3.6× 100 3.4× 101 3.6× 101 3.9× 101 3.6× 101

6 1.1× 102 1.4× 102 1.4× 102 1.5× 102 1.5× 102 1.5× 102

We applied our method to several randomly generated surfaces with a certain
percentage of zero coefficients (PZC). The remaining coefficients are integers sat-
isfying |c(k,i)| < 100. The computation times of the Gröbner bases are reported
in Table 9. As expected, the computation time grows with the degree. We were
able to solve the system for dense surfaces of degree 6 within about two minutes.
Increased sparsity helps to keep the computational effort low.

6.2. Affine equivalences of polynomial surfaces

It has been observed in Section 5 that the computational effort needed to detect
affine equivalences of quadratic polynomial surfaces is substantially smaller than
the effort required in the general case. We will now explore how this extends to
affine equivalences of higher degree surfaces.

We used a random number generator to create a test suite containing polyno-
mial surfaces up to degree 14, along with linear reparameterizations and affine
transformations. All randomly generated coefficients were chosen as integers with
an absolute value less than 100. In general these surfaces possess one equivalence
(and also only the identity as symmetry).

We were able to detect affine equivalences of degree 14 polynomial surfaces within
about two minutes. Table 10 reports the computation times for all degrees up to
14. As to be expected, the computation time depends highly on the input degree,
but we can handle higher degrees than in the general case. The detection of
equivalences takes longer then the detection of symmetries, but the growth in the
computation time with respect to the degree behaves similarly.

7. Conclusion

We observed that two base-point free birational parameterizations of one surface
are correlated by a linear reparameterization of the parameter domain, which we
identified with the projective plane. This result generalizes the corresponding
result for the curve case (Lemma 4.17 of Sendra et al. (2008)). Generic surfaces
satisfy the required assumptions on the parameterization (absence of base-point
and birationality).
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Table 10: Computation time (in sec.) of Gröbner basis for affine symmetries and equivalences
of polynomial surfaces.

Degree 3 4 5 6 7 8

symm. 5.0× 10−3 3.5× 10−2 6.8× 10−2 4.2× 10−1 9.1× 10−1 1.9× 100

equiv. 1.0× 10−2 6.1× 10−2 8.7× 10−2 6.6× 10−1 1.4× 100 2.9× 100

9 10 11 12 13 14

symm. 3.6× 100 7.4× 100 1.2× 101 2.0× 101 5.0× 101 8.7× 101

equiv. 5.4× 100 1.1× 101 1.8× 101 3.1× 101 7.6× 101 1.3× 102

Based on this result, we propose a method for finding projective and affine
equivalences and symmetries of rationally parametrized surfaces. This method
creates a polynomial system of equations and reduces the number of unknowns to
9. We solve this system using the Gröbner basis implementation of MapleTM 2017.

To the best of our knowledge, our method proposed is one of the first approaches
capable of finding equivalences and symmetries of rational surfaces. Recently
Alcázar and Hermoso (2016) investigated involutions of polynomially parametrized
surfaces and their method showed a good behaviour also for higher degree surfaces.
They solved some special examples up to bidegree (9,11). The considered involu-
tions, however, are special instances of Euclidean symmetries, while our method
deals with the more general class of projective transformations. The numerical
experiments presented in the paper confirm that projective equivalences and sym-
metries of randomly generated rational surfaces up to degree 6 and affine equiv-
alences of polynomial surfaces up to degree 14 can be found in less than three
minutes on a standard PC.

Two interesting questions for future work arise naturally. First, can we weaken
our assumptions, i.e., can we obtain a similar result if the parameterization is not
base point free or birational? Second, is it possible to generalize the approach to
approximate equivalences? In this paper we assumed that the input data is given
by exact values and we applied symbolic methods. The generalization to surfaces
defined by floating point numbers is of vital interest.
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the 6th IMA Conference on the Mathematics of Surfaces. Clarendon Press, pp.
153–170.
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2016-06 S. Hubmer, R. Ramlau: Convergence Analysis of a Two-Point Gradient Method for Nonlinear

Ill-Posed Problems December 2016. Eds.: B. Jüttler, U. Langer
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