, Doctoral Program Computational Mathematics

# Laguerre-Freud equations for Generalized Hahn polynomials of type I 

Diego Dominici

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner
Managing Editor: Silviu Radu
Communicated by: Peter Paule
Manuel Kauers

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria


# Laguerre-Freud equations for Generalized Hahn polynomials of type I 

Diego Dominici *<br>Johannes Kepler University Linz<br>Doktoratskolleg "Computational Mathematics"<br>Altenberger Straße 69<br>4040 Linz<br>Austria<br>$\dagger$

January 16, 2018


#### Abstract

We derive a system of difference equations satisfied by the threeterm recurrence coefficients of some families of discrete orthogonal polynomials.


## 1 Introduction

Let $\left\{\mu_{n}\right\}$ be a sequence of complex numbers and $L: \mathbb{C}[x] \rightarrow \mathbb{C}$ be a linear functional defined by

$$
L\left[x^{n}\right]=\mu_{n}, \quad n=0,1, \ldots .
$$

[^0]Then, $L$ is called the moment functional determined by the formal moment sequence $\left\{\mu_{n}\right\}$. The number $\mu_{n}$ is called the moment of order $n$. A sequence $\left\{P_{n}(x)\right\} \subset \mathbb{C}[x]$, of monic polynomials with $\operatorname{deg}\left(P_{n}\right)=n$ is called an orthogonal polynomial sequence with respect to $L$ provided that [4]

$$
L\left[P_{n} P_{m}\right]=h_{n} \delta_{n, m}, \quad n, m=0,1, \ldots,
$$

where $h_{0}=\mu_{0}, h_{n} \neq 0$ and $\delta_{n, m}$ is Kronecker's delta.
Since

$$
L\left[x P_{n} P_{k}\right]=0, \quad k \notin\{n-1, n, n+1\},
$$

the monic orthogonal polynomials $P_{n}(x)$ satisfy the three-term recurrence relation

$$
\begin{equation*}
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{n}=\frac{1}{h_{n}} L\left[x P_{n}^{2}\right], \quad \gamma_{n}=\frac{1}{h_{n-1}} L\left[x P_{n} P_{n-1}\right] . \tag{2}
\end{equation*}
$$

If we define $P_{-1}(x)=0, P_{0}(x)=1$, we see that

$$
\begin{equation*}
P_{1}(x)=x-\beta_{0}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}(x)=\left(x-\beta_{1}\right)\left(x-\beta_{0}\right)-\gamma_{1} . \tag{4}
\end{equation*}
$$

Because

$$
L\left[x P_{n} P_{n-1}\right]=L\left[P_{n}^{2}\right],
$$

we have

$$
\begin{equation*}
\gamma_{n}=\frac{h_{n}}{h_{n-1}}, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\gamma_{0}=0 \tag{6}
\end{equation*}
$$

Note that from (2) we get

$$
\begin{equation*}
\beta_{0}=\frac{1}{h_{0}} L[x]=\frac{\mu_{1}}{\mu_{0}} . \tag{7}
\end{equation*}
$$

If the coefficients $\beta_{n}, \gamma_{n}$ are known, the recurrence (1) can be used to compute the polynomials $P_{n}(x)$. Stability problems and numerical aspects
arising in the calculations have been studied by many authors [12], [14], [34], [46].

If explicit representations of the polynomials $P_{n}(x)$ are given, symbolic computation techniques can be applied to obtain recurrence relations and, in particular, to find expressions for the coefficients $\beta_{n}, \gamma_{n}$ (see [5], [20], [37], [38], [47]).

If, alas, the only knowledge we have is the linear functional $L$, the computation of $\beta_{n}$ and $\gamma_{n}$ is a real challenge. One possibility is to use the Modified Chebyshev algorithm [13, 2.1.7]. Another is to obtain recurrences for $\beta_{n}, \gamma_{n}$ of the form [2], [43]

$$
\begin{aligned}
& \gamma_{n+1}=F_{1}\left(n, \gamma_{n}, \gamma_{n-1}, \ldots, \beta_{n}, \beta_{n-1}, \ldots\right) \\
& \beta_{n+1}=F_{2}\left(n, \gamma_{n+1}, \gamma_{n}, \ldots, \beta_{n}, \beta_{n-1}, \ldots\right)
\end{aligned}
$$

for some functions $F_{1}, F_{2}$. This system of recurrences is known as the LaguerreFreud equations [11], [23]. The name was coined by Alphonse Magnus as part of his work on Freud's conjecture [24], [25], [26], [27]. In terms of performance, the Modified Chebyshev algorithm requires $O\left(n^{2}\right)$ operations, while the Laguerre-Freud equations require only $O(n)$ operations for the computation of $\beta_{n}$ and $\gamma_{n}[3]$.

There are several papers on the Laguerre-Freud equations for different types of orthogonal polynomials including continuous [1], [31], [41], discrete [16], [17], [39], [44], $D_{\omega}$ polynomials [10], [30], Laguerre-Hahn [9], and $q$ polynomials [18].

Most of the known examples belong to the set of semiclassical orthogonal polynomials [28], where the linear functional satisfies an equation of the form

$$
L[\phi U(\pi)]=L[\psi \pi], \quad \pi \in \mathbb{C}[x]
$$

called the Pearson equation [36], where $U: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ is a linear operator and $\phi(x), \psi(x)$ are fixed polynomials. The class of the semiclassical orthogonal polynomials is defined by

$$
c=\max \{\operatorname{deg}(\phi)-2, \operatorname{deg}(\phi-\psi)-1\} .
$$

In this paper, we focus our attention on linear functionals defined by

$$
\begin{equation*}
L[f]=\sum_{x=0}^{\infty} f(x) \rho(x) \tag{8}
\end{equation*}
$$

where the weight function $\rho(x)$ is of the form

$$
\begin{equation*}
\rho(x)=\frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x} \cdots\left(a_{p}\right)_{x}}{\left(b_{1}+1\right)_{x}\left(b_{2}+1\right)_{x} \cdots\left(b_{q}+1\right)_{x}} \frac{z^{x}}{x!}, \tag{9}
\end{equation*}
$$

and $(a)_{x}$ denotes the Pochhammer symbol (also called shifted or rising factorial) defined by [35, 5.2.4]

$$
\begin{aligned}
& (a)_{0}=1 \\
& (a)_{x}=a(a+1) \cdots(a+x-1), \quad x \in \mathbb{N},
\end{aligned}
$$

or by

$$
(a)_{x}=\frac{\Gamma(a+x)}{\Gamma(a)},
$$

where $\Gamma(z)$ is the Gamma function. Note that we have

$$
\begin{equation*}
\frac{\rho(x+1)}{\rho(x)}=\frac{\psi(x)}{\phi(x+1)}, \tag{10}
\end{equation*}
$$

with

$$
\begin{align*}
\psi(x) & =z\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{p}\right),  \tag{11}\\
\phi(x) & =x\left(x+b_{1}\right)\left(x+b_{2}\right) \cdots\left(x+b_{q}\right) .
\end{align*}
$$

Hence, the weight function $\rho(x)$ satisfies an alternative form of the Pearson equation

$$
\begin{equation*}
\Delta_{x}(\phi \rho)=(\psi-\phi) \rho, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{x} f(x)=f(x+1)-f(x) \tag{13}
\end{equation*}
$$

is the forward difference operator. Using (10) in (8), we get the Pearson equation

$$
\begin{equation*}
L[\psi(x) \pi(x)]=L[\phi(x) \pi(x-1)], \quad \pi \in \mathbb{C}[x] . \tag{14}
\end{equation*}
$$

The rest of the paper is organized as follows: in Section 2 we use (14) and obtain two difference equations satisfied by the discrete semiclassical orthogonal polynomials. As an example, we apply the method to obtain the recurrence coefficients of the Meixner polynomials.

In Section 3, we derive the Laguerre-Freud equations for the Generalized Hahn polynomials of type I, introduced in [7] as part of the classification of discrete semiclassical orthogonal polynomials of class one. Specializing one of the parameters in the polynomials, we obtain the recurrence coefficients of the Hahn polynomials.

We finish the paper with some remarks and future directions.

## 2 Laguerre-Feud equations

As Maroni remarks at the beginning of [29], "the history of finite-type relations is as old as the history of orthogonality since

$$
r(x) P_{n}(x)=\sum_{k=n-t}^{n+t} \psi_{n, k} P_{k}(x)
$$

when $P_{n}(x)$ is a sequence of orthogonal polynomials and $r(x)$ is a polynomial with $\operatorname{deg}(r)=t$." The three-term recurrence relation (1) is the most used example, with $r(x)=x$.

We now derive difference equations for orthogonal polynomials whose linear functional satisfies (14). We follow an approach similar to the one used in [40] to find the Laguerre-Freud equations for the generalized Charlier polynomials. Another method used in many articles is to use ladder operators [19].

Proposition 1 Let $\left\{P_{n}(x)\right\}$ be a family of orthogonal polynomials with respect to a linear functional satisfying (14). Then, we have

$$
\begin{equation*}
\psi(x) P_{n}(x+1)=\sum_{k=-q-1}^{p} A_{k}(n) P_{n+k}(x) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(x) P_{n}(x-1)=\sum_{k=-p}^{q+1} B_{k}(n) P_{n+k}(x) \tag{16}
\end{equation*}
$$

for some coefficients $A_{k}(n), B_{k}(n)$.

Proof. Since $\operatorname{deg} \psi(x) P_{n}(x+1)=n+p$, we can write

$$
\psi(x) P_{n}(x+1)=\sum_{k=-n}^{p} A_{k}(n) P_{n+k}(x) .
$$

Using orthogonality and (14), we have

$$
\begin{aligned}
h_{n+k} A_{k}(n) & =L\left[\psi(x) P_{n}(x+1) P_{n+k}(x)\right] \\
& =L\left[\phi(x) P_{n}(x) P_{n+k}(x-1)\right]=0, \quad k<-q-1 .
\end{aligned}
$$

Similarly, writing

$$
\phi(x) P_{n}(x-1)=\sum_{k=-n}^{q+1} B_{k}(n) P_{n+k}(x),
$$

we get

$$
\begin{aligned}
h_{n+k} B_{k}(n) & =L\left[\phi(x) P_{n}(x-1) P_{n+k}(x)\right] \\
& =L\left[\psi(x) P_{n}(x) P_{n+k}(x+1)\right]=0, \quad k<-p .
\end{aligned}
$$

The coefficients $A_{k}(n)$ and $B_{k}(n)$ are not independent of each other.

## Corollary 2

$$
\begin{equation*}
A_{k}(n)=\frac{h_{n}}{h_{n+k}} B_{-k}(n+k), \quad-q-1 \leq k \leq p . \tag{17}
\end{equation*}
$$

Proof. If $-q-1 \leq k \leq p$, then

$$
\begin{aligned}
A_{k}(n) & =\frac{1}{h_{n+k}} L\left[\phi(x) P_{n}(x) P_{n+k}(x-1)\right] \\
& =\frac{1}{h_{n+k}} L\left[P_{n}(x) \sum_{j=-p}^{q+1} B_{j}(n+k) P_{n+k+j}(x)\right] \\
& =\frac{1}{h_{n+k}} \sum_{j=-p}^{q+1} B_{j}(n+k) L\left[P_{n}(x) P_{n+k+j}(x)\right] \\
& =\frac{h_{n}}{h_{n+k}} B_{-k}(n+k) .
\end{aligned}
$$

We can now state our main result.

Theorem 3 For $-q-1 \leq k \leq p$, we have

$$
\begin{align*}
& \gamma_{n+k+1} A_{k+1}(n)-\gamma_{n} A_{k+1}(n-1)+A_{k-1}(n)-A_{k-1}(n+1)  \tag{18}\\
& =\left(\beta_{n}-\beta_{n+k}-1\right) A_{k}(n)
\end{align*}
$$

with

$$
\begin{gather*}
A_{p}(n)=z  \tag{19}\\
A_{-q-1}(n)=\gamma_{n} \gamma_{n-1} \cdots \gamma_{n-q} \tag{20}
\end{gather*}
$$

and

$$
A_{p+1}(n)=0=A_{-q-2}(n)
$$

Proof. Using (1), we have

$$
\begin{aligned}
& \psi(x)(x+1) P_{n}(x+1)=\psi(x) P_{n+1}(x+1) \\
& +\beta_{n} \psi(x) P_{n}(x+1)+\gamma_{n} \psi(x) P_{n-1}(x+1)
\end{aligned}
$$

and from (15)

$$
\begin{align*}
\psi(x)(x+1) P_{n}(x+1)= & \sum_{k=-q}^{p+1} A_{k-1}(n+1) P_{n+k}(x)  \tag{21}\\
+ & \sum_{k=-q-1}^{p} \beta_{n} A_{k}(n) P_{n+k}(x)+\sum_{k=-q-2}^{p-1} \gamma_{n} A_{k+1}(n-1) P_{n+k}(x) .
\end{align*}
$$

On the other hand, if we multiply (15) by $x$, we get

$$
\psi(x) x P_{n}(x+1)=\sum_{k=-q-1}^{p} A_{k}(n) x P_{n+k}(x),
$$

and using (1) we obtain

$$
\begin{gather*}
\psi(x) x P_{n}(x+1)=\sum_{k=-q}^{p+1} A_{k-1}(n) P_{n+k}(x)  \tag{22}\\
+\sum_{k=-q-1}^{p} \beta_{n+k} A_{k}(n) P_{n+k}(x)+\sum_{k=-q-2}^{p-1} \gamma_{n+k+1} A_{k+1}(n) P_{n+k}(x) .
\end{gather*}
$$

Using (15), (21) and (22) in the identity

$$
\psi(x) P_{n}(x+1)=(x+1) \psi(x) P_{n}(x+1)-x \psi(x) P_{n}(x+1),
$$

we have

$$
\begin{aligned}
\sum_{k=-q-1}^{p} A_{k}(n) P_{n+k}(x) & =\sum_{k=-q}^{p+1}\left[A_{k-1}(n+1)-A_{k-1}(n)\right] P_{n+k}(x) \\
& +\sum_{k=-q-1}^{p}\left(\beta_{n}-\beta_{n+k}\right) A_{k}(n) P_{n+k}(x) \\
& +\sum_{k=-q-2}^{p-1}\left[\gamma_{n} A_{k+1}(n-1)-\gamma_{n+k+1} A_{k+1}(n)\right] P_{n+k}(x) .
\end{aligned}
$$

Since the polynomials $P_{n}(x)$ are linearly independent, we get:

$$
\begin{gather*}
k=p+1: \quad A_{p}(n+1)-A_{p}(n)=0,  \tag{23}\\
k=-q-2: \quad \gamma_{n} A_{-q-1}(n-1)-\gamma_{n-q-1} A_{-q-1}(n)=0, \tag{24}
\end{gather*}
$$

and for $-q-1 \leq k \leq p$,

$$
\begin{aligned}
\left(1+\beta_{n+k}-\beta_{n}\right) A_{k}(n) & =A_{k-1}(n+1)-A_{k-1}(n) \\
& +\gamma_{n} A_{k+1}(n-1)-\gamma_{n+k+1} A_{k+1}(n) .
\end{aligned}
$$

Comparing leading coefficients in (15) we obtain

$$
A_{p}(n)=z
$$

in agreement with (23).
Rewriting (24) as

$$
\frac{A_{-q-1}(n)}{A_{-q-1}(n-1)}=\frac{\gamma_{n}}{\gamma_{n-q-1}},
$$

we see that

$$
\frac{A_{-q-1}(n)}{A_{-q-1}(q+1)}=\frac{\gamma_{n} \gamma_{n-1} \cdots \gamma_{n-q}}{\gamma_{1} \gamma_{2} \cdots \gamma_{q+1}}
$$

From (17) we have

$$
A_{-q-1}(q+1)=\frac{h_{q+1}}{h_{0}} B_{q+1}(0)
$$

Since $\phi(x) P_{n}(x-1)$ is a monic polynomial, (16) gives

$$
\begin{equation*}
B_{q+1}(n)=1, \tag{25}
\end{equation*}
$$

and using (5) we get

$$
\frac{h_{q+1}}{h_{0}} B_{q+1}(0)=\gamma_{1} \gamma_{2} \cdots \gamma_{q+1}
$$

proving (20).

### 2.1 Meixner polynomials

To illustrate the use of Theorem 3, we consider the family of Meixner polynomials introduced by Josef Meixner in [32]. These polynomials are orthogonal with respect to the weight function

$$
\rho(x)=(a)_{x} \frac{z^{x}}{x!},
$$

and using (11) we have

$$
\psi(x)=z(x+a), \quad \phi(x)=x
$$

and $p=1, \quad q=0$.
From (19) and (20) we get

$$
\begin{equation*}
A_{1}(n)=z, \quad A_{-1}(n)=\gamma_{n}, \tag{26}
\end{equation*}
$$

while (18) gives:

$$
\begin{aligned}
& \quad k=1: \quad\left(1+\beta_{n+1}-\beta_{n}\right) A_{1}(n)=A_{0}(n+1)-A_{0}(n), \\
& k=0: \quad A_{0}(n)=A_{-1}(n+1)-A_{-1}(n)+\gamma_{n} A_{1}(n-1)-\gamma_{n+1} A_{1}(n), \\
& \text { and } \\
& \quad k=-1: \quad\left(1+\beta_{n-1}-\beta_{n}\right) A_{-1}(n)=\gamma_{n} A_{0}(n-1)-\gamma_{n} A_{0}(n) .
\end{aligned}
$$

Using (26) we obtain

$$
\begin{equation*}
z\left(1+\beta_{n+1}-\beta_{n}\right)=A_{0}(n+1)-A_{0}(n) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
A_{0}(n)=\gamma_{n+1}-\gamma_{n}+z\left(\gamma_{n}-\gamma_{n+1}\right)=(1-z)\left(\gamma_{n+1}-\gamma_{n}\right), \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\beta_{n-1}-\beta_{n}=A_{0}(n-1)-A_{0}(n) \tag{29}
\end{equation*}
$$

Summing (27) from $n=0$ and (29) from $n=1$, we get

$$
\begin{aligned}
z\left(\beta_{n}-\beta_{0}+n\right) & =A_{0}(n)-A_{0}(0) \\
\beta_{n}-\beta_{0}-n & =A_{0}(n)-A_{0}(0)
\end{aligned}
$$

Using (28) and (6), gives

$$
\beta_{n}-\beta_{0}-n=z\left(\beta_{n}-\beta_{0}+n\right)=(1-z)\left(\gamma_{n+1}-\gamma_{n}-\gamma_{1}\right) .
$$

Therefore,

$$
\beta_{n}=\beta_{0}+\frac{1+z}{1-z} n
$$

and

$$
\begin{equation*}
\gamma_{n+1}-\gamma_{n}-\gamma_{1}=\frac{2 n z}{(1-z)^{2}} \tag{30}
\end{equation*}
$$

Summing (30) from $n=0$, we conclude that

$$
\gamma_{n}=n \gamma_{1}+\frac{n(n-1) z}{(1-z)^{2}}
$$

If we use (26) and (28) in (15), we get

$$
\begin{gather*}
z(x+a) P_{n}(x+1)=\gamma_{n} P_{n-1}(x)  \tag{31}\\
+(1-z)\left(\gamma_{n+1}-\gamma_{n}\right) P_{n}(x)+z P_{n+1}(x),
\end{gather*}
$$

and using (17),

$$
\begin{aligned}
B_{1}(n) & =\frac{h_{n}}{h_{n+1}} A_{-1}(n+1)=\frac{A_{-1}(n+1)}{\gamma_{n+1}}=1 \\
B_{0}(n) & =A_{0}(n)=(1-z)\left(\gamma_{n+1}-\gamma_{n}\right) \\
B_{-1}(n) & =\frac{h_{n}}{h_{n-1}} A_{1}(n-1)=\gamma_{n} z
\end{aligned}
$$

Hence, from (16) we obtain

$$
\begin{equation*}
x P_{n}(x-1)=z \gamma_{n} P_{n-1}(x)+(1-z)\left(\gamma_{n+1}-\gamma_{n}\right) P_{n}(x)+P_{n+1}(x) . \tag{32}
\end{equation*}
$$

Setting $n=0$ in (31) and (32) gives

$$
\begin{aligned}
z(x+a) & =(1-z) \gamma_{1}+z\left(x-\beta_{0}\right), \\
x & =(1-z) \gamma_{1}+x-\beta_{0},
\end{aligned}
$$

from which we find

$$
(1-z) \gamma_{1}=\beta_{0}=-a+\frac{1-z}{z} \gamma_{1}
$$

and therefore

$$
\beta_{0}=\frac{a z}{1-z}, \quad \gamma_{1}=\frac{a z}{(1-z)^{2}}
$$

Thus, we recover the well known coefficients [35, 18.22.2]

$$
\begin{equation*}
\beta_{n}=\frac{n+(n+a) z}{1-z}, \quad \gamma_{n}=\frac{n(n+a-1) z}{(1-z)^{2}} \tag{33}
\end{equation*}
$$

Using the hypergeometric representation [35, 18.20.7]

$$
P_{n}(x)=(a)_{n}\left(1-\frac{1}{z}\right)^{-n}{ }_{2} F_{1}\left[\begin{array}{c}
-n,-x \\
a
\end{array} ; 1-\frac{1}{z}\right]
$$

one can easily verify (or re-derive) (33) using (for instance) the Mathematica package HolonomicFunctions [22].

## 3 Generalized Hahn polynomials of type I

The Generalized Hahn polynomials of type I were introduced in [7]. They are orthogonal with respect to the weight function

$$
\rho(x)=\frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x}}{(b+1)_{x}} \frac{z^{x}}{x!}, \quad|z|<1, \quad b \neq-1,-2, \ldots
$$

The first moments are given by

$$
\begin{align*}
& \mu_{0}={ }_{2} F_{1}\left[\begin{array}{c}
a_{1}, a_{2} \\
b+1
\end{array} ; z\right]  \tag{34}\\
& \mu_{1}=z \frac{a_{1} a_{2}}{b+1}{ }_{2} F_{1}\left[\begin{array}{c}
a_{1}+1, a_{2}+1 \\
b+2
\end{array} ; z\right] .
\end{align*}
$$

Since

$$
\frac{\rho(x+1)}{\rho(x)}=\frac{z\left(x+a_{1}\right)\left(x+a_{2}\right)}{(x+1)(x+b+1)},
$$

we have

$$
\psi(x)=z\left(x+a_{1}\right)\left(x+a_{2}\right), \quad \phi(x)=x(x+b),
$$

and $p=2, \quad q=1$.
We can now derive the Laguerre-Freud equations for the Generalized Hahn polynomials of type I.

Theorem 4 The recurrence coefficients of the Generalized Hahn polynomials of type I satisfy the Laguerre-Freud equations

$$
\begin{align*}
(1-z) \nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right) & =z v_{n} \nabla_{n}\left(\beta_{n}+n\right)-u_{n} \nabla_{n}\left(\beta_{n}-n\right),  \tag{35}\\
\Delta_{n} \nabla_{n}\left[\left(u_{n}-z v_{n}\right) \gamma_{n}\right] & =u_{n} \nabla_{n}\left(\beta_{n}-n\right)+\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right) . \tag{36}
\end{align*}
$$

with initial conditions $\beta_{0}=\frac{\mu_{1}}{\mu_{0}}$ and

$$
\begin{equation*}
\gamma_{1}=\frac{\left(a_{1}+a_{2}-b\right) \beta_{0}+a_{1} a_{2}}{1-z}-\left(\beta_{0}+a_{1}\right)\left(\beta_{0}+a_{2}\right), \tag{37}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{n}=\beta_{n}+\beta_{n-1}-n+b+1, \\
& v_{n}=\beta_{n}+\beta_{n-1}+n-1+a_{1}+a_{2},
\end{aligned}
$$

and

$$
\begin{equation*}
\nabla_{x} f(x)=f(x)-f(x-1) . \tag{38}
\end{equation*}
$$

Proof. From (19) and (20), we get

$$
\begin{equation*}
A_{2}(n)=z, \quad A_{-2}(n)=\gamma_{n} \gamma_{n-1}, \tag{39}
\end{equation*}
$$

while (18) gives:

$$
\begin{array}{cl} 
& k=2: \quad A_{1}(n+1)-A_{1}(n)=z\left(1+\beta_{n+2}-\beta_{n}\right) \\
k=1: & A_{0}(n+1)-A_{0}(n)=A_{1}(n)\left(1+\beta_{n+1}-\beta_{n}\right)+z\left(\gamma_{n+2}-\gamma_{n}\right) \\
k=0: & A_{-1}(n+1)-A_{-1}(n)=A_{0}(n)+A_{1}(n) \gamma_{n+1}-A_{1}(n-1) \gamma_{n} \\
k=-1: & A_{-2}(n+1)-A_{-2}(n) \\
& =A_{-1}(n)\left(1+\beta_{n-1}-\beta_{n}\right)+\gamma_{n}\left[A_{0}(n)-A_{0}(n-1)\right] \tag{41}
\end{array}
$$

and

$$
\begin{equation*}
k=-2: \quad A_{-2}(n)\left(1+\beta_{n-2}-\beta_{n}\right)=A_{-1}(n-1) \gamma_{n}-A_{-1}(n) \gamma_{n-1} . \tag{42}
\end{equation*}
$$

Solving (40) we get

$$
\begin{equation*}
A_{1}(n)=A_{1}(0)+z\left(\beta_{n+1}+\beta_{n}+n-\beta_{0}-\beta_{1}\right) \tag{43}
\end{equation*}
$$

Setting $n=0$ in (15) we have

$$
z\left(x+a_{1}\right)\left(x+a_{2}\right)=A_{0}(0)+A_{1}(0) P_{1}(x)+z P_{2}(x),
$$

and using (3)-(4), we get

$$
\begin{equation*}
A_{0}(0)=z\left[a_{1} a_{2}+\gamma_{1}+\left(a_{1}+a_{2}\right) \beta_{0}+\beta_{0}^{2}\right], \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}(0)=z\left(a_{1}+a_{2}+\beta_{0}+\beta_{1}\right) \tag{45}
\end{equation*}
$$

Using (45) in (43), we obtain

$$
\begin{equation*}
A_{1}(n)=z\left(\beta_{n+1}+\beta_{n}+n+a_{1}+a_{2}\right) . \tag{46}
\end{equation*}
$$

If we use (39) in (42), we get

$$
1+\beta_{n-2}-\beta_{n}=\frac{A_{-1}(n-1)}{\gamma_{n-1}}-\frac{A_{-1}(n)}{\gamma_{n}},
$$

and summing from $n=2$ we see that

$$
\begin{equation*}
n-1+\beta_{0}+\beta_{1}-\beta_{n-1}-\beta_{n}=\frac{A_{-1}(1)}{\gamma_{1}}-\frac{A_{-1}(n)}{\gamma_{n}} \tag{47}
\end{equation*}
$$

Setting $n=0$ in (16), we have

$$
x(x+b)=\left(x-\beta_{1}\right)\left(x-\beta_{0}\right)-\gamma_{1}+B_{1}(0)\left(x-\beta_{0}\right)+B_{0}(0)
$$

and hence

$$
\begin{gather*}
B_{1}(0)=\beta_{0}+\beta_{1}+b,  \tag{48}\\
B_{0}(0)=\beta_{0}^{2}+b \beta_{0}+\gamma_{1} . \tag{49}
\end{gather*}
$$

Using (17) with $k=-1$ and (48), we obtain

$$
\begin{equation*}
A_{-1}(1)=\gamma_{1} B_{1}(0)=\gamma_{1}\left(\beta_{0}+\beta_{1}+b\right) \tag{50}
\end{equation*}
$$

Combining (47) and (50), we conclude that

$$
\begin{equation*}
A_{-1}(n)=\gamma_{n}\left(\beta_{n}+\beta_{n-1}-n+b+1\right) . \tag{51}
\end{equation*}
$$

If we introduce the functions

$$
\begin{aligned}
& u_{n}=\frac{A_{-1}(n)}{\gamma_{n}}=\beta_{n}+\beta_{n-1}-n+b+1 \\
& v_{n}=\frac{A_{1}(n-1)}{z}=\beta_{n}+\beta_{n-1}+n-1+a_{1}+a_{2}
\end{aligned}
$$

and use (46),(51) in (41), we get

$$
\begin{align*}
\nabla_{n} A_{0} & =z v_{n} \nabla_{n}\left(\beta_{n}+n\right)+z \nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right), \\
A_{0} & =\Delta_{n}\left[\left(u_{n}-z v_{n}\right) \gamma_{n}\right],  \tag{52}\\
\nabla_{n} A_{0} & =u_{n} \nabla_{n}\left(\beta_{n}-n\right)+\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right) .
\end{align*}
$$

Using (17) with $k=0$ and (49), we obtain

$$
\begin{equation*}
A_{0}(0)=B_{0}(0)=\beta_{0}^{2}+b \beta_{0}+\gamma_{1} . \tag{53}
\end{equation*}
$$

From (44) and (53) we have

$$
\begin{equation*}
(1-z)\left[\gamma_{1}+\left(\beta_{0}+a_{1}\right)\left(\beta_{0}+a_{2}\right)\right]=\left(a_{1}+a_{2}-b\right) \beta_{0}+a_{1} a_{2} \tag{54}
\end{equation*}
$$

Finally, if we eliminate $A_{0}$ from (52), we conclude that

$$
z v_{n} \nabla_{n}\left(\beta_{n}+n\right)+z \nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right)=u_{n} \nabla_{n}\left(\beta_{n}-n\right)+\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right)
$$

and

$$
\begin{aligned}
& \Delta_{n}\left[\left(u_{n}-z v_{n}\right) \gamma_{n}\right]-\Delta_{n}\left[\left(u_{n-1}-z v_{n-1}\right) \gamma_{n-1}\right] \\
& =u_{n} \nabla_{n}\left(\beta_{n}-n\right)+\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right)
\end{aligned}
$$

or

$$
\Delta_{n} \nabla_{n}\left[\left(u_{n}-z v_{n}\right) \gamma_{n}\right]=u_{n} \nabla_{n}\left(\beta_{n}-n\right)+\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right) .
$$

### 3.1 Hahn polynomials

We now consider the case $z=1$. Under the assumptions

$$
\operatorname{Re}\left(b-a_{1}-a_{2}\right)>0, \quad b-a_{1}-a_{2} \neq 1,2, \ldots,
$$

the first two moments (34) are given by [35, 15.4(ii)]

$$
\begin{aligned}
\mu_{0} & =\frac{\Gamma(b+1) \Gamma\left(b+1-a_{1}-a_{2}\right)}{\Gamma\left(b+1-a_{1}\right) \Gamma\left(b+1-a_{2}\right)} \\
\mu_{1} & =\frac{a_{1} a_{2}}{b+1} \frac{\Gamma(b+2) \Gamma\left(b-a_{1}-a_{2}\right)}{\Gamma\left(b-a_{1}\right) \Gamma\left(b-a_{2}\right)}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\beta_{0}=\frac{\mu_{1}}{\mu_{0}}=\frac{a_{1} a_{2}}{b-a_{1}-a_{2}} . \tag{55}
\end{equation*}
$$

Note that we get the same result if we set $z=1$ in (54).
Taking limits in (37) as $z \rightarrow 1^{-}$, we obtain

$$
\gamma_{1}=\frac{a_{1} a_{2}\left(b-a_{1}\right)\left(b-a_{2}\right)}{\left(b-a_{1}-a_{2}\right)\left(b-1-a_{1}-a_{2}\right)}-a_{1} \frac{b-a_{1}}{b-a_{1}-a_{2}} a_{2} \frac{b-a_{2}}{b-a_{1}-a_{2}}
$$

or

$$
\begin{equation*}
\gamma_{1}=\frac{a_{1} a_{2}\left(b-a_{1}\right)\left(b-a_{2}\right)}{\left(b-a_{1}-a_{2}\right)^{2}\left(b-a_{1}-a_{2}-1\right)}, \tag{56}
\end{equation*}
$$

where we have used the formula $[35,15.5 .1]$

$$
\frac{d}{d z}{ }_{2} F_{1}\left[\begin{array}{cc}
a, & b \\
c & ; z
\end{array}\right]=\frac{a b}{c}{ }_{2} F_{1}\left[\begin{array}{c}
a+1, b+1 \\
c+1
\end{array} ; z\right] .
$$

When $z=1$, the Laguerre-Freud equations (35)-(36) decouple, and we get

$$
\begin{gather*}
u_{n} \nabla_{n}\left(\beta_{n}-n\right)=v_{n} \nabla_{n}\left(\beta_{n}+n\right),  \tag{57}\\
\Delta_{n} \nabla_{n}\left[\left(b-a_{1}-a_{2}+2-2 n\right) \gamma_{n}\right]-\nabla_{n}\left(\gamma_{n+1}+\gamma_{n}\right)=u_{n} \nabla_{n}\left(\beta_{n}-n\right) \tag{58}
\end{gather*}
$$

since in this case

$$
u_{n}-v_{n}=b-a_{1}-a_{2}+2-2 n
$$

Solving for $\beta_{n}$ in (57), we have

$$
\begin{equation*}
\beta_{n}=\frac{2 n+a_{1}+a_{2}-b-4}{2 n+a_{1}+a_{2}-b} \beta_{n-1}-\frac{a_{1}+a_{2}+b}{2 n+a_{1}+a_{2}-b} . \tag{59}
\end{equation*}
$$

As it is well known, the general solution of the initial value problem

$$
y_{n+1}=c_{n} y_{n}+g_{n}, \quad y_{n_{0}}=y_{0}, \quad n \geq n_{0},
$$

is $[8,1.2 .4]$

$$
y_{n}=y_{0} \prod_{j=n_{0}}^{n-1} c_{j}+\sum_{k=n_{0}}^{n-1}\left(g_{k} \prod_{j=k+1}^{n-1} c_{j}\right) .
$$

Thus, the solution of (59) is given by

$$
\begin{aligned}
\beta_{n} & =\frac{\left(a_{1}+a_{2}-b\right)\left(a_{1}+a_{2}-b-2\right)}{\left(2 n+a_{1}+a_{2}-b\right)\left(2 n+a_{1}+a_{2}-b-2\right)} \beta_{0} \\
& -\frac{\left(a_{1}+a_{2}+b\right)\left(a_{1}+a_{2}-b+n-1\right)}{\left(2 n+a_{1}+a_{2}-b\right)\left(2 n+a_{1}+a_{2}-b-2\right)} n,
\end{aligned}
$$

where we have used the identity

$$
\prod_{k=n_{0}}^{n_{1}} \frac{2 n+K-2}{2 n+K+2}=\frac{\left(2 n_{0}+K\right)\left(2 n_{0}+K-2\right)}{\left(2 n_{1}+K\right)\left(2 n_{1}+K+2\right)} .
$$

If we use the initial condition (55), we conclude that

$$
\beta_{n}=\frac{\left(b+2-a_{1}-a_{2}\right) a_{1} a_{2}-n\left(a_{1}+a_{2}+b\right)\left(n+a_{1}+a_{2}-b-1\right)}{\left(2 n+a_{1}+a_{2}-b\right)\left(2 n+a_{1}+a_{2}-b-2\right)} .
$$

Re-writing (58), we have

$$
\begin{aligned}
& \left(b-a_{1}-a_{2}-2 n-1\right) \gamma_{n+1}-2\left(b-a_{1}-a_{2}-2 n+2\right) \gamma_{n} \\
& \quad+\left(b-a_{1}-a_{2}-2 n+5\right) \gamma_{n-1}=u_{n} \nabla_{n}\left(\beta_{n}-n\right) .
\end{aligned}
$$

Summing from $n=1$, we get

$$
\begin{aligned}
& \left(b-a_{1}-a_{2}-2 n-1\right) \gamma_{n+1}+\left(a_{1}+a_{2}-b+2 n-3\right) \gamma_{n} \\
& +\left(a_{1}+a_{2}-b+1\right) \gamma_{1}=-\sum_{k=0}^{n-1} \beta_{k}+\beta_{n}^{2}-\beta_{0}^{2} \\
& \quad+b\left(\beta_{n}-\beta_{0}-n\right)-n \beta_{n}+\frac{n(n-1)}{2} .
\end{aligned}
$$

The solution of this difference equation with initial condition (56) is

$$
\begin{aligned}
\gamma_{n} & =-n \frac{\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)\left(n+a_{1}-b-1\right)}{\left(2 n+a_{1}+a_{2}-b-1\right)\left(2 n+a_{1}+a_{2}-b-3\right)} \\
& \times \frac{\left(n+a_{2}-b-1\right)\left(n+a_{1}+a_{2}-b-2\right)}{\left(2 n+a_{1}+a_{2}-b-2\right)^{2}} .
\end{aligned}
$$

We summarize the results in the following proposition.
Proposition 5 The recurrence coefficients of the Hahn polynomials, orthogonal with respect to the weight function

$$
\rho(x)=\frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x}}{x!(b+1)_{x}}
$$

with

$$
\operatorname{Re}\left(b-a_{1}-a_{2}\right)>0, \quad b-a_{1}-a_{2} \neq 1,2, \ldots,
$$

are given by

$$
\begin{equation*}
\beta_{n}=\frac{\left(b+2-a_{1}-a_{2}\right) a_{1} a_{2}-n\left(a_{1}+a_{2}+b\right)\left(n+a_{1}+a_{2}-b-1\right)}{\left(2 n+a_{1}+a_{2}-b\right)\left(2 n+a_{1}+a_{2}-b-2\right)}, \tag{60}
\end{equation*}
$$

and

$$
\begin{align*}
\gamma_{n} & =-n \frac{\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)\left(n+a_{1}-b-1\right)}{\left(2 n+a_{1}+a_{2}-b-1\right)\left(2 n+a_{1}+a_{2}-b-3\right)}  \tag{61}\\
& \times \frac{\left(n+a_{2}-b-1\right)\left(n+a_{1}+a_{2}-b-2\right)}{\left(2 n+a_{1}+a_{2}-b-2\right)^{2}} .
\end{align*}
$$

This family of orthogonal polynomials was introduced by Hahn in [15]. They have the hypergeometric representation [45]

$$
P_{n}(x)=\frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}}{\left(n+a_{1}+a_{2}-b-1\right)_{n}}{ }_{3} F_{2}\left[\begin{array}{c}
\left.-n,-x, n+a_{1}+a_{2}-b-1 ; 1\right], ~ \\
a_{1}, a_{2}
\end{array}\right.
$$

from which (60) and (61) can be obtained using HolonomicFunctions.
As we observed in [6], the finite family of polynomials that are usually called "Hahn polynomials" in the literature [35, 18.19] correspond to the special case

$$
a_{1}=\alpha+1, \quad a_{2}=-N, \quad b=-N-1-\beta .
$$

## 4 Conclusions

We have presented a method that allows the computation of the recurrence coefficients of discrete orthogonal polynomials. In some cases, a closed-form expression can be given. We plan to extend the results to include other families of polynomials.

Acknowledgement 6 This work was completed while visiting the Johannes Kepler Universität Linz and supported by the strategic program "Innovatives OÖ- 2010 plus" from the Upper Austrian Government. We wish to thank Professor Peter Paule for his generous sponsorship and our colleagues at JKU for their continuous help.

We also wish to express our gratitude to the anonymous referees, who provided us with invaluable suggestions and comments that greatly improved our first draft of the paper.

## 5 Appendix

In this section we review the theory of orthogonal polynomial which are solutions of the difference equation of hypergeometric type (see [33, Chapter 2]) and also list some of the main properties of the Meixner and Hahn polynomials (see [21, 2.5,2.9] and [35, 18.19-18.23]).

### 5.1 A.0. Second order hypergeometric difference equation

Let's consider the difference equation

$$
\begin{equation*}
\sigma(x) \Delta \nabla y+\tau(x) \Delta y+\nu y=0 \tag{62}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta f(x)=f(x+1)-f(x) \\
& \nabla f(x)=f(x)-f(x-1)
\end{aligned}
$$

and $\sigma(x), \tau(x)$ are polynomials with $\operatorname{deg}(\sigma) \leq 2, \operatorname{deg}(\tau) \leq 1$, and $\nu$ is a constant.

The higher-order differences

$$
d_{m}(x)=\Delta^{m}[y(x)],
$$

satisfy the equation

$$
\begin{equation*}
\sigma(x) \Delta \nabla d_{m}+\tau_{m}(x) \Delta d_{m}+\nu_{m} d_{m}=0 \tag{63}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{m}(x)=\tau(x+m)+\sigma(x+m)-\sigma(x), \tag{64}
\end{equation*}
$$

and

$$
\nu_{m}=\nu+m \tau^{\prime}+\frac{m(m-1)}{2} \sigma^{\prime \prime}
$$

The solution of (62) is a polynomial $y_{n}(x)$ of degree $n$ if and only if the function $d_{n}(x)$ is a constant. From (63) we see that $\nu_{n}$ must be zero and therefore

$$
\begin{equation*}
v=-n \tau^{\prime}-\frac{n(n-1)}{2} \sigma^{\prime \prime}=\lambda_{n} \tag{65}
\end{equation*}
$$

If we multiply both sides of (62) by a function $\rho(x)$ satisfying the Pearson equation

$$
\Delta(\sigma \rho)=\tau \rho,
$$

then we can write (62) in the self adjunct form

$$
\begin{equation*}
\Delta\left(\sigma \rho \nabla y_{n}\right)+\lambda_{n} \rho y_{n}=0 . \tag{66}
\end{equation*}
$$

Similarly, the equation (63) can be written as

$$
\begin{equation*}
\Delta\left(\sigma \rho_{m} \nabla d_{m}\right)+\nu_{m} \rho_{m} d_{m}=0 \tag{67}
\end{equation*}
$$

where $\rho_{m}(x)$ satisfies the Pearson equation

$$
\begin{equation*}
\Delta\left(\sigma \rho_{m}\right)=\tau_{m} \rho_{m} \tag{68}
\end{equation*}
$$

Solving (68), we obtain

$$
\begin{equation*}
\rho_{m}(x)=\rho(x+m) \prod_{k=1}^{m} \sigma(x+k) \tag{69}
\end{equation*}
$$

Note that

$$
\rho_{m}(x)=\sigma(x+1) \rho_{m-1}(x+1) .
$$

Considering two solutions $y_{n}, y_{m}$ of (66), we see that

$$
\left(\lambda_{m}-\lambda_{n}\right) y_{n}(x) y_{m}(x) \rho(x)=\Delta\left[\left(y_{m} \nabla y_{n}-y_{n} \nabla y_{m}\right) \sigma(x) \rho(x)\right] .
$$

Hence,

$$
\left(\lambda_{m}-\lambda_{n}\right) \sum_{x=a}^{b-1} y_{n}(x) y_{m}(x) \rho(x)=\left[\left(y_{m} \nabla y_{n}-y_{n} \nabla y_{m}\right) \sigma(x) \rho(x)\right]_{x=a}^{x=b},
$$

where $y_{m} \nabla y_{n}-y_{n} \nabla y_{m}$ is a polynomial. If we impose the boundary conditions

$$
\left[x^{i} \sigma(x) \rho(x)\right]_{x=a}^{x=b}=0, \quad i=0,1, \ldots,
$$

then we obtain the orthogonality relation

$$
\sum_{x=a}^{b-1} y_{n}(x) y_{m}(x) \rho(x)=0, \quad n \neq m
$$

From (67) we can derive the Rodrigues formula

$$
\begin{equation*}
y_{n}(x)=\frac{C_{n}}{\rho(x)} \nabla^{n}\left[\rho_{n}(x)\right], \tag{70}
\end{equation*}
$$

where $C_{n}$ is a normalizing constant. Writing

$$
y_{n}(x)=\kappa_{n} x^{n}+\cdots,
$$

we find that

$$
\begin{equation*}
\kappa_{n}=C_{n} \prod_{k=0}^{n-1}\left(\tau^{\prime}+\frac{n+k-1}{2} \sigma^{\prime \prime}\right) . \tag{71}
\end{equation*}
$$

Using (70), we also get the backward difference

$$
\begin{equation*}
\sigma(x) \nabla y_{n}=\frac{\lambda_{n}}{n \tau_{n}^{\prime}}\left(\tau_{n} y_{n}-\frac{C_{n}}{C_{n+1}} y_{n+1}\right) \tag{72}
\end{equation*}
$$

Finally, using the formula

$$
\nabla^{n}[f(x)]=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(x-k)
$$

we can rewrite (70) as

$$
y_{n}(x)=C_{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\rho_{n}(x-k)}{\rho(x)}
$$

or

$$
\begin{equation*}
y_{n}(x)=(-1)^{n} C_{n} \sum_{k=0}^{n} \frac{(-n)_{k}}{k!} \frac{\rho_{n}(x-n+k)}{\rho(x)} . \tag{73}
\end{equation*}
$$

But from (68), it follows that

$$
\frac{\rho_{n}(x-n+k+1)}{\rho_{n}(x-n+k)}=\frac{\sigma(x-n+k)+\tau_{n}(x-n+k)}{\sigma(x-n+k+1)}
$$

is a rational function of $k$, and therefore $y_{n}(x)$ admits a representation as a hypergeometric function.

### 5.2 A.1. Meixner polynomials

From (33) we see that the monic Meixner polynomials satisfy the three-term recurrence relation

$$
\begin{equation*}
x M_{n}=M_{n+1}+\frac{n+(n+a) z}{1-z} M_{n}+\frac{n(n+a-1) z}{(1-z)^{2}} M_{n-1} . \tag{74}
\end{equation*}
$$

From (31) and (74) we obtain the forward difference

$$
\begin{equation*}
z(x+a) M_{n}(x+1)=(z-1) M_{n+1}(x)+(x-n) M_{n}(x), \tag{75}
\end{equation*}
$$

and from (32) and (74) we get the backward difference

$$
\begin{equation*}
x M_{n}(x-1)=(1-z) M_{n+1}(x)+z(x+a+n) M_{n}(x) . \tag{76}
\end{equation*}
$$

Combining (75) and (76), we have the difference equation

$$
z(x+a) M_{n}(x+1)+[n-x-z(x+a+n)] M_{n}(x)+x M_{n}(x-1)=0,
$$

which can be written in the hypergeometric form

$$
\begin{equation*}
x \Delta \nabla M_{n}+(z x-x+a z) \Delta M_{n}+n(1-z) M_{n}=0 . \tag{77}
\end{equation*}
$$

Comparing (77) with (62), we see that

$$
\begin{equation*}
\sigma(x)=x, \quad \tau(x)=(z-1) x+a z, \quad \lambda_{n}=n(1-z) . \tag{78}
\end{equation*}
$$

Note that from (64) and (78) we have

$$
\begin{equation*}
\tau_{n}(x)=(z-1)(x+n)+a z+n \tag{79}
\end{equation*}
$$

and that

$$
\lambda_{n}=n(1-z)=-n(z-1)=-n \tau^{\prime}-\frac{n(n-1)}{2} \sigma^{\prime \prime},
$$

in agreement with (65).
Introducing the weight function

$$
\rho(x)=(a)_{x} \frac{z^{x}}{x!},
$$

we can write (77) in self adjunct form. Note that $\rho(x)$ satisfies the Pearson equation

$$
\Delta(x \rho)=(z x-x+a z) \rho
$$

and that

$$
\begin{equation*}
\mu_{0}=\sum_{x=0}^{\infty} \rho(x)=\sum_{x=0}^{\infty}(a)_{x} \frac{z^{x}}{x!}=(1-z)^{-a} \tag{80}
\end{equation*}
$$

as long as $|z|<1$. In order to have

$$
\rho(x)>0, \quad x=0,1, \ldots,
$$

we need $a>0$ and $0<z<1$.
Using (69), we get

$$
\begin{equation*}
\rho_{n}(x)=\rho(x+n) \prod_{k=1}^{n}(x+k)=\rho(x+n)(x+1)_{n} . \tag{81}
\end{equation*}
$$

Since we are considering monic polynomials, we set $\kappa_{n}=1$ in (71) and obtain

$$
\begin{equation*}
C_{n}=\prod_{k=0}^{n-1} \frac{1}{\tau^{\prime}}=\prod_{k=0}^{n-1} \frac{1}{z-1}=(z-1)^{-n} \tag{82}
\end{equation*}
$$

Using (81) and (82) in (70), we have the Rodrigues formula

$$
M_{n}(x)=\frac{(z-1)^{-n}}{\rho(x)} \nabla^{n}\left[\frac{(a)_{x+n}(x+1)_{n}}{(1)_{x+n}} z^{x+n}\right],
$$

which we can rewrite as

$$
M_{n}(x)=\frac{(z-1)^{-n}}{\rho(x)} \nabla^{n}\left[\frac{(a)_{n}(a+n)_{x}}{(1)_{x}} z^{x+n}\right]
$$

using the identity

$$
(x)_{n+m}=(x)_{n}(x+n)_{m} .
$$

Note that using (78), (79) and (82) in (72), we obtain

$$
x \nabla M_{n}=(z-1) M_{n+1}-(-x+a z+n z+x z) M_{n},
$$

in agreement with (76).
Using (5) and (33), we get

$$
h_{n}=h_{0} \prod_{k=1}^{n} \gamma_{k}=n!(a)_{n}(1-z)^{-2 n-a} z^{n}
$$

since from (80)

$$
h_{0}=\mu_{0}=(1-z)^{-a}
$$

Using (73), we have

$$
\begin{aligned}
M_{n}(x) & =(1-z)^{-n} \sum_{k=0}^{n} \frac{(-n)_{k}}{k!} \frac{\rho(x+k)}{\rho(x)}(x-n+k+1)_{n} \\
& =(x+1-n)_{n}(1-z)^{-n} \sum_{k=0}^{n} \frac{(-n)_{k}}{k!} \frac{(x+a)_{k}}{(x+1-n)_{k}} z^{k} .
\end{aligned}
$$

Thus, we obtain the hypergeometric representation

$$
M_{n}(x)=(x+1-n)_{n}(1-z)^{-n}{ }_{2} F_{1}\left(\begin{array}{c}
-n, x+a  \tag{83}\\
x+1-n
\end{array} ; z\right) .
$$

Using the linear transformation [35, 15.8.7]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
-n, b \\
c
\end{array} ; z\right)=\frac{(c-b)_{n}}{(c)_{n}} z^{n}{ }_{2} F_{1}\left(\begin{array}{c}
-n, 1-c-n \\
1+b-c-n
\end{array} ; 1-\frac{1}{z}\right),
$$

we can rewrite (83) as

$$
M_{n}(x)=(a)_{n}\left(1-\frac{1}{z}\right)^{-n}{ }_{2} F_{1}\left(\begin{array}{c}
-n,-x  \tag{84}\\
a
\end{array} 1-\frac{1}{z}\right) .
$$

Using the expansion [35, 16.10.2]

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}}{n!}{ }_{q+1} F_{q}\left(\begin{array}{c}
-n, a_{2}, \ldots, a_{q+1} \\
b_{1}, \ldots, b_{q}
\end{array} \zeta\right) \omega^{n}  \tag{85}\\
& =(1-\omega)^{-a_{1}}{ }_{q+1} F_{q}\left(\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{q+1} \\
b_{1}, \ldots, b_{q}
\end{array} ; \frac{\omega \zeta}{\omega-1}\right)
\end{align*}
$$

valid for

$$
|1-\zeta|<1, \quad \operatorname{Re}\left(\frac{\omega}{\omega-1}\right)<\frac{1}{2}
$$

and (84) we obtain the generating function

$$
\sum_{n=0}^{\infty} \frac{(\xi)_{n}}{(a)_{n}} M_{n}(x) \frac{t^{n}}{n!}=\left(1-\frac{z t}{z-1}\right)^{-\xi}{ }_{2} F_{1}\left(\begin{array}{c}
\xi,-x  \tag{86}\\
a
\end{array} ; \frac{(z-1) t}{1+(t-1) z}\right)
$$

where we chose

$$
\begin{aligned}
& q=1, \quad a_{1}=\xi, \quad a_{2}=-x, \quad b_{1}=a \\
& \zeta=1-\frac{1}{z}, \quad \omega=\frac{z t}{z-1} .
\end{aligned}
$$

If we set $\xi=a$ in (86), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} M_{n}(x) \frac{t^{n}}{n!} & =\left(1-\frac{z t}{z-1}\right)^{-a}{ }_{1} F_{0}\left(\begin{array}{c}
-x \\
-
\end{array} \frac{(z-1) t}{1+(t-1) z}\right) \\
& =\left(1-\frac{z t}{z-1}\right)^{-a}\left[1-\frac{(z-1) t}{1+(t-1) z}\right]^{x} \\
& =\left(1+\frac{t}{1-z}\right)^{x}\left(1-\frac{z t}{z-1}\right)^{-x-a}
\end{aligned}
$$

Finally, if we set $\xi=\theta \xi, t=\frac{t}{\xi \theta}$ in (86), and let $\theta \rightarrow \infty$, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{M_{n}(x)}{(a)_{n}} \frac{t^{n}}{n!} & =\lim _{\theta \rightarrow \infty}\left(1-\frac{z}{z-1} \frac{t}{\xi \theta}\right)^{-\theta \xi}{ }_{2} F_{1}\left(\begin{array}{c}
\theta \xi,-x \\
a
\end{array} ; \frac{(z-1) t}{t z+\xi \theta(1-z)}\right) \\
& =\exp \left(\frac{z t}{z-1}\right){ }_{1} F_{1}\left(\begin{array}{c}
-x \\
a
\end{array} ;-t\right)
\end{aligned}
$$

where we have used the identity

$$
\lim _{\theta \rightarrow \infty} \frac{(\xi \theta)_{k}}{\theta^{k}}=\xi^{k}
$$

and Tannery's theorem [42].

### 5.3 A.2. Hahn polynomials

In this section we consider the monic Hahn polynomials with the special choice of parameters

$$
a_{1}=\alpha+1, \quad a_{2}=-N, \quad b=-N-1-\beta, \quad N \in \mathbb{N},
$$

denoted $Q_{n}(x)$. From (60) and (61) we see that they satisfy the three-term recurrence relation

$$
\begin{equation*}
x Q_{n}=Q_{n+1}+\beta_{n} Q_{n}+\gamma_{n} Q_{n-1}, \tag{87}
\end{equation*}
$$

with

$$
\beta_{n}=\frac{(2 N-\alpha+\beta) n^{2}+(\alpha+\beta+1)(2 N-\alpha+\beta) n+(\alpha+1)(\alpha+\beta) N}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)},
$$

and

$$
\begin{equation*}
\gamma_{n}=\frac{n(n+\alpha)(n+\beta)(n+\alpha+\beta)(N-n+1)(N+n+\alpha+\beta+1)}{(2 n+\alpha+\beta)^{2}(2 n+\alpha+\beta-1)(2 n+\alpha+\beta+1)} \tag{88}
\end{equation*}
$$

From (15) and (87), we obtain the forward difference

$$
\begin{gather*}
\quad(x+\alpha+1)(N-x) \Delta Q_{n}=-(2 n+\alpha+\beta+1) Q_{n+1}  \tag{89}\\
+(n+\alpha+\beta+1)\left[x-\frac{(n+\alpha+1) N+n(n+\beta+1)}{2 n+\alpha+\beta+2}\right] Q_{n},
\end{gather*}
$$

and from (16) and (87), we get the backward difference

$$
\begin{align*}
& x(N+\beta+1-x) \nabla Q_{n}=-(2 n+\alpha+\beta+1) Q_{n+1}  \tag{90}\\
& +(n+\alpha+\beta+1)\left[x-\frac{(n+\alpha+1)(N-n)}{2 n+\alpha+\beta+2}\right] Q_{n} .
\end{align*}
$$

Combining (89) and (90), we have the hypergeometric difference equation

$$
\begin{gather*}
x(N+\beta+1-x) \Delta \nabla Q_{n}+[(\alpha+1) N-(\alpha+\beta+2) x] \Delta Q_{n}  \tag{91}\\
+n(n+\alpha+\beta+1) Q_{n}=0 .
\end{gather*}
$$

Comparing (91) with (62), we see that

$$
\begin{align*}
\sigma(x) & =x(N+\beta+1-x), \quad \tau(x)=(\alpha+1) N-(\alpha+\beta+2) x,  \tag{92}\\
\lambda_{n} & =n(n+\alpha+\beta+1) .
\end{align*}
$$

Note that from (64) and (92), we have

$$
\begin{equation*}
\tau_{n}(x)=(n+\alpha+1)(N-n)-(2 n+\alpha+\beta+2) x . \tag{93}
\end{equation*}
$$

Introducing the weight function

$$
\begin{equation*}
\rho(x)=\frac{(\alpha+1)_{x}(-N)_{x}}{x!(-N-\beta)_{x}} \tag{94}
\end{equation*}
$$

we can write (91) in self adjunct form. Note that $\rho(x)$ satisfies the Pearson equation

$$
\Delta[x(N+\beta+1-x) \rho]=[(\alpha+1) N-(\alpha+\beta+2) x] \rho,
$$

and that

$$
\begin{equation*}
\mu_{0}=\sum_{x=0}^{\infty} \rho(x)=\sum_{x=0}^{\infty} \frac{(\alpha+1)_{x}(-N)_{x}}{x!(-N-\beta)_{x}}=\frac{(\alpha+\beta+2)_{N}}{(\beta+1)_{N}} \tag{95}
\end{equation*}
$$

as long as $\beta \notin[-N,-1]$. In order to have

$$
\rho(x)>0, \quad x=0,1, \ldots, N
$$

we need $\alpha, \beta<-N$ or $\alpha, \beta>-1$.
Using (94), we get

$$
\begin{align*}
\rho_{n}(x) & =\rho(x+n) \prod_{k=1}^{n}(x+k)(N+\beta+1-x-k)  \tag{96}\\
& =(-1)^{n} \rho(x+n)(x+1)_{n}(x-N-\beta)_{n} .
\end{align*}
$$

Since we are considering monic polynomials, we set $\kappa_{n}=1$ in (71) and obtain

$$
\begin{equation*}
C_{n}=\prod_{k=0}^{n-1} \frac{-1}{k+n+\alpha+\beta+1}=\frac{(-1)^{n}}{(n+\alpha+\beta+1)_{n}} . \tag{97}
\end{equation*}
$$

Using (96) and (97) in (70), we have the Rodrigues formula

$$
Q_{n}(x)=\frac{(-1)^{n}}{(n+\alpha+\beta+1)_{n}} \frac{1}{\rho(x)} \nabla^{n}\left[(-1)^{n} \rho(x+n)(x+1)_{n}(x-N-\beta)_{n}\right],
$$

which we can rewrite as

$$
Q_{n}(x)=\frac{1}{(n+\alpha+\beta+1)_{n} \rho(x)} \nabla^{n}\left[\frac{(\alpha+1)_{x+n}(-N)_{x+n}}{(1)_{x}(-N-\beta)_{x}}\right]
$$

Using (5) and (88), we get

$$
h_{n}=h_{0} \prod_{k=1}^{n} \gamma_{k}=(-1)^{n} n!\frac{(-N)_{n}(\alpha+1)_{n}(\alpha+\beta+2+n)_{N}}{(\alpha+\beta+2)_{n}(\alpha+\beta+1+n)_{n}},
$$

since from (95)

$$
h_{0}=\mu_{0}=\frac{(\alpha+\beta+2)_{N}}{(\beta+1)_{N}} .
$$

Using (73), we have

$$
\begin{aligned}
Q_{n}(x) & =\sum_{k=0}^{n} \frac{(-1)^{n}(-n)_{k}}{k!} \frac{\rho(x+k)}{\rho(x)} \frac{(x-n+k+1)_{n}(x-n+k-N-\beta)_{n}}{(n+\alpha+\beta+1)_{n}} \\
& =\frac{(-1)^{n}(x+1-n)_{n}(x-n-N-\beta)_{n}}{(n+\alpha+\beta+1)_{n}} \\
& \times \sum_{k=0}^{n} \frac{(-n)_{k}}{k!} \frac{(x-N)_{k}(x+\alpha+1)_{k}}{(x-n-N-\beta)_{k}(x-n+1)_{k}} .
\end{aligned}
$$

Thus, we obtain the hypergeometric representation

$$
\begin{align*}
Q_{n}(x) & =\frac{(-1)^{n}(x-N-\beta-n)_{n}(x+1-n)_{n}}{(n+\alpha+\beta+1)_{n}}  \tag{98}\\
& \times{ }_{3} F_{2}\left(\begin{array}{c}
-n, x-N, x+\alpha+1 \\
x-N-\beta-n, x+1-n
\end{array} ; 1\right) .
\end{align*}
$$

The linear transformation

$$
\begin{align*}
{ }_{3} F_{2}\left(\begin{array}{c}
-n, a, b \\
c, d
\end{array} ; 1\right) & =(-1)^{n} \frac{(d-a)_{n}(d-b)_{n}}{(c)_{n}(d)_{n}}  \tag{99}\\
& \times{ }_{3} F_{2}\left(\begin{array}{c}
-n, 1-d-n, 1+a+b-c-d-n \\
1+b-d-n, 1+a-d-n
\end{array} ; 1\right)
\end{align*}
$$

can be proved symbolically using HolonomicFunctions (or in other ways by hand). Using (99), we can rewrite (98) as

$$
Q_{n}(x)=\frac{(\alpha+1)_{n}(-N)_{n}}{(n+\alpha+\beta+1)_{n}}{ }_{3} F_{2}\left[\begin{array}{c}
-n,-x, n+\alpha+\beta+1  \tag{100}\\
\alpha+1,-N
\end{array} ; 1\right] .
$$

Finally, the polynomials $Q_{n}(x)$ have the generating functions [35, 18.23.1]

$$
\sum_{n=0}^{N} \frac{(n+\alpha+\beta+1)_{n}}{(\alpha+1)_{n}(\beta+1)_{n}} Q_{n}(x) \frac{t^{n}}{n!}={ }_{1} F_{1}\left[\begin{array}{c}
-x \\
\alpha+1
\end{array} ;-t\right]{ }_{1} F_{1}\left[\begin{array}{c}
x-N \\
\beta+1
\end{array} ; t\right],
$$

and [35, 18.23.2]

$$
\begin{aligned}
& \sum_{n=0}^{N}(n+\alpha+\beta+1)_{n} Q_{n}(x) \frac{t^{n}}{n!} \\
& ={ }_{2} F_{0}\left[\begin{array}{c}
-x,-x+\beta+N+1 \\
-
\end{array} ;-t\right]{ }_{2} F_{0}\left[\begin{array}{c}
x-N, x+\alpha+1 \\
-
\end{array}\right]
\end{aligned}
$$

valid for $x=0,1, \ldots, N$.

## References

[1] M. J. Atia, F. Marcellán, and I. A. Rocha. On semiclassical orthogonal polynomials: a quasi-definite functional of class 1. Facta Univ. Ser. Math. Inform. (17), 13-34 (2002).
[2] E. Azatassou, M. N. Hounkonnou, and A. Ronveaux. LaguerreFreud equations for semi-classical operators. In "Contemporary problems in mathematical physics (Cotonou, 1999)", pp. 336-346. World Sci. Publ., River Edge, NJ (2000).
[3] S. Belmehdi and A. Ronveaux. Laguerre-Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Approx. Theory 76(3), 351-368 (1994).
[4] T. S. Chihara. "An introduction to orthogonal polynomials". Gordon and Breach Science Publishers, New York-London-Paris (1978).
[5] F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Discrete Math. 217(1-3), 115-134 (2000).
[6] D. Dominici. Polynomial sequences associated with the moments of hypergeometric weights. SIGMA Symmetry Integrability Geom. Methods Appl. 12, Paper No. 044, 18 (2016).
[7] D. Dominici and F. Marcellán. Discrete semiclassical orthogonal polynomials of class one. Pacific J. Math. 268(2), 389-411 (2014).
[8] S. Elaydi. "An introduction to difference equations". Undergraduate Texts in Mathematics. Springer, New York, third ed. (2005).
[9] G. Filipuk and M. N. Rebocho. Discrete Painlevé equations for recurrence coefficients of Laguerre-Hahn orthogonal polynomials of class one. Integral Transforms Spec. Funct. 27(7), 548-565 (2016).
[10] M. Foupouagnigni, M. N. Hounkonnou, and A. Ronveaux. Laguerre-Freud equations for the recurrence coefficients of $D_{\omega}$ semiclassical orthogonal polynomials of class one. In "Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997)", vol. 99, pp. 143-154 (1998).
[11] G. Freud. On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76(1), 1-6 (1976).
[12] W. Gautschi. Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24-82 (1967).
[13] W. Gautschi. "Orthogonal polynomials: computation and approximation". Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004).
[14] A. Gil, J. Segura, and N. M. Temme. "Numerical methods for special functions". Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2007).
[15] W. Hahn. über Orthogonalpolynome, die $q$-Differenzengleichungen genügen. Math. Nachr. 2, 4-34 (1949).
[16] C. Hounga, M. N. Hounkonnou, and A. Ronveaux. LaguerreFreud equations for the recurrence coefficients of some discrete semiclassical orthogonal polynomials of class two. In "Contemporary problems in mathematical physics", pp. 412-419. World Sci. Publ., Hackensack, NJ (2006).
[17] M. N. Hounkonnou, C. Hounga, and A. Ronveaux. Discrete semi-classical orthogonal polynomials: generalized Charlier. J. Comput. Appl. Math. 114(2), 361-366 (2000).
[18] M. E. H. Ismail, S. J. Johnston, and Z. S. Mansour. Structure relations for $q$-polynomials and some applications. Appl. Anal. 90(3-4), 747-767 (2011).
[19] M. E. H. Ismail and P. Simeonov. Nonlinear equations for the recurrence coefficients of discrete orthogonal polynomials. J. Math. Anal. Appl. 376(1), 259-274 (2011).
[20] M. Kauers and P. Paule. "The concrete tetrahedron". Texts and Monographs in Symbolic Computation. SpringerWienNewYork, Vienna (2011).
[21] R. Koekoek and R. F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue. Technical Report 98-17, Delft University of Technology (1998). http://aw.twi.tudelft.nl/ koekoek/askey/.
[22] C. Koutschan. "Advanced Applications of the Holonomic Systems Approach". ProQuest LLC, Ann Arbor, MI (2009). Thesis (Ph.D.)Research Institute for Symbolic Computation, Johannes Kepler University Linz.
[23] E. Laguerre. Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentialle linéaire du premier ordre dont
les coefficients sont rationnels. J. Math. Pures Appl. (4) 1, 135-165 (1885).
[24] A. P. Magnus. A proof of Freud's conjecture about the orthogonal polynomials related to $|x|^{\rho} \exp \left(-x^{2 m}\right)$, for integer $m$. In "Orthogonal polynomials and applications (Bar-le-Duc, 1984)", vol. 1171 of "Lecture Notes in Math.", pp. 362-372. Springer, Berlin (1985).
[25] A. P. Magnus. On Freud's equations for exponential weights. J. Approx. Theory 46(1), 65-99 (1986).
[26] A. P. Magnus. Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. In "Proceedings of the Fourth International Symposium on Orthogonal Polynomials and their Applications (Evian-Les-Bains, 1992)", vol. 57, pp. 215-237 (1995).
[27] A. P. Magnus. Freud's equations for orthogonal polynomials as discrete Painlevé equations. In "Symmetries and integrability of difference equations (Canterbury, 1996)", vol. 255 of "London Math. Soc. Lecture Note Ser.", pp. 228-243. Cambridge Univ. Press, Cambridge (1999).
[28] P. Maroni. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In "Orthogonal polynomials and their applications (Erice, 1990)", vol. 9 of "IMACS Ann. Comput. Appl. Math.", pp. 95-130. Baltzer, Basel (1991).
[29] P. Maroni. Semi-classical character and finite-type relations between polynomial sequences. Appl. Numer. Math. 31(3), 295-330 (1999).
[30] P. Maroni and M. Mejri. The symmetric $D_{\omega}$-semi-classical orthogonal polynomials of class one. Numer. Algorithms 49(1-4), 251-282 (2008).
[31] P. Maroni and M. Mejri. Some semiclassical orthogonal polynomials of class one. Eurasian Math. J. 2(2), 108-128 (2011).
[32] J. Meixner. Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion. J. London Math. Soc. S1-9(1), 6 (1934).
[33] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov. Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics. Springer-Verlag, Berlin (1991).
[34] F. W. J. Olver. Numerical solution of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B, 111-129 (1967).
[35] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. "NIST handbook of mathematical functions". U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC (2010).
[36] K. Pearson. Contributions to the Mathematical Theory of Evolution. II. skew Variation in Homogeneous Material. Philos. Trans. Roy. Soc. London Ser. A 186, 343-414 (1895).
[37] M. Petkov sek, H. S. Wilf, and D. Zeilberger. " $A=B$ ". A K Peters, Ltd., Wellesley, MA (1996).
[38] E. D. Rainville. "Special functions". The Macmillan Co., New York (1960).
[39] A. Ronveaux. Discrete semiclassical orthogonal polynomials: generalized Meixner. J. Approx. Theory 46(4), 403-407 (1986).
[40] C. Smet and W. Van Assche. Orthogonal polynomials on a bi-lattice. Constr. Approx. 36(2), 215-242 (2012).
[41] P. E. Spicer and F. W. Nijhoff. Semi-classical Laguerre polynomials and a third-order discrete integrable equation. J. Phys. A 42(45), 454019, 9 (2009).
[42] J. Tannery. Introduction à la Théorie des Fonctions d'une Variable. A. Hermann, Paris, first edition (1886).
[43] W. Van Assche. Discrete Painlevé equations for recurrence coefficients of orthogonal polynomials. In "Difference equations, special functions and orthogonal polynomials", pp. 687-725. World Sci. Publ., Hackensack, NJ (2007).
[44] W. Van Assche and M. Foupouagnigni. Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials. J. Nonlinear Math. Phys. 10(suppl. 2), 231-237 (2003).
[45] M. Weber and A. Erdélyi. On the finite difference analogue of Rodrigues' formula. Amer. Math. Monthly 59, 163-168 (1952).
[46] J. Wimp. "Computation with recurrence relations". Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA (1984).
[47] D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321-368 (1990).

# Technical Reports of the Doctoral Program <br> "Computational Mathematics" 

2018
2018-01 D. Dominici: Laguerre-Freud equations for Generalized Hahn polynomials of type I Jan 2018. Eds.: P. Paule, M. Kauers

## 2017

2017-01 E. Buckwar, A. Thalhammer: Importance Sampling Techniques for Stochastic Partial Differential Equations January 2017. Eds.: U. Langer, R. Ramlau
2017-02 C. Hofer, I. Toulopoulos: Discontinuous Galerkin Isogeometric Analysis for parametrizations with overlapping regions June 2017. Eds.: U. Langer, V. Pillwein
2017-03 C. Hofer, S. Takacs: Inexact Dual-Primal Isogeometric Tearing and Interconnecting Methods June 2017. Eds.: B. Jüttler, V. Pillwein
2017-04 M. Neumüller, A. Thalhammer: Combining Space-Time Multigrid Techniques with Multilevel Monte Carlo Methods for SDEs June 2017. Eds.: U. Langer, E. Buckwar
2017-05 C. Hofer, U. Langer, M. Neumüller: Time-Multipatch Discontinuous Galerkin Space-Time Isogeometric Analysis of Parabolic Evolution Problems August 2017. Eds.: V. Pillwein, B. Jüttler

2017-06 M. Neumüller, A. Thalhammer: A Fully Parallelizable Space-Time Multilevel Monte Carlo Method for Stochastic Differential Equations with Additive Noise September 2017. Eds.: U. Langer, E. Buckwar

2017-07 A. Schafelner: Space-time Finite Element Methods for Parabolic Initial-Boundary Problems with Variable Coefficients September 2017. Eds.: U. Langer, B. Jüttler
2017-08 R. Wagner, C. Hofer, R. Ramlau: Point Spread Function Reconstruction for Single-Conjugate Adaptive Optics December 2017. Eds.: U. Langer, V. Pillwein
2017-09 M. Hauer, B. Jüttler, J. Schicho: Projective and Affine Symmetries and Equivalences of Rational and Polynomial Surfaces December 2017. Eds.: U. Langer, P. Paule
2017-10 A. Jiménez-Pastor, V. Pillwein: A Computable Extension for Holonomic Functions: DDFinite Functions December 2017. Eds.: P. Paule, M. Kauers
2017-11 D. Dominici: Mehler-Heine Type Formulas for Charlier and Meixner Polynomials II. Higher Order Terms December 2017. Eds.: P. Paule, M. Kauers
2017-12 D. Dominici: Orthogonality of the Dickson Polynomials of the $(k+1)$-th Kind December 2017. Eds.: P. Paule, M. Kauers

The complete list since 2009 can be found at https://www.dk-compmath.jku.at/publications/

## Doctoral Program

## "Computational Mathematics"

## Director:

Prof. Dr. Peter Paule<br>Research Institute for Symbolic Computation

## Deputy Director:

Prof. Dr. Bert Jüttler<br>Institute of Applied Geometry

## Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

## E-Mail:

office@dk-compmath.jku.at

## Homepage:

http://www.dk-compmath.jku.at


[^0]:    *e-mail: dominicd@newpaltz.edu
    ${ }^{\dagger}$ Permanent address: Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr., New Paltz, NY 12561-2443, USA.

