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Abstract

We derive a system of difference equations satisfied by the three-
term recurrence coeffi cients of some families of discrete orthogonal
polynomials.

1 Introduction

Let {µn} be a sequence of complex numbers and L : C [x] → C be a linear
functional defined by

L [xn] = µn, n = 0, 1, . . . .

∗e-mail: dominicd@newpaltz.edu
†Permanent address: Department of Mathematics, State University of New York at
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Then, L is called the moment functional determined by the formal moment
sequence {µn}. The number µn is called the moment of order n. A se-
quence {Pn (x)} ⊂ C [x] , of monic polynomials with deg (Pn) = n is called
an orthogonal polynomial sequence with respect to L provided that [4]

L [PnPm] = hnδn,m, n,m = 0, 1, . . . ,

where h0 = µ0, hn 6= 0 and δn,m is Kronecker’s delta.
Since

L [xPnPk] = 0, k /∈ {n− 1, n, n+ 1} ,
the monic orthogonal polynomials Pn (x) satisfy the three-term recurrence
relation

xPn (x) = Pn+1 (x) + βnPn (x) + γnPn−1 (x) , (1)

where
βn =

1

hn
L
[
xP 2n

]
, γn =

1

hn−1
L [xPnPn−1] . (2)

If we define P−1 (x) = 0, P0 (x) = 1, we see that

P1 (x) = x− β0, (3)

and
P2 (x) = (x− β1) (x− β0)− γ1. (4)

Because
L [xPnPn−1] = L

[
P 2n
]
,

we have

γn =
hn
hn−1

, n = 1, 2, . . . , (5)

and we define
γ0 = 0. (6)

Note that from (2) we get

β0 =
1

h0
L [x] =

µ1
µ0
. (7)

If the coeffi cients βn, γn are known, the recurrence (1) can be used to
compute the polynomials Pn (x) . Stability problems and numerical aspects
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arising in the calculations have been studied by many authors [12], [14], [34],
[46].
If explicit representations of the polynomials Pn (x) are given, symbolic

computation techniques can be applied to obtain recurrence relations and,
in particular, to find expressions for the coeffi cients βn, γn (see [5], [20], [37],
[38], [47]).
If, alas, the only knowledge we have is the linear functional L, the compu-

tation of βn and γn is a real challenge. One possibility is to use the Modified
Chebyshev algorithm [13, 2.1.7]. Another is to obtain recurrences for βn, γn
of the form [2], [43]

γn+1 = F1 (n, γn, γn−1, . . . , βn, βn−1, . . .) ,

βn+1 = F2 (n, γn+1, γn, . . . , βn, βn−1, . . .) ,

for some functions F1, F2. This system of recurrences is known as the Laguerre-
Freud equations [11], [23]. The name was coined by Alphonse Magnus as part
of his work on Freud’s conjecture [24], [25], [26], [27]. In terms of perfor-
mance, the Modified Chebyshev algorithm requires O (n2) operations, while
the Laguerre-Freud equations require only O (n) operations for the compu-
tation of βn and γn [3].

There are several papers on the Laguerre-Freud equations for different
types of orthogonal polynomials including continuous [1], [31], [41], discrete
[16], [17], [39], [44], Dω polynomials [10], [30], Laguerre-Hahn [9], and q-
polynomials [18].
Most of the known examples belong to the set of semiclassical orthogonal

polynomials [28], where the linear functional satisfies an equation of the form

L [φU (π)] = L [ψπ] , π ∈ C [x] ,

called the Pearson equation [36], where U : C [x] → C [x] is a linear oper-
ator and φ (x) , ψ (x) are fixed polynomials. The class of the semiclassical
orthogonal polynomials is defined by

c = max {deg (φ)− 2, deg (φ− ψ)− 1} .

In this paper, we focus our attention on linear functionals defined by

L [f ] =
∞∑
x=0

f(x)ρ (x) , (8)
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where the weight function ρ (x) is of the form

ρ (x) =
(a1)x (a2)x · · · (ap)x

(b1 + 1)x (b2 + 1)x · · · (bq + 1)x

zx

x!
, (9)

and (a)x denotes the Pochhammer symbol (also called shifted or rising fac-
torial) defined by [35, 5.2.4]

(a)0 = 1

(a)x = a (a+ 1) · · · (a+ x− 1) , x ∈ N,

or by

(a)x =
Γ (a+ x)

Γ (a)
,

where Γ (z) is the Gamma function. Note that we have

ρ (x+ 1)

ρ (x)
=

ψ (x)

φ (x+ 1)
, (10)

with

ψ (x) = z (x+ a1) (x+ a2) · · · (x+ ap) , (11)

φ (x) = x (x+ b1) (x+ b2) · · · (x+ bq) .

Hence, the weight function ρ (x) satisfies an alternative form of the Pearson
equation

∆x (φρ) = (ψ − φ) ρ, (12)

where
∆xf(x) = f(x+ 1)− f(x) (13)

is the forward difference operator. Using (10) in (8), we get the Pearson
equation

L [ψ (x) π (x)] = L [φ (x) π (x− 1)] , π ∈ C [x] . (14)

The rest of the paper is organized as follows: in Section 2 we use (14)
and obtain two difference equations satisfied by the discrete semiclassical
orthogonal polynomials. As an example, we apply the method to obtain the
recurrence coeffi cients of the Meixner polynomials.
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In Section 3, we derive the Laguerre-Freud equations for the Generalized
Hahn polynomials of type I, introduced in [7] as part of the classification of
discrete semiclassical orthogonal polynomials of class one. Specializing one
of the parameters in the polynomials, we obtain the recurrence coeffi cients
of the Hahn polynomials.
We finish the paper with some remarks and future directions.

2 Laguerre-Feud equations

As Maroni remarks at the beginning of [29], “the history of finite-type rela-
tions is as old as the history of orthogonality since

r(x)Pn(x) =
n+t∑

k=n−t

ψn,kPk(x),

when Pn(x) is a sequence of orthogonal polynomials and r(x) is a polynomial
with deg (r) = t.”The three-term recurrence relation (1) is the most used
example, with r(x) = x.
We now derive difference equations for orthogonal polynomials whose

linear functional satisfies (14). We follow an approach similar to the one
used in [40] to find the Laguerre-Freud equations for the generalized Charlier
polynomials. Another method used in many articles is to use ladder operators
[19].

Proposition 1 Let {Pn(x)} be a family of orthogonal polynomials with re-
spect to a linear functional satisfying (14). Then, we have

ψ (x)Pn (x+ 1) =

p∑
k=−q−1

Ak (n)Pn+k (x) (15)

and

φ (x)Pn (x− 1) =

q+1∑
k=−p

Bk (n)Pn+k (x) , (16)

for some coeffi cients Ak (n) , Bk (n) .
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Proof. Since degψ (x)Pn (x+ 1) = n+ p, we can write

ψ (x)Pn (x+ 1) =

p∑
k=−n

Ak (n)Pn+k (x) .

Using orthogonality and (14), we have

hn+kAk (n) = L [ψ (x)Pn (x+ 1)Pn+k (x)]

= L [φ (x)Pn (x)Pn+k (x− 1)] = 0, k < −q − 1.

Similarly, writing

φ (x)Pn (x− 1) =

q+1∑
k=−n

Bk (n)Pn+k (x) ,

we get

hn+kBk (n) = L [φ (x)Pn (x− 1)Pn+k (x)]

= L [ψ (x)Pn (x)Pn+k (x+ 1)] = 0, k < −p.

The coeffi cients Ak (n) and Bk (n) are not independent of each other.

Corollary 2

Ak (n) =
hn
hn+k

B−k (n+ k) , −q − 1 ≤ k ≤ p. (17)

Proof. If −q − 1 ≤ k ≤ p, then

Ak (n) =
1

hn+k
L [φ (x)Pn (x)Pn+k (x− 1)]

=
1

hn+k
L

[
Pn (x)

q+1∑
j=−p

Bj (n+ k)Pn+k+j (x)

]

=
1

hn+k

q+1∑
j=−p

Bj (n+ k)L [Pn (x)Pn+k+j (x)]

=
hn
hn+k

B−k (n+ k) .

We can now state our main result.
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Theorem 3 For −q − 1 ≤ k ≤ p, we have

γn+k+1Ak+1 (n)− γnAk+1 (n− 1) + Ak−1 (n)− Ak−1 (n+ 1) (18)

= (βn − βn+k − 1)Ak (n) ,

with
Ap (n) = z, (19)

A−q−1 (n) = γnγn−1 · · · γn−q, (20)

and
Ap+1 (n) = 0 = A−q−2 (n) .

Proof. Using (1), we have

ψ (x) (x+ 1)Pn (x+ 1) = ψ (x)Pn+1 (x+ 1)

+βnψ (x)Pn (x+ 1) + γnψ (x)Pn−1 (x+ 1) ,

and from (15)

ψ (x) (x+ 1)Pn (x+ 1) =

p+1∑
k=−q

Ak−1 (n+ 1)Pn+k (x) (21)

+

p∑
k=−q−1

βnAk (n)Pn+k (x) +

p−1∑
k=−q−2

γnAk+1 (n− 1)Pn+k (x) .

On the other hand, if we multiply (15) by x, we get

ψ (x)xPn (x+ 1) =

p∑
k=−q−1

Ak (n)xPn+k (x) ,

and using (1) we obtain

ψ (x)xPn (x+ 1) =

p+1∑
k=−q

Ak−1 (n)Pn+k (x) (22)

+

p∑
k=−q−1

βn+kAk (n)Pn+k (x) +

p−1∑
k=−q−2

γn+k+1Ak+1 (n)Pn+k (x) .
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Using (15), (21) and (22) in the identity

ψ (x)Pn (x+ 1) = (x+ 1)ψ (x)Pn (x+ 1)− xψ (x)Pn (x+ 1) ,

we have

p∑
k=−q−1

Ak (n)Pn+k (x) =

p+1∑
k=−q

[Ak−1 (n+ 1)− Ak−1 (n)]Pn+k (x)

+

p∑
k=−q−1

(βn − βn+k)Ak (n)Pn+k (x)

+

p−1∑
k=−q−2

[γnAk+1 (n− 1)− γn+k+1Ak+1 (n)]Pn+k (x) .

Since the polynomials Pn (x) are linearly independent, we get:

k = p+ 1 : Ap (n+ 1)− Ap (n) = 0, (23)

k = −q − 2 : γnA−q−1 (n− 1)− γn−q−1A−q−1 (n) = 0, (24)

and for −q − 1 ≤ k ≤ p,

(1 + βn+k − βn)Ak (n) = Ak−1 (n+ 1)− Ak−1 (n)

+ γnAk+1 (n− 1)− γn+k+1Ak+1 (n) .

Comparing leading coeffi cients in (15) we obtain

Ap (n) = z,

in agreement with (23).
Rewriting (24) as

A−q−1 (n)

A−q−1 (n− 1)
=

γn
γn−q−1

,

we see that
A−q−1 (n)

A−q−1 (q + 1)
=
γnγn−1 · · · γn−q
γ1γ2 · · · γq+1

.

From (17) we have

A−q−1 (q + 1) =
hq+1
h0

Bq+1 (0) .
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Since φ (x)Pn (x− 1) is a monic polynomial, (16) gives

Bq+1 (n) = 1, (25)

and using (5) we get

hq+1
h0

Bq+1 (0) = γ1γ2 · · · γq+1,

proving (20).

2.1 Meixner polynomials

To illustrate the use of Theorem 3, we consider the family of Meixner polyno-
mials introduced by Josef Meixner in [32]. These polynomials are orthogonal
with respect to the weight function

ρ (x) = (a)x
zx

x!
,

and using (11) we have

ψ (x) = z (x+ a) , φ (x) = x,

and p = 1, q = 0.
From (19) and (20) we get

A1 (n) = z, A−1 (n) = γn, (26)

while (18) gives:

k = 1 : (1 + βn+1 − βn)A1 (n) = A0 (n+ 1)− A0 (n) ,

k = 0 : A0 (n) = A−1 (n+ 1)− A−1 (n) + γnA1 (n− 1)− γn+1A1 (n) ,

and

k = −1 : (1 + βn−1 − βn)A−1 (n) = γnA0 (n− 1)− γnA0 (n) .

Using (26) we obtain

z (1 + βn+1 − βn) = A0 (n+ 1)− A0 (n) , (27)
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A0 (n) = γn+1 − γn + z (γn − γn+1) = (1− z) (γn+1 − γn) , (28)

and
1 + βn−1 − βn = A0 (n− 1)− A0 (n) . (29)

Summing (27) from n = 0 and (29) from n = 1, we get

z (βn − β0 + n) = A0 (n)− A0 (0) ,

βn − β0 − n = A0 (n)− A0 (0) .

Using (28) and (6), gives

βn − β0 − n = z (βn − β0 + n) = (1− z) (γn+1 − γn − γ1) .

Therefore,

βn = β0 +
1 + z

1− zn,

and
γn+1 − γn − γ1 =

2nz

(1− z)2
. (30)

Summing (30) from n = 0, we conclude that

γn = nγ1 +
n (n− 1) z

(1− z)2
.

If we use (26) and (28) in (15), we get

z (x+ a)Pn (x+ 1) = γnPn−1 (x) (31)

+ (1− z) (γn+1 − γn)Pn (x) + zPn+1 (x) ,

and using (17),

B1 (n) =
hn
hn+1

A−1 (n+ 1) =
A−1 (n+ 1)

γn+1
= 1,

B0 (n) = A0 (n) = (1− z) (γn+1 − γn) ,

B−1 (n) =
hn
hn−1

A1 (n− 1) = γnz.

Hence, from (16) we obtain

xPn (x− 1) = zγnPn−1 (x) + (1− z) (γn+1 − γn)Pn (x) + Pn+1 (x) . (32)
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Setting n = 0 in (31) and (32) gives

z (x+ a) = (1− z) γ1 + z (x− β0) ,
x = (1− z) γ1 + x− β0,

from which we find

(1− z) γ1 = β0 = −a+
1− z
z

γ1,

and therefore
β0 =

az

1− z , γ1 =
az

(1− z)2
.

Thus, we recover the well known coeffi cients [35, 18.22.2]

βn =
n+ (n+ a) z

1− z , γn =
n (n+ a− 1) z

(1− z)2
. (33)

Using the hypergeometric representation [35, 18.20.7]

Pn (x) = (a)n

(
1− 1

z

)−n
2F1

[
−n, −x

a
; 1− 1

z

]
,

one can easily verify (or re-derive) (33) using (for instance) the Mathematica
package HolonomicFunctions [22].

3 Generalized Hahn polynomials of type I

The Generalized Hahn polynomials of type I were introduced in [7]. They
are orthogonal with respect to the weight function

ρ (x) =
(a1)x (a2)x
(b+ 1)x

zx

x!
, |z| < 1, b 6= −1,−2, . . . .

The first moments are given by

µ0 = 2F1

[
a1, a2
b+ 1

; z

]
, (34)

µ1 = z
a1a2
b+ 1

2F1

[
a1 + 1, a2 + 1

b+ 2
; z

]
.
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Since
ρ (x+ 1)

ρ (x)
=
z (x+ a1) (x+ a2)

(x+ 1) (x+ b+ 1)
,

we have
ψ (x) = z (x+ a1) (x+ a2) , φ (x) = x (x+ b) ,

and p = 2, q = 1.
We can now derive the Laguerre-Freud equations for the Generalized

Hahn polynomials of type I.

Theorem 4 The recurrence coeffi cients of the Generalized Hahn polynomials
of type I satisfy the Laguerre-Freud equations

(1− z)∇n (γn+1 + γn) = zvn∇n (βn + n)− un∇n (βn − n) , (35)

∆n∇n [(un − zvn) γn] = un∇n (βn − n) +∇n (γn+1 + γn) . (36)

with initial conditions β0 = µ1
µ0
and

γ1 =
(a1 + a2 − b) β0 + a1a2

1− z − (β0 + a1) (β0 + a2) , (37)

where

un = βn + βn−1 − n+ b+ 1,

vn = βn + βn−1 + n− 1 + a1 + a2,

and
∇xf(x) = f(x)− f(x− 1). (38)

Proof. From (19) and (20), we get

A2 (n) = z, A−2 (n) = γnγn−1, (39)

while (18) gives:

k = 2 : A1 (n+ 1)− A1 (n) = z (1 + βn+2 − βn) , (40)

k = 1 : A0 (n+ 1)− A0 (n) = A1 (n) (1 + βn+1 − βn) + z (γn+2 − γn) ,
k = 0 : A−1 (n+ 1)− A−1 (n) = A0 (n) + A1 (n) γn+1 − A1 (n− 1) γn,
k = −1 : A−2 (n+ 1)− A−2 (n)

= A−1 (n) (1 + βn−1 − βn) + γn [A0 (n)− A0 (n− 1)] ,
(41)
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and

k = −2 : A−2 (n) (1 + βn−2 − βn) = A−1 (n− 1) γn − A−1 (n) γn−1. (42)

Solving (40) we get

A1 (n) = A1 (0) + z (βn+1 + βn + n− β0 − β1) . (43)

Setting n = 0 in (15) we have

z (x+ a1) (x+ a2) = A0 (0) + A1 (0)P1 (x) + zP2 (x) ,

and using (3)-(4), we get

A0 (0) = z
[
a1a2 + γ1 + (a1 + a2) β0 + β20

]
, (44)

and
A1 (0) = z (a1 + a2 + β0 + β1) . (45)

Using (45) in (43), we obtain

A1 (n) = z (βn+1 + βn + n+ a1 + a2) . (46)

If we use (39) in (42), we get

1 + βn−2 − βn =
A−1 (n− 1)

γn−1
− A−1 (n)

γn
,

and summing from n = 2 we see that

n− 1 + β0 + β1 − βn−1 − βn =
A−1 (1)

γ1
− A−1 (n)

γn
. (47)

Setting n = 0 in (16), we have

x (x+ b) = (x− β1) (x− β0)− γ1 +B1 (0) (x− β0) +B0 (0)

and hence
B1 (0) = β0 + β1 + b, (48)

B0 (0) = β20 + bβ0 + γ1. (49)

Using (17) with k = −1 and (48), we obtain

A−1 (1) = γ1B1 (0) = γ1 (β0 + β1 + b) . (50)
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Combining (47) and (50), we conclude that

A−1 (n) = γn (βn + βn−1 − n+ b+ 1) . (51)

If we introduce the functions

un =
A−1 (n)

γn
= βn + βn−1 − n+ b+ 1,

vn =
A1 (n− 1)

z
= βn + βn−1 + n− 1 + a1 + a2,

and use (46),(51) in (41), we get

∇nA0 = zvn∇n (βn + n) + z∇n (γn+1 + γn) ,

A0 = ∆n [(un − zvn) γn] , (52)

∇nA0 = un∇n (βn − n) +∇n (γn+1 + γn) .

Using (17) with k = 0 and (49), we obtain

A0 (0) = B0 (0) = β20 + bβ0 + γ1. (53)

From (44) and (53) we have

(1− z) [γ1 + (β0 + a1) (β0 + a2)] = (a1 + a2 − b) β0 + a1a2. (54)

Finally, if we eliminate A0 from (52), we conclude that

zvn∇n (βn + n) + z∇n (γn+1 + γn) = un∇n (βn − n) +∇n (γn+1 + γn)

and

∆n [(un − zvn) γn]−∆n [(un−1 − zvn−1) γn−1]
= un∇n (βn − n) +∇n (γn+1 + γn)

or
∆n∇n [(un − zvn) γn] = un∇n (βn − n) +∇n (γn+1 + γn) .
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3.1 Hahn polynomials

We now consider the case z = 1. Under the assumptions

Re (b− a1 − a2) > 0, b− a1 − a2 6= 1, 2, . . . ,

the first two moments (34) are given by [35, 15.4(ii)]

µ0 =
Γ (b+ 1) Γ (b+ 1− a1 − a2)
Γ (b+ 1− a1) Γ (b+ 1− a2)

,

µ1 =
a1a2
b+ 1

Γ (b+ 2) Γ (b− a1 − a2)
Γ (b− a1) Γ (b− a2)

.

Hence,
β0 =

µ1
µ0

=
a1a2

b− a1 − a2
. (55)

Note that we get the same result if we set z = 1 in (54).
Taking limits in (37) as z → 1−, we obtain

γ1 =
a1a2 (b− a1) (b− a2)

(b− a1 − a2) (b− 1− a1 − a2)
− a1

b− a1
b− a1 − a2

a2
b− a2

b− a1 − a2
,

or

γ1 =
a1a2 (b− a1) (b− a2)

(b− a1 − a2)2 (b− a1 − a2 − 1)
, (56)

where we have used the formula [35, 15.5.1]

d

dz
2F1

[
a, b
c

; z

]
=
ab

c
2F1

[
a+ 1, b+ 1

c+ 1
; z

]
.

When z = 1, the Laguerre-Freud equations (35)-(36) decouple, and we
get

un∇n (βn − n) = vn∇n (βn + n) , (57)

∆n∇n [(b− a1 − a2 + 2− 2n) γn]−∇n (γn+1 + γn) = un∇n (βn − n) , (58)

since in this case
un − vn = b− a1 − a2 + 2− 2n.

Solving for βn in (57), we have

βn =
2n+ a1 + a2 − b− 4

2n+ a1 + a2 − b
βn−1 −

a1 + a2 + b

2n+ a1 + a2 − b
. (59)
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As it is well known, the general solution of the initial value problem

yn+1 = cnyn + gn, yn0 = y0, n ≥ n0,

is [8, 1.2.4]

yn = y0

n−1∏
j=n0

cj +

n−1∑
k=n0

(
gk

n−1∏
j=k+1

cj

)
.

Thus, the solution of (59) is given by

βn =
(a1 + a2 − b) (a1 + a2 − b− 2)

(2n+ a1 + a2 − b) (2n+ a1 + a2 − b− 2)
β0

− (a1 + a2 + b) (a1 + a2 − b+ n− 1)

(2n+ a1 + a2 − b) (2n+ a1 + a2 − b− 2)
n,

where we have used the identity

n1∏
k=n0

2n+K − 2

2n+K + 2
=

(2n0 +K) (2n0 +K − 2)

(2n1 +K) (2n1 +K + 2)
.

If we use the initial condition (55), we conclude that

βn =
(b+ 2− a1 − a2)a1a2 − n (a1 + a2 + b) (n+ a1 + a2 − b− 1)

(2n+ a1 + a2 − b) (2n+ a1 + a2 − b− 2)
.

Re-writing (58), we have

(b− a1 − a2 − 2n− 1) γn+1 − 2 (b− a1 − a2 − 2n+ 2) γn

+ (b− a1 − a2 − 2n+ 5) γn−1 = un∇n (βn − n) .

Summing from n = 1, we get

(b− a1 − a2 − 2n− 1) γn+1 + (a1 + a2 − b+ 2n− 3) γn

+ (a1 + a2 − b+ 1) γ1 = −
n−1∑
k=0

βk + β2n − β20

+b (βn − β0 − n)− nβn +
n (n− 1)

2
.
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The solution of this difference equation with initial condition (56) is

γn = −n (n+ a1 − 1)(n+ a2 − 1)(n+ a1 − b− 1)

(2n+ a1 + a2 − b− 1)(2n+ a1 + a2 − b− 3)

× (n+ a2 − b− 1)(n+ a1 + a2 − b− 2)

(2n+ a1 + a2 − b− 2)2
.

We summarize the results in the following proposition.

Proposition 5 The recurrence coeffi cients of the Hahn polynomials, orthog-
onal with respect to the weight function

ρ (x) =
(a1)x (a2)x
x! (b+ 1)x

,

with
Re (b− a1 − a2) > 0, b− a1 − a2 6= 1, 2, . . . ,

are given by

βn =
(b+ 2− a1 − a2)a1a2 − n (a1 + a2 + b) (n+ a1 + a2 − b− 1)

(2n+ a1 + a2 − b) (2n+ a1 + a2 − b− 2)
, (60)

and

γn = −n (n+ a1 − 1)(n+ a2 − 1)(n+ a1 − b− 1)

(2n+ a1 + a2 − b− 1)(2n+ a1 + a2 − b− 3)
(61)

× (n+ a2 − b− 1)(n+ a1 + a2 − b− 2)

(2n+ a1 + a2 − b− 2)2
.

This family of orthogonal polynomials was introduced by Hahn in [15].
They have the hypergeometric representation [45]

Pn (x) =
(a1)n (a2)n

(n+ a1 + a2 − b− 1)n
3F2

[
−n, −x, n+ a1 + a2 − b− 1

a1, a2
; 1

]
,

from which (60) and (61) can be obtained using HolonomicFunctions.
As we observed in [6], the finite family of polynomials that are usually

called “Hahn polynomials” in the literature [35, 18.19] correspond to the
special case

a1 = α + 1, a2 = −N, b = −N − 1− β.
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4 Conclusions

We have presented a method that allows the computation of the recurrence
coeffi cients of discrete orthogonal polynomials. In some cases, a closed-form
expression can be given. We plan to extend the results to include other
families of polynomials.
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5 Appendix

In this section we review the theory of orthogonal polynomial which are so-
lutions of the difference equation of hypergeometric type (see [33, Chapter
2]) and also list some of the main properties of the Meixner and Hahn poly-
nomials (see [21, 2.5,2.9] and [35, 18.19-18.23]).

5.1 A.0. Second order hypergeometric difference equa-
tion

Let’s consider the difference equation

σ (x) ∆∇y + τ (x) ∆y + νy = 0, (62)

where

∆f (x) = f (x+ 1)− f(x),

∇f (x) = f(x)− f(x− 1),

and σ (x) , τ (x) are polynomials with deg (σ) ≤ 2, deg (τ) ≤ 1, and ν is a
constant.
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The higher-order differences

dm (x) = ∆m [y (x)] ,

satisfy the equation

σ (x) ∆∇dm + τm (x) ∆dm + νmdm = 0, (63)

where
τm (x) = τ (x+m) + σ (x+m)− σ (x) , (64)

and

νm = ν +mτ ′ +
m (m− 1)

2
σ′′.

The solution of (62) is a polynomial yn (x) of degree n if and only if the
function dn (x) is a constant. From (63) we see that νn must be zero and
therefore

v = −nτ ′ − n (n− 1)

2
σ′′ = λn. (65)

If we multiply both sides of (62) by a function ρ (x) satisfying the Pearson
equation

∆ (σρ) = τρ,

then we can write (62) in the self adjunct form

∆ (σρ∇yn) + λnρyn = 0. (66)

Similarly, the equation (63) can be written as

∆ (σρm∇dm) + νmρmdm = 0, (67)

where ρm (x) satisfies the Pearson equation

∆ (σρm) = τmρm. (68)

Solving (68), we obtain

ρm (x) = ρ (x+m)

m∏
k=1

σ (x+ k) . (69)

Note that
ρm (x) = σ (x+ 1) ρm−1 (x+ 1) .
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Considering two solutions yn, ym of (66), we see that

(λm − λn) yn (x) ym (x) ρ (x) = ∆ [(ym∇yn − yn∇ym)σ (x) ρ (x)] .

Hence,

(λm − λn)

b−1∑
x=a

yn (x) ym (x) ρ (x) = [(ym∇yn − yn∇ym)σ (x) ρ (x)]x=bx=a ,

where ym∇yn−yn∇ym is a polynomial. If we impose the boundary conditions[
xiσ (x) ρ (x)

]x=b
x=a

= 0, i = 0, 1, . . . ,

then we obtain the orthogonality relation

b−1∑
x=a

yn (x) ym (x) ρ (x) = 0, n 6= m.

From (67) we can derive the Rodrigues formula

yn (x) =
Cn
ρ (x)

∇n [ρn (x)] , (70)

where Cn is a normalizing constant. Writing

yn (x) = κnx
n + · · · ,

we find that

κn = Cn

n−1∏
k=0

(
τ ′ +

n+ k − 1

2
σ′′
)
. (71)

Using (70), we also get the backward difference

σ (x)∇yn =
λn
nτ ′n

(
τnyn −

Cn
Cn+1

yn+1

)
. (72)

Finally, using the formula

∇n [f (x)] =
n∑
k=0

(−1)k
(
n

k

)
f (x− k)
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we can rewrite (70) as

yn (x) = Cn

n∑
k=0

(−1)k
(
n

k

)
ρn (x− k)

ρ (x)
,

or

yn (x) = (−1)nCn

n∑
k=0

(−n)k
k!

ρn (x− n+ k)

ρ (x)
. (73)

But from (68), it follows that

ρn (x− n+ k + 1)

ρn (x− n+ k)
=
σ (x− n+ k) + τn (x− n+ k)

σ (x− n+ k + 1)

is a rational function of k, and therefore yn (x) admits a representation as a
hypergeometric function.

5.2 A.1. Meixner polynomials

From (33) we see that the monic Meixner polynomials satisfy the three-term
recurrence relation

xMn = Mn+1 +
n+ (n+ a) z

1− z Mn +
n (n+ a− 1) z

(1− z)2
Mn−1. (74)

From (31) and (74) we obtain the forward difference

z (x+ a)Mn (x+ 1) = (z − 1)Mn+1 (x) + (x− n)Mn (x) , (75)

and from (32) and (74) we get the backward difference

xMn (x− 1) = (1− z)Mn+1 (x) + z (x+ a+ n)Mn (x) . (76)

Combining (75) and (76), we have the difference equation

z (x+ a)Mn (x+ 1) + [n− x− z (x+ a+ n)]Mn (x) + xMn (x− 1) = 0,

which can be written in the hypergeometric form

x∆∇Mn + (zx− x+ az) ∆Mn + n (1− z)Mn = 0. (77)
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Comparing (77) with (62), we see that

σ (x) = x, τ (x) = (z − 1)x+ az, λn = n (1− z) . (78)

Note that from (64) and (78) we have

τn (x) = (z − 1) (x+ n) + az + n, (79)

and that

λn = n (1− z) = −n (z − 1) = −nτ ′ − n (n− 1)

2
σ′′,

in agreement with (65).
Introducing the weight function

ρ (x) = (a)x
zx

x!
,

we can write (77) in self adjunct form. Note that ρ (x) satisfies the Pearson
equation

∆ (xρ) = (zx− x+ az) ρ

and that

µ0 =
∞∑
x=0

ρ (x) =
∞∑
x=0

(a)x
zx

x!
= (1− z)−a , (80)

as long as |z| < 1. In order to have

ρ (x) > 0, x = 0, 1, . . . ,

we need a > 0 and 0 < z < 1.
Using (69), we get

ρn (x) = ρ (x+ n)
n∏
k=1

(x+ k) = ρ (x+ n) (x+ 1)n . (81)

Since we are considering monic polynomials, we set κn = 1 in (71) and obtain

Cn =

n−1∏
k=0

1

τ ′
=

n−1∏
k=0

1

z − 1
= (z − 1)−n . (82)
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Using (81) and (82) in (70), we have the Rodrigues formula

Mn (x) =
(z − 1)−n

ρ (x)
∇n

[
(a)x+n (x+ 1)n

(1)x+n
zx+n

]
,

which we can rewrite as

Mn (x) =
(z − 1)−n

ρ (x)
∇n

[
(a)n (a+ n)x

(1)x
zx+n

]
,

using the identity
(x)n+m = (x)n (x+ n)m .

Note that using (78), (79) and (82) in (72), we obtain

x∇Mn = (z − 1)Mn+1 − (−x+ az + nz + xz)Mn,

in agreement with (76).
Using (5) and (33), we get

hn = h0

n∏
k=1

γk = n! (a)n (1− z)−2n−a zn,

since from (80)
h0 = µ0 = (1− z)−a .

Using (73), we have

Mn (x) = (1− z)−n
n∑
k=0

(−n)k
k!

ρ (x+ k)

ρ (x)
(x− n+ k + 1)n

= (x+ 1− n)n (1− z)−n
n∑
k=0

(−n)k
k!

(x+ a)k
(x+ 1− n)k

zk.

Thus, we obtain the hypergeometric representation

Mn (x) = (x+ 1− n)n (1− z)−n 2F1

(
−n, x+ a
x+ 1− n ; z

)
. (83)

Using the linear transformation [35, 15.8.7]

2F1

(
−n, b
c

; z

)
=

(c− b)n
(c)n

zn 2F1

(
−n, 1− c− n
1 + b− c− n ; 1− 1

z

)
,
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we can rewrite (83) as

Mn (x) = (a)n

(
1− 1

z

)−n
2F1

(
−n,−x

a
; 1− 1

z

)
. (84)

Using the expansion [35, 16.10.2]
∞∑
n=0

(a1)n
n!

q+1Fq

(
−n, a2, . . . , aq+1

b1, . . . , bq
; ζ

)
ωn (85)

= (1− ω)−a1 q+1Fq

(
a1, a2, . . . , aq+1
b1, . . . , bq

;
ωζ

ω − 1

)
,

valid for

|1− ζ| < 1, Re

(
ω

ω − 1

)
<

1

2
,

and (84) we obtain the generating function
∞∑
n=0

(ξ)n
(a)n

Mn (x)
tn

n!
=

(
1− zt

z − 1

)−ξ
2F1

(
ξ,−x
a

;
(z − 1) t

1 + (t− 1) z

)
, (86)

where we chose

q = 1, a1 = ξ, a2 = −x, b1 = a,

ζ = 1− 1

z
, ω =

zt

z − 1
.

If we set ξ = a in (86), we get
∞∑
n=0

Mn (x)
tn

n!
=

(
1− zt

z − 1

)−a
1F0

(
−x
− ;

(z − 1) t

1 + (t− 1) z

)
=

(
1− zt

z − 1

)−a [
1− (z − 1) t

1 + (t− 1) z

]x
=

(
1 +

t

1− z

)x(
1− zt

z − 1

)−x−a
.

Finally, if we set ξ = θξ, t = t
ξθ
in (86), and let θ →∞, we obtain

∞∑
n=0

Mn (x)

(a)n

tn

n!
= lim

θ→∞

(
1− z

z − 1

t

ξθ

)−θξ
2F1

(
θξ,−x
a

;
(z − 1) t

tz + ξθ (1− z)

)
= exp

(
zt

z − 1

)
1F1

(
−x
a

;−t
)
,
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where we have used the identity

lim
θ→∞

(ξθ)k
θk

= ξk,

and Tannery’s theorem [42].

5.3 A.2. Hahn polynomials

In this section we consider the monic Hahn polynomials with the special
choice of parameters

a1 = α + 1, a2 = −N, b = −N − 1− β, N ∈ N,

denoted Qn (x) . From (60) and (61) we see that they satisfy the three-term
recurrence relation

xQn = Qn+1 + βnQn + γnQn−1, (87)

with

βn =
(2N − α + β)n2 + (α + β + 1) (2N − α + β)n+ (α + 1) (α + β)N

(2n+ α + β) (2n+ α + β + 2)
,

and

γn =
n (n+ α) (n+ β) (n+ α + β) (N − n+ 1) (N + n+ α + β + 1)

(2n+ α + β)2 (2n+ α + β − 1) (2n+ α + β + 1)
. (88)

From (15) and (87), we obtain the forward difference

(x+ α + 1) (N − x) ∆Qn = − (2n+ α + β + 1)Qn+1 (89)

+ (n+ α + β + 1)

[
x− (n+ α + 1)N + n (n+ β + 1)

2n+ α + β + 2

]
Qn,

and from (16) and (87), we get the backward difference

x (N + β + 1− x)∇Qn = − (2n+ α + β + 1)Qn+1 (90)

+ (n+ α + β + 1)

[
x− (n+ α + 1) (N − n)

2n+ α + β + 2

]
Qn.

25



Combining (89) and (90), we have the hypergeometric difference equation

x (N + β + 1− x) ∆∇Qn + [(α + 1)N − (α + β + 2)x] ∆Qn (91)

+n (n+ α + β + 1)Qn = 0.

Comparing (91) with (62), we see that

σ (x) = x (N + β + 1− x) , τ (x) = (α + 1)N − (α + β + 2)x, (92)

λn = n (n+ α + β + 1) .

Note that from (64) and (92), we have

τn (x) = (n+ α + 1) (N − n)− (2n+ α + β + 2)x. (93)

Introducing the weight function

ρ (x) =
(α + 1)x (−N)x
x! (−N − β)x

, (94)

we can write (91) in self adjunct form. Note that ρ (x) satisfies the Pearson
equation

∆ [x (N + β + 1− x) ρ] = [(α + 1)N − (α + β + 2)x] ρ,

and that

µ0 =
∞∑
x=0

ρ (x) =
∞∑
x=0

(α + 1)x (−N)x
x! (−N − β)x

=
(α + β + 2)N

(β + 1)N
, (95)

as long as β /∈ [−N,−1] . In order to have

ρ (x) > 0, x = 0, 1, . . . , N,

we need α, β < −N or α, β > −1.
Using (94), we get

ρn (x) = ρ (x+ n)

n∏
k=1

(x+ k) (N + β + 1− x− k) (96)

= (−1)n ρ (x+ n) (x+ 1)n (x−N − β)n .
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Since we are considering monic polynomials, we set κn = 1 in (71) and obtain

Cn =
n−1∏
k=0

−1

k + n+ α + β + 1
=

(−1)n

(n+ α + β + 1)n
. (97)

Using (96) and (97) in (70), we have the Rodrigues formula

Qn (x) =
(−1)n

(n+ α + β + 1)n

1

ρ (x)
∇n [(−1)n ρ (x+ n) (x+ 1)n (x−N − β)n] ,

which we can rewrite as

Qn (x) =
1

(n+ α + β + 1)n ρ (x)
∇n

[
(α + 1)x+n (−N)x+n

(1)x (−N − β)x

]
.

Using (5) and (88), we get

hn = h0

n∏
k=1

γk = (−1)n n!
(−N)n (α + 1)n (α + β + 2 + n)N

(α + β + 2)n (α + β + 1 + n)n
,

since from (95)

h0 = µ0 =
(α + β + 2)N

(β + 1)N
.

Using (73), we have

Qn (x) =
n∑
k=0

(−1)n (−n)k
k!

ρ (x+ k)

ρ (x)

(x− n+ k + 1)n (x− n+ k −N − β)n
(n+ α + β + 1)n

=
(−1)n (x+ 1− n)n (x− n−N − β)n

(n+ α + β + 1)n

×
n∑
k=0

(−n)k
k!

(x−N)k (x+ α + 1)k
(x− n−N − β)k (x− n+ 1)k

.

Thus, we obtain the hypergeometric representation

Qn (x) =
(−1)n (x−N − β − n)n (x+ 1− n)n

(n+ α + β + 1)n
(98)

× 3F2

(
−n, x−N, x+ α + 1

x−N − β − n, x+ 1− n ; 1

)
.
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The linear transformation

3F2

(
−n, a, b
c, d

; 1

)
= (−1)n

(d− a)n (d− b)n
(c)n (d)n

(99)

× 3F2

(
−n, 1− d− n, 1 + a+ b− c− d− n

1 + b− d− n, 1 + a− d− n ; 1

)
can be proved symbolically using HolonomicFunctions (or in other ways by
hand). Using (99), we can rewrite (98) as

Qn (x) =
(α + 1)n (−N)n
(n+ α + β + 1)n

3F2

[
−n,−x, n+ α + β + 1

α + 1, −N ; 1

]
. (100)

Finally, the polynomialsQn (x) have the generating functions [35, 18.23.1]

N∑
n=0

(n+ α + β + 1)n
(α + 1)n (β + 1)n

Qn (x)
tn

n!
= 1F1

[
−x
α + 1

;−t
]

1F1

[
x−N
β + 1

; t

]
,

and [35, 18.23.2]

N∑
n=0

(n+ α + β + 1)n Qn (x)
tn

n!

= 2F0

[
−x,−x+ β +N + 1

− ;−t
]

2F0

[
x−N, x+ α + 1

− ; t

]
,

valid for x = 0, 1, . . . , N.
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