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Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Silviu Radu

Communicated by: Peter Paule
Manuel Kauers

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



Algorithmic Arithmetics with DD-Finite Functions

Antonio Jiménez-Pastora, Veronika Pillweinb

aDoctoral Program Computational Mathematics, JKU, Linz
bResearch Institute for Symbolic Computation, JKU, Linz

Abstract

Many special functions as well as generating functions of combinatorial sequences that arise in applications
are D-finite, i.e., they satisfy a linear differential equation with polynomial coefficients. These functions
have been studied for centuries and over the past decades various computer algebra methods have been
developed and implemented for D-finite functions. Recently, we have extended this notion to DD-finite
functions (functions satisfying linear differential equations with D-finite functions coefficients). Numerous
identities for D-finite functions can be proven automatically using closure properties. These closure
properties can be shown to hold for DD-finite functions as well. In this paper, we present the algorithmic
aspect of these closure properties, discuss issues related to implementation and give several examples.

1. Introduction

During the past decades, algorithms for functions satisfying ordinary linear differential equations
have been studied in the case where the coefficients of the differential equation were polynomials. Those
functions were called differentiably finite or in short D-finite [13, 19, 20]. The D-finite (formal) power
series are interesting for many reasons, e.g., many generating functions for combinatorial sequences arising
in applications are of this type as well as many special functions [3, 18].

It is well known that D-finite functions are closed under operations such as addition, multiplication,
algebraic substitution, etc.; and also implementations in various computer algebra systems exist to com-
pute effectively these closure properties [6, 12, 15, 16]. The finiteness in the representation of D-finite
functions is critical in those algorithms. In order to specify a D-finite function only the order of the equa-
tion, the polynomial coefficients, and sufficiently many initial values need to be stored. Given functions
in this form, a defining differential equation of the same type (plus initial values) for their sum, product,
etc., can be computed automatically. These algorithms can be used to prove identities [11].

Even though many interesting objects are D-finite, there are more special functions out there. Re-
cently, we have extended the notion of D-finite functions to DD-finite functions [10]. This new class
of formal power series satisfies linear differential equations with D-finite functions as coefficients. We
extended most of the closure properties for D-finite functions to the DD-finite case. Moreover, we carried
out these closure properties for power series that satisfy linear differential equations with coefficients in
an arbitrary differential ring. This setting covers cases already studied by Van Hoeij [23] in the context
of factorization and formal solutions, and Abramov et al. [1, 2] for linear differential systems. Also classic
non D-finite functions as exp(exp(x)), tan(x), and Mathieu’s functions [7] are in this new class.

It turns out that, not only the closure properties, but also the corresponding algorithms for D-
finite functions can be extended to the more general case. We have implemented those algorithms
in SAGE [21, 9] using as input structure the defining differential equation and initial values for each
function. In this paper, we describe and explain our implementation of these closure properties and how
we maintain an acceptable performance.

In section 2 we introduce some mathematical background that eases the description in the algorithms.
Then in section 3 we recall the formal definition of a differentially definable function and the relation with
the theory mentioned above. In sections 4 and 5 we detail the algorithms for computing the addition
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and product in this class of functions. In particular, in section 4 we give the general structure of the
algorithm and in section 5 the issues of the implementation we provide. We close with two concrete
examples carried out in some detail.

2. Differential Linear Algebra

In the present section we study a general framework that will be useful later during the description of
the algorithms: differential linear algebra. In the same spirit as differential rings and fields are defined [5,
22] we want to work with differential vector spaces adding a derivation operator over a vector space.

Definition 2.1. [14, 22] Let (K, ∂) be a differential field of characteristic zero and V a K-vector space.
We say that ~∂ : V → V is a derivation over V w.r.t. ∂ if it satisfies

1. ~∂(v + w) = ~∂(v) + ~∂(w) for all v,w ∈ V .

2. ~∂(cv) = ∂(c)v + c~∂(v) for all c ∈ K and v ∈ V .

We say that (V, ~∂) is a differential vector space over (K, ∂). We denote by ∆∂(V ) the set of all derivations
over V w.r.t. ∂. We say that v ∈ V is a constant if ~∂(v) = 0. We denote by C~∂(V ) the set of constants
of V w.r.t. the derivation ~∂.

In this definition we see that a differential vector space relies on a previously given differential field.
Hence the set ∆∂(V ) depends directly on the derivation ∂ of the ground field.

It is well-known [22] that a derivation over V w.r.t. ∂ is uniquely defined by the values it takes over
a basis B ⊂ V . In particular, we denote by κB∂ the unique derivation s.t. B ⊂ CκB

∂
(V ) and call it the

coefficient-wise derivation w.r.t. a basis B. Usually we omit ∂ and B and write simply κ if the derivative
and basis are clear from the context. If v has coordinates vb in the basis B, then κ(v) has coordinates
∂(vb), hence the name.

Derivations over V w.r.t. ∂ can be related with linear endomorphisms on V .

Lemma 2.2. Let (V, ~∂) be a differential vector space over (K, ∂). Let B be a basis of V and f : V → V

the endomorphism such that f(b) = ~∂(b) for any b ∈ B. Then, for any v ∈ V :

~∂(v) = κ(v) + f(v).

Proof. Let v ∈ V . As B is a basis of V , we can write v as a linear combination of its elements. We apply
the basic properties of a derivation and the definition of κ and f and obtain;

~∂(v) = ~∂

(∑
b∈B

vbb

)
=
∑
b∈B

~∂(vbb) =
∑
b∈B

(∂(vb)b + vb~∂(b))

=
∑
b∈B

(∂(vb)b) +
∑
b∈B

(vbf(b)) = κ(v) + f(v).

Lemma 2.2 yields that we can associate a derivation ~∂ ∈ ∆∂(V ) with the matrix representation of the
linear mapping f . Then, due to the definition of f , this associated matrix is the matrix whose columns
represent the derivatives of the basis elements. This idea can be generalized to any list of generators of
the vector space instead of having a basis.

Definition 2.3. Let (K, ∂) be a differential field, (V, ~∂) be a differential vector space over (K, ∂), and
Φ = {φ1, ..., φn} be generators of V . We say a matrix M = (mij)

n
i,j=1 is a derivation matrix of ~∂ w.r.t.

Φ if it satisfies
~∂(φj) = m1jφ1 + · · ·+mnjφn, for all j = 1, . . . , n.
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In this setting, mimicking the proof of Lemma 2.2, for any v = v1φ1 + · · ·+ vnφn ∈ V we have

~∂(v) = ∂(v1)φ1 + v1~∂(φ1) + · · ·+ ∂(vn)φn + vn~∂(φn) =

n∑
j=1

(
m∑
i=1

mijvi + ∂(vj)

)
φj .

In matrix-vector notation, a representation of ~∂(v) = v̂1φ1 + · · ·+ v̂nφn can thus be computed as
v̂1
v̂2
...
v̂n

 = M


v1
v2
...
vn

+


∂(v1)
∂(v2)

...
∂(vn)

 .

Conversely, if a matrix M satisfy the previous equality (namely, a representation for the derivatives in V
can be computed with that formula), then M is a derivation matrix.

For any set of generators Φ a derivation matrix can be computed and it is unique if Φ is a basis
of V . With these notations, we can compute the derivative in a differential vector space using matrix
operations. This is computationally interesting, since it allows us to implement derivatives in any vector
space only using the knowledge of the generators. We consider now how these derivation matrices behave
when we operate with the vector spaces, for instance, with the direct sum or the tensor product.

Proposition 2.4 (Direct sum). Let (V, ~∂V ), (W, ~∂W ) be two differential vector spaces over (K, ∂) of
dimensions n and m, with basis BV and BW . Let MV and MW be the derivation matrices of V and W ,
respectively. Then:

(1) The map ~∂ : V ⊕W → V ⊕W defined as

~∂(v ⊕w) = ~∂V (v)⊕ ~∂W (w)

is the unique derivation over V ⊕W w.r.t. ∂ that extends ~∂V and ~∂W .

(2) The derivation matrix associated with the basis BV ⊕BW is MV ⊕MW .

Proof. We build V ⊕W as V ×W with the following operations:

• (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2),

• c(v, w) = (cv, cw),

and represent (v,w) by v⊕w. Obviously ~∂ is a derivation on V ⊕W . Consider now a derivation ∂̂ over
V ⊕W w.r.t. ∂ that extends ~∂V and ~∂W (i.e., ∂̂(v⊕ 0) = ~∂V (v)⊕ 0 and ∂̂(0⊕w) = 0⊕ ~∂W (w)). Then
we have that:

∂̂(v ⊕w) = ∂̂((v ⊕ 0) + (0⊕w)) = (~∂V (v)⊕ 0) + (0⊕ ~∂W (w))

= ~∂V (v)⊕ ~∂W (w) = ~∂(v ⊕w),

hence ~∂ is unique extending ~∂V and ~∂W . Since BV ⊕BW = {b⊕ 0 : b ∈ BV } ∪ {0⊕ b : b ∈ BW }, it
is a basis of V ⊕W . Clearly, the derivation matrix is the direct sum of the derivation matrices.

Proposition 2.5 (Tensor product). Let (V, ~∂V ), (W, ~∂W ) be two differential vector spaces over (K, ∂) of
dimensions n and m and with bases BV and BW . Let MV and MW be the derivation matrices of V and
W , respectively. Then:

(1) The map ~∂ : V ⊗W → V ⊗W defined as

~∂(v ⊗w) = ~∂V (v)⊗w + v ⊗ ~∂W (w)

is a derivation over V ⊗W w.r.t. ∂.
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(2) The derivation matrix associated with the basis BV ⊗BW is

MV ⊗ Im + In ⊗MW .

Proof. We build V ⊗W as the free additive group generated by V ×W with the following relations:

• (v1 + v2,w) ∼ (v1,w) + (v2,w),

• (v,w1 + w2) ∼ (v,w1) + (v,w2),

• (cv,w) ∼ (v, cw),

and we represent the element (v,w) by v⊗w. To prove that ~∂ is a derivation over V ⊗W , we first need
to check that ~∂ is well-defined with respect to the three relations, which is a straightforward computation.
Then the additive property and the Leibniz rule are granted by definition.

To prove that the derivation matrix has the appropriate shape, consider an element v⊗w in the basis
BV ⊗ BW , and let fV , fW be the linear mappings associated with ~∂V and ~∂W as we saw in Lemma 2.2.
Then:

~∂(v ⊗w) = ~∂V (v)⊗w + v ⊗ ~∂W (w) = fV (v)⊗w + v ⊗ fW (w)

= (fV ⊗ idW )(v ⊗w) + (idV ⊗ fW )(v ⊗w) = (fV ⊗ idW + idV ⊗ fW )(v ⊗w)

Hence, as this formula holds for all elements in the basis BV ⊗ BW , the derivation matrix is the matrix
representation of the linear map (fV ⊗ idW + idV ⊗ fW ), which is precisely:

MV ⊗ Im + In ⊗MW .

This Leibniz rule on the matrix level is also called Kronecker sum of two matrices [8].

Proposition 2.6 (Quotient space). Let (V, ~∂) be a differential vector space over (K, ∂) and consider a
subspace N ⊂ V closed under ~∂. Then:

(1) There is a unique derivation ∂ over the quotient space V/N such that ∂ ◦ π = π ◦ ~∂ where π is the
canonical projection π : V → V/N .

(2) If Φ = {φ1, ..., φn} generates V and M is a derivation matrix of ~∂ w.r.t. Φ, then M is a derivation
matrix of ∂ w.r.t. π(G).

Proof.
(1) Let ∂ : V/N → V/N be defined as ∂(v +N) = ~∂(v) +N . This function ∂ is well defined because

if v +N = w +N then v −w ∈ N and its derivative is again in N so ~∂(v) +N = ~∂(w) +N .
A straightforward computation using the definition of ∂ and the linearity of π proves that ∂ is a

derivation. Now suppose there is another derivation ∂̂ over V/N such that ∂̂ ◦ π = π ◦ ~∂. Then we have
that for any v +N ∈ V/N ,

∂̂(v +N) = ∂̂(π(v)) = π(~∂(v)) = ~∂(v) +N = ∂(v +N),

so ∂̂ = ∂.
(2) Let v = c1φ1 + ...+cnφn. Then, using that ∂(v+N) = ~∂(v)+N and the linearity of the canonical

projection, we have that, if (v̂1, ..., v̂n) is a representation of ~∂(v) w.r.t. Φ, then it is a representation of
∂(v +N) w.r.t. π(Φ).

As M is a derivation matrix of ~∂ w.r.t. Φ, we have that

M


v1
v2
...
vn

+


∂(v1)
∂(v2)

...
∂(vn)


is a representation of ~∂(v) w.r.t Φ and, as we already saw, a representation of ∂(v + N) w.r.t. π(Φ).
Hence M is also a derivation matrix of ∂ w.r.t. π(Φ).
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Lemma 2.7 (Differential linear mappings). Let (V, ~∂V ) and (W, ~∂W ) be two differential vector spaces
over (K, ∂) and let f : V → W be a linear map that commutes with the derivatives of V and W , i.e.,
f ◦ ~∂V = ~∂W ◦ f . Then ker(f) is closed under ~∂V .

Proof. Let v ∈ ker(f). Then we have that f(~∂V (v)) = ~∂W (f(v)) = ~∂W (0) = 0, so ~∂V (v) ∈ ker(f).

These four results are tools for computing derivation matrices in more complicated vector spaces
starting from simple ones. We use this later when we explain the main method for computing the closure
properties for differentially definable functions.

3. Differentially definable functions

Now we recall the concepts we developed in our previous work [10] and we relate those concepts with
the derivations we defined in the previous section. From this section on, we fix the following notation:
K is a field of characteristic zero, K[[x]] denotes the ring of formal power series over K, ∂ the standard
derivation in K[[x]] and 〈S〉K the K-vector space generated by the set S.

Definition 3.1. Let R be a non-trivial differential subring of K[[x]] and R[∂] the ring of linear differential
operators over R. We call f ∈ K[[x]] differentially definable over R if there is a non-zero operatorA ∈ R[∂]
that annihilates f , i.e., A · f = 0. By D(R) we denote the set of all f ∈ K[[x]] that are differentially
definable over R. We define the order of f w.r.t. R as the minimal order of the operators that annihilate
f (i.e., the minimal ∂-degree of A ∈ R[∂] such that A · f = 0).

Note that R ⊂ R[∂] and hence for non-trivial subrings of K[[x]] the set of differentially definable
functions is never empty. Classical D-finite functions are in our notation just D(K[x]). It is well known [13]
that D(K[x]) is closed under derivation, addition, and multiplication, i.e., they form a differential subring
of K[[x]]. Hence the set of DD-finite functions can be defined as D(D(K[x])).

Example 3.2. f0(x) = exp(x) ∈ K[[x]] is D-finite satisfying f ′0(x)− f0(x) = 0, f0(0) = 1, and so is the
constant function f1(x) = 1 ∈ K[[x]]. Hence g(x) = exp(exp(x)− 1) ∈ K[[x]] is DD-finite as solution to
f1(x)g′(x) − f0(x)g(x) = 0, g(0) = 1. The coefficients in the defining differential equation for g(x) can
be represented in turn using their respective defining (in)homogeneous differential equations.

Example 3.3. Mathieu’s equation in its standard form is given by [7, 17]

w′′ + (a− 2q cos(2x))w = 0, (1)

for some parameters a and q. This differential equation has a pair of fundamental solutions (w1, w2) with
initial values

w1(0; a, q) = 1, w′1(0; a, q) = 0, and
w2(0; a, q) = 0, w′2(0; a, q) = 1.

w1(z; a, q) is even and w2(z; a, q) is odd and both are DD-finite functions. Mathieu functions are related
to several problems in applied mathematics and were introduced by Mathieu in the context of vibrating
elliptical drumheads [17].

Analogously to D-finite functions, differentially definable functions can be characterized equivalently
by an inhomogeneous differential equation or as a finite dimensional vector space.

Theorem 3.4. Let R be a differential subring of K[[x]], R[∂] the ring of linear differential operators over
R, and F = Q(R) be the field of fractions of R. Let f ∈ K[[x]]. Then the following are equivalent:

(1) f ∈ D(R)

(2) ∃A ∈ R[∂]∃ g ∈ D(R) : A · f = g

(3) dim〈f (i) | i ∈ N〉F <∞

Proof. See [10].
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It is well known that D-finite functions satisfy various closure properties [13] and that these closure
properties can be executed automatically [6, 15, 12]. Many of these closure properties can be carried over
to differentially definable functions and also the algorithmic aspect can be kept [10]. We recall some of
these closure properties and, for the sake of being self-contained, repeat part of the proof.

Theorem 3.5. Let R be a non-trivial differential subring of K[[x]] and f(x), g(x) ∈ D(R) with orders d1
and d2, respectively, and r(x) ∈ R. Then:

(1) f ′(x) ∈ D(R) with order at most d1.

(2) Any antiderivative of f(x) is in D(R) with order at most d1 + 1.

(3) f(x) + g(x) ∈ D(R) with order at most d1 + d2.

(4) f(x)g(x) ∈ D(R) with order at most d1d2.

(5) If r(0) 6= 0, then its multiplicative inverse 1/r(x) in K[[x]] is in D(R) with order at most 1.

Proof. Given an annihilating operator A = rd1∂
d1 + · · ·+ r1∂+ r0 with A·f = 0, we have that rd∂d1−1 +

· · ·+r1 annihilates f ′ if r0 = 0. In the case r0 6= 0, the operator (r0∂−r′0)A has constant coefficient equal
to zero, hence is an annihilating operator for f ′ of order at most d1. This yields (1). The annihilating
operators for (2) and (5) are immediate.

For the addition of two differentially definable functions let F be the field of fractions of R and given
f ∈ K[[x]] define VF (f) = 〈f (i) | i ∈ N〉F . By Theorem 3.4 we have that dim(VF (f)) = d1 < ∞ and
dim(VF (g)) = d2 <∞. Since VF (f + g) ⊂ VF (f) + VF (g), we have

dim(VF (f + g)) ≤ dim(VF (f)) + dim(VF (g)) = d1 + d2 <∞.

This gives (3) and the closure property (4) follows analogously using the tensor product.

Because of (1), (3), and (4) in Theorem 3.5, given a differential subring R of K[[x]], D(R) is again a
differential subring of K[[x]]. Hence the construction can be iterated with closure properties holding at
each level. In this sense, we have that D-finite functions are the same as D(K[x]), DD-finite are D2(K[x]),
and we refer to Dk(K[x]) also as Dk-finite functions.

In order to compute the (DD-finite) annihilating operator of the derivative, antiderivative, or multi-
plicative inverse it suffices to use a precomputed formula. In this case at most closure properties on the
coefficient level need to be applied. We illustrate this with the following example.

Example 3.6. Let us return to Mathieu’s function and let w(x) be defined by (1), i.e., the annihilating
operator is given by A = r0 + r2∂

2 with r2(x) = 1 and r0(x) = a− 2q cos(2x). As stated in the proof, we
compute

(r0∂ − r′0) · A = (r0∂
2 − r′0∂ + r20) · ∂.

Hence, we have that w′(x) is a solution to

(a− 2q cos(2x))y′′(x)− 4q sin(2x)y′(x)

+(a− 2q cos(2x))2y(x) = 0.
(2)

Note that the coefficient r0(x) is actually represented in the computer as the D-finite function satisfying

y′′′(x) + 4y′(x) = 0, y(0) = a− 2q, y′(0) = 0, y′′(0) = 8q.

Analogously the coefficients in (2) are not given explicitly, but represented in terms of their defining D-
finite differential equations plus initial values. These representations are in turn computed using closure
properties on the level of D-finite functions.

For computing the closure properties of addition and multiplication of two differentially definable
functions, we use the bound for the dimension of the vector space VF (f + g) and VF (fg) obtained in
Theorem 3.5. The details of the algorithm are in section 4.
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Before we turn to this description, let us remark on the relation between differential linear algebra, see
Section 2, and differentially definable functions. In the proof of Theorem 3.4 (see [10]) it is shown that if
f ∈ D(R) is annihilated by an order d operator A ∈ R[∂], then {f, . . . f (d−1)} generates VF (g). Moreover,
both F and VF (f) are subsets of K((x)), the Laurent series over K, which has a unique extension of ∂.
Both sets are closed under this derivation, which makes (F, ∂) a differential field and VF (f) a differential
vector space over (F, ∂) in the sense defined in Section 2. In fact, we can compute a derivation matrix of
∂ in VF (f).

Lemma 3.7. Let f(x) ∈ D(R) for some differential subring R ⊂ K[[x]] and A = rd∂
d + ... + r0 ∈ R[∂]

be such that A · f = 0. Then the companion matrix of A

Cf =


0 . . . 0 −r0/rd
1 . . . 0 −r1/rd
...

. . .
...

...
0 . . . 1 −rd−1/rd

 .

is a derivation matrix for the derivation ∂ over the vector space VF (f) w.r.t. (f(x), . . . , f (d−1)(x)).

Proof. Define the column vectors v = (vi)
d−1
i=0 and let g = v0f + · · ·+ vd−1f

(d−1) ∈ VF (f). Then

~∂g =
(
∂(v0)f + · · ·+ ∂(vd−1)f (d−1)

)
+
(
v0f
′ + · · ·+ vd−1f

(d)
)
,

and f (d) can be expressed in terms of f, . . . , f (d−1),

~∂g =

(
∂(v0)f − r0

rd
vd−1

)
f +

(
∂(v1) + v0 −

r1
rd
vd−1

)
f ′+

· · ·+
(
∂(vd−1) + vd−2 −

rd−1
rd

vd−1

)
f (d−1).

Thus ~∂g = v̂0f + · · ·+ v̂d−1f
(d−1) for v̂ = Cfv + κ(v).

Given a differentially definable function f of order d, let f denote the column vector (f (i))d−1i=0 and let
the derivative act component-wise on the vector. Then for the companion matrix we have that κf = CTf f
and for g and v̂ as above, ~∂g = fT v̂.

4. Overview of the general method

Now that we have the basic concepts, we give a general structure that the algorithms for addition
and multiplication of differentially definable functions have. The main structure of these algorithms is
usually called an ansatz method.

Let f(x), g(x) be differentially definable functions over R and consider either h(x) = f(x) + g(x) or
h(x) = f(x)g(x). In either case the function h(x) is differentially definable over the same fixed differential
ring R. In order to prove this, we showed that the vector space VF (h) = 〈h, h′, ...〉F is contained in some
vector space W ⊂ K[[x]] of finite dimension d, getting then an upper bound for the dimension of VF (h).
There must be a non-trivial linear combination of h(x), h′(x), . . . , h(d)(x) equal to zero.

Hence, we build an ansatz for that homogeneous equation where the unknown variables are the
coefficients of the linear combination (i.e. elements of F ). More precisely, the method proceeds as
follows:

(i) Compute a vector of generators Φ = (φ0, φ2, . . . , φd−1) of the vector space W .

(ii) Compute representations of h(i) in terms of Φ, i.e., vectors vi = (vi,0, . . . , vi,d−1) such that for all
i = 0, ..., n:

h(i) = vi,0φ0 + ...+ vi,d−1φd−1.
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(iii) Set up an ansatz with d+ 1 variables α0, ..., αd:

α0h(x) + ...+ αdh
(d)(x) = 0.

(iv) Using the expressions of step (ii), compute a matrix S with coefficients in R such that:

S

α0

...
αd

 = 0.

(v) Compute a particular element α̂ = (α̂0, ..., α̂d) in the nullspace of S. Then h is annihilated by:

A = α̂n∂
n + · · ·+ α̂0.

(vi) Compute as many initial values of h as necessary to characterize a unique power series by A.

Let us analyze the algorithm step by step. In step (i) we compute generators of W . This must be
done independently for each operation. Theorem 3.5 contains the key idea how to compute W and the
vector of generators (φ0, . . . , φd−1) for either case.

For step (ii) we compute the vectors vi. The vector space W together with ∂ is a differential vector
space in the sense defined in Section 2. If we had a derivation matrix M of W w.r.t. (φ0, . . . , φd−1) then
we could compute the representation of h′(x), . . . , h(d) (i.e., the vectors v1, . . . ,vd) once we have the first
vector v0 representing h(x). More precisely, we can compute:

vi+1 = Mvi + κ(vi). (3)

In step (iii) we set up the ansatz with new variables and then in step (iv) we compute the system
matrix S. Using the ansatz equation and the vector representation of the derivatives of h, we have that:

α0h(x) + ...+ αdh
(d)(x) = (φ0, ..., φd−1)(α0v0 + ...+ αnvd)

= (φ0, . . . , φd−1)


v0,0 v1,0 ... vd,0
v0,1 v1,1 ... vd,1
...

...
. . .

...
v0,d−1 v1,d−1 ... vd,d−1



α0

α1

...
αd

 = ΦT S̃α,

where S̃ ∈ F d×(d+1) is built from the column vectors vi computed in step (ii). In order to obtain the
desired system S with coefficients in R we only need to clear denominators.

For step (v) we compute a vector in the right-nullspace of S using any linear algebra algorithm. We
are sure that it is not trivial because the dimension of the matrix guarantees at least a nullspace of
dimension 1. For a discussion on how many and which initial values need to be computed see [10].

Summarizing, for each particular operation we need to:

• Compute the dimension bound d and generators φ0, ..., φd−1.

• Compute the derivation matrix M .

• Compute the initial vector v0.

• Compute the required initial values h(0), h′(0), . . . .

Once we have these four details fixed, we have fully described the ansatz algorithm. Next we give the
details for both addition and multiplications.
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4.1. Addition
Given f, g ∈ D(R) and Af ,Ag ∈ R[∂] of orders d1 and d2 such that Af · f = 0 = Ag · g, let

h(x) = f(x) + g(x). We know (see Theorem 3.5) that h is differentially definable over R and that VF (h)
is contained in the finite dimensional F -vector space W = VF (f) + VF (g).

To complete the algorithm we need the following steps:

• Computing the generators of W : as it is the sum of two vector spaces, its generators are built
from the generators of each of the summands. We have that:

VF (f) = 〈f, ..., f (d1−1)〉F and

VF (g) = 〈g, ..., g(d2−1)〉F ,

Hence the direct sum of the generators of VF (f) and VF (g) (i.e. the union) generates W , obtaining
a bound of d1 + d2 for the dimension of W .

f ⊕ g = (f, ..., f (d1−1), g, ..., g(d2−1)).

• Computing the derivation matrix w.r.t. f ⊕ g: by Propositions 2.4 and 2.6 and Lemma 2.7,
we know that a derivation matrix w.r.t. f ⊕ g is the direct sum of derivation matrices on VF (f)
and VF (g). As we saw in Lemma 3.7, those derivation matrices are the companion matrices of Af
and Ag, respectively. Hence, the derivation matrix M+ is:

M+ = Cf ⊕ Cg =

(
Cf 0
0 Cg

)
• Computing the initial vector v0+: as h = f + g, a representation of h is the direct sum (i.e.,

concatenation) of representations of f and g in their generators,

vT0+ = (1, 0, ..., 0, 1, 0, ..., 0) = ed1,1 ⊕ ed2,1,

where ed,i is ith unit vector of length d.

• Computing the initial values of h: for any k ∈ N, the kth initial value of h is the sum of the
kth initial values of f and g:

h(k)(0) = f (k)(0) + g(k)(0),

With these details fixed, the addition algorithm is complete. We can easily apply it to compute a
precise representation of the sum of two differentially definable functions.

Example 4.1. Let f(x) = exp(sin (x)) and g(x) = tan (x). Both are DD-finite functions with annihilat-
ing operators:

Af = ∂ − cos (x) , Ag = cos (x)
2
∂2 − 2.

If we want to compute the differential operator that h(x) = f(x) + g(x) satisfies we need to use the
companion matrices of Af and Ag:

Cf =
(
cos (x)

)
, Cg =

(
0 2/ cos (x)

2

1 0

)
.

Hence, if we put together both matrices to build the matrix M+ we have:

M+ =

cos (x) 0 0
0 0 2

cos(x)2

0 1 0

 .

The initial vector is v0+ = (1, 1, 0) and we can compute the whole system using the matrix M+:

v1+ = M+v0+ + κ(v0+) =

cos (x)
0
1

 .
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If we iterate this procedure and clear denominators, we obtain the system matrix:

S+ =

 1 c c2 − s c3 − 3sc− c
c3 0 2c 4s
0 c2 0 2

 ,

where we abbreviate c = cos (x) and s = sin (x).
Then we can apply any linear algebra algorithm to obtain that (α0, α1, α2, α3)T is in the right-nullspace

of S+, where:
α0 = −2 cos (x)

3
sin (x)

2 − 10 cos (x)
3

sin (x) + 4 cos (x) sin (x)
2 − 4 cos (x)

α1 = −2 cos (x)
4

+ 2 sin (x) cos (x)
2

+ 4

α2 = cos (x)
5

sin (x)
2

+ 3 cos (x)
5

sin (x)− 2 cos (x) sin (x)
2

+ 4 cos (x) sin (x) + 2 cos (x)

α3 = cos (x)
6 − sin (x) cos (x)

4 − 2 cos (x)
2

Now, let A = α3∂
3 + α2∂

2 + α1∂ + α0. We apply the methodology explained in [10] and conclude
that any function annihilated by A is characterized by its first three initial values:

h(0) =f(0) + g(0) = 1 + 0 = 1

h′(0) =f ′(0) + g′(0) = 1 + 1 = 2

h′′(0) =f ′′(0) + g′′(0) = 1 + 0 = 1

So we have that h(x) = esin(x) + tan (x) is the unique formal power series satisfying:{
α3h

′′′(x) + α2h
′′(x) + α1h

′(x) + α0h(x) = 0,
h(0) = 1, h′(0) = 2, h′′(0) = 1.

4.2. Multiplication
We proceed now similarly as we did in Subsection 4.1. Let f, g ∈ D(R), Af ,Ag ∈ R[∂] of orders d1 and

d2 such that Af · f = 0 = Ag · g, and h(x) = f(x)g(x). We know that h is differentially definable over R
and that VF (h) is contained in the finite dimensional F -vector spaceW = VF (f)VF (g) (see Theorem 3.5).

To complete the algorithm we need the following steps:

• Computing the generators of W : now W is the product of VF (f) and VF (g). Then, it is
generated by the tensor product of the generators of each vector space. Namely:

f ⊗ g = ( fg, fg′, ..., fg(d2−1),
f ′g, f ′g′, ..., f ′g(d2−1),
...

...
. . .

...
f (d1−1)g, f (d1−1)g′, ..., f (d1−1)g(d2−1)).

• Computing the derivation matrix w.r.t. f⊗g: using the results from Propositions 2.5 and 2.6
and Lemma 2.7, a derivation matrix w.r.t. f ⊗ g is the Kronecker sum of derivation matrices on
VF (f) and VF (g). Again, by Lemma 3.7, those derivation matrices are the companion matrices of
Af and Ag. Hence, the derivation matrix M∗ is:

M∗ = Cf ⊗ Id2 + Id1 ⊗ Cg.

• Computing the initial vector v0∗: now h = fg, then a representation of h is the tensor product
of the representations of f, g. Namely:

v0∗ = (1, 0, ..., 0)T = ed1,1 ⊗ ed2,1.

10



• Computing the initial values of h: if we apply the iterated Leibniz rule to h(x) = f(x)g(x) we
get:

h(k)(x) =

k∑
j=0

(
k

j

)
f (j)(x)g(k−j)(x)

for any k ∈ N, so the kth initial value of h(x) depends on the first k initial values of f(x) and g(x)
and can be computed using the formula above.

We have adapted the ansatz algorithm, and now the multiplication algorithm is complete. We can
use it to compute a precise representation of the product of two differentially definable functions. Let us
see how it works over an example:

Example 4.2. Let f(x) = cos(x) and g(x) = tan(x). Both are DD-finite functions with the following
annihilating operators:

Af = cos(x)∂ − sin(x), Ag = cos2(x)∂2 − 2.

If we want to compute the differential operator that h(x) = cos(x) tan(x) satisfies we need to use the
companion matrices of Af and Ag:

Cf =
(
− sin(x)

cos(x)

)
, Cg =

(
0 2/ cos (x)

2

1 0

)
.

Hence, if we compute the Kronecker sum of both matrices to build the matrix M∗ we have:

M∗ =

(
− sin(x)

cos(x)
1

cos(x)2

1 − sin(x)
cos(x)

)
.

In this case, the initial vector is v0 = (1, 0, 0) and we can compute the whole system using the matrix
M∗:

v1∗ = M∗v0∗ + κ∂(v0∗) =

(
− sin(x)

cos(x)

1

)
.

If we iterate this procedure and clear denominators, we obtain the system matrix:

S∗ =

(
c2 −sc s2 + 1
0 c −2s

)
Then we can apply any linear algebra algorithm to obtain that the (α0, α1, α2)T is in the right-

nullspace of S∗, where:  α0 = − cos (x)
α1 = 2 sin (x)
α2 = cos (x)

Now, let A = α2∂
2 + α1∂ + α0. We apply the methodology explained in [10] and conclude that any

function annihilated by A is characterized by its first two initial values:

h(0) =f(0)g(0) = 0

h′(0) =f ′(0)g(0) + f(0)g′(0) = 0 + 1 = 1

So we have that h(x) = cos (x) tan (x) is the unique formal power series satisfying:{
cos (x)h′′(x) + 2 sin (x)h′(x)− cos (x)h(x) = 0,

h(0) = 0, h′(0) = 1.

We can easily check that sin (x) satisfies those properties, proving (with this automated approach)
that sin(x)

cos(x) = tan (x).
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In the examples through this section we simply carried out all computations with the actual coefficient
functions, without taking into account any relations between sine and cosine that might help to keep the
coefficients smaller. In the general case, the coefficient functions are given in terms of their defining
equations over some differential subring R. This means in particular that this construction may be
nested. All operations for the computation of the nullspace can be carried out division free using closure
properties of the underlying subring. These computations quickly become very heavy. In the next section,
we describe how our current implementation handles these difficulties.

5. Operations on the coefficients

For executing the closure properties of addition and multiplication as described in the previous section,
all operations need to be carried out in the differential subring R. E.g., for setting up the system matrix
S, addition, multiplication, and derivation of elements in R need to be computed. Finally, solving the
system requires more arithmetic operations.

In the case of D-finite functions (where R = K[x]), these operations can be carried out fast in
virtually all available computer algebra systems. However, if we move on to DD-finite functions (or
an even deeper layer of Dk-finite functions), addition, multiplication, and derivation of elements in R
have to be computed recursively using closure properties. If directly implemented in this recursive way,
the calculations quickly come to a halt because of memory consumption. Every execution of a closure
property potentially increases the order of the given recurrence and the size of its coefficients.

We have implemented all algorithms described in this paper in the mathematical software system
SAGE [21] in our package dd_functions [9]. In this section we describe how the actual implementation
currently handles the closure properties addition and multiplication (recall that the others merely require
plugging into precomputed formulas). As mentioned above, there are two major steps where computations
on the coefficient-level are needed: the construction of the system matrix S and the computation of the
nullspace.

5.1. Obtaining the linear system
In either case (addition or multiplication) we have two functions f(x), g(x) ∈ D(R) that are defined

with the following differential operators:

Af = rn∂
n + ...+ r0 and Ag = sm∂

m + ...+ s0

of orders n and m respectively. During computations any non-trivial denominator in the companion
matrices Cf and Cg (and thus in the derivation matrix M) can only be a product of powers of the
leading coefficients rn and sm. Then, while computing the vectors vi using (3), if the coefficients of vi
have a denominator bound rpnsqm then rp+1

n sq+1
m is a denominator bound for vi+1. Hence, we can clear

denominators at the end of the iteration using this (possibly coarse) denominator bound.
At this stage of setting up the system matrix S, the coefficients of Af and Ag and their derivatives are

kept as indeterminates ri, sj , r
(γ)
k , s

(δ)
l . In the current implementation, those variables are added to the

system on the fly. This means that we start with a polynomial ring K[r0, . . . , rn, s0, . . . , sm] and when we
compute the derivatives, we add more variables following the rules ∂(r

(γ)
k ) = r

(γ+1)
k and ∂(s

(δ)
l ) = s

(δ+1)
l .

5.2. Solving the linear system

At this stage, we have a matrix S with variables ri, sj , r
(γ)
k , s

(δ)
l . In order to get the nullspace of S

we keep this polynomial behavior and follow the division-free algorithm described by Bareiss [4]. During
this algorithm, some pivots have to be chosen. The condition for an element to be a pivot is that it is not
zero. Here, we have polynomials on the variables ri, sj , r

(γ)
k , s

(δ)
l that can be non-zero in the polynomial

sense but, since this variables represents precise functions, it may be that the functional equivalent to
the polynomial is zero.

Thus, we modify Bareiss’ algorithm such that each time a pivot is going to be picked, we check that
the equivalent power series is not zero. This zero testing must be done using the operations on the
differential ring R and, if necessary, applying recursively these closure properties.

12



A defining differential equation for h can be obtained from any element in the nullspace. For various
reasons one may wish to have an operator of low order. Hence, we compute a normal basis to obtain an
appropriate vector in the nullspace [4, 8].

When returning the annihilating operator for h = f + g or h = fg, the elements of the nullspace have
to be given explicitly applying recursively the closure properties.

5.3. Managing the variables
The main issue in this approach is the number of variables the algorithm must handle. As the

performance of polynomials algorithms usually depends on the number of variables, we would like to
exploit the relations between our variables and keep their number as low as possible without increasing
the computational cost.

We present here two means we apply in our implementation after the system S is set up:

• Reducing linear relations: after building the system matrix S we have a list of variables representing
ri, sj , r

(γ)
k , and s(δ)l . These coefficient functions in turn are given by defining differential equations

plus initial values. From the initial values it is cheap to check pairwise if there are possibly linear
relations of the form Y = cX + d among them for some constants c, d.
Suppose we pick two of the variables X and Y and they satisfy the relation Y = cX + d. Then, if
we consider Ŷ = Y − Y (0) and X̂ = X −X(0), we have that p = ordx(Ŷ ) = ordx(X̂) and

Y (p)(0) = Ŷ (p)(0) = cX̂(p)(0) = cX(p)(0).

On the other hand, it is clear that d = Y (0)− cX(0).
Then, we can compute the unique pair of candidates c, d and check if the equality holds using
closure properties in R. Checking this type of identities for all the variables we have has the same
computational cost as checking only for repeated variables.

• Reducing algebraic relations: this is done when choosing a new pivot element. At this step closure
properties need to be applied in order to verify that we are not computing with a zero pivot. Else,
we have found a non-trivial algebraic relation between the variables.
Every time a new relation is found, it is added to a set of known relations that is used to simplify the
system using Gröbner basis computations [24]. This set is kept during a session of computations
in SAGE and the relations are also used if they appear in another problem. If there is a priori
knowledge about algebraic relations between the coefficients, this information may be added by the
user to improve the performance.

6. A complete example. Why reductions are useful.

Now, we present a complete example for the method proposed in this document through a particular
example with DD-finite functions. We consider two functions f(x), g(x) that are defined with the following
differential equations: {

f ′′(x) + b(x)f ′(x) + a(x)f(x) = 0,
f(0) = 1, f ′(0) = 0,{
g′′(x) + g′(x) = 0,

g(0) = 0, g′(0) = 1.

We see that g(x) is a D-finite function (so in particular is DD-finite) and f(x) depends directly on
two coefficients a(x) and b(x). Let them be defined as follows:{

a′(x)− a(x) = 0,
a(0) = 1,{

b′′′(x)− 3b′′(x) + 2b′(x) = 0,
b(0) = 1, b′(0) = −1, b′′(0) = −3.

So both are D-finite functions making f(x) DD-finite. Let h(x) = f(x) + g(x). We want to compute
the data-structure that defines h(x), so we first compute an operator A that annihilates h(x) and then
we compute initial values of h(x) to represent it as a particular solution of the differential equation given
by A. For doing so, we apply step by step the method analyzed in this paper.
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6.1. Computing the linear system
Following the steps described in section 4, we first need to compute the derivation matrix for the

space VF (f) + VF (g) and, as we saw in subsection 4.1, we need to compute the matrix:

M+ = Cf ⊕ Cg.

The companion matrices for the defining differential equations for f(x) and g(x) are

Cf =

(
0 −a
1 −b

)
, Cg =

(
0 0
1 −1

)
.

Now that we have the companion matrices we need to compute the vectors vi for i = 0, . . . , 4 following
the formula

vi+1 = M+vi + κ(vi),

where we have v0 = e2,1 ⊕ e2,1 = (1, 0, 1, 0).
We perform those computations considering a, b and their derivatives as variables (as we said in

subsection 5.1), obtaining the following system to solve:

S =


1 0 −a ab− a′ −ab2 + 2ab′ + a2 + a′b− a′′
0 1 −b b2 − b′ − a −b3 + 3bb′ − 2ba− 2a′ − b′′
1 0 0 0 0
0 1 −1 1 −1

 .

6.2. Solving the linear system
For solving the system S and computing its nullspace, we will follow the steps described in subsec-

tion 5.2, but using the optimizations described in subsection 5.3. First of all, we need to translate the
system S to a polynomial system choosing the appropriate variables. While computing S we realized
that at most a′′(x) and b′′(x) appear. After looking for linear relations between the 6 initial variables
(a, a′, a′′, b, b′, b′′), we find the relations a = a′ = a′′ (as can be read directly from the defining differential
equation). Hence we have a total amount of 4 variables:

x1 ← a(x), x2 ← b(x), x3 ← b′(x), x4 ← b′′(x),

and we can compute the polynomial matrix Ŝ:

Ŝ =


1 0 −x1 x1x2 − x1 −x1x22 + x21 + x1x0 + 2x1x3 − x1
0 1 −x2 x22 − x1 − x3 −x30 + 2x1x2 + 3x2x3 − x4 − 2x1
1 0 0 0 0
0 1 −1 1 −1

 .

Now we apply the modified Bareiss algorithm to get a normal form of Ŝ and compute the nullspace.
During this algorithm we need to perform some zero-recognition steps for the polynomials:

• First iteration: we check 1. It is clearly not zero. We go on with the usual algorithm.

• Second iteration: we check 1. Again the algorithm goes on as usual.

• Third iteration: we check x1. As a(x) 6= 0, the algorithm may go on as usual.

• Fourth iteration: we check the polynomial x3x1 +x21−2x1x2 +2x1. We need to perform the closure
properties in the D-finite level, obtaining a function defined as{

α′′′(x)− 6α′′(x) + 11α′(x)− 6α(x) = 0,
α(0) = 0, α′(0) = 0, α′′(0) = 0

which is equal to zero (as all the initial values are zero). Hence we found an algebraic relation and
we reduce the matrix with it.

14



We keep looking for a pivot in the last position left, and now we need to check the polynomial
3x21 − 4x1x2 + x1x4 + 4x1. Again, we have to apply the closure properties in the D-finite level
obtaining a function defined by:{

β′′′(x)− 6β′′(x) + 11β′(x)− 6β(x) = 0,
β(0) = 0, β′(0) = 0, β′′(0) = 0

This is again zero, so a new relation was found.

This is the last step of the algorithm, because no more elements can be picked as pivots. Then we
already have the normal form 

1 0 0 0 0
0 1 0 −x2 + 2 x22 − 3x2 − x3 + 2
0 0 1 −x2 + 1 x22 − 3x2 − x3 + 3
0 0 0 0 0

 .

We compute there the nullspace obtaining the following generating vectors:

(0, x2 − 2, x2 − 1, 1, 0),

(0,−x22 + 3x2 + x3 − 2,−x22 + 3x2 + x3 − 3, 0, 1).

The lower order operator we can get arises from the first generator, so the final differential operator
is:

A = ∂3 + (b(x)− 1)∂2 + (b(x)− 2)∂,

which needs the first three initial values to determine a unique solution. Hence, the function h(x) is
defined by: {

h′′′(x) + (b(x)− 1)h′′(x) + (b(x)− 2)h′(x) = 0,
h(0) = 1, h′(0) = 1, h′′(0) = −2

In this last representation, the coefficients are computed using closure properties on the D-finite level,
so each of them is represented (as always) by a differential equation and initial values. The initial values
for h(x) are computed using the defining structures for f(x) and g(x).

7. A second example. The Mathieu’s Wronskian

In this section we present some computations to prove a property of Mathieu functions. Recall (see
Example 3.3) that these functions are defined as solutions of the differential equation

w′′(x) + (a− 2q cos (2x))w(x) = 0,

where a, q ∈ Q.
It is well known that Mathieu functions have a closed form only when q = 0. Then we have that any

solution of the equation is of the form

wA,B(x) = A cos
(√
ax
)

+B sin
(√
ax,
)

for some constants A,B ∈ Q. For the other case, q 6= 0, no closed form can be computed.
In this section, we are going to prove the following statement:

Theorem 7.1. Let w1(x; a, q) and w2(x; a, q) be two solutions to the Mathieu differential equation with
parameters a, q and initial values

w1(0; a, q) = 1, w′1(0; a, q) = 0,

w2(0; a, q) = 0, w′2(0; a, q) = 1.

Then the Wronskian of w1 and w2 is exactly one, i.e.:

w1(x; a, q)w′2(x; a, q)− w′1(x; a, q)w2(x; a, q) = 1.
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In the case when q = 0, the functions w1 and w2 have the simple closed form

w1(x; a, 0) = cos(
√
ax), w2(x; a, 0) =

1√
a

sin(
√
ax),

and the result is just the well-known identity of Pytagoras. For the case q 6= 0, we are going to apply
closure properties of DD-finite functions to verify that the Wronskian is identically one.

7.1. Representing the elements of the equality
As we can see in the Mathieu equation, we have that for any choice of a, q, the solutions w1 and w2

are DD-finite functions. Hence we can represent them using the following structures:{
w′′1 (x) + αa,qw1(x) = 0,
w1(0) = 1, w′1(0) = 0{
w′′2 (x) + αa,qw2(x) = 0,
w2(0) = 0, w′2(0) = 1

where the element αa,q, as D-finite function, is defined by the following differential equation:{
α′′′a,q(x) + 4α′a,q(x) = 0,

αa,q(0) = a− 2q, α′a,q(0) = 0, α′′a,q(0) = 8q.

Now, we apply several closure properties in the DD-finite level to get, in the end, that the desired
Wronskian is equal to 1. The first step is compute the derivative of w1(x) and w2(x) using the method
described in section 3. We already did that in example 3.6 obtaining:

αa,q(x)(w′)′′(x)− α′a,q(x)(w′)′(x) + α2
a,q(x)(w′)(x) = 0

As long as a 6= 2q, we have that the leading coefficient of the latter equation does not vanish when
x = 0. Hence we can define the derivatives of w1 and w2 with 2 initial values, namely:

w′1(0) = 0, w′′1 (0) = 2q − a,
w′2(0) = 1, w′′2 (0) = 0.

Otherwise, if we study the equation using the methods described in [10], we get that 4 initial values are
needed, so w′1(x; 2q, q) and w′2(x; 2q, q) can be defined with the initial values:

w′1(0) = 0, w′′1 (0) = 0, w′′′1 (0) = 0, w
(4)
1 (0) = −8q.

w′2(0) = 1, w′′2 (0) = 0, w′′′2 (0) = 0, w
(4)
2 (0) = 0

Now, we have to compute the following products: w1(x)w′2(x) and w′1(x)w2(x). As in both cases we
have the same defining differential equations, we will obtain the same differential equation when we apply
the closure properties. Hence, we do not need to compute a new differential equation for the difference
of those functions, and only some initial values must be computed to obtain the representation of the
Wronskian.

In the following subsections, we compute the differential operator for those products and the final
initial values of the Wronskian.

7.2. Getting the linear system
We start by computing the companion matrices for the differential operators of w(x) and w′(x):

Cw =

(
0 −αa,q
1 0

)
, Cw′ =

(
0 −αa,q
1

α′
a,q

αa,q

)

Then, we compute the Kronecker sum of those matrices, so we have the derivation matrix in the
product space

M = Cw ⊗ I2 + I2 ⊗ Cw′ .
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Now, starting with v0 = (1, 0, 0, 0)T and using the derivation rule described in section 4 we compute
the system:

S =


αa,q 0 −2α2

a,q −3α′a,qαa,q 8α3
a,q − 4α′′a,qαa,q

0 1 0 −4αa,q −10α′a,q
0 α2

a,q α′a,qαa,q α′′a,qαa,q − 4α3
a,q −14α′a,qα

2
a,q − α′′a,qα′a,q + α′′′a,qαa,q + α′′a,qαa,q

0 0 2αa,q 3α′a,q −8α3
a,q + 4α′′a,qαa,q


7.3. Solving the linear system

Next we have to set up some variables to change the system S into a polynomial matrix where we can
apply Bareiss’ algorithm. We see that only αa,q, α′a,q, α′′a,q and α′′′a,q appear in the system. After looking
for linear relations between these functions, it turns out that we find two particular relations:

α′′a,q(x) = −4αa,q + 4a, α′′′a,q = −4α′a,q,

se we end with two variables:
x0 ← αa,q(x), x1 ← α′a,q(x).

Using these relations and new variables in S we can compute the final polynomial system obtaining:

Ŝ =


1 0 −2x0 −3x1 8x20 + 16x0 − 16a
0 x0 x1 −4x20 − 4x0 + 4a −14x0x1 − 4x1
0 1 0 −4x0 10x1
0 0 2x0 3x1 −8x20 − 16x0 + 16a


Now we apply the modified Bareiss algorithm to get a normal form of Ŝ and compute the nullspace.
During this algorithm we need to perform some zero-recognition steps for the polynomials:

• First iteration: we check 1. It is clearly not zero. We go on with the usual algorithm.

• Second iteration: we check x0. Because q 6= 0, so is αa,q(x). The algorithm goes on as usual.

• Third iteration: we check −x1. Again, α′a,q(x) 6= 0 because q 6= 0, so the algorithm may go on as
usual.

• Fourth iteration: we check the polynomial −3x21 − 8x20 + 8x0a. We apply here closure properties
in the D-finite level to check that this is, indeed, not zero for any choice of a and q where q 6= 0.
Hence, the algorithm goes on as usual.

Now that we have the normal form computed we can get a generator of the nullspace, obtaining a
vector of the form:

(0, β1(x0, x1), β2(x0, x1), β3(x0, x1),−3x21 − 8x20 + 8x0a),

where β1, β2, β3 are some polynomials (not important for this proof). Hence the differential operator

A = (−3(α′a,q)
2 − 8α2

a,q + 8αa,qa)∂4 + β3(αa,q, α
′
a,q)∂

3 + β2(αa,q, α
′
a,q)∂

2 + β1(αa,q, α
′
a,q)∂,

annihilates both w1(x)w′2(x) and w′1(x)w2(x).

7.4. Finishing the proof
Now we have to compute initial values of the products w1(x)w′2(x) and w′1(x)w2(x) in order to have

the representation for W using the operator A. If we look the leading coefficient of A, we see that when
x = 0 it evaluates to 16q(a − 2q) which is zero if and only if a = 2q. Suppose that is not the case, i.e.,
a 6= 2q. Then we need exactly 4 initial values to define a function using A. Otherwise, when a = 2q, we
apply the methodology described in our previous work [10] and we realize that we need only the first 3
initial values.

Using the iterated Leibniz rule to get the initial values of the products, as shown in subsection 4.2,
we obtain the following initial values:
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f(x) f(0) f ′(0) f ′′(0) f ′′′(0)
w1(x)w′2(x) 1 0 −2(a− 2q) 0
w′1(x)w2(x) 0 0 −2(a− 2q) 0

Hence, the final Wronskian W (x; a, q) is defined by:{
A · (W (x; a, q)) = 0,

W (0; a, q) = 1, W ′(0; a, q) = 0, W ′′(0; a, q) = 0, W ′′′(0; a, q) = 0

or, when a = 2q: {
A · (W (x; 2q, q)) = 0,

W (0; 2q, q) = 1, W ′(0; 2q, q) = 0, W ′′(0; 2q, q) = 0

If we look at the operator A we can wee that ∂ can be factored to the right, obtaining then that any
constant is annihilated by A (in particular, A · 1 = 0). On the other hand, we have that the function
f(x) = 1 has the same 4 first initial values as W (or the 3 first initial values in the case a = 2q), and
both are annihilated by A. Hence W (x; a, q) = 1, finishing the proof.

8. Conclusions

We have introduced a computable extension of D-finite functions to differentially definable functions.
Starting from any differential subring of the formal power series, this construction can be iterated. For
these classes of functions essentially the same closure properties hold as for classical D-finite functions.
With the example of Mathieu’s functions, we have illustrated how the closure properties can be used to
prove identities of DD-finite functions. The results presented here have been implemented in the open
source mathematical software SAGE [21] and can be freely accessed from the RISC webpage [9].

The algorithms described are valid for any differential subring R ⊂ K[[x]]. But some considerations
were made in the particular case we have a recursive structure (i.e., R = D(S)). When that is not the
case, we directly rely on the implementation of the arithmetic over R.

The key in the algorithms for the closure properties of addition and multiplication is the bound for
the dimension. Hence it can be easily adapted to other closure properties going along the same lines.
The composition with formal power series or algebraic functions seems natural extensions to be studied
following this methodology.

For future work it will be interesting to study analogues on the sequence level. This concerns on the
one hand defining the equivalent construction extending P-finite sequences (sequences satisfying linear
recurrences with polynomial coefficients). On the other hand the structure of coefficient sequences in
the formal power series expansion

∑
n≥0 fnx

n of DD-finite functions deserves further study. For D-finite
functions, closure properties are often used in a combined guess-and-prove approach. Also for DD-finite
functions, it would be interesting to have a guessing routine at hand. For this it might be better to start
first with guessing on the level of coefficient sequences. Last, but not least, further improvements of the
code are required to cover bigger examples and also include more parameters.

[1] S. Abramov, M. Barkatou, D. Khmelnov, On full rank differential systems with power series coeffi-
cients, J. Symbolic Computation 68 (2015) 120–137.

[2] S. Abramov, D. Khmelnov, Regular solutions of linear differential systems with power series coeffi-
cients, Programming and Computer Software 40 (2) (2014) 98–106.

[3] G. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications,
Cambridge University Press, 1999.

[4] E. Bareiss, Sylvester’s identity and multistep integer-preserving gaussian elimination, Mathematics
of Computation 22 (1967) 565–578.

[5] M. Bronstein, Symbolic Integration I, Algorithms and Computation in Mathematics, 1st ed.,
Springer, 1997.

18



[6] F. Chyzak, Gröbner bases, symbolic summation and symbolic integration, in: Gröbner bases and
applications (Linz, 1998), vol. 251 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press,
Cambridge, 1998, pp. 32–60.

[7] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.16 of 2017-09-
18, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark,
B. R. Miller and B. V. Saunders, eds.

[8] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, USA, 1986.

[9] A. Jiménez-Pastor, dd_functions: SAGE package, http://www.risc.jku.at/research/combinat/software/.

[10] A. Jiménez-Pastor, V. Pillwein, A computable extension for holonomic functions: DD-finite func-
tions, Tech. Rep. 2017-10, DK Computational Mathematics (12 2017).

[11] M. Kauers, The Holonomic Toolkit, in: J. Blümlein, C. Schneider (eds.), Computer Algebra in
Quantum Field Theory: Integration, Summation and Special Functions, Springer, 2013, pp. 119–
144.

[12] M. Kauers, M. Jaroschek, F. Johansson, Ore Polynomials in Sage, in: J. Gutierrez, J. Schicho,
M. Weimann (eds.), Computer Algebra and Polynomials, Lecture Notes in Computer Science, 2014.

[13] M. Kauers, P. Paule, The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating
Functions, Asymptotic Estimates, 1st ed., Springer Publishing Company, Incorporated, 2011.

[14] E. Kolchin, Differential algebra and algebraic groups, Academic Press New York, 1973.

[15] C. Koutschan, Advanced Applications of the Holonomic Systems Approach, Ph.D. thesis, RISC-Linz,
Johannes Kepler University (September 2009).

[16] C. Mallinger, Algorithmic Manipulations and Transformations of Univariate Holonomic Functions
and Sequences, Master’s thesis, RISC, J. Kepler University (August 1996).

[17] N. W. McLachlan, Theory and application of Mathieu functions, Dover Publications, Inc., New York,
1964.

[18] E. Rainville, Special Functions, 1st ed., Chelsea Publishing Co., Bronx, N.Y., 1971.

[19] R. Stanley, Differentiably finite power series, European Journal of Combinatorics 1 (2) (1980) 175–
188.

[20] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.

[21] W. Stein, et al., Sage Mathematics Software (Version 8.1), The Sage Development Team,
http://www.sagemath.org (2017).

[22] M. van der Put, M. Singer, Galois Theory of Linear Differential Equations, Grundlehren der math-
ematischen Wissenschaften, Springer Berlin Heidelberg, 2003.

[23] M. van Hoeij, Formal solutions and factorization of differential operators with power series coeffi-
cients, J. Symbolic Comput. 24 (1) (1997) 1–30.

[24] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

19



Technical Reports of the Doctoral Program

“Computational Mathematics”

2018

2018-01 D. Dominici: Laguerre-Freud equations for Generalized Hahn polynomials of type I Jan 2018.
Eds.: P. Paule, M. Kauers

2018-02 C. Hofer, U. Langer, M. Neumüller: Robust Preconditioning for Space-Time Isogeometric

Analysis of Parabolic Evolution Problems Feb 2018. Eds.: U. Langer, B. Jüttler
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