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Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho

Managing Editor: Silviu Radu

Communicated by: Ulrich Langer
Bert Jüttler
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A parallel multigrid solver for multi-patch
Isogeometric Analysis

Christoph Hofer and Stefan Takacs

Abstract Isogeometric Analysis (IgA) is a framework for setting up spline-based
discretizations of partial differential equations, which has been introduced around
a decade ago and has gained much attention since then. If large spline degrees are
considered, one obtains the approximation power of a high-order method, but the
number of degrees of freedom behaves like for a low-order method. One important
ingredient to use a discretization with large spline degree, is a robust and preferably
parallelizable solver. While numerical evidence shows that multigrid solvers with
standard smoothers (like Gauss Seidel) does not perform well if the spline degree
is increased, the multigrid solvers proposed by the authors and their co-workers
proved to behave optimal both in the grid size and the spline degree. In the present
paper, the authors want to show that those solvers are parallelizable and that they
scale well in a parallel environment.

1 Introduction

Isogeometric Analysis (IgA) was originally introduced in the seminal paper [10],
aiming to unite the worlds of computer aided design (CAD) and finite element
(FEM) simulation. From a technical point of view, it is a framework for setting
up spline-based discretizations of partial differential equations. The key idea is that
the spline space is typically first defined on the unit square or the unit cube and then
mapped to the computational domain using one global geometry function. More
complicated domains cannot be represented by just one such geometry function. In-
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stead, the computational domain is decomposed into patches, where each of them
is represented by its own geometry function. This is called the multi-patch case, in
contrast to the single-patch case.

As a next step, the linear system resulting from the discretization of the PDE
has to be solved. This might be challenging as the condition number of the linear
system grows exponentially with the spline degree, where high spline degrees might
be desired because of their superior approximation power.

While in early IgA literature, the dependence of methods on the spline degree
has not been considered, in the last few years robustness in the spline degree has
gained increasing interest. Several (almost) robust approaches or approaches with a
mild dependence on the spline degree have been proposed, on the one side for the
single-patch case, cf. [2, 5, 9, 12, 8] and references therein, and on the other side as
approaches aiming to combine patch-local solvers to a global solver, cf. [11, 3, 4, 1]
and references therein.

In [13], we have considered a slightly different approach: We do not aim to com-
bine patch-local solvers to a global solver, but to combine patch-local smoothers to a
global smoother which is used within a global multigrid solver. In the present paper,
we give some additional remarks on an efficient implementation of the multigrid
method, comment on its parallelization and give numerical results.

This paper is organized as follows. First, the model problem and the discretiza-
tion are discussed in Sec. 2. Then, in Sec. 3, we recall the formulation of the multi-
grid solver. Its parallelization is discussed in the following Sec. 4. In Sec. 5, we give
the results of numerical experiments and draw conclusions.

2 Model problem and isogeometric discretization

Let Ω ⊂ Rd with d ∈ {2,3} be a bounded computational domain with Lipschitz
boundary. We consider a standard Poisson model problem

−∆u = f in Ω , u = 0 on ΓD and
∂u
∂n

= 0 on ΓN ,

where ΓD is a subset of ∂Ω with positive measure and ΓN := ∂Ω\ΓD. The model
problem reads in variational form as follows. Given f ∈ L2(Ω), find u ∈ H1

0,D(Ω)
such that

(∇u,∇v)L2(Ω) = ( f ,v)L2(Ω) for all v ∈ H1
0,D(Ω) . (1)

Here and in what follows, L2(Ω) and H1(Ω) are the standard Lebesgue and Sobolev
spaces with standard norms and H1

0,D(Ω) := {u ∈ H1(Ω) : u|ΓD = 0}.
We preform a standard isogeometric multi-patch discretization as it has been

specified in [13]. In the present paper, we try to keep the explanation short and give
only an overview. We assume that the computational domain Ω is composed of K
patches Ωk such that
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Ω =
K⋃

k=1

Ωk and Ωk ∩Ωl = /0 for any k 6= l , (2)

where each patch Ωk is a bounded and open domain. We assume that the patches
are fully matching, i.e., the intersections Ωk∩Ωl are either empty, common vertices,
common edges or common faces. Any of the patches is parametrized by a bijective
geometry function

Gk : Ω̂ := (0,1)d →Ωk := Gk(Ω̂)⊂ Rd .

Before we define set of trial functions V`⊂H1
0,D(Ω), we introduce discretizations

living on the parameter domain Ω̂ . Let

Sp,h(0,1) :=
{

u ∈Cp−1(0,1) : u|[hi,h(i+1)] is a polynomial of degree p , ∀i=1,...,n
}

be the space of univariate splines of maximum smoothness and the space Sp,h(Ω̂) :=
Sp,h(0,1)⊗ ·· · ⊗ Sp,h(0,1) be the corresponding tensor-product spline space. The
grid size h and the spline degree p might be different for any patch and for any
spacial direction; for simplicity, we do not express that in the notation. Based on the
discretization living on the parameter domain Ω̂ , we define the function space V` of
isogeometric functions living on the physical domain Ω as follows:

V` := {u ∈C0(Ω) : u◦Gk ∈ Sp,h`(Ω̂)} . (3)

We assume to have a fully matching discretization, which means that the discretiza-
tions agree on the interfaces. A more formal definition of the basis and its discretiza-
tion is given in [13, Sec. 2]. In Fig. 1, a fully matching discretization is depicted,
where each node represents one basis function and therefore one degree of freedom
(dof). Note that any of the basis function whose associated node lies on one patch,
vanishes outside of that patch. Any of the basis functions whose associated node lies
within one edge, vanishes outside the union of the edge and the adjacent patches.
Finally, any of the basis functions whose associated node coincides with one vertex,
vanishes outside the union of that vertex and the adjacent edges and patches. The
behavior in three dimensions is completely analogous.

Fig. 1: Fully matching discretization



4 Christoph Hofer and Stefan Takacs

The Galerkin principle yields the following discretized variational problem. Find
u ∈V` such that

a(u,v) = ( f ,v)L2(Ω) for all v ∈V` , (4)

where

a(u,v) := (∇u,∇v)L2(Ω) =
K

∑
k=1

(|detJGk |J
−>
Gk

J−1
Gk

∇ûk,∇v̂k)L2(Ω̂)︸ ︷︷ ︸
ak(u,v) :=

(5)

for ûk := u◦Gk ∈ Sp,h`(Ω̂) and v̂k := v◦Gk ∈ Sp,h`(Ω̂) and where JGk is the Jacobian
of the geometry map. Using the chosen basis, we obtain a matrix-vector formulation
of the discretized problem, which reads as follows. Find u ∈ RN such that

A` u = f . (6)

Allowing constants that depend on the geometry function, we obtain that the matrix
A` is spectrally equivalent to the matrix Â`, which discretizes the bilinear form

â(u,v) :=
K

∑
k=1

(∇ûk,∇v̂k)L2(Ω̂)
,

where, again, ûk := u◦Gk and v̂k := v◦Gk.

3 The multigrid solver and its extension to three dimensions

We employ the multigrid solver based on a hierarchy of grids for grid levels
` = 0, . . . ,L, obtained by uniform refinement. Throughout the grid hierarchy, the
spline degree p and the corresponding smoothness is kept unchanged. This yields
nested spaces: V0 ⊂ V1 ⊂ ·· · ⊂ VL ⊂ H1

0,D(Ω), which allows to use the canonical
embedding V`−1→V` for the multigrid method; its matrix representation is denoted
by P̀ . Following the usual pattern, we use its transpose P>` as restriction.

One multigrid cycle on some grid level ` consists of the following steps.

• First, ν pre-smoothing steps are applied, where each reads as follows:

u← u+ τL−1
` ( f −A`u) . (7)

The choice of the smoothing operator L−1
` and the damping parameter τ are dis-

cussed below.
• Then, the coarse grid correction is performed:

u← u+ τP̀ A−1
`−1P>` ( f −A`u) ,
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where for ` > 1, the application A−1
`−1 is replaced by µ = 1 (V-cycle) or µ = 2 (W-

cycle) recursive applications of the multigrid method on the coarser grid level.
• Finally, again ν post-smoothing steps (7) are applied.

As smoother, an additive Schwarz type combination

L−1
` := ∑

T
P̀ ,T L−1

`,T P>`,T (8)

of local smoothing operators L−1
`,T is proposed, where the dofs are collected based on

separating the domain into pieces: patches, vertices, edges and, in three dimensions,
faces. Here, each dof is assigned to exactly one of these pieces, cf. Fig. 2. Certainly,
based on such a one-by-one splitting, the matrix P̀ ,T is nothing but a indicator matrix
representing the canonical embedding.

Fig. 2: Decomposition into pieces serving as subspaces for the additive Schwarz
method

The local smoothing operators are chosen as follows.

• For the patch-interiors, the subspace corrected mass smoother as proposed in [8]
is chosen as smoothing operator L−1

`,T .
• For the edges and vertices, in [13] direct solvers have been proposed as smoothers,

i.e., L`,T is the restriction of the matrix A` to the edge or vertex. To avoid unnec-
essary communication, we choose an approximation which can be computed di-
rectly. Using [13, Lemma 4.1] and [13, eq. (4.16)], we obtain that the restriction
of A` to an edge is spectrally equivalent to

L`,T :=
(

h`
p

)d−1

K`+

(
h`
p

)d−3

M` ,

where K` and M` are the corresponding univariate stiffness and mass matrices.
Analogously, its restriction to a vertex is a constant in the order of

L`,T :=
(

h`
p

)d−2

.

• Three dimensional problems have not been considered in [13], so we have to
discuss how to choose the local smoothers for faces. If, as for the edges and
vertices, again a direct solver was applied, the overall computational costs would
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not be optimal anymore. So, again, observe that the the restriction of A` to a face
is spectrally equivalent to

L∗`,T :=
(

h`
p

)d−2

K`+

(
h`
p

)d−4

M` ,

where and K` = K`⊗M`+M`⊗K` and M` = M`⊗M` are the corresponding
stiffness and mass matrices on the face. For d = 3, we obtain

L∗`,T =
h`
p

(
K`+

p2

h2
`

M`

)
.

Here, analogously to the case of the patch-interiors, the subspace corrected mass
smoother is used. Note that the subspace corrected mass smoother is set up such
that it bounds the stiffness matrix K` from above, cf. [8, eq. (11)]. In the present
paper, besides a trivial scaling, the stiffness matrix K` is augmented by p2h−2

`
times the mass matrix M`. So, we have also to augment the local contributions
for the subspace corrected mass smoother, cf. the matrices Lα in [8, Sec. 4.2], in
the same way.

4 The parallelization of the multigrid solver

The parallelization of the multigrid solver follows the approach presented in [6].
We use MPI1, so each processor executes independently the whole algorithm with
its local data until communication is explicitly requested.

We assign each of the patches to one of the processors. So, that processor holds
the values of all dofs that belong to that patch including its interfaces, cf. Fig. 3. This
means that the dofs on the interfaces might be assigned to more than one processor.

Fig. 3: The distribution of the dofs to the processors

A vector that occurs in the algorithm, say w, is stored either in accumulated form
(Type I) or distributed form (Type II). We say that a vector is stored in accumu-
lated form if each of the processors holds those parts of the global vector which
correspond to the dofs assigned to the processor. We denote such vectors by wacc.

1 Message Passing Interface, see http://mpi-forum.org/.
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We say that a vector is stored in distributed form if the global vector is the sum of
the contributions of all the processors. Such vectors are denoted by wdist . Again,
the processor-local contributions of the distributed vectors are supported only the
patches assigned to the processor including their interfaces.

Note that only certain kinds of operations make sense; so we can add accumu-
lated and distributed vectors only to vectors of the same type:

uacc + vacc→ wacc and udist + vdist → wdist ,

cf. [6, Sec. 5.3]. As the multi-patch setting is equivalent to a standard approach of
non-overlapping domain decomposition, the overall stiffness matrix is assembled
on a per-patch basis, i.e., the bilinear forms ak from (5) are evaluated separately
yielding matrices A`,k. Consequently, the global stiffness matrix A` is the sum of the
local contributions A`,k. This means that the matrix A` is stored in distributed form,
which yields the following mapping type:

A` uacc→ wdist ,

i.e., A` can be applied to accumulated vectors and the the result of the operation is
distributed, cf. [6, Sec. 5.4.1].

Similar to [6, Sec. 7.2.2], the inter-grid transfer operators satisfy

P̀ uacc→ wacc and P>` udist → wdist

because the prolongation operator has a block-triangular structure as in [6, eq. (5.9)]
and the restriction operator has a block-triangular structure as in [6, eq. (5.10)]. The
block-triangular structure is obtained because the following statements hold true:

• On each vertex, the prolonged value wacc coincides with the coarse-grid value
uacc of the same vertex.

• On each edge, the prolonged values wacc only depend on the coarse-grid values
uacc on the same edge and on the adjacent vertices.

• On each patch-interior, the prolonged values wacc only depend on the coarse-grid
values uacc on the same patch-interior and on the adjacent edges and vertices.

For three dimensions, completely analogous statements hold true.
The global operator L−1

` is block-diagonal, where each block corresponds to one
piece. Note that by construction each piece belongs as a whole to one processor or
is shared as a whole by the same processors, so it satisfies both the conditions of [6,
eq. (5.9)] and [6, eq. (5.10)]. This shows

L−1
` uacc→ wacc and L−1

` udist → wdist ,

i.e., this operator can be applied both to distributed and accumulated vectors and it
preserves the type of the vector.

As in any iterative solver, we need to accumulate the vectors of interest in each
iterate. This we denote using the symbol Σ , which maps as follows:
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Σ udist → wacc. (9)

We note that only a communication between the processors holding neighboring
patches is required in order to perform (9).

Only the coarsest grid level `= 0 needs some special treatment. Since the focus
of the present paper is set on parallelizing the multigrid solver without changing its
mathematical meaning, we perform an exact global solve on the coarsest grid level.
This seems to be acceptable as it is done only for the coarsest grid level. So, we
are required to communicate the stiffness matrix between all processors such that
every processor holds a global stiffness matrix. We set up a direct solver A−1

0 for
this global stiffness matrix, so its application is perform in the following way

χglob A−1
0 Σ glob uacc→ wacc ,

where Σ glob denotes the accumulation of vectors where each processor obtains the
global vector and χglob is the restriction of the global vector to the patches assigned
to the processor. The latter involves only discarding unnecessary data. We obtain

Σ glob udist → wglob and χglob uglob→ wacc .

Overall, the parallel multigrid solver looks as follows:

Algorithm 1 Parallel multigrid solver
1: procedure MULTIGRID(`,uacc, f

dist
)

2: for all i = 1, . . . ,ν do . Pre-smoothing
3: uacc← uacc + τΣL−1

` ( f
dist
−A`uacc)

4: end for
5: rdist ← P>` ( f

dist
−A`uacc)

6: if `= 1 then . Coarse-grid correction
7: pacc← χglob A−1

0 Σ glob rdist . Exact solver for coarsest grid level
8: else
9: pacc← 0

10: for all i = 1, . . . ,µ do . µ = 1 is V-cycle; µ = 2 is W-cycle
11: pacc←MULTIGRID(`−1, pacc,rdist)
12: end for
13: end if
14: uacc← uacc + P̀ pacc
15: for all i = 1, . . . ,ν do . Post-smoothing
16: uacc← uacc + τΣL−1

` ( f
dist
−A`uacc)

17: end for
18: return uacc
19: end procedure

We use our multigrid algorithm as a preconditioner for a standard parallel pre-
conditioned conjugate gradient (PCG) solver. Note that the multigrid preconditioner
already takes a distributed residual and returns an accumulated update. So, the pre-
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conditioned conjugate gradient solver only needs to accumulate data in order to
compute the required scalar products accordingly, cf. [6, Sec. 6.3.1].

5 Numerical experiments

In this section, we present numerical experiments concerning the parallelization of
the multigrid solver. The solver was implemented in C++ based on the G+Smo
library [7] and, as already mentioned, the parallelization is performed using MPI.
All numerical experiments have been done using the HPC Cluster RADON12.

We present timings for setup, assembling and solving. The setup costs include

1. the costs of the setup of the dof-mappers, which describe the relation between
the local dof-indices and the global dof-indices,

2. the costs of the grid refinement and the setup of the inter-grid transfer matrices,
3. the costs of the setup of the piece-local smoothers and
4. the costs of the setup of the coarse-grid solver.

Here, our implementation of item 1 requires that each processor knows about the
indexing of the global dofs. Also for item 4, the information on all dofs is required,
however only on the coarsest grid level. The costs which are typically dominant,
i.e., those for assembling and for solving, are presented separately. It is important to
note that assembling does not require the any kind of communication between the
processors. So its parallelization is trivial. The communication, which is required
for the solving phase, is discussed in detail in Sec. 4.

(a) The Yeti footprint (b) The Fichera corner

Fig. 4: The computational domains

We have performed the numerical experiments for two and three dimensions. As
two dimensional domain, we use the Yeti footprint (Fig. 4a), which has already been
considered in [13] and which is also a popular domain for the IETI-DP method,

2 We use up to 32 out of 68 available nodes, each equipped with 2x Xeon E5-2630v3 “Haswell”
CPU (8 cores, 2.4 Ghz, 20 MB cache) and 128 GB RAM. More information is available at
https://www.ricam.oeaw.ac.at/hpc/.
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cf. [11]. As three dimensional domain, we consider the Fichera corner (Fig. 4b).
This domain is often considered as extension of the L-shaped domain to three di-
mensions; the corresponding numerical experiments show that the proposed method
can also be applied to domains without full elliptic regularity.

5.1 The Yeti footprint (2D)

On the Yeti footprint, we solve the model problem

−∆u = 50π
2 sin(5π x)sin(5π y) in Ω ,

u = 0 on ΓD ,

∂

∂n
u = 0 on ΓN ,

where ΓD is the outer boundary and ΓN are the four inner boundaries.
The Yeti footprint consists of 21 patches, which can be seen in Fig. 4a. Since we

need sufficiently many patches for parallelization, we first split each patch uniformly
into 16 patches, so we obtain in total K = 336 patches. We solve the problem with a
conjugate gradient solver, preconditioned with one V-cycle of the multigrid method.
We perform 1+1 smoothing steps of the proposed smoother. The damping parameter
and the scaling parameter (in the subspace corrected mass smoother) are chosen as
in [13], i.e., τ = 0.25 and σ = 1

0.2 h−2
` .

In Tab. 1, we report on the number of iterations required to reach the desired rel-
ative accuracy goal of 10−8. Here, ` represents the number of refinement levels and
p the spline degree. On the coarsest grid level (`= 0), the patch-local discretization
only consists of global polynomials, i.e., each patch is one element of the discretiza-
tion. Refinement is done by uniformly refining the patch-local grids, keeping the
number of patches unchanged. We observe, as in [13], that the number of iterates is
quite robust in the grid size and in the spline degree. The presented numbers have
been computed with the serial code. The number of iterates is supposed to be the
same if parallelization is applied; however due to some small numerical instabilities,
in some cases the parallel code needs one additional iteration (but never more than
that). Similar iteration counts are obtained for the W-cycle.

In Tab. 2, we present the strong scaling results. We fix the grid level ` and the
spline degree p to two typical values. For ` = 7 and p = 4, we have 5768189 dofs
and the corresponding stiffness matrix has 4.6 108 non-zero entries. For the case
`= 7 and p = 8, the number of dofs increases slightly to 6125757, but the stiffness
matrix has already 1.8 109 non-zero entries. In the first two rows, we compare the
costs of the serial code and the parallel code. Here, we obtain that the parallel code
is slightly slower during the solving phase which is mainly due to the fact that the
parallel code does not assemble the whole stiffness matrix but works with patch-
local stiffness matrices. This allows also to consider the larger problem with ` = 7
and p = 8, where the serial code caused memory problems.
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`� p 2 3 4 5 6 7 8

4 45 42 37 33 31 28 25
5 48 44 40 36 33 30 27
6 50 44 41 36 35 33 27
7 51 45 42 37 36 34 28

Table 1: Iteration counts for Yeti footprint, K = 336

`= 7 , p = 4 , K = 336 `= 7 , p = 8 , K = 336

Setup Assembling Solving Setup Assembling Solving
# Proc. t s t s t s t s t s t s

(serial) 217.1 – 522.1 – 4929.5 – – – – – – –
1 220.0 1 520.0 1 5125.9 1 549.0 1 8230.9 1 4729.8 1
2 80.1 2.7 263.8 1.9 1367.6 3.7 225.4 2.4 4158.5 1.9 1250.8 3.7
4 35.3 6.2 131.8 3.9 399.1 12.8 117.0 4.6 2098.5 3.9 409.9 11.5
8 17.1 12.8 66.0 7.8 109.6 46.7 53.9 10.1 1055.9 7.8 140.2 33.7

16 10.7 20.5 33.9 15.3 40.7 125.9 30.0 18.3 543.4 15.1 59.2 79.9
32 8.0 27.5 17.4 29.8 17.1 299.7 17.7 31.0 275.1 29.9 26.8 176.4
64 7.2 30.5 9.4 55.3 10.6 483.5 12.9 42.5 149.7 54.9 13.7 345.2

128 6.0 36.3 5.1 101.3 4.1 1250.2 9.9 55.4 76.2 108.0 7.2 656.9
256 6.3 34.4 3.2 160.0 3.3 1553.3 9.5 57.7 51.4 160.1 6.5 727.6

Table 2: Strong scaling behavior for Yeti footprint

`= 7 , p = 4 `= 7 , p = 8

# Proc. # dofs It. Setup Ass. Solving # dofs It. Setup Ass. Solving

4 360 902 46 1.4 9.2 7.9 383 262 46 6.6 147.3 21.4
16 1 442 569 44 2.4 9.3 8.5 1 531 977 44 8.7 151.2 20.8
64 5 768 189 41 7.2 9.5 10.5 6 125 757 28 13.2 148.7 13.7

256 23 068 573 36 42.4 9.7 9.5 24 498 717 26 54.5 153.8 20.0

Table 3: Weak scaling behavior for Yeti footprint

In the following rows, we consider the strong scaling behavior. We present in
each case the time t in seconds required for setup, assembling and solving and the
corresponding speedup s. We observe that the overall method has good strong scal-
ing properties. As the setup phase consists also of parts that are not parallelized,
we observe this time does not fall below a few seconds. The assembling phase,
which is known to be dominant phase in high-order isogeometric methods, scales
almost optimal. Also the solving phase needs rather little communication and is ex-
pected to scale well therefore. Indeed, the speedup is much larger than what would
be expected. The authors think that this might be explained by some extraordinary
caching effects, but here further investigation is required. The extraordinary well
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behavior of the solver cannot be explained with changed convergence behavior be-
cause in all cases, the convergence behavior is identical.

In Tab. 3, we present weak scaling results. We again fix the grid level ` and the
spline degree p to two typical values. Here, for the case of 4 processors, we consider
the initial configuration of K = 21 patches; in the following rows we consider 84,
336 and 1344 patches. (So, the third row with 64 processors coincides with the
line with 64 processors in Tab. 2.) As the setup phase is not fully parallelized, the
setup times increase if the number of patches is increased. Both, the assembling
times and the solving times are rather constant and do not indicate a clear tendency.
The solving times also change due to the fact that the required number of iterations
decays if the patches are split up. The computational costs for the global-coarse grid
solver is negligible in this example; for K = 1344 patches the costs are 0.36 seconds
for p = 4 and 1.4 seconds for p = 7 and for smaller patch numbers even less.

5.2 The Fichera corner (3D)

On the Fichera corner, we solve the model problem

−∆u = 75π
2 sin(5π x)sin(5π y)sin(5π z) in Ω := (0,2)3\[1,2)3 ,

u = 0 on ΓD := {(x,y,z) ∈ ∂Ω : xyz = 0} ,
∂

∂n
u = 0 on ΓN := ∂Ω\ΓD .

The Fichera corner consists of 7 patches, which can be seen in Fig. 4b, which are
uniformly split into K = 448 patches in total. Again, we solve the problem with a
conjugate gradient solver preconditioned with one V-cycle of the multigrid method
with 1+1 smoothing steps. Again τ = 0.25 and σ = 1

0.2 h−2
` are chosen.

In Tab. 4, we report on the number of iterations required to reach the desired
relative accuracy goal of 10−8. We observe, as for the Yeti footprint, that the number
of iterates is quite robust in the grid size and in the spline degree. The presented
numbers have been computed with the serial code. Again, the parallel code yields
(almost) the same numbers.

In Tab. 5, we present the strong scaling results. For ` = 4 and p = 2, we have
N = 2201024 dofs and a stiffness matrix with 2.5 108 non-zero entries. The second
example with `= 3 and p = 4 yields N = 596288 dofs and 2.8 108 non-zero entries.
The timings behave similar as in the two-dimensional case, however the costs of the
setup phase are much larger which can be explained by the fact that the interfaces
are much larger. (For two dimensional problems, the interfaces consist of O(N1/2)
dofs and for three dimensional problems, the interfaces consist of O(N2/3) dofs.)
The assembling times seem to be optimal, whereas the solving times again behave
extraordinary well.

In Tab. 6, we present weak scaling results. We again fix the grid level ` and the
spline degree p to two typical values. Here, for the case of 4 processors, we consider
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`� p 2 3 4 5 6

1 30 31 31 26 22
2 33 32 33 31 28
3 39 38 37 33 30
4 44 44 42 37 35

Table 4: Iteration counts for Fichera corner, K = 448

`= 4 , p = 2 , K = 448 `= 3 , p = 4 , K = 448

Setup Assembling Solving Setup Assembling Solving
# Proc. t s t s t s t s t s t s

(serial) 179.4 – 260.2 – 4980.7 – 93.5 – 1313.5 – 1252.2 –
1 198.2 1 253.4 1 5091.3 1 109.7 1 1985.9 1 1073.1 1
2 77.7 2.5 127.4 1.9 1355.0 3.7 51.2 2.1 1103.3 1.8 340.0 3.1
4 49.2 4.0 63.5 3.9 395.7 12.8 30.6 3.5 492.2 4.0 110.2 9.7
8 32.9 6.0 32.0 7.9 99.2 51.3 22.8 4.8 214.1 9.2 40.1 26.7

16 28.3 7.0 16.5 15.3 34.4 148.0 27.3 4.0 113.4 17.5 22.7 47.2
32 26.8 7.4 8.4 30.1 12.4 410.5 17.0 6.4 55.5 35.7 8.3 129.2
64 32.2 6.1 5.5 46.0 5.0 1018.2 24.4 4.5 31.2 63.6 6.9 155.5

128 42.3 4.6 2.7 93.8 2.6 1958.1 15.8 6.9 15.4 128.9 3.6 298.0
256 54.1 3.6 1.1 230.3 1.8 2828.5 24.0 4.5 7.9 251.3 3.9 275.1

Table 5: Strong scaling behavior for Fichera corner

`= 4 , p = 2 `= 3 , p = 4

# Proc. # dofs It. Setup Ass. Solving # dofs It. Setup Ass. Solving

1 34 391 28 0.4 4.0 1.9 9 317 31 0.6 38.0 1.3
8 275 128 39 1.3 4.5 4.0 74 536 35 1.1 22.8 2.1

64 2 201 024 45 54.4 4.5 6.6 596 288 38 24.1 28.7 6.2
512 17 608 192 46 2071.3 5.1 11.1 4 770 304 35 2343.8 32.4 59.5

Table 6: Weak scaling behavior for Fichera corner

the initial configuration of K = 7 patches. For the following rows, we consider 56,
448 and 3584 patches. (So, the line with 64 processors coincides with the corre-
sponding line in Tab. 5.) Again, the assembling times and the solving times do not
show any clear tendency. Only for the last line with 3584 patches, the coarse-grid
solver causes problems. For the case `= 3 and p = 4, 51 of the 59 seconds required
for solving are due to the global solver on the coarsest grid. Again, the setup costs
get dominant if the number of patches is increased.

Concluding, we have shown that the robust multi-patch multigrid solver from [13]
can be extended to three dimensional domains and that it converges well also in this
case. We have observed that the multigrid solver can be parallelized in a natural
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way yielding very good speedup rates. Certainly, this is not the end of the story and
further improvement should be considered in two directions. First, the setup phase
becomes a bottleneck if many processors are considered. Here, improvements would
be mainly a challenge in terms of implementation and data management. Second, the
coarse-grid problem becomes too large if the number of patches is increased, partic-
ularly in the three dimensional case. To resolve that issue, it would be necessary to
further coarsen the coarse-grid problem or to consider approximate solvers on the
coarsest grid level which certainly would change the mathematical meaning of the
algorithm and could, therefore, influence its convergence behavior. Finally, further
investigation is required to completely understand the super optimal speedup rates
observed in the strong scaling tests.
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