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Abstract
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1 Introduction

Let N denote the set of natural numbers and N0 the set of nonnegative
integers,

N = {1, 2, 3, . . .} , N0 = N ∪ {0} .

If {µn} is a sequence of complex numbers and L : C [x] → C is the linear
functional defined by

L [xn] = µn, n ∈ N0,

then L is called the moment functional [4] determined by the formal moment
sequence {µn}. The number µn is called the moment of order n.

Suppose that {Pn} is a family of monic polynomials, with deg (Pn) = n.
If the polynomials Pn (x) satisfy

L [PnPm] = hnδn,m, n,m ∈ N0, (1)

where h0 = µ0, hn 6= 0 and δn,m is Kronecker’s delta, then {Pn} is called an
orthogonal polynomial sequence with respect to L.

If we write

xn =
n∑
k=0

an,kPk (x) , n ∈ N0,

we can define a lower triangular matrix An by

(An)i,j = ai,j, 0 ≤ i, j ≤ n− 1.

If we define the diagonal matrix Dn by

(Dn)i,j = hiδi,j, 0 ≤ i, j ≤ n− 1,

and the Hankel matrix Hn by

(Hn)i,j = µi+j, 0 ≤ i, j ≤ n− 1, (2)

2



then we have the LDL decomposition [12, 4.1.2]

Hn = AnDnA
T
n . (3)

We define the Hankel determinants ∆n by ∆0 = 1 and

∆n = det (Hn) , n ∈ N. (4)

Determinants have a long history and an extensive literature, see [1], [3],
[21], [25], [29], [30], [31], [32], and the impressive monographs [17] and [18].

The theories of Hankel determinants and orthogonal polynomials are
deeply connected, see for example [4], [6], [9], [10], [14], [15], [16] [19], and
[28].

In [8], we studied the discrete semiclassical orthogonal polynomials of
class 1, and considered linear functionals L that have the form

L [p] =
∞∑
k=0

p(k)ω (k) zk, p(x) ∈ C [x] , (5)

for z ∈ C and some function ω with

ω (k) 6= 0, k ∈ N0. (6)

In this case, the moments µi (z) are given by

µi (z) =
∞∑
k=0

kiω (k) zk, i ∈ N0, (7)

and the entries of the Hankel matrix (2) are

(Hn)i,j = µi+j (z) =
∞∑
k=0

ki+jω (k) zk, 0 ≤ i, j ≤ n− 1. (8)

We note from (7) that all the moments µi (z) can be obtained from the
first one µ0 (z) , since

µi (z) =
∞∑
k=0

kiω (k) zk =
∞∑
k=0

ω (k)ϑi
(
zk
)

= ϑiµ0 (z) ,
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where the differential operator ϑ is defined by [23, Chapter 6]

ϑ = z
d

dz
.

It follows that if the first moment µ0 (z) is analytic in some disk |z0| < r, the
same will be true for all the other moments. In fact, we showed in [7] that
for all families of discrete semiclassical orthogonal polynomials of class s, the
moments have the form

µi (z) = (λ+ τz)−i
s∑

k=0

pk (z)µk (z) ,

where the constants λ, τ ∈ {−1, 0, 1} and the polynomials pk (z) depend on
the given family.

Since the Hankel determinants ∆n (z) are analytic functions of z (in the
same domain as µ0), it is natural to consider the Taylor series

∆n (z) =
∞∑
m=0

dm (n) zm, |z| < r, (9)

and try to determine the coefficients dm (n) . Surprisingly enough, we haven’t
been able to find many references on this topic. In [24], Rusk considered at
the nth−derivative of a general determinant, whose elements are functions
of a variable t, and found some connection with a symbolic version of the
multinomial theorem. In [5], Christiano and Hall used the general Leibniz
rule and obtained a formula for the nth−derivative in terms of determinants.

In [13], Hochstadt considered the derivative of a Wronskian determinant

W (t) = detX (t) ,

where X (t) satisfies the matrix equation

d

dt
X (t) = A (t)X (t) ,

and obtained
d

dt
W (t) = tr (A)W (t) ,
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where tr (A) denotes the trace of A. In [11], Golberg generalized this result
and proved Jacobi’s formula

d

dt
detA(t) = tr

(
adjA

d

dt
A

)
,

where adj (A) is the adjugate of A defined by

adj (A)A = det (A) I.

Lastly, in [33] Withers and Nadarajah studied the Taylor series of a determi-
nant with general entries, and obtained a formula involving traces of powers
of the matrix and the complete exponential Bell polynomials.

In this article, we obtain explicit expressions for the coefficients dm (n)
in the Taylor series (9) when the entries of the Hankel matrix are given by
(8). The paper is organized as follows: in Section 2, we derive a formula for
dm (n) when ω (k) is a general function. We give some examples for special
cases of ω (k) .

In Section 3 we relate the results from Section 2 to the theory of Schur
polynomials. We obtain exact evaluations of dm (n) for the Charlier and
Meixner polynomials. Finally, in Section 4 we give a summary of results and
point out some future directions.

2 Main result

2.1 Vandermonde polynomials

Definition 1 The Vandermonde determinant V (x1, x2, . . . , xn) is defined by

V (x1, x2, . . . , xn) = det
1≤i,j≤n

(
xj−1
i

)
=
∑
σ∈Sn

sgn (σ)
n∏
j=1

xj−1
σ(j),

where sgn (σ) denotes the sign of the permutation σ.

Remark 2 It is well known that the Vandermonde determinant V (x1, x2, . . . , xn)
is an alternating multivariate polynomial given by [31, 4.1.2]

V (x1, x2, . . . , xn) =
∏

1≤i<j≤n

(xj − xi) , n > 1. (10)
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Definition 3 If a,m ∈ Z and m ≤ 0, we define

V (xa, xa+1, . . . , xa+m) = 1. (11)

Next, we derive some basic results about Vandermonde polynomials.

Lemma 4 If a ∈ Z and m ∈ N, then

V (xa, xa+1, . . . , xa+m) =
m∏
j=0

j−1∏
i=0

(xj+a − xi+a) , (12)

Proof. Using (10), we have

V (xa, xa+1, . . . , xa+m) =
∏

a≤i<j≤a+m

(xj − xi) =
a+m∏
j=a

j−1∏
i=a

(xj − xi)

=
m∏
j=0

j+a−1∏
i=a

(xj+a − xi) =
m∏
j=0

j−1∏
i=0

(xj+a − xi+a) .

Corollary 5 If m ∈ N0, then

V (0, 1, 2, . . . ,m) = G (m+ 1) , (13)

where the function G (m) is defined by

G (0) = 1

and

G (m) =
m−1∏
i=0

(i!) , m ∈ N. (14)

Note that G (m) satisfies the recurrence

G (m+ 1) = m!G (m) .
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Proof. If we set a = 0 and

xi = i, 0 ≤ i ≤ m

in (12), we get

V (0, 1, 2, . . . ,m) =
m∏
j=0

j−1∏
i=0

(j − i) =
m∏
j=0

j∏
k=1

k (k = j − i)

=
m∏
j=0

j! = G (m+ 1) .

Remark 6 The function G (m) can be written as

G (m) = G(m+ 1),

where G(m) is Barnes’ G-Function [22, 5.17], defined by G(1) = 1 and

G (z + 1) = Γ (z)G(z), z ∈ C.

Proposition 7 For all n ∈ N and r ∈ N0, we have

V (x1, x2, . . . , xn) = V (x1, x2, . . . , xn−r)V (xn−r+1, . . . , xn) (15)

×
n∏

j=n−r+1

n−r∏
i=1

(xj − xi) ,

where empty products are assumed to be equal to 1.

Proof. Setting a = 1 and m = n− r − 1 in (12), we get

V (x1, x2, . . . , xn−r) =
n−r−1∏
j=0

j−1∏
i=0

(xj+1 − xi+1) .

Similarly, if we set a = n− r + 1 and m = r − 1 in (12), we have

V (xn−r+1, . . . , xn) =
r−1∏
j=0

j−1∏
i=0

(xj+n−r+1 − xi+n−r+1) .
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Thus,
V (x1, x2, . . . , xn)

V (x1, x2, . . . , xn−r)V (xn−r+1, . . . , xn)

=

n−1∏
j=0

j−1∏
i=0

(xj+1 − xi+1)[
n−r−1∏
j=0

j−1∏
i=0

(xj+1 − xi+1)

][
r−1∏
j=0

j−1∏
i=0

(xj+n−r+1 − xi+n−r+1)

]

=

n−1∏
j=n−r

j−1∏
i=0

(xj+1 − xi+1)

r−1∏
j=0

j−1∏
i=0

(xj+n−r+1 − xi+n−r+1)

.

But

r−1∏
j=0

j−1∏
i=0

(xj+n−r+1 − xi+n−r+1) =
n−1∏
j=n−r

j−n−r−1∏
i=0

(xj+1 − xi+n−r+1)

=
n−1∏
j=n−r

j−1∏
i=n−r

(xj+1 − xi+1) .

Hence,

V (x1, x2, . . . , xn)

V (x1, x2, . . . , xn−r)V (xn−r+1, . . . , xn)

=
n−1∏
j=n−r

j−1∏
i=0

(xj+1 − xi+1)

j−1∏
i=n−r

(xj+1 − xi+1)

=
n−1∏
j=n−r

n−r−1∏
i=0

(xj+1 − xi+1) .

We conclude that

V (x1, x2, . . . , xn)

V (x1, x2, . . . , xn−r)V (xn−r+1, . . . , xn)
=

n∏
j=n−r+1

n−r∏
i=1

(xj − xi) .
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We now obtain a representation for ∆n (z) in terms of Vandermonde poly-
nomials.

Theorem 8 Let the moments µi (z) be defined by

µi (z) =
∞∑
k=0

kiω (k) zk,

and let ∆n (z) denote the Hankel determinant

∆n (z) = det
1≤i,j≤n

(µi+j−2) .

Then,

∆n (z) =
∑

0≤k1<k2<···<kn

[
n∏
i=1

ω (ki) z
ki

]
V 2 (k1, k2, . . . , kn) . (16)

Proof. This result is essentially contained in the proof of the Theorem
in Section 6.10.4 of [31]. We reproduce the main steps for the purpose of
completion.

Let n ≤ N and

∆n,N (z) = det
1≤i,j≤n

(
N∑
ki=0

ki+j−2
i ω (ki) z

ki

)
.

Using the linearity of the determinant, we have

∆n,N (z) =
N∑

k1,...,kn=0

[
n∏
i=1

ω (ki) z
ki

][
n∏
i=1

ki−1
i

]
det

1≤i,j≤n

(
kj−1
i

)
=

N∑
k1,...,kn=0

[
n∏
i=1

ω (ki) z
ki

][
n∏
i=1

ki−1
i

]
V (k1, k2, . . . , kn) .

Since
n∏
i=1

ω (ki) z
ki
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is a symmetric function of (k1, k2, . . . , kn) , we get

∆n,N (z) =
1

n!

N∑
k1,...,kn=0

[
n∏
i=1

ω (ki) z
ki

] ∑
σ∈Sn

(
n∏
i=1

ki−1
σ(i)

)
V
(
kσ(1), . . . , kσ(n)

)
.

Using the identity [31, 4.1.9]

∑
σ∈Sn

(
n∏
i=1

ki−1
σ(i)

)
V
(
kσ(1), . . . , kσ(n)

)
= V 2 (k1, k2, . . . , kn) ,

we obtain

∆n,N (z) =
1

n!

N∑
k1,...,kn=0

[
n∏
i=1

ω (ki) z
ki

]
V 2 (k1, k2, . . . , kn) .

Finally, since
V 2 (k1, k2, . . . , kn)

is a symmetric function of (k1, k2, . . . , kn) that vanishes if ki = kj, we can
rewrite ∆n,N (z) as

∆n,N (z) =
∑

0≤k1<k2<···<kn≤N

[
n∏
i=1

ω (ki) z
ki

]
V 2 (k1, k2, . . . , kn) .

Taking the limit as N →∞, the result follows.

2.2 Integer partitions

In this section, we will collect powers of z in (16) to find a power series for
∆n (z) . First, we define the concept of integer partitions.

Definition 9 A partition Λ is any (finite or infinite) weakly decreasing se-
quence

Λ = (λ1, λ2, . . . , λr, . . .) (17)

of non-negative integers

λi ≥ λi+1 ≥ 0, i ∈ N,
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containing only finitely many non-zero terms. We do not distinguish between
two partitions which differ only by a string of zeros at the end. For example,

(2, 1) = (2, 1, 0) = (2, 1, 0, 0).

The non-zero elements λi in (17) are called the parts of Λ. The number
of parts is the length of Λ, denoted by l (Λ)

l (Λ) = card {λi ∈ Λ | λi 6= 0} <∞.

The sum of the parts is the weight of Λ, denoted by ‖Λ‖ ,

‖Λ‖ =
∞∑
i=1

λi =

l(Λ)∑
i=1

λi.

If ‖Λ‖ = m, we say that Λ is a partition of m. The set of all partitions
of m is denoted by P (m). In particular, P (0) consists of a single element,
the unique partition of zero, which we denote by Λ = (0) .

We will denote by Pn (m) the set of all partitions of m into at most n
parts,

Pn (m) = {Λ | ‖Λ‖ = m and l (Λ) ≤ n} .

We now establish a connection between the sum in (16) and those indexed
by partitions.

Lemma 10 Let n ∈ N and f be an arbitrary function. Then,∑
0≤k1<k2<···<kn

f (k1, k2, . . . , kn) =
∑
l(Λ)≤n

f (λn, λn−1 + 1, . . . , λ1 + n− 1) . (18)

Proof. We define the bijection

ϕ : {Λ | l (Λ) ≤ n} → {(k1, k2, . . . , kn) ∈ Zn | 0 ≤ k1 < k2 < · · · < kn}

by
ϕ = T ◦ σ,

where σ ∈ Sn is given by

σ (λ1, λ2, . . . , λn) = (λn, λn−1, . . . , λ1)
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and the affine transformation T is defined by

T (x1, x2, . . . , xn) = (x1, x2, . . . , xn) + (0, 1, . . . , n− 1) .

Note that

σ : {Λ | l (Λ) ≤ n} → {(x1, x2, . . . , xn) ∈ Zn | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn}

and

T : {(x1, x2, . . . , xn) ∈ Zn | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn}
→ {(k1, k2, . . . , kn) ∈ Zn | 0 ≤ k1 < k2 < · · · < kn}

since k1 = x1 ≥ 0 and

ki = xi + i− 1 ≤ xi+1 + i− 1 < xi+1 + i = ki+1, 1 ≤ i ≤ n− 1.

We can now write (16) as a sum over partitions.

Proposition 11 Let n ∈ N. Then,

∆n (z)

z(n
2)

=
∞∑
m=0

zm
∑

Λ∈Pn(m)

[
n∏
i=1

ω (λn−i+1 + i− 1)

]
(19)

× V 2 (λn, λn−1 + 1, . . . , λ1 + n− 1) .

Proof. Using (18) in (16), we have

∆n (z) =
∑
l(Λ)≤n

[
n∏
i=1

ω (λn−i+1 + i− 1) zλn−i+1+i−1

]
× V 2 (λn, λn−1 + 1, . . . , λ1 + n− 1) .

But
n∑
i=1

(λn−i+1 + i− 1) =
n∑
i=1

λi +
n (n− 1)

2
= m+

(
n

2

)
,

and therefore ∑
l(Λ)≤n

[
n∏
i=1

ω (λn−i+1 + i− 1) zλn−i+1+i−1

]

= z(n
2)
∞∑
m=0

zm
∑

Λ∈Pn(m)

[
n∏
i=1

ω (λn−i+1 + i− 1)

]
.
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We have now all the elements to prove our main theorem.

Theorem 12 If Λ ∈ Pn (m) , then

V (λn, λn−1 + 1, . . . , λ1 + n− 1) = G (n)LΛΨΛ (n) , (20)

where

LΛ =

l(Λ)∏
i=1

1

(λi)!

i−1∏
j=1

(
1− λi

λj + i− j

)
, (21)

and

ΨΛ (n) =

l(Λ)∏
i=1

(n− i+ 1)λi . (22)

Proof. Let l (Λ) = r. (i) If r = 0, then Λ = (0) and using (13), we have

V (λn, λn−1 + 1, . . . , λ1 + n− 1) = V (0, 1, 2, . . . , n− 1)

= G (n) = G (n)L(0)Ψ(0) (n) ,

since
L(0) = Ψ(0) (n) = 1. (23)

(ii) If r = 1, then Λ = (m). Using (13) and (15), we get

V (λn, λn−1 + 1, . . . , λ1 + n− 1) = V (0, 1, 2, . . . , n− 2,m+ n− 1)

= V (0, 1, 2, . . . , n− 2)
n−1∏
i=1

(m+ n− i) = G (n− 1)
Γ (m+ n)

Γ (m+ 1)
.

But
Γ (m+ n)

Γ (m+ 1)
=

Γ (n)

Γ (m+ 1)

Γ (m+ n)

Γ (n)
=

(n− 1)!

m!
(n)m ,

and therefore

V (λn, λn−1 + 1, . . . , λ1 + n− 1) = G (n− 1)
(n− 1)!

m!
(n)m

= G (n)L(m)Ψ(m) (n) ,

since

G (n) = (n− 1)!G (n− 1) , L(m) =
1

m!
, Ψ(m) (n) = (n)m .
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(iii) If r ≥ 2, then using (13) and (15), we obtain

V (λn, λn−1 + 1, . . . , λ1 + n− 1) = V (0, 1, 2, . . . , n− r − 1)

×V (λr + n− r, . . . , λ1 + n− 1)
n∏

j=n−r+1

n−r∏
i=1

(λn−j+1 + j − i)

= G (n− r − 2)V (λr + n− r, . . . , λ1 + n− 1)
n∏

j=n−r+1

n−r∏
i=1

(λn−j+1 + j − i) .

(iv) We have

n∏
j=n−r+1

n−r∏
i=1

(λn−j+1 + j − i) =
r∏
l=1

n−r∏
i=1

(λl + n− l + 1− i) (l = n− j + 1)

=
r∏
l=1

n−r−1∏
s=0

(λl − l + r + 1 + s) (s = n− r − i)

=
r∏
l=1

(λl − l + r + 1)n−r .

Setting x = λl + 1, a = r − l and b = n− r in the identity

(x)a+b = (x)a (x+ a)b ,

we get

(λl − l + r + 1)n−r =
(λl + 1)n−l
(λl + 1)r−l

.

Hence,

r∏
l=1

(λl − l + r + 1)n−r =
r∏
l=1

(λl + 1)n−l
(λl + 1)r−l

=

r∏
l=1

(λl + 1)n−l

r−1∏
l=1

(λl + 1)r−l

,
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since (x)0 = 1. We conclude that

n∏
j=n−r+1

n−r∏
i=1

(λn−j+1 + j − i) =

r∏
l=1

(λl + 1)n−l

r−1∏
l=1

r−l−1∏
s=0

(λl + 1 + s)

=

r∏
l=1

(λl + 1)n−l

r−1∏
l=1

r∏
s=l+1

(λl + s− l)
.

(v) Using (12), we get

V (λr + n− r, . . . , λ1 + n− 1) =
r−2∏
j=0

j∏
i=0

(λr−j−1 − λr−i + j − i+ 1)

=
r−1∏
l=1

r−1−l∏
i=0

(λl − λr−i + r − l − i) (l = r − j − 1)

=
r−1∏
l=1

r∏
s=l+1

(λl − λs + s− l) (s = r − i) .

(vi) From the previous results, we have

V (λn, λn−1 + 1, . . . , λ1 + n− 1)

=

(
n−r−1∏
l=1

l!

)
r∏
l=1

(λl + 1)n−l

r−1∏
l=1

r∏
s=l+1

(λl + s− l)


[
r−1∏
l=1

r∏
s=l+1

(λl − λs + s− l)

]

=

[
r∏
l=1

(λl + 1)n−l

]
r−1∏
l=1

r∏
s=l+1

(
λl + s− l − λs
λl + s− l

)
.

Setting x = 1, a = λl and b = n− l in the identity

(x+ a)b
(x)b

=
(x+ b)a

(x)a
,

we obtain

(λl + 1)n−l =
(1)n−l (n− l + 1)λl

(1)λl
.
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Thus,

r∏
l=1

(λl + 1)n−l =
r∏
l=1

(1)n−l (n− l + 1)λl
(1)λl

=

[
r∏
l=1

(n− l)!

][
r∏
l=1

(n− l + 1)λl
(λi)!

]

=

(
n−1∏
i=n−r

i!

)[
r∏
l=1

(n− l + 1)λl
(λi)!

]
(i = n− l) .

We conclude that

V (λn, λn−1 + 1, . . . , λ1 + n− 1)

=

[
n−1∏
i=1

i!

][
r∏
l=1

(n− l + 1)λl
(λi)!

]
r−1∏
l=1

r∏
s=l+1

(
λl + s− l − λs
λl + s− l

)
.

(vii) Finally,

r−1∏
l=1

r∏
s=l+1

(
λl + s− l − λs
λl + s− l

)
=

r−1∏
l=1

r∏
s=l+1

(
1− λs

λl + s− l

)

=
r∏
s=2

s−1∏
l=1

(
1− λs

λl + s− l

)
,

since
2 ≤ l + 1 ≤ s ≤ r.

But for s = 1 we get
0∏
l=1

(
1− λ1

λl + 1− l

)
= 1

and therefore we can write

r−1∏
l=1

r∏
s=l+1

λl + s− l − λs
λl + s− l

=
r∏
s=2

s−1∏
l=1

(
1− λs

λl + s− l

)
.

With the help of the previous result, we obtain a new expression for ∆n (z)
as a sum over partitions.
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Corollary 13 Let n ∈ N. Then,

∆n (z)

z(n
2)G2 (n)

[
n−1∏
i=0

ω (i)

] =
∞∑
m=0

zm
∑

Λ∈P(m)

l(Λ)∏
i=1

ω (λi + n− i)
ω (n− i)

 [LΛΨΛ (n)]2 .

(24)

Proof. Let Λ ∈ Pn (m) . Since

λs = 0, l (Λ) < s ≤ n,

we have

n∏
i=1

ω (λn−i+1 + i− 1) =
n∏
s=1

ω (λs + n− s) (i = n− s+ 1)

=

[
n∏
s=1

ω (λs + n− s)
ω (n− s)

]
n−1∏
s=0

ω (s) =

l(Λ)∏
s=1

ω (λs + n− s)
ω (n− s)

 n−1∏
s=0

ω (s) ,

where we recall from (6) that ω (s) 6= 0.
If l (Λ) ≤ n, then the formula follows after using (20) in (19). If l (Λ) > n,

then

ΨΛ (n) =
n∏
i=1

(n− i+ 1)λi

l(Λ)∏
i=n+1

(n− i+ 1)λi = 0,

and therefore

∑
Λ∈Pn(m)

l(Λ)∏
i=1

ω (λi + n− i)
ω (n− i)

 [LΛΨΛ (n)]2

=
∑

Λ∈P(m)

l(Λ)∏
i=1

ω (λi + n− i)
ω (n− i)

 [LΛΨΛ (n)]2 .

We now compute some particular values of LΛΨΛ (n) .

Proposition 14 We have

L(0)Ψ(0) (n) = 1, (25)
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L(m−2,2)Ψ(m−2,2) (n) =
m− 3

2
n

(
n+m− 3

m− 1

)
, (26)

and for 0 ≤ a ≤ m− 1,

L(m−a,1,...,1)Ψ(m−a,1,...,1) (n) =

(
m− 1

a

)(
n+m− 1− a

m

)
. (27)

In particular, we have

L(m)Ψ(m) (n) =

(
n− 1 +m

m

)
, (28)

and

L(1,...,1)Ψ(1,...,1) (n) =

(
n

m

)
. (29)

Proof. Using (21) and (22), we get

L(m−2,2) =
1

(m− 2)!

1

2!

(
1− 2

m− 2 + 1

)
=

1

2

m− 3

(m− 1)!

and

Ψ(m−2,2) (n) = (n)m−2 (n− 1)2 = n
(n+m− 3)!

(n− 2)!
. (30)

Thus,

L(m−2,2)Ψ(m−2,2) (n) = (m− 3)
n

2

(n+m− 3)!

(m− 1)! (n− 2)!
.

Similarly,

L(m−a,1,...,1) =
1

(m− a)!

a+1∏
i=2

[(
1− 1

m− a+ i− 1

) i−1∏
j=2

(
1− 1

1 + i− j

)]

=
1

(m− a)!

a+1∏
i=2

[(
1− 1

m− a+ i− 1

)
1

i− 1

]
=

1

(m− a)!

m− a
m

1

a!

and

Ψ(m−a,1,...,1) (n) = (n)m−a

a+1∏
i=2

(n− i+ 1) =
(n+m− a− 1)!

(n− 1)!

(n− 1)!

(n− 1− a)!
.
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Thus,

L(m−a,1,...,1)Ψ(m−a,1,...,1) (n) =
m!

a! (m− a− 1)!m

(n+m− a− 1)!

m! (n− 1− a)!
.

Formula (28) follows from (27) if we set a = 0, and (28) follows from (27)
if we set a = m− 1.

Using the previous result, we compute LΛΨΛ (n) for all Λ ∈ P (m) , 0 ≤
m ≤ 5.

Corollary 15 Let n ∈ N. Then, we have:
(i) For Λ ∈ P (0) ,

L(0)Ψ(0) (n) = 1.

(ii) For Λ ∈ P (1) ,

L(1)Ψ(1) (n) =

(
n

1

)
.

(iii) For Λ ∈ P (2) ,

L(2)Ψ(2) (n) =

(
n+ 1

2

)
, L(1,1)Ψ(1,1) (n) =

(
n

2

)
.

(iv) For Λ ∈ P (3) ,

L(3)Ψ(3) (n) =

(
n+ 2

3

)
, L(2,1)Ψ(2,1) (n) = 2

(
n+ 1

3

)
,

L(1,1,1)Ψ(1,1,1) (n) =

(
n

3

)
.

(v) For Λ ∈ P (4) ,

L(4)Ψ(4) (n) =

(
n+ 3

4

)
, L(3,1)Ψ(3,1) (n) = 3

(
n+ 2

4

)
,

L(2,2)Ψ(2,2) (n) =
n

2

(
n+ 1

3

)
, L(2,1,1)Ψ(2,1,1) (n) = 3

(
n+ 1

4

)
,

L(1,1,1,1)Ψ(1,1,1,1) (n) =

(
n

4

)
.
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(vi) For Λ ∈ P (5) ,

L(5)Ψ(5) (n) =

(
n+ 4

5

)
, L(4,1)Ψ(4,1) (n) = 4

(
n+ 3

5

)
L(3,2)Ψ(3,2) (n) = n

(
n+ 2

4

)
, L(3,1,1)Ψ(3,1,1) (n) = 6

(
n+ 2

5

)
(31)

L(2,2,1)Ψ(2,2,1) (n) = n

(
n+ 1

4

)
, L(2,1,1,1)Ψ(2,1,1,1) (n) = 4

(
n+ 1

5

)
L(1,1,1,1,1)Ψ(1,1,1,1,1) (n) =

(
n

5

)
.

Proof. All the results follow from Proposition 14, except for L(2,2,1)Ψ(2,2,1) (n) .
In this case, we have

L(2,2,1) =
1

6

and

Ψ(2,2,1) (n) = (n)2 (n− 1)2 (n− 2)1

=
1

4
n2 (n− 1) (n− 2) (n+ 1) =

4!

4
n

(
n+ 1

4

)
.

Hence,

L(2,2,1)Ψ(2,2,1) (n) = n

(
n+ 1

4

)
.

We can now an explicit formula for the first few terms in the power series
of ∆n (z) .

Corollary 16 Let gn (z) be defined by

gn (z) =
∆n (z)

z(n
2)G2 (n)

n−1∏
i=0

ω (i)

.

Then,

gn (z) = 1 +
∞∑
m=1

rm (n) zm, (32)
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where

r1 (n) = n2 ω (n)

ω (n− 1)
z, r2 (n) =

(
n+ 1

2

)2
ω (n+ 1)

ω (n− 1)
+

(
n

2

)2
ω (n)

ω (n− 2)
,

r3 (n) =

(
n+ 2

3

)2
ω (n+ 2)

ω (n− 1)
+ 4

(
n+ 1

3

)2
ω (n+ 1)

ω (n− 2)
+

(
n

3

)2
ω (n)

ω (n− 3)
,

r4 (n) =

(
n+ 3

4

)2
ω (n+ 3)

ω (n− 1)
+ 9

(
n+ 2

4

)2
ω (n+ 2)

ω (n− 2)

+
n2

4

(
n+ 1

3

)2
ω (n)ω (n+ 1)

ω (n− 1)ω (n− 2)

+ 9

(
n+ 1

4

)2
ω (n+ 1)

ω (n− 3)
+

(
n

4

)2
ω (n)

ω (n− 4)
,

and

r5 (n) =

(
n+ 4

5

)2
ω (n+ 4)

ω (n− 1)
+ 16

(
n+ 3

5

)2
ω (n+ 3)

ω (n− 2)

+ n2

(
n+ 2

4

)2
ω (n)ω (n+ 2)

ω (n− 1)ω (n− 2)
+ 36

(
n+ 2

5

)2
ω (n+ 2)

ω (n− 3)

+ n2

(
n+ 1

4

)2
ω (n)ω (n+ 1)

ω (n− 1)ω (n− 3)

+ 16

(
n+ 1

5

)2
ω (n+ 1)

ω (n− 4)
+

(
n

5

)2
ω (n)

ω (n− 5)
.

2.3 Examples

In this section we apply the previous results to some specific families of
orthogonal polynomials.

Example 17 Charlier polynomials. If

ω (k) =
1

k!
, (33)

then the polynomials orthogonal with respect to the linear functional (5) are
known as Charlier polynomials [22, 18.19]. The monic Charlier polynomials
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have the hypergeometric representation [22, 18.20.7]

Pn (x) = (−z)n 2F0

[
−n, −x
− ;−z−1

]
,

where

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!

denotes the generalized hypergeometric function [22, Chapter 16]. When
z > 0, the monic Charlier polynomials satisfy the orthogonality relation

∞∑
k=0

Pn (k)Pm (k)
zk

k!
= n!znezδn,m. (34)

If we use (33) in (32), we obtain

gn (z) =
5∑

k=0

nk
zk

k!
+O

(
z6
)
.

In the next section, we will prove that

gn (z) = enz.

Example 18 Meixner polynomials. If

ω (n) =
(a)n
n!

, (35)

then the polynomials orthogonal with respect to the linear functional (5) are
known as Meixner polynomials [22, 18.19]. The monic Meixner polynomials
can be represented by [22, 18.20.7]

Mn (x) = (a)n
(
1− z−1

)−n
2F1

[
−n, −x

a
; 1− z−1

]
,

where a > 0 and 0 < z < 1. They satisfy the orthogonality relation

∞∑
k=0

Mn (k)Mm (k)
(a)k
k!

zk = n! (a)n zn (1− z)−a−2n δn,m. (36)
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If we use (35) in (32), we obtain

gn (z) =
5∑

k=0

(n (n+ a− 1))k
zk

k!
+O

(
z6
)
.

In the next section, we will prove that

gn (z) = (1− z)−n(a+n−1) .

Example 19 Generalized Charlier polynomials. If

ω (k) =
1

(b+ 1)k

1

k!
, b > −1, (37)

then the polynomials orthogonal with respect to the linear functional (5) are
known as Generalized Charlier polynomials [27].

If we use (37) in (32), we obtain

r1 (n) =
1

n+ b
, r2 (n) =

n2 + bn− 1

(n+ b− 1)3

,

r3 (n) =
n4 + 2bn3 + (b2 − 5)n2 − 3bn+ 4

(n+ b− 2)5

,

and

r4 (n) =
1

(n+ b) (n+ b− 3)7

[
n7 + 4bn6 +

(
6b2 − 14

)
n5 + 2b

(
2b2 − 17

)
n4

+
(
b4 − 26b2 + 49

)
n3 − 2b

(
3b2 − 31

)
n2 +

(
19b2 − 36

)
n− 30b

]
.

It is of course possible to compute higher terms, but we haven’t found a
convenient way to represent them, and the expressions become increasingly
cumbersome.

Example 20 In general, let

ω (k) =
ξ (k)

k!
. (38)

We have

ω (n− i+ λi)

ω (n− i)
=
ξ (n− i+ λi)

ξ (n− i)
(n− i)!

(n− i+ λi)!
=
ξ (n− i+ λi)

ξ (n− i)
1

(n− i+ 1)λi
.
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Thus,
l(Λ)∏
i=1

ω (n− i+ λi)

ω (n− i)
=

1

ΨΛ (n)

l(Λ)∏
i=1

ξ (n− i+ λi)

ξ (n− i)
.

From (14), we get

G2 (n)
n−1∏
i=0

ω (i) = G (n)
n−1∏
i=0

ξ (i) .

Hence, replacing in (24) we obtain

∆n (z)

z(n
2)G (n)

n−1∏
i=0

ξ (i)

=
∞∑
m=0

zm
∑

Λ∈P(m)

l(Λ)∏
i=1

ξ (n− i+ λi)

ξ (n− i)

L2
ΛΨΛ (n) . (39)

All families of discrete semiclassical orthogonal polynomials have weight
functions like (38) [8]. They include:

Polynomials ξ (k)
Charlier 1
Meixner (a)k , a > 0
Generalized Charlier 1

(b+1)k
, b > −1

Generalized Meixner
(a)k

(b+1)k
, a > 0, b > −1

Generalized Krawtchouk (a)k (−N)k , a > 0, N ∈ N
Generalized Hahn

(a1)k(a2)k
(b+1)k

, a1, a2 > 0, b > −1.

3 Combinatorial interpretation

3.1 Young tableaux

In this section, we will relate our previous results to some combinatorial
objects. We begin with some definitions and examples, to aid those reader
who are not experts in these topics.

Definition 21 The (Ferrers or Young) diagram DΛ of the partition Λ with

24



l (Λ) = τ is the set of boxes

λ1 boxes · · ·
λ2 boxes · · ·
...

λτ boxes · · · .

In other words (with coordinates representing boxes)

DΛ = {(i, j) : 1 ≤ i ≤ l (Λ) , 1 ≤ j ≤ λi} .

Example 22 The diagrams for the partitions Λ ∈ P (5) are

, , , , , , .

Definition 23 A Young tableau T (Λ) (of shape Λ) is a Young diagram DΛ

for a partition Λ ∈ P (n) and a bijective assignment of the numbers (1, ..., n)
to the n boxes of the diagram DΛ.

A Young tableau T (Λ) is called standard if and only if the numbers in-
crease in each row and each column.

Example 24 The standard Young tableaux for Λ = (3, 2) are

1 2 3
4 5 ,

1 2 4
3 5 ,

1 2 5
3 4 ,

1 3 4
2 5 ,

1 3 5
2 4 .

Definition 25 Let Λ be a partition. We define

f (Λ) = number of standard Young tableaux T (Λ) . (40)

Example 26 For m = 5, we have

f (1, 1, 1, 1, 1) = 1, f (2, 1, 1, 1) = 4, f (2, 2, 1) = 5, (41)

f (3, 1, 1) = 6, f (3, 2) = 5, f (4, 1) = 4, f (5) = 1.
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The next result shows that the values of f (Λ) for Λ ∈ P (m) also give
the dimensions of the irreducible representations of the symmetric group Sm
[26, Chapter V].

Theorem 27 We have ∑
Λ∈P(m)

f 2 (Λ) = m!.

Proof. See [26, VI.2.2.].
Next, we relate the function LΛ defined in the previous section with f (Λ) .

Theorem 28 Let Λ ∈ P (m) with l (Λ) = τ and

ti = λi + τ − i, 1 ≤ i ≤ τ.

Then,

f (Λ) = m!

∏
1≤i<k≤τ

(ti − tk)

r∏
i=1

(ti)!

. (42)

Proof. See [26, Vl.2.3.].

Corollary 29 Let Λ be a partition. The function LΛ defined in (21) can be
written as

LΛ =
f (Λ)

(‖Λ‖)!
.

Proof. Let Λ be a partition with l (Λ) = τ. From (42), we get

f (Λ)

m!
=

∏
1≤i<k≤τ

(λi − λk + k − i)

τ∏
i=1

(λi + τ − i)!
=

τ∏
i=1

τ∏
k=i+1

(λi − λk + k − i)

(λi + τ − i)!
.

We have

(λi + τ − i)! =

λi+τ−i∏
j=1

j = (λi)!

λi+τ−i∏
j=λi+1

j = (λi)!
τ−i∏
j=1

(λi + j)

= (λi)!
τ∏

k=i+1

(λi + k − i) (j = k − i) .
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Thus,

f (Λ)

m!
=

τ∏
i=1

1

(λi)!

τ∏
k=i+1

(λi − λk + k − i)
(λi + k − i)

=
τ∏
i=1

1

(λi)!

τ∏
k=i+1

(
1− λk

λi + k − i

)
.

But
τ∏
i=1

τ∏
k=i+1

(
1− λk

λi + k − i

)
=

τ∏
k=1

k−1∏
i=1

(
1− λk

λi + k − i

)
,

and therefore

f (Λ)

m!
=

τ∏
k=1

1

(λk)!

k−1∏
i=1

(
1− λk

λi + k − i

)
= LΛ.

We now find a connection between the function ΨΛ (n) defined in the
previous section, and some properties of the diagram DΛ.

Definition 30 Let Λ be a partition with diagram DΛ.
1) We define the hook length hi,j (Λ) of Λ at (i, j) ∈ DΛ as the number of

boxes directly to the right or directly below the box located at (i, j) , counting
(i, j) itself once.

2) We define the content ci,j (Λ) of Λ at (i, j) ∈ DΛ by

ci,j (Λ) = j − i. (43)

Example 31 The hook lengths of Λ = (3, 2) are

4 3 1
2 1 . (44)

The contents of Λ = (3, 2) are

0 1 2
− 1 0 . (45)

Remark 32 Let Λ be a partition. Then,∑
(i,j)∈DΛ

[
h2
i,j (Λ)− c2

i,j (Λ)
]

= ‖Λ‖2 .

For a proof see [20, I.1. Example 5.].
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Proposition 33 Let Λ = (λ1, λ2, . . . , λr) and

ti = λi + r − i, 1 ≤ i ≤ r.

Then,

∏
(i,j)∈DΛ

hi,j (Λ) =

r∏
i=1

(ti)!∏
1≤i<k≤r

(ti − tk)
.

Proof. See [20, I.1. Example 1.].

Corollary 34 Hook length formula. Let Λ be a partition. Then,

f (Λ) =
(‖Λ‖)!∏

(i,j)∈DΛ

hi,j (Λ)
. (46)

Example 35 Let Λ = (3, 2) . Using (44) in (46), we obtain

f (3, 2) =
5!

4× 3× 1× 2× 1
= 5,

in agreement with (41).

Definition 36 Let Λ be a partition. We define the content polynomial of Λ
by [20, I.1 Example 11]

CΛ (x) =
∏

(i,j)∈DΛ

[x+ ci,j (Λ)] . (47)

Example 37 Let Λ = (3, 2) . Using (45) in (47), we get

C(3,2) (x) = (x− 1)x2 (x+ 1) (x+ 2) .

Note that from (30) we have

Ψ(3,2) (n) = n
(n+ 5− 3)!

(n− 2)!
= n2 (n− 1) (n+ 2) (n+ 1) = C(3,2) (n) .
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Proposition 38 Let Λ = (λ1, λ2, . . . , λr). Then,

CΛ (x) = ΨΛ (x) .

Proof. Using (43) and (47), we have

∏
(i,j)∈DΛ

[x+ ci,j (Λ)] =
r∏
i=1

λi∏
j=1

(x+ j − i) =
r∏
i=1

λi−1∏
j=0

(x− i+ 1 + j)

=
r∏
i=1

(x− i+ 1)λi = ΨΛ (x) .

3.2 Schur polynomials

In this section now introduce the concept of Schur polynomials, which will
be essential in finding closed-form formulas for the Charlier and Meixner
polynomials.

Definition 39 Let n ∈ N and Λ be a partition. We define the Schur poly-
nomial sΛ by [20, I.3]

sΛ (x1, . . . , xn) = 0, l (Λ) > n

and

sΛ (x1, . . . , xn) =
det

1≤i,j≤n

(
x
n−j+λj
i

)
det

1≤i,j≤n

(
xn−ji

) , l (Λ) ≤ n.

Example 40 Let n = 3 and m = 5. We have

s(1,1,1,1,1) = 0, s(2,1,1,1) = 0, s(2,2,1) = e2e3, s(3,1,1) =
(
e2

1 − e2

)
e3,

s(3,2) = e1e
2
2 −

(
e2

1 + e2

)
e3, s(4,1) = (e3 − e1e2)

(
2e2 − e2

1

)
s(5) = e5

1 − 4e3
1e2 + 3e3e

2
1 + 3e1e

2
2 − 2e3e2,

where ek denotes the elementary symmetric polynomials defined by

n∏
k=1

(t− xk) =
n∑
k=0

(−1)k ek (x1, . . . , xn) tn−k.
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The following is known as the principal specialization of Schur polynomi-
als.

Theorem 41 Let n ∈ N and Λ be a partition with l (Λ) ≤ n. Then,

sΛ (1n) =
∏

(i,j)∈DΛ

n+ ci,j (Λ)

hi,j (Λ)
,

where

sΛ (1n) = sΛ

1, 1, . . . , 1︸ ︷︷ ︸
n times

 .

Proof. See [20, I.3. Example 4].
We have now all the elements to represent LΛΨΛ (n) and ∆n (z) in terms

of Schur polynomials.

Corollary 42 Let n ∈ N and Λ ∈ Pn (m) . Then,

sΛ (1n) =
f (Λ)

m!
CΛ (n) = LΛΨΛ (n) (48)

and

∆n (z)

z(n
2)G (n)

[
n−1∏
i=0

ξ (i)

] =
∞∑
m=0

zm

m!

∑
Λ∈Pn(m)

[
n∏
i=1

ξ (n− i+ λi)

ξ (n− i)

]
f (Λ) sΛ (1n) .

(49)

The next result will be needed in finding the Hankel determinants for the
Charlier polynomials.

Proposition 43 Let n,m ∈ N. Then,∑
Λ∈Pn(m)

f (Λ) sΛ (x1, . . . , xn) = (x1 + · · ·+ xn)m = em1 . (50)

Proof. See [20, I.4. Example 3].

30



Example 44 Let n = 3 and m = 5. We have∑
Λ∈P3(5)

f (Λ) sΛ (x1, x2, x3) = 5e2e3 + 6
(
e2

1 − e2

)
e3

+5
(
e1e

2
2 −

(
e2

1 + e2

)
e3

)
+ 4 (e3 − e1e2)

(
2e2 − e2

1

)
+e5

1 − 4e3
1e2 + 3e3e

2
1 + 3e1e

2
2 − 2e3e2 = e5

1.

Corollary 45 Charlier polynomials. Let ξ (k) = 1. Then,

∆n (z) = z(n
2)G (n) enz.

Proof. Setting
x1 = x2 = · · · = xn = 1

in (50), we have ∑
Λ∈P(m)

f (Λ) sΛ (1n) = nm. (51)

Thus, from (49) we get

∆n (z)

z(n
2)G (n)

=
∞∑
m=0

zm

m!
nm = enz.

The next result will be essential in finding the Hankel determinants for
the Meixner polynomials.

Theorem 46 Let n1, n2 ∈ N. Then,

∞∑
m=0

zm
∑

Λ∈P(m)

sΛ (x1, . . . , xn1) sΛ (y1, . . . , yn2) =

n1∏
i=1

n2∏
j=1

(1− xiyjz)−1 . (52)

Proof. See [20, I.4. ].

Proposition 47 Let m ∈ N0 and x, y be indeterminate variables. Then,∑
Λ∈P(m)

L2
ΛΨΛ (x) ΨΛ (y) =

(xy)m
m!

. (53)
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Proof. Setting

xi = yj = 1, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

in (52), we get

∞∑
m=0

zm
∑

Λ∈P(m)

sΛ (1n1) sΛ (1n2) =

n1∏
i=1

n2∏
j=1

(1− z)−1

= (1− z)−n1n2 =
∞∑
m=0

(n1n2)m
m!

zm.

Hence, from (48) we obtain∑
Λ∈P(m)

L2
ΛΨΛ (n1) ΨΛ (n2) =

∑
Λ∈P(m)

sΛ (1n1) sΛ (1n2) =
(n1n2)m
m!

.

But this is an identity between polynomials of degree m, and since it’s valid
for all n1, n2 ∈ N it must be valid for indeterminate variables x, y.

Example 48 Let m = 5. Using (31), we have

(5!)2
∑

Λ∈P(5)

L2
ΛΨΛ (x) ΨΛ (y) = (x− 4)5 (y − 4)5 + 16 (x− 3)5 (y − 3)5

+25xy (x− 2)4 (y − 2)4 + 36 (x− 2)5 (y − 2)5 + 25xy (x− 1)4 (y − 1)4

+16 (x− 1)5 (y − 1)5 + (x)5 (y)5 = 5! (xy)5 .

Corollary 49 Meixner polynomials. Let ξ (k) = (a)k . Then,

∆n (z) = z(n
2)G (n)

[
n−1∏
i=0

(a)i

]
(1− z)−n(a+n−1) .

Proof. Replacing

l(Λ)∏
i=1

ξ (n− i+ λi)

ξ (n− i)
=

l(Λ)∏
i=1

(a+ n− i)λi = ΨΛ (a+ n− 1)
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in (39), we have

∆n (z)

z(n
2)G (n)

n−1∏
i=0

(a)i

=
∞∑
m=0

zm
∑

Λ∈P(m)

L2
ΛΨΛ (n) ΨΛ (a+ n− 1) ,

and using (53), we get

∆n (z)

z(n
2)G (n)

n−1∏
i=0

(a)i

=
∞∑
m=0

zm
(n (a+ n− 1))m

m!
= (1− z)−n(a+n−1) .

We can also use the previous results to find a general identity for ΨΛ (x) ,
corresponding to the Charlier weight.

Remark 50 From (53), we see that

∞∑
m=0

zm
∑

Λ∈P(m)

L2
ΛΨΛ (x) ΨΛ (y) = (1− z)−xy = 1F0

(
xy
− ; z

)
.

Thus,

lim
y→∞

∞∑
m=0

(
z

y

)m ∑
Λ∈P(m)

L2
ΛΨΛ (x) ΨΛ (y)

= lim
y→∞ 1F0

(
xy
− ;

z

y

)
= exz.

But since ΨΛ (y) is a monic polynomial with

deg ΨΛ (y) = m, Λ ∈ P (m) ,

we have

lim
y→∞

ΨΛ (y)

ym
= 1,

and using Tannery’s theorem [2], we obtain

∞∑
m=0

zm
∑

Λ∈P(m)

L2
ΛΨΛ (x) = exz,

33



or ∑
Λ∈P(m)

L2
ΛΨΛ (x) =

xm

m!

which is the extension of (51) for an indeterminate variable.

Finally, for weight functions corresponding to discrete semiclassical or-
thogonal polynomials, we have the following.

Example 51 In general, let

ξ (k) =
(a1)k · · · (ap)k

(b1 + 1)k · · · (bq + 1)k
.

Then,

ξ (n− i+ λi)

ξ (n− i)
=

(a1 + n− i)λi · · · (ap + n− i)λi
(b1 + 1 + n− i)λi · · · (bq + 1 + n− i)λi

,

and therefore

l(Λ)∏
i=1

ξ (n− i+ λi)

ξ (n− i)
=

ΨΛ (a1 + n− 1) · · ·ΨΛ (ap + n− 1)

ΨΛ (b1 + n) · · ·ΨΛ (bq + n)
.

Replacing in (39), we conclude that

∆n (z) = z(n
2)G (n)

[
n−1∏
k=0

(a1)k · · · (ap)k
(b1 + 1)k · · · (bq + 1)k

]

×
∞∑
m=0

zm
∑

Λ∈P(m)

L2
ΛΨΛ (n)

[
ΨΛ (a1 + n− 1) · · ·ΨΛ (ap + n− 1)

ΨΛ (b1 + n) · · ·ΨΛ (bq + n)

]
.

Unfortunately, we haven’t been able to find any identities for Schur poly-
nomials that will allow the computation of∑

Λ∈P(m)

L2
ΛΨΛ (n)

[
ΨΛ (a1 + n− 1) · · ·ΨΛ (ap + n− 1)

ΨΛ (b1 + n) · · ·ΨΛ (bq + n)

]

for p > 1 and q > 0.
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4 Conclusions

We have obtained a Taylor series

∆n (z) = z(n
2)G2 (n)

[
n−1∏
i=0

ω (i)

]
∞∑
m=0

rm (n) zm,

for the Hankel determinant

∆n (z) = det
0≤i,j≤n−1

(
∞∑
k=0

ki+jω (k) zk

)
,

where ω (k) is a known nonzero function, G (n) is defined by

G (n) =
n−1∏
i=0

(i!) ,

and the coefficients rm (n) are given by

rm (n) =
∑

Λ∈P(m)

l(Λ)∏
i=1

ω (λi + n− i)
ω (n− i)

 [LΛΨΛ (n)]2 ,

with

LΛ =

l(Λ)∏
i=1

1

(λi)!

i−1∏
j=1

(
1− λi

λj + i− j

)
,

and

ΨΛ (x) =

l(Λ)∏
i=1

(x− i+ 1)λi .

In particular, when ω (k) is the weight function associated with discrete
semiclassical orthogonal polynomials

ω (k) =
(a1)k · · · (ap)k

(b1 + 1)k · · · (bq + 1)k

1

k!
,

we have

rm (n) =
∑

Λ∈P(m)

L2
ΛΨΛ (n)

ΨΛ (a1 + n− 1) · · ·ΨΛ (ap + n− 1)

ΨΛ (b1 + n) · · ·ΨΛ (bq + n)
.
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Using Schur polynomials, we showed that∑
Λ∈P(m)

L2
ΛΨΛ (x) =

xm

m!

and ∑
Λ∈P(m)

L2
ΛΨΛ (x) ΨΛ (y) =

(xy)m
m!

.

From these identities, we obtained exact evaluations for the Hankel determi-
nants of the Charlier polynomials

det
0≤i,j≤n−1

(
∞∑
k=0

ki+j
zk

k!

)
= z(n

2)G (n) enz

and Meixner polynomials

det
0≤i,j≤n−1

(
∞∑
k=0

ki+j (a)k
zk

k!

)
= z(n

2)G (n)

[
n−1∏
i=0

(a)i

]
(1− z)−n(a+n−1) .

We plan to extend these results and study the multivariate rational func-
tions

R (t, x1, . . . , xp, y1, . . . , yq)

=
∑

Λ∈P(m)

L2
ΛΨΛ (t)

ΨΛ (a1 + x1 − 1) · · ·ΨΛ (ap + xp − 1)

ΨΛ (b1 + y1) · · ·ΨΛ (bq + yq)
,

in order to obtain closed-form formulas for the Hankel determinants of other
families of discrete semiclassical orthogonal polynomials.
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