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1 Introduction

Let Ny denote the set Ng = NU {0} =0,1,2,.... We say that the sequence
of polynomials {g,} is a monic basis of Clz] if ¢, (x) € C|x] is a monic
polynomial and deg (g,) = n for all n € Ny. If {¢,,} is a monic basis and {, }
is a sequence of complex numbers, then the linear functional L : C[z] — C
defined by

L [Qn] = tn, n € Ny, (1)

is called the moment functional determined by gy, and p, [2]. The number
iy is called the (generalized) moment of order n. In the literature, the
chosen standard basis is the monomial basis, ¢, (z) = ™. If the sequence of
polynomials {P,,} satisfies

L [Pan] = hn5n,m’ n,m < N07 (2)

where hg = po, hy, # 0 and 9y, ,, is Kronecker’s delta, then {P,} is called an
orthogonal polynomial sequence with respect to L.

If the linear functional L admits an extension to the field of rational
functions C (z), then we can define the Stieltjes transform of L by

S(t):L[ ! } (3)

t—x

where L is always assumed to act on the variable z. Note that, at least as
formal power series, we have

1 Iex /2\7»
t—x_gz<;> ’
n=0
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and therefore (formally)
2 L[z"]
S(t) = —~ nt+l (4)

Thus, if we use the monomial basis ¢, (z) = 2", we can write

$()=3 i =3

n— an-‘rl n+1

(5)

and interpret S (t) as a generating function of the sequence of moments

{1n}-

One could be tempted to define S (¢) by (5), but then (3) won’t be true
in general. However, if the monic basis {¢,} satisfies

Gnt1 () gnia (@)
n (t) n (2)

=t—ux, (6)

‘Zn(x) _ qn+1($)
an(t)  gnt1(t)

Qn(fc)

then we obtain the telescoping 1dent1ty "0 (t—x) = . Hence

(at least formally) we have

qn(z
qn+1

and we see that (3) and (5) define the same function S (¢). The general
solution of (6) is given by g, (x) = H;:& (z+ f(j)), for some function f (j).
In particular, if f = 0, we recover the monomial basis. If f(j) = —j, we
obtain the basis of falling factorials

n—1

¢n(x):H<x_])7 (7)

J=0

that was studied by Bracciali, Pérez and Pinar in [1].
In this paper, we consider the sequence operator ¥ : CNo — C((t)),
defined by

Note that

- i dnt™, 9)

n=-—1



where d_; =Y 2 (_nl!)n ¢n. Moreover, if v, = L [¢py], then W [v,] = S (t).
Our objective is to obtain formulas relating (a) shifts in n and multipli-
cation by powers of n in the sequence v, with (b) shifts in the variable ¢
for the function S(t¢). This way, difference equations satisfied by S(¢) can be
computed automatically from linear recurrences of the sequence v,.

The paper is structured as follows: in Section 2, we introduce all the
concepts needed to prove our main result (Theorem 8). In Section 3, we
define the class of discrete semiclassical orthogonal polynomials. We con-
sider several examples, and use Theorem 8 to obtain the difference equation

satisfied by their Stieltjes transform S(t).

2 Main results

Definition 1 We define the falling factorial (or binomial) polynomials by
(7) or by

bn (z) = n! <x> (10)

n

and the Pochhammer (or rising factorial) polynomials by [8, 5.2(iii)]

n—1

(@), =[] @ +4). (11)

j=0

Remark 2 From the definition (7), the following recurrences and relations
are immediate [7, 18:5:8]

Pn+1 (@) = (x —n) Pn (2), (12)
on () = (-1)" (—2), = (z —n+1),, (13)
(@) = (@), (T + 1), (14)
r+m), ., n=m
((;))n - | 1) n<m’ (1)
m (x+n),,_,’

where n, m € Ny.

Using the previous relations and the definition of the falling factorial
polynomials, the following identities can be derived easily.



Lemma 3 For all k,n € Ny, we have

Gn+1 (t + k) - (t + l)k Pn+1-k (t) , k<n+1, (16)
o (t+1),

We now can establish the first relations between transformed sequences
and the difference equation of the associated Stieltjes function S (¢).

Proposition 4 For all k € N, we have

T
L

Ulvppr] = (E+1), SE+k)—) (t+1)__; v (18)

.
Il
o

Proof. Using (8), we get

VnJrk
W [vnga] = Z Z
¢n k+1

¢n+1

Since n > k, we can use (16) and obtain

o

qu @~ T Zm

t+1 Z¢n—&-1 t"‘k Z¢n—i—1 t+k)

In the second sum we now have n + 1 < k. Hence, we can use (17) and
conclude that

k—1 k—
Zm ;]Hlk R
[
Proposition 5 We have
Uinv)=tS(t)—(t+1)S(t+1)=—-A(tS(t)), (19)

where Ay denotes the forward difference operator, defined by Af (t) =
fE+1) = f(1).



Proof. Using (16) with k = 1, we get ¢p41 (t+ 1) = (t + 1) ¢y, (¢) . Thus,

_A[t}:t_t—i—l:t_l
"t (1) bni1 (1) Gnp1 (t+1)  Gupr(t)  n(t)

From (12), we obtain

1 t—n
¢n (t) B ¢n+1 (t)

Therefore,

t t t—n n
B |:¢n+1 (t)} T b1 (1) Gnri (D) Gunr (8)

and we conclude that

— A (S) Z A Lw] Z n

¢n+1
_ nvy, —~(n+ D vpyr (” +1) Unp1
Z ¢n+1 r;) ¢n+2 (t) 7;) ¢n+2 (t) .
]
Corollary 6 For all p € Ny, we have
p
v [npyn] = ( Att p S Z zup,i (t) S (t + 7’) ) (20)

=0

where the polynomials uy; (t) € Z[t], deg (up;) = p — i, are given by

up,i(t):ixj“) (—1)3'”*?{.“1 }(t+z‘+1)j, (21)

= ) j+i+1
and {Z} denote the Stirling numbers of the second kind, defined by [8, 26.8.6]

(=i ()

Jj=0

Proof. The result follows from the formula [10, Ch.6, eq.11]

(A £ (1) = Z{’?* 1}@ (t+ ) AT ().

= Jj+1



From (13), we have ¢; (t +j) = (t+1)
order differences [9, 6.1]

;» and using the formula for higher

Alf =3 (1) 0 e, 22

we get

=0 =0
- ;i%f(t—l—z);@) (=1 {pii} (t+1),

Shifting the summation index in the inner sum and using the factorization
(t+1)j4i = (t+1)i(t+i+1);, we obtain

(=1)'S (t+i) (t+1);

<J+> T e,

) J+i+1

(—A)? S (t) =

.
< L[]

Il
o

J
]

Let us recall the well-known property that the forward difference acts on the
raising factorials in a similar way as the derivative does on the monomial
basis, i.e.,

As an extension of this, we obtain the following result.
Corollary 7 For all p,m € Np, we have
(At (t+1), =(m+1)P(t+1),,. (24)

Proof. We use induction on p. The case p = 0 is an identity. Assuming the
result to be true for p > 0, we have

(AP (t+1),, = Ac[(m+ 1Pt +1),,] = (m+ 1) A [(8) 4]
where we have used (15) with n =1,

(t)m—i—l =1 (t + 1)m :

6



However,

A1) ya] = (m+1)(E+1),,
by (23) and therefore

(A)" (e +1) = (m+ )P (E+1)
and the result is proved.
|

Next, we put all the pieces together and give a formula to translate re-
currence equations with polynomial coefficients for the sequence v,, into
difference equations satisfied by S(t).

Theorem 8 For all p,k € Ny, we have

p
U [nPrp, ] = Z t+1k+]upj()5(t+j+k)
7=0
k—1
t+1)k 1—j Vi,
jZO

where the polynomials uy j (t) were defined in (21).
Proof. Using (20) in (18), we get

U [nPun ] = (=Act)" W Vi)

k—1
=(At)P [+ 1), SE+E) =) (E+1) ;v
§=0
From (20), we obtain
(A)?[(t+ 1), S(t+k)] =
(17 (t+ 5+ 1), (t+1) up; (1) S(E+7+E).
3=0

Again we factor using (16), ie., (t+j+1), (t+1); = (t+1),,,, and
therefore

(AP [(t+ 1), SE+R)] =D (=1 (t+ 1) up; (1) S (E+5+ k).

M-

<
Il
o



From (24), we get

(=B [(t+1)miy] = (1P (= )P (1)

and we conclude that

B
—
T
—

(—At)? ' (t+1D)pq_; vj= ‘ (j — k)P (t+1D)pq-; v

<
Il

o
<
Il

o

3 Discrete semiclassical orthogonal polynomials

In this section, we consider functionals of the form
o
Ligl=> q(@)p(z), qeClal, (25)
=0

where the weight function p : Ny — C is given by

p(z) = (a1), (a2), - (ap), #
(b1 + 1)y (bg + 1), 2!

(26)

Using (14), we see that the weight function p (z) satisfies the Pearson

equation
pla+l) M)

= 27
o@ ot 1) &)

where the polynomials A (z),0 (z) are given by
AMa) =z(@+a)(z+az)-(z+ap), (28)

o@)=x(x+b—1)---(x+b,—1).

We call L discrete semiclassical and define the class of L to be the
number
s = max {deg (\) — 2, deg(A— o) —1}. (29)

The functionals of class s = 0 are called discrete classical [4].
Note that the moments v, (2) are given by

va (2) =Y dn () p(@).
=0

8



In particular, for the first moment vy (z) we get

(1), (@), - (ap), 2% ai,...ap
VO(Z)_;) (b1), - (bg), ! PFq( bi,... by z)

where ,F, denotes the generalized hypergeometric function [8, 16.2].
Since the falling factorial polynomials ¢y, (z) are eigenvalues of the dif-

. mn
ferential operator z”jz—n,

dn
z”ﬁzx = ¢ () 2%,

we have

Using the identity [8, 16.3.1]

dr 7 (al,...,ap ;z> _ (al)n--~(aponq<a1+n,...,ap+n 'z>,

r=

~—

dzn PTE\ by, by (b1), -+ (bg),, bi+mn,....bg+n’
we obtain
(al) "'(ap) ar+n,...,ap+n
— n n n 9 bl . . 1
I/n(z) z (bl)n (b )n P+ q bl+n,.--,bq+n 7Z (3 )

From (30), we see that the exponential generating function of the mo-
ments v, (z) is given by

> u" o= (uz)" d”

Guz)=) wm(2) =) ~———w)=wlu+). (32
n=0 n=

Since vy (z) satisfies a differential equation of order max{p, ¢+ 1} with poly-

nomial coefficients (see [8, 16.8(ii)]), it follows that the sequence {v,} is

holonomic (or P-recursive) [5]. Note that from (32) we see that
n

> vn(2) (_nl') =1 (0) =1,
n=0

and therefore the coefficient d_; in (9) is always equal to 1 for these moment
sequences.



The classical discrete orthogonal families are the Charlier, Meixner,
Kravchuk, and Hahn polynomials. Their moments satisfy the recurrences

Un+1 — 2vp, = 0, (Charlier polynomials)

(1-=2)vps1—2(n—N)v, =0,
(a—b—N+14+n)vpr1+(n—N)(n+a)v, =0,

(
1—2)vpr1 —2z(n+a)v, =0, (Meixner polynomials
+
(Kravchuk polynomials)
(

Hahn polynomials)

where N € Ny. Using Theorem 8, we derive the following difference equations
for their Stieltjes transforms

t+1)S(t+1)—25(@t) =w, (
(t+1)S(t+1)—2(t+a)S{t)=(1—-2)r, (Meixner)
(t+1)St+1)—2(t—N)S({t)=(1—-2)ry, (Kravchuk)
(t+1)(t+b)S(t+1)—(t—N)(t+a)S(t)=(b—a+ N)r. (Hahn)

Charlier)

Equivalent difference equations were obtained in [1, 3.1] using a different
technique.

In [3], we classified the weight functions satisfying (27), with deg (A — o) =
2 and 1 < deg (o) < 3. Below, we use the main cases as examples.

Example 9 Let’s consider the families of polynomials orthogonal with re-
spect to the weight functions

1. Generalized Charlier polynomials

zx
2. Generalized Meixner polynomials
_(a), =

p(z)=(=N),(a), %T’ N € Ny,

4. Generalized Hahn polynomials of type I

_ (a), (a2), 2"
p(x) = l(b)EQ 2

10



5. Generalized Hahn polynomials of type I1

P (x) — (_N)x (al)x (a2)n 1

— N € Np.
(b1), (b2), !’ =

We see from (31) that the moments are given by

1. Generalized Charlier polynomials

), " b+n '°

3. Generalized Kravchuk polynomials

v (2) = 2 Do [ atn. ]

() = (-N), (@), 2R | TR ),
4. Generalized Hahn polynomials of type I

_ _nla1), (a2),
vn (2) = 2 l(b)n2 2F1[

5. Generalized Hahn polynomials of type 11

LN, (@), (@),

—N +n,a1 +n,a2+n
(b1) (b2) sl L abtn U

a1 +n,az+n
b—l—n ) 9

Using the Mathematica package HolonomicFunctions [6], we get the re-
currence relations
1. Generalized Charlier polynomials

Unt2 + (N +b) vy — 21y =0,

2. Generalized Meizner polynomials

Unt2+(n+b—2)vpp1 —2z(n+a)v, =0,

11



3. Generalized Kravchuk polynomials

2o+ [2n—=N+a+1)z—1]vpp1 +2(n+a)(n—N)v, =0,

4. Generalized Hahn polynomials of type I

(1 =2)vpgatn+b—(2n+a1 +as+ 1)zl vpr1—2(n+ar) (n+ a2) v, =0,

5. Generalized Hahn polynomials of type 11

(N—n—f—bl—i—bg—al—ag—2)1/n+2—|—[(n+b1)(n+b2)+N(2n—|—a1+a2+1)]1/n+1
—(3n2+3n+1—|—a1+a2+2na1—|—2na2+a1a2) Unt1+ (N —n) (a1 +n) (ag +n)v, =0.

Using Theorem 8, we conclude that their Stieltjes transforms satisfies the
difference equations

1. Generalized Charlier polynomials
(t+1)(E+b)S(t+1)—25(t)=(t+b)vy+ 11,
2. Generalized Meizxner polynomials
t+1D)(E+b)SEt+1)—2(t+a)S(Et)=(t+b—2)vg+ 11,
3. Generalized Kravchuk polynomials
t+1)S(t+1)—2z(t+a)t—N)SHt)=[1—(t+a—N)z|vy — zv,
4. Generalized Hahn polynomials of type I

(t+1)(E+b+1)SE+1)—2(t+ar)(t+a2)S(t)
=[(1—=2)t+b+1—2z(a1+a2)vo+ (1 —2)v1,

5. Generalized Hahn polynomials of type 11

(t+1)(E+bi+1)(E+ba+1)SE+1) — (t+a1)(t+a2)(t—N)S(¢)
=[24+bi+ba+N—a1—a2)t+ N (a1 +az) —araz+ (b1 + 1) (b2 + 1) o
+(14+b1+ba+ N —ay —az)v.

12
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