
Difference equation satisfied by the

Stieltjes transform of a sequence

Diego Dominici Veronika Pillwein

DK-Report No. 2018-11 12 2018

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
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1 Introduction

Let N0 denote the set N0 = N ∪ {0} = 0, 1, 2, . . . . We say that the sequence
of polynomials {qn} is a monic basis of C [x] if qn (x) ∈ C [x] is a monic
polynomial and deg (qn) = n for all n ∈ N0. If {qn} is a monic basis and {µn}
is a sequence of complex numbers, then the linear functional L : C [x] → C
defined by

L [qn] = µn, n ∈ N0, (1)

is called the moment functional determined by qn and µn [2]. The number
µn is called the (generalized) moment of order n. In the literature, the
chosen standard basis is the monomial basis, qn (x) = xn. If the sequence of
polynomials {Pn} satisfies

L [PnPm] = hnδn,m, n,m ∈ N0, (2)

where h0 = µ0, hn 6= 0 and δn,m is Kronecker’s delta, then {Pn} is called an
orthogonal polynomial sequence with respect to L.

If the linear functional L admits an extension to the field of rational
functions C (x) , then we can define the Stieltjes transform of L by

S (t) = L

[
1

t− x

]
, (3)

where L is always assumed to act on the variable x. Note that, at least as
formal power series, we have

1

t− x
=

1

t

∞∑
n=0

(x
t

)n
,
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and therefore (formally)

S (t) =

∞∑
n=0

L [xn]

tn+1
. (4)

Thus, if we use the monomial basis qn (x) = xn, we can write

S (t) =
∞∑
n=0

L [qn]

qn+1 (t)
=
∞∑
n=0

µn
qn+1 (t)

, (5)

and interpret S (t) as a generating function of the sequence of moments
{µn}.

One could be tempted to define S (t) by (5), but then (3) won’t be true
in general. However, if the monic basis {qn} satisfies

qn+1 (t)

qn (t)
− qn+1 (x)

qn (x)
= t− x, (6)

then we obtain the telescoping identity qn(x)
qn+1(t)

(t−x) = qn(x)
qn(t)
− qn+1(x)

qn+1(t)
. Hence

(at least formally) we have

1

t− x
=

∞∑
n=0

qn(x)

qn+1(t)
,

and we see that (3) and (5) define the same function S (t). The general
solution of (6) is given by qn(x) =

∏n−1
j=0

(
x+ f(j)

)
, for some function f (j) .

In particular, if f = 0, we recover the monomial basis. If f(j) = −j, we
obtain the basis of falling factorials

φn (x) =

n−1∏
j=0

(x− j) , (7)

that was studied by Bracciali, Pérez and Piñar in [1].
In this paper, we consider the sequence operator Ψ : CN0 → C ((t)) ,

defined by

Ψ [cn] =
∞∑
n=0

cn
φn+1 (t)

. (8)

Note that

Ψ [cn] =

∞∑
n=−1

dnt
n, (9)
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where d−1 =
∑∞

n=0
(−1)n
n! cn. Moreover, if νn = L [φn] , then Ψ [νn] = S (t) .

Our objective is to obtain formulas relating (a) shifts in n and multipli-
cation by powers of n in the sequence νn, with (b) shifts in the variable t
for the function S(t). This way, difference equations satisfied by S(t) can be
computed automatically from linear recurrences of the sequence νn.

The paper is structured as follows: in Section 2, we introduce all the
concepts needed to prove our main result (Theorem 8). In Section 3, we
define the class of discrete semiclassical orthogonal polynomials. We con-
sider several examples, and use Theorem 8 to obtain the difference equation
satisfied by their Stieltjes transform S(t).

2 Main results

Definition 1 We define the falling factorial (or binomial) polynomials by
(7) or by

φn (x) = n!

(
x

n

)
, (10)

and the Pochhammer (or rising factorial) polynomials by [8, 5.2(iii)]

(x)n =
n−1∏
j=0

(x+ j) . (11)

Remark 2 From the definition (7), the following recurrences and relations
are immediate [7, 18:5:8]

φn+1 (x) = (x− n)φn (x) , (12)

φn (x) = (−1)n (−x)n = (x− n+ 1)n , (13)

(x)n+m = (x)n (x+ n)m , (14)

(x)n
(x)m

=

(x+m)n−m , n ≥ m
1

(x+ n)m−n
, n ≤ m , (15)

where n,m ∈ N0.

Using the previous relations and the definition of the falling factorial
polynomials, the following identities can be derived easily.
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Lemma 3 For all k, n ∈ N0, we have

φn+1 (t+ k) = (t+ 1)k φn+1−k (t) , k ≤ n+ 1, (16)

φn+1 (t+ k) =
(t+ 1)k

(t+ 1)k−1−n
, k ≥ n+ 1. (17)

We now can establish the first relations between transformed sequences
and the difference equation of the associated Stieltjes function S (t).

Proposition 4 For all k ∈ N, we have

Ψ [νn+k] = (t+ 1)k S (t+ k)−
k−1∑
j=0

(t+ 1)k−1−j νj . (18)

Proof. Using (8), we get

Ψ [νn+k] =
∞∑
n=0

νn+k

φn+1 (t)
=
∞∑
n=k

νn
φn−k+1 (t)

.

Since n ≥ k, we can use (16) and obtain

∞∑
n=k

νn
φn−k+1 (t)

= (t+ 1)k

∞∑
n=k

νn
φn+1 (t+ k)

= (t+ 1)k

[ ∞∑
n=0

νn
φn+1 (t+ k)

−
k−1∑
n=0

νn
φn+1 (t+ k)

]
.

In the second sum we now have n + 1 ≤ k. Hence, we can use (17) and
conclude that

k−1∑
n=0

(t+ 1)k
φn+1 (t+ k)

νn =

k−1∑
n=0

(t+ 1)k−1−n νn.

Proposition 5 We have

Ψ [nνn] = tS (t)− (t+ 1)S (t+ 1) = −∆t (tS(t)) , (19)

where ∆t denotes the forward difference operator, defined by ∆tf (t) =
f (t+ 1)− f (t) .

4



Proof. Using (16) with k = 1, we get φn+1 (t+ 1) = (t+ 1)φn (t) . Thus,

−∆t

[
t

φn+1 (t)

]
=

t

φn+1 (t)
− t+ 1

φn+1 (t+ 1)
=

t

φn+1 (t)
− 1

φn (t)
.

From (12), we obtain
1

φn (t)
=

t− n
φn+1 (t)

.

Therefore,

−∆t

[
t

φn+1 (t)

]
=

t

φn+1 (t)
− t− n
φn+1 (t)

=
n

φn+1 (t)
,

and we conclude that

−∆t (tS) =

∞∑
n=0

−∆t

[
t

φn+1 (t)

]
νn =

∞∑
n=0

nνn
φn+1 (t)

=
∞∑
n=1

nνn
φn+1 (t)

=
∞∑
n=0

(n+ 1) νn+1

φn+2 (t)
=
∞∑
n=0

(n+ 1) νn+1

φn+2 (t)
.

Corollary 6 For all p ∈ N0, we have

Ψ [npνn] = (−∆tt)
p S (t) =

p∑
i=0

(−1)i (t+ 1)iup,i (t)S (t+ i) , (20)

where the polynomials up,i (t) ∈ Z [t] , deg (up,i) = p− i, are given by

up,i (t) =

p−i∑
j=0

(
j + i

i

)
(−1)j+i+p

{
p+ 1

j + i+ 1

}
(t+ i+ 1)j , (21)

and
{
n
k

}
denote the Stirling numbers of the second kind, defined by [8, 26.8.6]{

n

k

}
=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.

Proof. The result follows from the formula [10, Ch.6, eq.11]

(∆tt)
p f (t) =

p∑
j=0

{
p+ 1

j + 1

}
φj (t+ j) ∆j

tf (t) .
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From (13), we have φj (t+ j) = (t+ 1)j , and using the formula for higher
order differences [9, 6.1]

∆j
tf (t) =

j∑
i=0

(
j

i

)
(−1)j−i f (t+ i) , (22)

we get

(∆tt)
p f (t) =

p∑
j=0

{
p+ 1

j + 1

}
(t+ 1)j

j∑
i=0

(
j

i

)
(−1)j−i f (t+ i)

=

p∑
i=0

f (t+ i)

p∑
j=i

(
j

i

)
(−1)j−i

{
p+ 1

j + 1

}
(t+ 1)j .

Shifting the summation index in the inner sum and using the factorization
(t+ 1)j+i = (t+ 1)i(t+ i+ 1)j , we obtain

(−∆tt)
p S (t) =

p∑
i=0

(−1)i S (t+ i) (t+ 1)i

p−i∑
j=0

(
j + i

i

)
(−1)j+i+p

{
p+ 1

j + i+ 1

}
(t+ i+ 1)j .

Let us recall the well-known property that the forward difference acts on the
raising factorials in a similar way as the derivative does on the monomial
basis, i.e.,

∆x [(x)n] = n (x+ 1)n−1 . (23)

As an extension of this, we obtain the following result.

Corollary 7 For all p,m ∈ N0, we have

(∆tt)
p (t+ 1)m = (m+ 1)p (t+ 1)m . (24)

Proof. We use induction on p. The case p = 0 is an identity. Assuming the
result to be true for p ≥ 0, we have

(∆tt)
p+1 (t+ 1)m = ∆t [(m+ 1)p t (t+ 1)m] = (m+ 1)p ∆t

[
(t)m+1

]
,

where we have used (15) with n = 1,

(t)m+1 = t (t+ 1)m .
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However,
∆t

[(
t
)
m+1

]
=
(
m+ 1

)(
t+ 1

)
m

by (23) and therefore(
∆tt
)p+1(

t+ 1
)
m

=
(
m+ 1

)p+1(
t+ 1

)
m
,

and the result is proved.

Next, we put all the pieces together and give a formula to translate re-
currence equations with polynomial coefficients for the sequence νn, into
difference equations satisfied by S(t).

Theorem 8 For all p, k ∈ N0, we have

Ψ [npνn+k] =

p∑
j=0

(−1)j (t+ 1)k+j up,j (t)S (t+ j + k)

−
k−1∑
j=0

(j − k)p (t+ 1)k−1−j νj ,

where the polynomials up,j (t) were defined in (21).

Proof. Using (20) in (18), we get

Ψ [npνn+k] = (−∆tt)
p Ψ [νn+k]

= (−∆tt)
p

(t+ 1)k S (t+ k)−
k−1∑
j=0

(t+ 1)k−1−j νj

 .
From (20), we obtain

(−∆tt)
p [(t+ 1)k S (t+ k)] =

p∑
j=0

(−1)j (t+ j + 1)k (t+ 1)j up,j (t)S (t+ j + k) .

Again we factor using (16), i.e., (t+ j + 1)k (t+ 1)j = (t+ 1)k+j , and
therefore

(−∆tt)
p [(t+ 1)k S (t+ k)] =

p∑
j=0

(−1)j (t+ 1)k+j up,j (t)S (t+ j + k) .
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From (24), we get

(−∆tt)
p
[
(t+ 1)k−1−j

]
= (−1)p (k − j)p (t+ 1)k−1−j ,

and we conclude that

(−∆tt)
p
k−1∑
j=0

(t+ 1)k−1−j νj =
k−1∑
j=0

(j − k)p (t+ 1)k−1−j νj .

3 Discrete semiclassical orthogonal polynomials

In this section, we consider functionals of the form

L [q] =

∞∑
x=0

q (x) ρ (x) , q ∈ C [x] , (25)

where the weight function ρ : N0 → C is given by

ρ (x) =
(a1)x (a2)x · · · (ap)x

(b1 + 1)x · · · (bq + 1)x

zx

x!
. (26)

Using (14), we see that the weight function ρ (x) satisfies the Pearson
equation

ρ (x+ 1)

ρ (x)
=

λ (x)

σ (x+ 1)
, (27)

where the polynomials λ (x) , σ (x) are given by

λ (x) = z (x+ a1) (x+ a2) · · · (x+ ap) , (28)

σ (x) = x (x+ b1 − 1) · · · (x+ bq − 1) .

We call L discrete semiclassical and define the class of L to be the
number

s = max {deg (λ)− 2, deg (λ− σ)− 1} . (29)

The functionals of class s = 0 are called discrete classical [4].
Note that the moments νn (z) are given by

νn (z) =

∞∑
x=0

φn (x) ρ (x) .
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In particular, for the first moment ν0 (z) we get

ν0 (z) =

∞∑
x=0

(a1)x (a2)x · · · (ap)x
(b1)x · · · (bq)x

zx

x!
= pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
,

where pFq denotes the generalized hypergeometric function [8, 16.2].
Since the falling factorial polynomials φn (x) are eigenvalues of the dif-

ferential operator zn dn

dzn ,

zn
dn

dzn
zx = φn (x) zx,

we have

νn (z) =
∞∑
x=0

(a1)x (a2)x · · · (ap)x
x! (b1)x · · · (bq)x

φn (x) zx = zn
dn

dzn
ν0 (z) . (30)

Using the identity [8, 16.3.1]

dn

dzn
pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

(a1)n · · · (ap)n
(b1)n · · · (bq)n

pFq

(
a1 + n, . . . , ap + n
b1 + n, . . . , bq + n

; z

)
,

we obtain

νn (z) = zn
(a1)n · · · (ap)n
(b1)n · · · (bq)n

pFq

(
a1 + n, . . . , ap + n
b1 + n, . . . , bq + n

; z

)
. (31)

From (30), we see that the exponential generating function of the mo-
ments νn (z) is given by

G (u; z) =
∞∑
n=0

νn (z)
un

n!
=
∞∑
n=0

(uz)n

n!

dn

dzn
ν0 (z) = ν0 [(u+ 1) z] . (32)

Since ν0 (z) satisfies a differential equation of order max{p, q+1} with poly-
nomial coefficients (see [8, 16.8(ii)]), it follows that the sequence {νn} is
holonomic (or P-recursive) [5]. Note that from (32) we see that

∞∑
n=0

νn (z)
(−1)n

n!
= ν0 (0) = 1,

and therefore the coefficient d−1 in (9) is always equal to 1 for these moment
sequences.
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The classical discrete orthogonal families are the Charlier, Meixner,
Kravchuk, and Hahn polynomials. Their moments satisfy the recurrences

νn+1 − zνn = 0, (Charlier polynomials)

(1− z) νn+1 − z (n+ a) νn = 0, (Meixner polynomials)

(1− z) νn+1 − z (n−N) νn = 0, (Kravchuk polynomials)

(a− b−N + 1 + n) νn+1 + (n−N) (n+ a) νn = 0, (Hahn polynomials)

whereN ∈ N0. Using Theorem 8, we derive the following difference equations
for their Stieltjes transforms

(t+ 1)S (t+ 1)− zS (t) = ν0, (Charlier)

(t+ 1)S (t+ 1)− z (t+ a)S(t) = (1− z) ν0, (Meixner)

(t+ 1)S (t+ 1)− z (t−N)S(t) = (1− z) ν0, (Kravchuk)

(t+ 1) (t+ b)S (t+ 1)− (t−N) (t+ a)S (t) = (b− a+N) ν0. (Hahn)

Equivalent difference equations were obtained in [1, 3.1] using a different
technique.

In [3], we classified the weight functions satisfying (27), with deg (λ− σ) =
2 and 1 ≤ deg (σ) ≤ 3. Below, we use the main cases as examples.

Example 9 Let’s consider the families of polynomials orthogonal with re-
spect to the weight functions

1. Generalized Charlier polynomials

ρ (x) =
1

(b)n

zx

x!
,

2. Generalized Meixner polynomials

ρ (x) =
(a)x
(b)x

zx

x!
,

3. Generalized Kravchuk polynomials

ρ (x) = (−N)x (a)x
zx

x!
, N ∈ N0,

4. Generalized Hahn polynomials of type I

ρ (x) =
(a1)x (a2)x

(b)x

zx

x!
,
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5. Generalized Hahn polynomials of type II

ρ (x) =
(−N)x (a1)x (a2)n

(b1)x (b2)x

1

x!
, N ∈ N0.

We see from (31) that the moments are given by

1. Generalized Charlier polynomials

νn (z) = zn

(b)x
0F1

[
−

b+ n
; z

]
,

2. Generalized Meixner polynomials

νn (z) = zn
(a)n
(b)n

1F1

[
a+ n
b+ n

; z

]
,

3. Generalized Kravchuk polynomials

νn (z) = (−N)n (a)n 2F0

[
−N + n, a+ n

− ; z

]
,

4. Generalized Hahn polynomials of type I

νn (z) = zn
(a1)n (a2)n

(b)n
2F1

[
a1 + n, a2 + n

b+ n
; z

]
,

5. Generalized Hahn polynomials of type II

νn =

(
−N

)
n

(
a1
)
n

(
a2
)
n(

b1
)
n

(
b2
)
n

3F2

[ −N + n, a1 + n, a2 + n
b1 + n, b2 + n

; 1
]
.

Using the Mathematica package HolonomicFunctions [6], we get the re-
currence relations

1. Generalized Charlier polynomials

νn+2 + (n+ b) νn+1 − zνn = 0,

2. Generalized Meixner polynomials

νn+2 + (n+ b− z) νn+1 − z (n+ a) νn = 0,
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3. Generalized Kravchuk polynomials

zνn+2 + [(2n−N + a+ 1) z − 1] νn+1 + z (n+ a) (n−N) νn = 0,

4. Generalized Hahn polynomials of type I

(1− z) νn+2+[n+ b− (2n+ a1 + a2 + 1) z] νn+1−z (n+ a1) (n+ a2) νn = 0,

5. Generalized Hahn polynomials of type II

(N − n+ b1 + b2 − a1 − a2 − 2) νn+2 + [(n+ b1)(n+ b2) +N (2n+ a1 + a2 + 1)] νn+1

−
(
3n2 + 3n+ 1 + a1 + a2 + 2na1 + 2na2 + a1a2

)
νn+1 + (N − n) (a1 + n) (a2 + n) νn = 0.

Using Theorem 8, we conclude that their Stieltjes transforms satisfies the
difference equations

1. Generalized Charlier polynomials

(t+ 1) (t+ b)S (t+ 1)− zS (t) = (t+ b) ν0 + ν1,

2. Generalized Meixner polynomials

(t+ 1) (t+ b)S (t+ 1)− z (t+ a)S (t) = (t+ b− z) ν0 + ν1,

3. Generalized Kravchuk polynomials

(t+ 1)S (t+ 1)− z (t+ a) (t−N)S (t) = [1− (t+ a−N) z] ν0 − zν1,

4. Generalized Hahn polynomials of type I

(t+ 1) (t+ b+ 1)S (t+ 1)− z (t+ a1) (t+ a2)S (t)

= [(1− z) t+ b+ 1− z (a1 + a2)] ν0 + (1− z) ν1,

5. Generalized Hahn polynomials of type II

(t+ 1) (t+ b1 + 1) (t+ b2 + 1)S (t+ 1)− (t+ a1) (t+ a2) (t−N)S (t)

= [(2 + b1 + b2 +N − a1 − a2)t+N (a1 + a2)− a1a2 + (b1 + 1) (b2 + 1)] ν0

+ (1 + b1 + b2 +N − a1 − a2) ν1.

12
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